M.H. Acuña et al., Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor mission. Science 279, 1676–1680 (1998). https://doi.org/10.1126/science.279.5357.1676
ADS
Article
Google Scholar
D.E. Anderson, C.W. Hord, Mariner 6 and 7 ultraviolet spectrometer experiment: analysis of hydrogen Lyman-alpha data. J. Geophys. Res. 76, 6666–6673 (1971). https://doi.org/10.1029/JA076i028p06666
ADS
Article
Google Scholar
D.J. Andrews et al., Oblique reflections in the Mars Express MARSIS data set: stable density structures in the Martian ionosphere. J. Geophys. Res. 119, 3944–3960 (2014). https://doi.org/10.1002/2013JA019697
Article
Google Scholar
D.J. Andrews et al., Plasma observations during Mars atmospheric “Plume” event of March-April 2012. J. Geophys. Res. 121, 3139–3154 (2016). https://doi.org/10.1002/2015JA022023
Article
Google Scholar
A.V. Artemyev et al., Mars magnetotail: nature’s current sheet laboratory. J. Geophys. Res. 122, 5404–5417 (2017). https://doi.org/10.1002/2017JA024048
Article
Google Scholar
A.S. Arya et al., Mars Colour Camera: the characterization/calibration and data analysis from Earth imaging phase. Curr. Sci. 109, 1076–1086 (2015). https://doi.org/10.18520/v109/i6/1076-1086
Article
Google Scholar
S. Barabash et al., The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express mission. Space Sci. Rev. 126, 113–164 (2006). https://doi.org/10.1007/s11214-006-9124-8
ADS
Article
Google Scholar
E.S. Barker, Detection of molecular oxygen in the Martian atmosphere. Nature 238, 447–448 (1972). https://doi.org/10.1038/238447a0
ADS
Article
Google Scholar
M.J.S. Belton, D.M. Hunten, Water vapor in the atmosphere of Mars. Astrophys. J. 146, 307–308 (1996)
ADS
Google Scholar
J.L. Bertaux, F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S.A. Stern, B. Sandel, O. Korablev, Discovery of an aurora on Mars. Nature 435, 790–794 (2005). https://doi.org/10.1038/nature03603
ADS
Article
Google Scholar
A. Bhardwaj, S.K. Jain, Monte Carlo model of electron energy degradation in a CO2 atmosphere. J. Geophys. Res. 114, 1–14 (2009). https://doi.org/10.1029/2009JA014298
Article
Google Scholar
A. Bhardwaj, M. Michael, On the excitation of Io’s atmosphere by the photoelectrons: application of the analytical yield spectrum of SO2. Geophys. Res. Lett. 26, 393–396 (1999)
ADS
Google Scholar
A. Bhardwaj, S.A. Haider, R.P. Singhal, Auroral and photoelectron fluxes in cometary ionospheres. Icarus 85, 216–228 (1990)
ADS
Google Scholar
A. Bhardwaj, S.A. Haider, R.P. Singhal, Consequences of cometary aurora on the carbon chemistry at comet P/Halley. Adv. Space Res. 16(2), 31–36 (1995)
ADS
Google Scholar
A. Bhardwaj, S.A. Haider, R.P. Singhal, Production and emissions of atomic carbon and oxygen in the inner coma of comet Halley: role of electron impact. Icarus 120, 412–430 (1996)
ADS
Google Scholar
D.V. Bisikalo, V.I. Shematovich, J.C. Gérard, B. Hubert, Influence of crustal magnetic field on the Mars aurora electron flux and UV brightness. Icarus 282, 127–135 (2017)
ADS
Google Scholar
D.V. Bisikalo, V.I. Shematovich, J.C. Gérard, B. Hubert, Monte Carlo simulations of the interaction of fast proton and hydrogen atoms with the Martian atmosphere and comparison with in situ measurements. J. Geophys. Res. Space Phys. 123(7), 5850–5861 (2018)
ADS
Google Scholar
P.L. Bornmann, D. Speich, J. Hirman, V.J. Pizzo, R. Grubb, C. Balch, G. Heckman, The GOES solar X-ray imager: overview and operational goals. Proc. SPIE 2812, 309–319 (1996). https://doi.org/10.1117/12.254078
ADS
Article
Google Scholar
S.W. Bougher, S. Engel, D.P. Hinson, J.M. Forbes, Mars Global Surveyor radio science electron density: neutral atmosphere implications. Geophys. Res. Lett. 28, 3091–3094 (2001). https://doi.org/10.1029/2001GL012884
ADS
Article
Google Scholar
S.W. Bougher, D. Pawlowski, J.M. Bell, S. Nelli, T. McDunn, J.R. Murphy, M. Chizek, A. Ridley, Mars Global Thermosphere-Ionosphere model: solar cycle, seasonal and diurnal variations of the Mars upper atmosphere. J. Geophys. Res. 120, 311–342 (2015a). https://doi.org/10.1002/2014/JE004715
Article
Google Scholar
S.W. Bougher et al., Early MAVEN deep dip campaign reveals thermosphere and ionosphere variability. Science 350, 459 (2015b). https://doi.org/10.1126/science.aad0459
Article
Google Scholar
S.W. Bougher, D. Brain, J. Fox, G. Francisco, C. Simon-Wedlund, P. Withers, Upper neutral atmosphere and ionosphere, in The Atmosphere and Climate of Mars, ed. by R. Haberle, R. Clancy, F. Forget, M. Smith, R. Zurek (Cambridge University Press, Cambridge, 2017), pp. 433–463. https://doi.org/10.1017/9781139060172.014
Chapter
Google Scholar
D.A. Brain, J.S. Halekas, Aurora in the Martian mini-magnetospheres, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophysical Monograph Series, vol. 197 (2012), pp. 123–132. https://doi.org/10.1029/2011GM001201
Chapter
Google Scholar
D.A. Brain, F. Bagenal, M.H. Acuña, J.E.P. Connerney, Martian magnetic morphology: contributions from the solar wind and crust. J. Geophys. Res. 108, A12 (2003). https://doi.org/10.1029/2002JA009482
Article
Google Scholar
D.A. Brain, J.S. Halekas, L.M. Peticolas, R.P. Lin, J.G. Luhmann, D.L. Mitchell, G.T. Delory, S.W. Bougher, M.H. Acuña, H. Rème, On the origin of aurorae on Mars. Geophys. Res. Lett. 33, L01201 (2006). https://doi.org/10.1029/2005GL024782
ADS
Article
Google Scholar
D.A. Brain, R.J. Lillis, D.L. Mitchell, J.S. Halekas, R.P. Lin, Electron pitch angle distributions as indicators of magnetic field topology near Mars. J. Geophys. Res. 112, A09201 (2007). https://doi.org/10.1029/2007JA012435
ADS
Article
Google Scholar
D.A. Brain et al., A comparison of global models for the solar wind interaction with Mars. Icarus 206, 139–151 (2010). https://doi.org/10.1016/j.icarus.2009.06.030
ADS
Article
Google Scholar
D.A. Brain et al., The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophys. Res. Lett. 42, 9142–9148 (2015). https://doi.org/10.1002/2015GL065293
ADS
Article
Google Scholar
L.F. Burlaga, F.B. McDonald, N.F. Ness, A.J. Lazarus, Cosmic ray modulation: Voyager 2 observations, 1987-1988. J. Geophys. Res. 96, 3789–3799 (1991)
ADS
Google Scholar
N.P. Carleton, W.A. Traub, Detection of molecular oxygen on Mars. Science 177, 988–992 (1972). https://doi.org/10.1126/science.177.4053.988
ADS
Article
Google Scholar
M. Cartacci, E. Amata, A. Cichetti, R. Noschese, S. Giuppi, B. Langlasis et al., Mars ionosphere total electron content analysis from MARSIS subsurface data. Icarus 223(1), 423–437 (2013)
ADS
Google Scholar
M.S. Chaffin et al., Martian water loss to space enhanced by regional dust storms. Nat. Astron. 5, 1036–1042 (2021)
ADS
Google Scholar
P.C. Chamberlin et al., Solar ultraviolet irradiance observations of the solar flares during the intense September 2017 storm period. Space Weather 16, 1470–1487 (2018). https://doi.org/10.1029/2018SW00186
ADS
Article
Google Scholar
J.Y. Chaufray, R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, J.G. Luhmann, Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. 112, E09009 (2007). https://doi.org/10.1029/2007JE002915
ADS
Article
Google Scholar
J.-Y. Chaufray, F. Gonzalez-Galindo, F. Forget, M. Lopez-Valverde, F. Leblanc, R. Modolo, S. Hess, M. Yagi, P.-L. Blelly, O. Witasse, Three-dimensional Martian ionosphere model: II. Effect of transport processes due to pressure gradients. J. Geophys. Res. 119, 1614–1636 (2014). https://doi.org/10.1002/2013JE004551
Article
Google Scholar
T.E. Cravens, A.F. Nagy, Aeronomy of inner planets. Rev. Geophys. 21, 263–273 (1983). https://doi.org/10.1029/RG021i002p00263
ADS
Article
Google Scholar
T.E. Cravens, A. Rahmati, J.L. Fox, R. Lillis, S. Bougher, J. Luhmann, S. Sakai, J. Deighan, Y. Lee, M. Combi, B. Jakosky, Hot oxygen escape from Mars: simple scaling with solar EUV irradiance. J. Geophys. Res. 122, 1102–1116 (2017). https://doi.org/10.1002/2016JA023461
Article
Google Scholar
D.H. Crider, J. Espley, D.A. Brain, D.L. Mitchell, J.E.P. Connerney, M.H. Acuña, Mars Global Surveyor observations of the Halloween 2003 solar superstorm’s encounter with Mars. J. Geophys. Res. 110, A09S21 (2005). https://doi.org/10.1029/2004JA010881
ADS
Article
Google Scholar
J. Cui, M. Galand, R.V. Yelle, Y. Wei, S.-J. Zhang, Day-to-night transport in the Martian ionosphere: implications from total electron content measurements. J. Geophys. Res. 120, 2333–2346 (2015). https://doi.org/10.1002/2014JA020788
Article
Google Scholar
A. Dalgarno, M.B. McElroy, R.J. Moffett, Electron temperatures in the ionosphere. Planet. Space Sci. 11, 463–484 (1963)
ADS
Google Scholar
J. Deighan et al., Discovery of a proton aurora at Mars. Nat. Astron. 2, 802–807 (2018)
ADS
Google Scholar
G.A. DiBraccio et al., The twisted configuration of the Martian magnetotail: MAVEN observations. Geophys. Res. Lett. 45, 4559–4568 (2018). https://doi.org/10.1029/2018GL077251
ADS
Article
Google Scholar
C. Diéval, E. Kallio, S. Barabash, G. Stenberg, H. Nilsson, Y. Futaana, M. Holmström, A. Fedorov, R.A. Frahm, R. Jarvinen, D.A. Brain, A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations. J. Geophys. Res. 117, A06222 (2012). https://doi.org/10.1029/2012JA017537
ADS
Article
Google Scholar
C. Diéval, A.J. Kopf, J.A. Wild, Shapes of magnetically controlled electron density structures in the dayside Martian ionosphere. J. Geophys. Res. 123, 3919–3942 (2018). https://doi.org/10.1002/2017JA025140
Article
Google Scholar
C. Dong, Y. Ma, S.W. Bougher, G. Toth, A.F. Nagy et al., Multi-fluid MHD study of the solar wind interaction with Mars upper atmosphere during the 2015 March 8th ICME event. Geophys. Res. Lett. 42, 9103–9112 (2015). https://doi.org/10.1002/2015GL065944
ADS
Article
Google Scholar
E. Dubinin, G. Chanteur, M. Fraenz, J. Woch, Field aligned currents and parallel electric field potential drops at Mars. Scaling from the Earth’ s aurora. Planet. Space Sci. 56, 868–872 (2008). https://doi.org/10.1016/J.pss.2007.01.019
ADS
Article
Google Scholar
E. Dubinin et al., The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations. J. Geophys. Res. 122, 11,285–11,301 (2017). https://doi.org/10.1002/2017JA024741
Article
Google Scholar
F. Duru et al., Magnetically controlled structures in the ionosphere of Mars. J. Geophys. Res. 111, A12204 (2006). https://doi.org/10.1029/2006JA011975
ADS
Article
Google Scholar
J.P. Eastwood, D.A. Brain, J.S. Halekas, J.F. Drake, T.D. Phan, M. Øieroset, D.L. Mitchell, R.P. Lin, M. Acuña, Evidence for collisionless magnetic reconnection at Mars. Geophys. Res. Lett. 35, L02106 (2008). https://doi.org/10.1029/2007GL032289
ADS
Article
Google Scholar
M.K. Elrod et al., He bulge revealed: He and CO2 diurnal and seasonal variations in the upper atmosphere of Mars as detected by MAVEN NGIMS. J. Geophys. Res. 122, 2564–2573 (2017). https://doi.org/10.1002/2016JA023482
Article
Google Scholar
M.K. Elrod, S.M. Curry, E.M.B. Thiemann, S.K. Jain, September 2017 solar flare event: rapid heating of the Martian neutral exosphere from the X-class flare as observed by MAVEN. Geophys. Res. Lett. 45, 8803–8810 (2018). https://doi.org/10.1029/2018GL077729
ADS
Article
Google Scholar
M.K. Elrod, S.W. Bougher, K. Roeten, R. Sharrar, J. Murphy, Structural and compositional changes in the upper atmosphere revealed to the PEDE-2018 dust event on Mars as observed by MAVEN/NGIMS. Geophys. Res. Lett. 47, e2019GL084378 (2020)
ADS
Google Scholar
K. Fallows, P. Withers, G. Gonzalez, Response of the Mars ionosphere to solar flares: analysis of MGS radio occultation data. J. Geophys. Res. 120, 9805–9825 (2015). https://doi.org/10.1002/2015JA021108
Article
Google Scholar
X. Fang, D. Pawlowski, Y. Ma, S.W. Bougher et al., Mars upper atmospheric responses to the 10 September 2017 solar flare: a global time-dependent simulation. Geophys. Res. Lett. 46, 9334–9343 (2019). https://doi.org/10.1029/2019GL084515
ADS
Article
Google Scholar
A. Fedorova, J.-L. Bertaux, D. Betsis, F. Montmessin, O. Korablev, L. Maltagliati, J. Clarke, Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus 300, 440–457 (2018). https://doi.org/10.1016/j.icarus.2017.09.025
ADS
Article
Google Scholar
M.O. Fillingim et al., On wind driven electrojets at magnetic cusps in the nightside ionosphere of Mars. Earth Planets Space 64, 93–103 (2012). https://doi.org/10.5047/eps.2011.04.010
ADS
Article
Google Scholar
S. Fonti, G.A. Marzo, Mapping the methane on Mars. Astron. Astrophys. 512, A51 (2010). https://doi.org/10.1051/0004-6361/200913178
ADS
Article
Google Scholar
V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004). https://doi.org/10.1126/science.1101732
ADS
Article
Google Scholar
C.M. Fowler et al., The first in situ electron temperature and density measurements of the Martian nightside ionosphere. Geophys. Res. Lett. 42, 8854–8861 (2015). https://doi.org/10.1002/2015GL065267
ADS
Article
Google Scholar
J.L. Fox, Chemistry of the nightside ionosphere of Venus. Planet. Space Sci. 40, 1663–1681 (1992). https://doi.org/10.1016/0032-0633(92)90124-7
ADS
Article
Google Scholar
J.L. Fox, Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X-rays. J. Geophys. Res. 109, A11310 (2004). https://doi.org/10.1029/2004JA010380
ADS
Article
Google Scholar
J.L. Fox, The chemistry of protonated species in the Martian ionosphere. Icarus 252, 366–392 (2015). https://doi.org/10.1016/j.icarus.2015.01.010
ADS
Article
Google Scholar
J.L. Fox, K.E. Yeager, MGS electron density profiles: analysis of the peak magnitudes. Icarus 200, 468–479 (2009). https://doi.org/10.1016/j.icarus.2008.12.002
ADS
Article
Google Scholar
J.L. Fox, J.F. Brannon, H.S. Porter, Upper limits to the nightside ionosphere of Mars. Geophys. Res. Lett. 20, 1391 (1993)
Google Scholar
M. Fränz, E. Dubinin, E. Nielsen, J. Woch, S. Barabash, R. Lundin, A. Fedorov, Transterminator ion flow in the Martian ionosphere. Planet. Space Sci. 58, 1442–1454 (2010). https://doi.org/10.1016/j.pss.2010.06.009
ADS
Article
Google Scholar
C.D. Fry, M. Dryer, W. Sun, Z. Smith, C.S. Deehr, S.I. Akasofu, Forecasting solar wind structures and shock arrival times using an ensemble of models. J. Geophys. Res. 108, 1070 (2003). https://doi.org/10.1029/2002JA009474
Article
Google Scholar
Y. Futaana et al., First ENA observations at Mars: ENA emissions from the Martian upper atmosphere. Icarus 182, 424–430 (2006a). https://doi.org/10.1016/j.icarus.2005.09.019
ADS
Article
Google Scholar
Y. Futaana et al., First ENA observations at Mars: subsolar ENA jet. Icarus 182, 413–423 (2006b). https://doi.org/10.1016/j.icarus.2005.08.024
ADS
Article
Google Scholar
Y. Futaana et al., Global response of Martian plasma environment to an interplanetary structure: from ENA and plasma observations at Mars. Space Sci. Rev. 126, 315–332 (2006c). https://doi.org/10.1007/s11214-006-9026-9
ADS
Article
Google Scholar
A. Galli et al., Direct measurements of energetic neutral hydrogen in the interplanetary medium. Astrophys. J. 644, 1317 (2006a). https://doi.org/10.1086/503765
ADS
Article
Google Scholar
A. Galli et al., The hydrogen exospheric density profile measured with ASPERA-3/NPD. Space Sci. Rev. 126, 447–467 (2006b). https://doi.org/10.1007/s11214-006-9089-7
ADS
Article
Google Scholar
A. Galli et al., Tailward flow of energetic neutral atoms observed at Mars. J. Geophys. Res. 113, E1202 (2008). https://doi.org/10.1029/2008JE003139
Article
Google Scholar
J.C. Gérard, L. Soret, L. Libert, R. Lundin, A. Stiepen, A. Radioti, J.L. Bertaux, Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express. J. Geophys. Res. 120, 6749–6765 (2015)
Google Scholar
J.C. Gérard, L. Soret, V.I. Shematovich, D.V. Bisikalso, S.W. Bougher, The Mars diffuse aurora: a model of ultraviolet and visible emissions. Icarus 288, 284–294 (2017)
ADS
Google Scholar
J.C. Gérard, B. Hubert, B. Ritter, V.I. Shematovich, D.V. Bisikalo, Lyman \(\alpha \) emission in the Martian proton aurora: line profile and role of horizontal induced magnetic field. Icarus 321, 266–271 (2019)
ADS
Google Scholar
F. González-Galindo, J.-Y. Chaufray, M.A. López-Valverde, G. Gilli, F. Forget, F. Leblanc, R. Modolo, S. Hess, M. Yagi, Three-dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. J. Geophys. Res. 118, 2105–2123 (2013). https://doi.org/10.1002/jgre.20150
Article
Google Scholar
N. Gopalaswamy, S. Yashiro, Y. Liu, G. Michalek, A. Vourlidas, M.L. Kaiser, R.A. Howard, Coronal mass ejections and other extreme characteristics of the 2003 October-November solar eruptions. J. Geophys. Res. 110, A09S15 (2005). https://doi.org/10.1029/2004JA010958
ADS
Article
Google Scholar
A. Grigoriev, Y. Futaana, S. Barabash, A. Fedorov, Observations of the Martian subsolar ENA jet oscillations, in The Mars Plasma Environment, vol. 299 (2007). https://doi.org/10.1007/978-0-387-70943-7_11
Chapter
Google Scholar
H. Gröller, R. Yelle, T. Koskinen, F. Montmessin, G. Lacombe, N. Schneider, J. Deighan et al., Probing the Martian atmosphere with MAVEN/IUVS stellar occultations. Geophys. Res. Lett. 42(21), 9064–9070 (2015). https://doi.org/10.1002/2015GL065294
ADS
Article
Google Scholar
H. Gröller, F. Montmessin, R. Yelle, F. Lefèvre, F. Forget, N. Schneider, T. Koskinen, J. Deighan, S. Jain, MAVEN/IUVS stellar occultation measurements of Mars atmospheric structure and composition. J. Geophys. Res., Planets 123(6), 1449–1483 (2018). https://doi.org/10.1029/2017JE005466
ADS
Article
Google Scholar
H. Gunell et al., First ENA observations at Mars: charge exchange ENAs produced in the magnetosheath. Icarus 182, 431–438 (2006). https://doi.org/10.1016/j.icarus.2005.10.027
ADS
Article
Google Scholar
D.A. Gurnett et al., Radar soundings of the ionosphere of Mars. Science 310, 1929–1933 (2005). https://doi.org/10.1126/science.1121868
ADS
Article
Google Scholar
R.M. Haberle, J. Manoj, J. Murphy, J. Barnes, J. Schofield, G. Wilson, M. Valverde, General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J. Geophys. Res., Planets 104(E4), 8957–8974 (1999)
ADS
Google Scholar
R.M. Haberle, K. Zahnle, N.G. Barlow, K.E. Steakley, Impact degassing of H2 on early Mars and its effect on the climate system. Geophys. Res. Lett. 46(22), 13355–13362 (2019)
ADS
Google Scholar
S.A. Haider, Chemistry on the nightside ionosphere of Mars. J. Geophys. Res. 102, 407–416 (1997). https://doi.org/10.1029/96JA02353
ADS
Article
Google Scholar
S.A. Haider, A. Bhardwaj, Radial distribution of production rates, loss rates and densities corresponding to ion masses \(\leq40~\text{amu}\) in the inner coma of comet Halley: composition and chemistry. Icarus 177, 196–216 (2005)
ADS
Google Scholar
S.A. Haider, K.K. Mahajan, Lower and upper ionosphere of Mars. Space Sci. Rev. 182, 19–84 (2014). https://doi.org/10.1007/s11214-014-0058-2
ADS
Article
Google Scholar
S.A. Haider, J. Masoom, Modeling of diffuse aurora due to precipitation of \(\text{H}^{+}\)-H and SEP electrons in the nighttime atmosphere of Mars: Monte Carlo simulation and MAVEN observation. J. Geophys. Res. 124, 9566–9576 (2019). https://doi.org/10.1029/2019JA026688
Article
Google Scholar
S.A. Haider, R.P. Singhal, Analytical yield spectrum approach to electron energy degradation in Earth’s atmosphere. J. Geophys. Res. 88, 7185–7189 (1983). https://doi.org/10.1029/JA088iA09p07185
ADS
Article
Google Scholar
S.A. Haider, R.P. Singhal, Analytical approach to backscattering of low energy electrons. J. Geophys. Res. Space Phys. 91, 13761–13763 (1986)
ADS
Google Scholar
S.A. Haider, J. Kim, A.F. Nagy, C.N. Keller, M.I. Verigin, K.I. Gringauz, N.M. Shutte, K. Szego, P. Kiraly, Calculated ionization rates, ion densities and airglow emission rates due to precipitating electrons in the nightside ionosphere of Mars. J. Geophys. Res. 97, 10637–10641 (1992)
ADS
Google Scholar
S.A. Haider, S.P. Seth, E. Kallio, K.I. Oyama, Solar EUV and electron-proton-hydrogen atom-produced ionosphere on Mars: comparative studies of particle fluxes and ion production rates due to different processes. Icarus 159, 18–30 (2002). https://doi.org/10.1006/icarus.2002.6919
ADS
Article
Google Scholar
S.A. Haider, S.P. Seth, V.R. Choksi, K.I. Oyama, Model of photoelectron impact ionization within the high latitude ionosphere at Mars: comparison of calculated and measured electron density. Icarus 185, 102–112 (2006). https://doi.org/10.1016/j.icarus.2006.07.010
ADS
Article
Google Scholar
S.A. Haider, M.A. Abdu, I.S. Batista, J.H. Sobral, X. Luan, E. Kallio, W.C. Maguire, M.I. Verigin, V. Singh, D, E, and F layers in the daytime at high-latitude terminator ionosphere of Mars: comparison with Earth’s ionosphere using COSMIC data. J. Geophys. Res. 114, A03311 (2009). https://doi.org/10.1029/2008JA013709
ADS
Article
Google Scholar
S.A. Haider, S.P. Seth, D.A. Brain, D.L. Mitchell, T. Majeed, S.W. Bougher, Modeling photoelectron transport in the Martian ionosphere at Olympus Mons and Syrtis Major: MGS observations. J. Geophys. Res. 115, A08310 (2010). https://doi.org/10.1029/2009JA014968
ADS
Article
Google Scholar
S.A. Haider, K.K. Mahajan, E. Kallio, Mars ionosphere: a review of experimental results and modeling studies. Rev. Geophys. 49, RG4001 (2011). https://doi.org/10.1029/2011RG000357
ADS
Article
Google Scholar
S.A. Haider, S.M.P. McKenna-Lawlor, C.D. Fry, R. Jain, K.N. Joshipura, Effects of solar X-ray flares in the E region ionosphere of Mars: first model results. J. Geophys. Res. 117, A05326 (2012). https://doi.org/10.1029/2011JA017436
ADS
Article
Google Scholar
S.A. Haider, B.M. Pandya, G.J. Molina-Cuberos, Nighttime ionosphere caused by meteoroid ablation and solar wind electron-proton-hydrogen impact: MEX observation and modelling. J. Geophys. Res. 115, 1–9 (2013). https://doi.org/10.1002/jgra.50590
Article
Google Scholar
T.S. Halekas et al., MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophys. Res. Lett. 42, 8901–8909 (2015). https://doi.org/10.1002/2015GL064693
ADS
Article
Google Scholar
W.B. Hanson, S. Sanatani, D.R. Zuccarao, The Martian ionosphere as observed by Viking retarding potential analyzer. J. Geophys. Res. 82, 4351–4363 (1977). https://doi.org/10.1029/JS082i028p04351
ADS
Article
Google Scholar
Y. Harada, D.A. Gurnett, A.J. Kopf, J.S. Halekas, S. Ruhunusiri, G.A. DiBraccio, J. Espley, D.A. Brain, MARSIS observations of the Martian nightside ionosphere during the September 2017 solar event. Geophys. Res. Lett. 45, 7960–7967 (2018). https://doi.org/10.1002/2018GL077622
ADS
Article
Google Scholar
D.P. Hinson, R.A. Simpson, J.D. Twicken, G.L. Tyler, F.M. Flasar, Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 104, 26,997–27,012 (1999). https://doi.org/10.1029/1999JE001069
ADS
Article
Google Scholar
A. Hughes, M. Chaffin, E. Mierkiewicz, J. Deighan, S. Jain, N. Schneider, M. Mayyasi, B. Jakosky, Proton aurora on Mars: a dayside phenomenon pervasive in southern summer. J. Geophys. Res. Space Phys. 124, 10533–10548 (2019). https://doi.org/10.1029/2019JA027140
ADS
Article
Google Scholar
W.H. Ip, On a hot oxygen corona of Mars. Icarus 76, 135–145 (1998). https://doi.org/10.1016/0019-1035(88)90146-7
ADS
Article
Google Scholar
W.H. Ip, ENA diagnostic of auroral activity at Mars. Planet. Space Sci. 63/64, 83–86 (2012)
ADS
Google Scholar
B.M. Jakosky et al., The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Space Sci. Rev. 195, 3–48 (2015)
ADS
Google Scholar
B.M. Jakosky et al., Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315, 146–157 (2018). https://doi.org/10.1016/j.icarus.2018.05.030
ADS
Article
Google Scholar
M.A. Kahre, J.R. Murphy, C.E. Newman, R.J. Wilson, B.A. Cantor, M.T. Lemmon, M.J. Wolff, The Mars dust cycle, in The Atmosphere and Climate of Mars, vol. 18 (2017), p. 295
Google Scholar
E. Kallio, S. Barabash, Atmospheric effects of precipitating energetic hydrogen atoms on the Martian atmosphere. J. Geophys. Res. 106, 165–177 (2001)
ADS
Google Scholar
E. Kallio, P. Janhunen, Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars-solar wind interaction. J. Geophys. Res. 106, 5617–5634 (2001)
ADS
Google Scholar
E. Kallio, J.G. Luhma, S. Barabash, Charge exchange near Mars: the solar wind absorption and energetic neutral atom production. J. Geophys. Res. 102, 22183–22197 (1997)
ADS
Google Scholar
E. Kallio, K. Liu, R. Javinen, V. Pohjola, P. Janhunen, Oxygen ion escape at Mars in a hybrid model: high energy and low energy ions. Icarus 206, 152–163 (2010). https://doi.org/10.1016/j.icarus.2009.05.015
ADS
Article
Google Scholar
L.D. Kaplan, G. Münch, H. Spinrad, An analysis of the spectrum of Mars. Astrophys. J. 139, 1 (1964). https://doi.org/10.1086/147736
ADS
Article
Google Scholar
L.D. Kaplan, J. Connes, P. Connes, Carbon monoxide in the Martian atmosphere. Astrophys. J. 157, L187 (1969)
ADS
Google Scholar
J. Kar, Recent advances in planetary ionospheres. Space Sci. Rev. 77, 193–266 (1996). https://doi.org/10.1007/BF00226224
ADS
Article
Google Scholar
G.M. Keating, S.W. Bougher, R.W. Zurek, R.H. Tolson, G.J. Cancro, S.N. Noll et al., The structure of the upper atmosphere of Mars: in situ accelerometer measurements from Mars Global Surveyor. Science 279(5357), 1672–1676 (1998)
ADS
Google Scholar
A.J. Kliore, D.L. Cain, G.S. Levy, V.R. Eshleman, G. Fjeldbo, F.O. Drake, Occultation experiment: results of the first direct measurement of Mars atmosphere and ionosphere. Science 149, 1243–1248 (1965). https://doi.org/10.1126/science.149.3689
ADS
Article
Google Scholar
O. Korablev et al., The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 trace gas orbiter. Space Sci. Rev. 214, 1–62 (2018). https://doi.org/10.1007/s11214-017-0437-6
ADS
Article
Google Scholar
V.A. Krasnopolsky, Photochemistry of the Atmospheres of Mars and Venus. Physics and Chemistry in Space, vol. 13 (1986). https://doi.org/10.1007/978-3-642-70401-7
Book
Google Scholar
V.A. Krasnopolsky, Spectroscopic mapping of Mars CO mixing ratio: detection of north-south asymmetry. J. Geophys. Res. 108(E2), 5010 (2003). https://doi.org/10.1029/2002JE001926
Article
Google Scholar
A.M. Krymskii, T.K. Breus, N.F. Ness, M.H. Acuña, J.E.P. Connerney, D.H. Crider, D.L. Mitchell, S.J. Bauer, Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars. J. Geophys. Res. 107, 1245 (2002). https://doi.org/10.1029/2001JA000239
Article
Google Scholar
G.P. Kuiper, The Atmospheres of the Earth and Planets (University of Chicago Press, Chicago, 1952)
Google Scholar
F. Leblanc, O. Witasse, J. Winningham, D. Brain, J. Lilensten, P.-L. Blelly, R.A. Frahm, J.S. Halekas, J.L. Bertaux, Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express. J. Geophys. Res. 111, A09313 (2006). https://doi.org/10.1029/2006JA011763
ADS
Article
Google Scholar
F. Leblanc et al., Observations of aurora by SPICAM ultraviolet spectrograph on board Mars Express: simultaneous ASPERA-3 and MARSIS measurements. J. Geophys. Res. 113, A08311 (2008)
ADS
Google Scholar
S. Lebonnois, E. Quémerais, F. Montmessin, F. Lefèvre, S. Perrier, J.-L. Bertaux, F. Forget, Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations. J. Geophys. Res. 111, E09S05 (2006). https://doi.org/10.1029/2005JE002643
ADS
Article
Google Scholar
S.A. Ledvina, Y.J. Ma, E. Kallio, Modeling and simulating flowing plasmas and related phenomena. Space Sci. Rev. 139(1–4), 143–189 (2008)
ADS
Google Scholar
C.O. Lee et al., MAVEN observations of the solar cycle 24 space weather conditions at Mars. J. Geophys. Res. 122, 2768–2794 (2017). https://doi.org/10.1002/2016JA023495
Article
Google Scholar
C.O. Lee, B.M. Jakosky, J.G. Luhmann, D.A. Brain, M.L. Mays, D.M. Hassler, M. Holmström, D.E. Larson, D.L. Mitchell, C. Mazelle, J.S. Halekas, Observations and impacts of the 10 September 2017 solar events at Mars: an overview and synthesis of the initial results. Geophys. Res. Lett. 45, 8871–8885 (2018). https://doi.org/10.1029/2018GL079162
ADS
Article
Google Scholar
M.T. Lemmon, M.J. Wolff, J.F. Bell III, M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015). https://doi.org/10.1016/j.icarus.2014.03.029
ADS
Article
Google Scholar
M.W. Liemohn et al., Numerical modeling of magnetic topology near Marsauroral observations. Geophys. Res. Lett. 34, L24202 (2007). https://doi.org/10.1029/2007GL031806
ADS
Article
Google Scholar
J. Lilensten, D. Bernard, M. Barthélémy, G. Gronoff, C. Simon Wedlund, A. Opitz, Prediction of blue, red and green aurorae at Mars. Planet. Space Sci. 115, 48–56 (2015)
ADS
Google Scholar
R.J. Lillis, M.O. Fillingim, D.A. Brain, Three-dimensional structure of the Martian nightside ionosphere: predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons. J. Geophys. Res. 116, A12317 (2011). https://doi.org/10.1029/2011JA016982
ADS
Article
Google Scholar
R.J. Lillis, S. Robbins, M. Manga, J.S. Halekas, H.V. Frey, Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. 118, 1488–1511 (2013). https://doi.org/10.1002/jgre.20105
Article
Google Scholar
G. Liu, S.L. England, R.J. Lillis, P. Withers, P.R. Mahaffy, D.E. Rowland, M. Elrod et al., Thermospheric expansion associated with dust increase in the lower atmosphere on Mars observed by MAVEN/NGIMS. Geophys. Res. Lett. 45, 2901–2910 (2018)
ADS
Google Scholar
J.G. Luhmann et al., Martian magnetic storms. J. Geophys. Res. 122, 6185–6209 (2017). https://doi.org/10.1002/2016JA023513
Article
Google Scholar
J.G. Luhmann, M.L. Mays, Y. Li, C.O. Lee, H. Bain, D. Odstrcil, R.A. Mewaldt, C.M.S. Cohen, D. Larson, G. Petrie, Shock connectivity and the late cycle 24 solar energetic particle events in July and September 2017. Space Weather 16, 557–568 (2018). https://doi.org/10.1029/2018SW001860
ADS
Article
Google Scholar
A.T.Y. Lui, P. Perreault, S.I. Akasofu, C.D. Anger, The diffuse aurora. Planet. Space Sci. 21(5), 857–861 (1973). https://doi.org/10.1016/0032-0633(73)90102-5
ADS
Article
Google Scholar
R. Lundin et al., Solar wind-induced atmospheric erosion at Mars: first results from ASPERA-3 on Mars Express. Science 305, 1933–1936 (2004). https://doi.org/10.1126/science.1101860
ADS
Article
Google Scholar
R. Lundin et al., Auroral plasma acceleration above Martian magnetic anomalies. Space Sci. Rev. 126, 333–354 (2006)
ADS
Google Scholar
R. Lundin, S. Barabash, E. Dubinin, D. Winningham, M. Yamauchi, Low-altitude acceleration of ionospheric ions at Mars. Geophys. Res. Lett. 38, L08108 (2011). https://doi.org/10.1029/2011GL047064
ADS
Article
Google Scholar
Y.J. Ma, A.F. Nagy, V.I. Sokolov, K.C. Hansen, Three-dimensional, multi-species, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004). https://doi.org/10.1029/2003JA010367
ADS
Article
Google Scholar
Y.J. Ma et al., Variations of the Martian plasma environment during the ICME passage on 8 March 2015: a time-dependent MHD study. J. Geophys. Res. 122, 1714–1730 (2017). https://doi.org/10.1002/2016JA023402
Article
Google Scholar
P.R. Mahaffy et al., The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission. Space Sci. Rev. 195, 49–73 (2015). https://doi.org/10.1007/s11214-014-0091-1
ADS
Article
Google Scholar
K.K. Mahajan, J. Kar, Planetary ionospheres. Space Sci. Rev. 47, 303–397 (1988). https://doi.org/10.1007/BF00243558
ADS
Article
Google Scholar
K.K. Mahajan, N.K. Lodhi, S. Singh, Ionospheric effects of solar flares at Mars. Geophys. Res. Lett. 36, L15207 (2009). https://doi.org/10.1029/2009GL039454
ADS
Article
Google Scholar
G.T. Marklund, Electric fields and plasma processes in the auroral downward current region, below, within, and above the acceleration region. Space Sci. Rev. 142, 1–21 (2009). https://doi.org/10.1007/s11214-008-9373-9
ADS
Article
Google Scholar
G.A. Marzo, T.L. Roush, A. Blanco, S. Fonti, V. Orofino, Statistical exploration and volume reduction of planetary remote sensing spectral data. J. Geophys. Res. 113, E12009 (2008). https://doi.org/10.1029/2008JE003219
ADS
Article
Google Scholar
K. Matsunaga, K. Seki, T. Hara, D.A. Brain, Asymmetric penetration of shocked solar wind down to 400 km altitudes at Mars. J. Geophys. Res. 120, 6874–6883 (2015). https://doi.org/10.1002/2014JA020757
Article
Google Scholar
B. Mauk, F. Bagenal, Comparative auroral physics: Earth and other planets, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophys. Monogr. Ser. (2012). https://doi.org/10.1029/2011GM001192
Chapter
Google Scholar
M.B. McElroy, T.Y. Kong, Y.L. Yung, A.O. Nier, Composition and structure of the Martian upper atmosphere: analysis of results from Viking. Science 194, 1295–1298 (1976). https://doi.org/10.1126/science.194.4271.1295
ADS
Article
Google Scholar
M. Mendillo, P. Withers, D. Hinson, H. Rishbeth, B. Reinisch, Effects of solar flares on the ionosphere of Mars. Science 311, 1135–1138 (2006). https://doi.org/10.1126/science.1122099
ADS
Article
Google Scholar
A. Milillo, A. Mura, S. Orsini, S. Massetti, P.C. son Brandt, T. Sotirelis, R. D’Amicis, S. Barabash, R.A. Frahm, E. Kallio, A. Galli, P. Wurz, M. Holmstrom, E.C. Roelof, J.D. Winningham, P. Cerulli-Irelli, S. Livi, R. Lundin, M. Maggi, A. Morbidini, Statistical analysis of the observations of the MEX/ASPERA-3 NPI in the shadow. Planet. Space Sci. 57, 1000–1007 (2009). https://doi.org/10.1016/j.pss.2008.09.016
ADS
Article
Google Scholar
E. Millour et al., A new Mars climate database v5.1, paper 1301 presented at the Fifth International Workshop on Mars Atmosphere: Modeling and Observations. Oxford, UK, Jan. 2014 (2014)
D.L. Mitchell et al., Oxygen Auger electrons observed in Mars ionosphere. Geophys. Res. Lett. 27(13), 1871–1874 (2000). https://doi.org/10.1029/1999GL010754
ADS
Article
Google Scholar
D.L. Mitchell et al., Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J. Geophys. Res. 106, 23419–23428 (2001). https://doi.org/10.1029/2000JE001435
ADS
Article
Google Scholar
D.L. Mitchell, R.J. Lillis, R.P. Lin, J.E.P. Connerney, M.H. Acuña, A global map of Mars’ crustal magnetic field based on electron reflectometry. J. Geophys. Res. 112, E01002 (2007). https://doi.org/10.1029/2005JE002564
ADS
Article
Google Scholar
G.J. Molina-Cuberos, H. Lichtenegger, K. Schwingenschuh, J.J. Lopez-Moreno, R. Rodrigo, Ion-neutral chemistry model of the lower ionosphere of Mars. J. Geophys. Res. 107(E5), 5027 (2002). https://doi.org/10.1029/2000JE001447
Article
Google Scholar
F. Montmessin, F. Lefèvre, Transport-driven formation of a polar ozone layer on Mars. Nat. Geosci. 6, 930–933 (2013). https://doi.org/10.1038/ngeo1957
ADS
Article
Google Scholar
F. Montmessin, E. Quémerais, J.L. Bertaux, O. Korablev, P. Rannou, S. Lebonnois, Stellar occultations at UV wavelengths by the SPICAM instrument: retrieval and analysis of Martian haze profiles. J. Geophys. Res. 111, E09S09 (2006). https://doi.org/10.1029/2005JE002662
ADS
Article
Google Scholar
D.D. Morgan et al., Effects of a strong ICME on the Martian ionosphere as detected by Mars Express and Mars Odyssey. J. Geophys. Res. 119, 5891–5908 (2014). https://doi.org/10.1002/2013JA019522
Article
Google Scholar
J. Mouginot, W. Kofman, A. Safaeinili, A. Herique, Correction of the ionospheric distortion on the MARSIS surface sounding echoes. Planet. Space Sci. 56, 917–926 (2008)
ADS
Google Scholar
M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, M.D. Smith, Strong release of methane on Mars in northern summer 2003. Science 323, 1041–1045 (2009). https://doi.org/10.1126/science.1165243
ADS
Article
Google Scholar
A.F. Nagy et al., The plasma environment of Mars. Space Sci. Rev. 111, 33–114 (2004). https://doi.org/10.1023/B:SPAC.0000032718.47512.92
ADS
Article
Google Scholar
F. Němec, D.D. Morgan, D.A. Gurnett, D.A. Brain, Areas of enhanced ionization in the deep nightside ionosphere of Mars. J. Geophys. Res. 116, E06006 (2011). https://doi.org/10.1029/2011JE003804
ADS
Article
Google Scholar
E. Nielsen et al., Local plasma processes and enhanced electron densities in the lower ionosphere in magnetic cusp regions on Mars. Planet. Space Sci. 55(14), 2164–2172 (2007). https://doi.org/10.1016/j.pss.2007.07.003
ADS
Article
Google Scholar
A.O. Nier, M.B. McElroy, Composition and structure of Mars upper atmosphere: results from the neutral mass spectrometer on Viking 1 and 2. J. Geophys. Res. 82, 4341–4349 (1977). https://doi.org/10.1029/JS082i028p04341
ADS
Article
Google Scholar
B.M. Pandya, S.A. Haider, Numerical simulation of the effects of meteoroid ablation and solar EUV/X-ray radiation in the dayside ionosphere of Mars: MGS/MEX observations. J. Geophys. Res. 119, 9228–9245 (2014). https://doi.org/10.1002/2014JA020063
Article
Google Scholar
T.D. Parkinson, D.M. Hunten, Spectroscopy and aeronomy of O2 on Mars. J. Atmos. Sci. 29, 1380 (1972)
ADS
Google Scholar
K. Peter et al., The dayside ionospheres of Mars and Venus: comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus 233, 66–82 (2014). https://doi.org/10.1016/j.icarus.2014.01.028
ADS
Article
Google Scholar
G. Picardi et al., in Mars Express: A European Mission to the Red Planet, ed. by A. Wilson. ESA Rep., vol. SP-1240 (European Space Agency Publ., Division, Noordwijk, 2004), pp. 51–69
Google Scholar
E. Quémerais, J.-L. Bertaux, O. Korablev, E. Dimarellis, C. Cot, B.R. Sandel, D. Fussen, Stellar occultations observed by SPICAM on Mars Express. J. Geophys. Res. 111, E09S04 (2006). https://doi.org/10.1029/2005JE002604
Article
Google Scholar
R. Ramstad, M. Holmström, Y. Futaana, C.O. Lee, A. Rahmati, P. Dunn, R.J. Lillis, D. Larson, The September 2017 SEP event in context with the current solar cycle: Mars Express ASPERA-3/IMA and MAVEN/SEP observations. Geophys. Res. Lett. 45, 7306–7311 (2018). https://doi.org/10.1029/2018GL077842
ADS
Article
Google Scholar
R. Ramstad, A. Brain, Y. Dong, J. Espley, J. Halekas, B. Jakosky, The global current systems of the Martian induced magnetosphere. Nat. Astron. 4, 979–985 (2020). https://doi.org/10.1038/s41550-020-1099-y
ADS
Article
Google Scholar
L.H. Regoli et al., Statistical study of the energetic proton environment at Titan’s orbit from the Cassini spacecraft. J. Geophys. Res. 123, 4820–4834 (2018). https://doi.org/10.1029/2018JA025442
Article
Google Scholar
B. Ritter, J.-C. Gérard, B. Hubert, L. Rodrigues, F. Montmessin, Observations of the proton aurora on Mars with SPICAM onboard Mars Express. Geophys. Res. Lett. 45, 612–619 (2018). https://doi.org/10.1002/2017GL076235
ADS
Article
Google Scholar
R. Rodrigo, E. Graciá-Álvarez, M.J. López-González, J.J. López-Moreno, A non-steady one-dimensional theoretical model of Mars’ neutral atmospheric composition between 30 and 200 km. J. Geophys. Res. 95, 14,795–14,810 (1990). https://doi.org/10.1029/JB095iB09p14795
ADS
Article
Google Scholar
A. Safaeinili, W. Kofman, J. Mouginot, Y. Gim, A. Herique et al., Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes. Geophys. Res. Lett. 34, L23204 (2007)
ADS
Google Scholar
S. Sakai, K. Seki, N. Terada, H. Shinagawa, R. Sakata, T. Tanaka, Y. Ebihara, Effects of the IMF direction on atmospheric escape from a Mars like planet under weak intrinsic magnetic field conditions. J. Geophys. Res. 126, e28485 (2021). https://doi.org/10.1029/2020JA028485
ADS
Article
Google Scholar
B. Sánchez-Cano et al., Total electron content in the Martian atmosphere: a critical assessment of the Mars Express MARSIS data sets. J. Geophys. Res. 120, 2166–2182 (2015). https://doi.org/10.1002/2014JA020630
Article
Google Scholar
B. Sánchez-Cano et al., Origin of the extended Mars radar blackout of September 2017. J. Geophys. Res. 124, 4556–4568 (2019). https://doi.org/10.1029/2018JA026403
Article
Google Scholar
N.A. Savich, V.A. Samovol, The nighttime ionosphere of Mars from Mars 4 and Mars 5 dual frequency radio occultation measurements. Space Res. 16, 1009–1010 (1976)
Google Scholar
N.M. Schneider et al., Discovery of diffuse aurora on Mars. Science 350, aad0313 (2015). https://doi.org/10.1126/science.aad0313
Article
Google Scholar
N.M. Schneider et al., Global aurora on Mars during the September 2017 space weather event. Geophys. Res. Lett. 45, 7391–7398 (2018). https://doi.org/10.1029/2018GL077772
ADS
Article
Google Scholar
N.M. Schneider et al., Discrete aurora on Mars: insights into their distribution and activity from MAVEN/IUVS observations. J. Geophys. Res. Space Phys. 126, e2021JA029428 (2021)
ADS
Google Scholar
R.W. Schunk, A.F. Nagy, Ionospheres of the terrestrial planets. Rev. Geophys. 18, 813–852 (1980). https://doi.org/10.1029/RG018i004p00813
ADS
Article
Google Scholar
R.W. Schunk, A.F. Nagy, Ionospheres, 2nd edn. (Cambridge University Press, New York, 2009)
Google Scholar
A. Seiff, D.B. Kirk, Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4364–4378 (1977). https://doi.org/10.1029/JS082i028p04364
ADS
Article
Google Scholar
S.P. Seth, S.A. Haider, K.I. Oyama, The photoelectron flux and nightglow emissions of 5577 and 6300 Å due to solar wind electron precipitation in Martian atmosphere. J. Geophys. Res. 107(A10), 1324 (2002). https://doi.org/10.1029/2001JA000261
Article
Google Scholar
V.I. Shematovich, D.V. Bisikalo, J.-C. Gérard, A kinetic model of the formation of the hot oxygen geocorona: 1. Quiet geomagnetic conditions. J. Geophys. Res. 99, 23,217–23,228 (1994). https://doi.org/10.1029/94JA01769
ADS
Article
Google Scholar
V.I. Shematovich, D.V. Bisikalo, J.-C. Gérard, C. Cox, S.W. Bougher, F. Leblanc, Monte Carlo model of electron transport for the calculation of Mars dayglow emissions. J. Geophys. Res. 113, E02011 (2008). https://doi.org/10.1029/2007JE002938
ADS
Article
Google Scholar
V.I. Shematovich, D.V. Bisikalo, C. Diéval, S. Barabash, G. Stenberg, H. Nilsson, Y. Futaana, M. Holmstrom, J.-C. Gérard, Proton and hydrogen atom transport in the Martian upper atmosphere with an induced magnetic field. J. Geophys. Res. 116, A11320 (2011). https://doi.org/10.1029/2011JA017007
ADS
Article
Google Scholar
V.I. Shematovich, D.V. Bisikalo, J.C. Gérard, B. Hubert, Kinetic Monte Carlo model for the precipitation of high-energy protons and hydrogen atoms into the atmosphere of Mars with taking into account the measured magnetic field. Astron. Rep. 63(10), 835–845 (2019)
ADS
Google Scholar
H. Shinagawa, T.E. Cravens, A one-dimensional multispecies magneto hydrodynamic model of the dayside ionosphere of Mars. J. Geophys. Res. 94, 6506–6516 (1989). https://doi.org/10.1029/JA094iA06p06506
ADS
Article
Google Scholar
R.P. Singhal, A. Bhardwaj, Monte Carlo simulation of photoelectron energization in a parallel electric fields – electroglow on Uranus. J. Geophys. Res. 961(A9), 156963–156972 (1991)
Google Scholar
R.P. Singhal, S.A. Haider, Analytical yield spectrum approach to photoelectron fluxes in the Earth’s atmosphere. J. Geophys. Res. 89, 6847–6852 (1984). https://doi.org/10.1029/JA089iA08p06847
ADS
Article
Google Scholar
R.P. Singhal, C.H. Jackman, A.E.S. Green, Spatial aspects of low and medium energy electron degradation in N2. J. Geophys. Res. 85, 1246–1254 (1980). https://doi.org/10.1029/JA085iA03p01246
ADS
Article
Google Scholar
M. Smith, S. Bougher, T. Encrenaz, F. Forget, A. Kleinbohl, Thermal structure and composition, in The Atmosphere and Climate of Mars, ed. by R. Haberle, R. Clancy, F. Forget, M. Smith, R. Zurek (Cambridge University Press, Cambridge, 2017), pp. 42–75. https://doi.org/10.1017/9781139060172.004
Chapter
Google Scholar
Y. Soobiah et al., Observations of magnetic anomaly signatures in Mars Express ASPERA-3 ELS data. Icarus 182(2), 396–405 (2006). https://doi.org/10.1016/j.icarus.2005.10.034
ADS
Article
Google Scholar
L. Soret, J.C. Gérard, L. Libert, V.I. Shematovich, D.V. Bisikalo, A. Stiepen, J.L. Bertaux, SPICAM observations and modeling of Mars aurorae. Icarus 264, 398–406 (2016)
ADS
Google Scholar
L. Soret et al., Discrete aurora on Mars: spectral properties, vertical profiles and electron energies. J. Geophys. Res. Space Phys. 126, e2021JA029495 (2021)
ADS
Google Scholar
H. Spinrad, G. Münch, L.D. Kaplan, Letter to the editor: the detection of water vapor on Mars. Astrophys. J. 137, 1319 (1963). https://doi.org/10.1086/147613
ADS
Article
Google Scholar
S.W. Stone, R.V. Yelle, M. Benna, M.K. Elrod, P.R. Mahaffy, Thermal structure of the Martian upper atmosphere from MAAVEN/NGIMS. J. Geophys. Res., Planets 123(11), 2842–2867 (2018)
ADS
Google Scholar
S.W. Stone, R.V. Yelle, M. Benna, M.K. Elrod, Hydrogen escape from Mars driven by seasonal and dust storm transport of water. Science 370(6518), 824 (2020)
ADS
Google Scholar
D.J. Strickland, G.E. Thomas, P.R. Sparks, Mariner 6 and 7 Ultraviolet Spectrometer Experiment: analysis of the OI 1304 Å and 1356 Å emissions. J. Geophys. Res. 77, 4052–4068 (1972). https://doi.org/10.1029/JA077i022p04052
ADS
Article
Google Scholar
P. Thirupathaiah, S.Y. Shah, S.A. Haider, Characteristics of solar X-ray flares and their effects on the ionosphere and human exploration to Mars: MGS radio science observations. Icarus 330, 60–74 (2019). https://doi.org/10.1016/j.icarus.2019.04.015
ADS
Article
Google Scholar
D. Ulusen, D.A. Brain, D.L. Mitchell, Observation of conical electron distributions over Martian crustal magnetic fields. J. Geophys. Res. Space Phys. 116, A07214 (2011). https://doi.org/10.1029/2010JA016217
ADS
Article
Google Scholar
A. Valeille, M.R. Combi, S.W. Bougher, V. Tenishev, A.F. Nagy, Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history. J. Geophys. Res. 114, E11006 (2009). https://doi.org/10.1029/2009JE003389
ADS
Article
Google Scholar
A.C. Vandaele et al., NOMAD, an integrated suite of three spectrometers for the ExoMars trace gas mission: technical description, science objectives and expected performance. Space Sci. Rev. 214, 1–47 (2018). https://doi.org/10.1007/s11214-018-0517-2
Article
Google Scholar
A.C. Vandaele et al., Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature 568, 521–525 (2019). https://doi.org/10.1038/s41586-019-1097-3
ADS
Article
Google Scholar
M.B. Vasiliev et al., Preliminary results of dual frequency radio occultation of the Martian ionosphere with the aid of Mars 5 spacecraft. Kosm. Issled. 13, 48–51 (1975)
ADS
Google Scholar
N. Venkateswara Rao, V. Leelavathi, P. Mohanamanasa, S.A. Haider, S.V.B. Rao, Enhanced ionization in magnetic anomaly regions of the Martian lower ionosphere associated with dust storms. J. Geophys. Res. 124, 3007–3020 (2019). https://doi.org/10.1029/2018JA026283
Article
Google Scholar
S. Vennerstrom, Magnetic storms on Mars. Icarus 215, 234–241 (2011). https://doi.org/10.1016/j.icarus.2011.06.030
ADS
Article
Google Scholar
M.I. Verigin, K.I. Gringauz, N.M. Shutte, S.A. Haider, K. Szego, P. Kiraly, A.F. Nagy, T.I. Gombosi, On the possible source of the ionization in the nighttime Martian ionosphere 1. Phobos 2 HARP electron spectrometer measurements. J. Geophys. Res. 96, 19307–19313 (1991)
ADS
Google Scholar
T. Weber, D. Brain, S. Xu, D. Mitchell, J. Espley, J. Halekas, C. Mazelle, R. Lillis, G. DiBraccio, B. Jakosky, The influence of interplanetary magnetic field direction on Martian crustal magnetic field topology. Geophys. Res. Lett. 47, e87757 (2020). https://doi.org/10.1029/2020GL087757
ADS
Article
Google Scholar
C.R. Webster et al., Mars methane detection and variability at Gale crater. Science 347, 415–417 (2015). https://doi.org/10.1126/science.1261713
ADS
Article
Google Scholar
R.C. Whitten, L. Colin, Ionosphere of Mars and Venus. Rev. Geophys. 12, 155–192 (1974). https://doi.org/10.1029/RG012i002p00155
ADS
Article
Google Scholar
P. Withers, A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res. 44, 277–307 (2009)
ADS
Google Scholar
P. Withers, R. Pratt, An observational study of the response of the upper atmosphere of Mars to lower atmospheric dust storms. Icarus 225, 378–389 (2013). https://doi.org/10.1016/j.icarus.2013.02.032
ADS
Article
Google Scholar
P. Withers, M.O. Fillingim, R.J. Lillis, B. Häusler, D.P. Hinson, G.L. Tyler, M. Pätzold, K. Peter, S. Tellmann, O. Witasse, Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res. 117, A12307 (2012)
ADS
Google Scholar
S. Xu, D. Mitchell, M. Liemohn, C. Dong, S. Bougher, M. Fillingim, R. Lillis, J. McFadden, C. Mazelle, J. Connerney, B. Jakosky, Deep nightside photoelectron observations by MAVEN SWEA: implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophys. Res. Lett. 43, 8876–8884 (2016). https://doi.org/10.1002/2016GL070527
ADS
Article
Google Scholar
S. Xu, X. Fang, D.L. Mitchell, Y. Ma, J.G. Luhmann, G.A. DiBraccio, T. Weber, D. Brain, C. Mazelle, S.M. Curry, C.O. Lee, Investigation of Martian magnetic topology response to 2017 September ICME. Geophys. Res. Lett. 45, 7337–7346 (2018). https://doi.org/10.1029/2018GL077708
ADS
Article
Google Scholar
S. Xu et al., Inverted V electron acceleration events concurring with localized auroral observations at Mars by MAVEN. Geophys. Res. Lett. 47(9), e2020GL087414 (2020)
ADS
Google Scholar
Ye. Yeroshenko, W. Riedler, K. Schwingenschuh, J.G. Luhmann, M. Ong, C.T. Russell, The magnetotail of Mars: Phobos observations. Geophys. Res. Lett. GL017, 885–888 (1990)
ADS
Google Scholar
L.D.G. Young, A.T. Young, Interpretation of high-resolution spectra of Mars. IV. New calculations of the CO abundance. Icarus 30, 75–79 (1977). https://doi.org/10.1016/0019-1035(77)90122-1
ADS
Article
Google Scholar
M.H.G. Zhang, J.G. Luhmann, A.J. Kliore, J. Kim, An observational study of the nightside ionosphere of Mars and Venus with radio occultation methods. J. Geophys. Res. 95, 17,095–17,102 (1990). https://doi.org/10.1029/JA095iA10p17095
ADS
Article
Google Scholar
J. Zhao, F. Tian, Photochemical escape of oxygen from early Mars. Icarus 250, 477–481 (2015). https://doi.org/10.1016/j.icarus.2014.12.032
ADS
Article
Google Scholar
R.W. Zurek, R.A. Tolson, S.W. Bougher, R.A. Lugo, D.T. Bairf, J.M. Bell, B.M. Jakosky, Mars thermosphere as seen in MAVEN accelerometer data. J. Geophys. Res. Space Phys. 122(3), 3798–3814 (2017)
ADS
Google Scholar