Skip to main content

Do Intrinsic Magnetic Fields Protect Planetary Atmospheres from Stellar Winds?

Lessons from Ion Measurements at Mars, Venus, and Earth

Abstract

The accumulation of detailed ion flux measurements from long-lived spacecraft orbiting the solar system’s terrestrial planets have enabled recent studies to estimate the rate of solar wind driven atmospheric ion escape from Venus, Earth, and Mars, as well as the influence of solar wind and solar extreme ultraviolet (EUV) ionizing radiation on the atmospheric ion escape rates. Here, we introduce the basic forces and processes of ion escape, review the recent studies of ion escape rates, and provide a general framework for understanding ion escape as a process that can be limited by potential bottlenecks, such as ion supply, solar wind energy transfer, and transport efficiency, effectively determining the state of the ion escape process at each planet. We find that ion escape from Venus and Earth is energy-limited, though exhibit different dependencies on solar wind and EUV, revealing the influence of Earth’s intrinsic magnetic field. In contrast, ion escape from Mars is in a supply-limited state, mainly due to its low gravity, and has likely contributed relatively little to the total loss of the early Martian atmosphere, in comparison to neutral escape processes. Contrary to the current paradigm, the comparisons between the solar system planets show that an intrinsic magnetic dipole field is not required to prevent stellar wind-driven escape of planetary atmospheres, and the presence of one may instead increase the rate of ion escape. Anticipating the atmospheres of the exoplanets that will begin to be characterized over the coming decade, and the need to explain their evolution, we argue that a modern, nuanced, and evidence-based view of the magnetic field’s role in atmospheric escape is required.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. S.I. Akasofu, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28(2), 121–190 (1981). https://doi.org/10.1007/BF00218810

    ADS  Article  Google Scholar 

  2. H. Akbari, L. Andersson, W.K. Peterson, J. Espley, M. Benna, R. Ergun, Ambipolar electric field in the Martian ionosphere: MAVEN measurements. J. Geophys. Res. 124, 4518–4524 (2019). https://doi.org/10.1029/2018JA026325

    Article  Google Scholar 

  3. H. Alfvén, On the theory of comet tails. Tellus 9(1), 92–96 (1957). https://doi.org/10.3402/tellusa.v9i1.9064

    ADS  Article  Google Scholar 

  4. L. Andersson, W.K. Peterson, K.M. McBryde, Estimates of the suprathermal O+ outflow characteristic energy and relative location in the auroral oval. Geophys. Res. Lett. 32, L09104 (2005). https://doi.org/10.1029/2004GL021434

    ADS  Article  Google Scholar 

  5. L. Andersson, R.E. Ergun, A.I.F. Stewart, The combined atmospheric photochemistry and ion tracing code: Reproducing the Viking Lander results and initial outflow results. Icarus 206, 120–129 (2010). https://doi.org/10.1016/j.icarus.2009.07.009

    ADS  Article  Google Scholar 

  6. M. André, Previously hidden low-energy ions: A better map of near-Earth space and the terrestrial mass balance. Phys. Scr. 90, 128005 (2015). https://doi.org/10.1088/0031-8949/90/12/128005

    ADS  Article  Google Scholar 

  7. S. Barabash et al., The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars express mission. Space Sci. Rev. 126, 113–164 (2006). https://doi.org/10.1007/s11214-006-9124-8

    ADS  Article  Google Scholar 

  8. S. Barabash et al., The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus express mission. Planet. Space Sci. 55, 1772–1792 (2007a). https://doi.org/10.1016/j.pss.2007.01.014

    ADS  Article  Google Scholar 

  9. S. Barabash et al., The loss of ions from Venus through the plasma wake. Nature 450, 650–653 (2007b). https://doi.org/10.1038/nature06434

    ADS  Article  Google Scholar 

  10. S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315(5811), 501–503 (2007c). https://doi.org/10.1126/science.1134358

    ADS  Article  Google Scholar 

  11. W. Baumjohann, M. Blanc, A. Fedorov, K.-H. Glassmeier, Current systems in planetary magnetospheres and ionospheres. Space Sci. Rev. 52, 99–154 (2010). https://doi.org/10.1007/s11214-010-9629-z

    ADS  Article  Google Scholar 

  12. A.V. Bogdanov, O.L. Vaisberg, N.P. Kalinin, V.N. Smirnov, Gas exchange between the upper atmosphere of Mars and the solar wind. Dokl. Akad. Nauk 225(6), 1284–1287 (1975) (in Russian)

    ADS  Google Scholar 

  13. L.H. Brace, W.T. Kasprzak, H.A. Taylor, R.F. Theis, C.T. Russell, A. Barnes, J.D. Mihalov, D.M. Hunten, The ionotail of Venus: Its configuration and evidence for ion escape. J. Geophys. Res. Space Phys. 92(A1), 15–26 (1987). https://doi.org/10.1029/JA092iA01p00015

    ADS  Article  Google Scholar 

  14. D.A. Brain et al., The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophys. Res. Lett. 42, 9142–9148 (2015). https://doi.org/10.1002/2015GL065293

    ADS  Article  Google Scholar 

  15. E. Carlsson et al., Mass composition of the escaping plasma at Mars. Icarus 182, 320–328 (2006). https://doi.org/10.1016/j.icarus.2005.09.020

    ADS  Article  Google Scholar 

  16. S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms. Terr. Magn. Atmos. Electr. 36(2), 77–97 (1931)

    Article  Google Scholar 

  17. I. Cnossen, A.D. Richmond, M. Wiltberger, The dependence of the coupled magnetosphere–ionosphere–thermosphere system on the Earth’s magnetic dipole moment. J. Geophys. Res. Space Phys. 117, A05302 (2012). https://doi.org/10.1029/2012JA017555

    ADS  Article  Google Scholar 

  18. A.J. Coates et al., Cassini in Titan’s tail: CAPS observations of plasma escape. J. Geophys. Res. Space Phys. 117, A05324 (2012). https://doi.org/10.1029/2012JA017595

    ADS  Article  Google Scholar 

  19. G. Collinson et al., The electric wind of Venus: A global and persistent “polar wind”-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophys. Res. Lett. 43, 5926–5934 (2016). https://doi.org/10.1002/2016GL068327

    ADS  Article  Google Scholar 

  20. S.W.H. Cowley, Magnetosphere-ionosphere interactions: A tutorial review, in Magnetospheric Current Systems, ed. by S. Ohtani. Geophysical Monograph Series, vol. 118 (2000), pp. 91–106

    Chapter  Google Scholar 

  21. C.M. Cully, E.F. Donovan, A.W. Yau, G.G. Arkos, Akebono/suprathermal mass spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions. J. Geophys. Res. Space Phys. 108(A2), 1093 (2003). https://doi.org/10.1029/2001JA009200

    ADS  Article  Google Scholar 

  22. G.A. DiBraccio et al., The twisted configuration of the Martian magnetotail: MAVEN observations. Geophys. Res. Lett. 45, 4559–4568 (2018). https://doi.org/10.1029/2018GL077251

    ADS  Article  Google Scholar 

  23. C. Diéval, G. Stenberg, H. Nilsson, S. Barabash, A statistical study of proton precipitation onto the Martian upper atmosphere: Mars Express observations. J. Geophys. Res. Space Phys. 118, 1972–1983 (2013). https://doi.org/10.1002/jgra.50229

    ADS  Article  Google Scholar 

  24. Y. Dong, X. Fang, D.A. Brain, J.P. McFadden, J.S. Halekas, J.E.P. Connerney, F. Eparvier, L. Andersson, D. Mitchell, B.M. Jakosky, Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. J. Geophys. Res. Space Phys. 122, 4009–4022 (2017). https://doi.org/10.1002/2016JA023517

    ADS  Article  Google Scholar 

  25. E. Dubinin, K. Sauer, R. Lundin, O. Norberg, J.G. Trotignon, K. Schwingenschuh, M. Delva, W. Riedler, Plasma characteristics of the boundary layer in the Martian magnetosphere. J. Geophys. Res. Space Phys. 101(A12), 27061–27075 (1996). https://doi.org/10.1029/96JA02021

    ADS  Article  Google Scholar 

  26. E. Dubinin et al., Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX-ASPERA-3 and MEX-MARSIS observations. Geophys. Res. Lett. 35, L11103 (2008). https://doi.org/10.1029/2008GL033730

    ADS  Article  Google Scholar 

  27. E. Dubinin, M. Fraenz, J. Woch, T.L. Zhang, Y. Wei, A. Fedorov, S. Barabash, R. Lundin, Toroidal and poloidal magnetic fields at Venus. Venus Express observations. Planet. Space Sci. 87, 19–29 (2013). https://doi.org/10.1016/j.pss.2012.12.003

    ADS  Article  Google Scholar 

  28. E. Dubinin, M. Fraenz, M. Pätzold, J. McFadden, J.S. Halekas, G.A. DiBraccio, J.E.P. Connerney, F. Eparvier, D. Brain, B.M. Jakosky, O. Vaisberg, L. Zelenyi, Effects of solar irradiance on the upper ionosphere and oxygen ion escape at Mars: MAVEN observations. J. Geophys. Res. Space Phys. 122, 7142–7152 (2017). https://doi.org/10.1002/2017JA024126

    ADS  Article  Google Scholar 

  29. N.J.T. Edberg, D.A. Brain, M. Lester, S.W.H. Cowley, R. Modolo, M. Fränz, S. Barabash, Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express. Ann. Geophys. 27, 3537–3550 (2009). https://doi.org/10.5194/angeo-27-3537-2009

    ADS  Article  Google Scholar 

  30. N.J.T. Edberg, H. Nilsson, A.O. Williams, M. Lester, S.E. Milan, S.W.H. Cowley, M. Fränz, S. Barabash, Y. Futaana, Pumping out the atmosphere of Mars through solar wind pressure pulses. Geophys. Res. Lett. 37, L03107 (2010). https://doi.org/10.1029/2009GL041814

    ADS  Article  Google Scholar 

  31. N.J.T. Edberg, H. Nilsson, Y. Futaana, G. Stenberg, M. Lester, S.W.H. Cowley, J.G. Luhmann, T.R. McEnulty, H.J. Opgenoorth, A. Fedorov, S. Barabash, T.L. Zhang, Atmospheric erosion of Venus during stormy space weather. J. Geophys. Res. 116, A09308 (2011). https://doi.org/10.1029/2011JA016749

    ADS  Article  Google Scholar 

  32. C.S. Edwards, B.L. Ehlmann, Carbon sequestration on Mars. Geology 43(10), 863–866 (2015). https://doi.org/10.1130/G36983.1

    ADS  Article  Google Scholar 

  33. H. Egan, R. Jarvinen, Y. Ma, D. Brain, Planetary magnetic field control of ion escape from weakly magnetized planets. Mon. Not. R. Astron. Soc. 488, 2108–2120 (2019). https://doi.org/10.1093/mnras/stz1819

    ADS  Article  Google Scholar 

  34. R.E. Ergun, L. Andersson, W.K. Peterson, D. Brain, G.T. Delory, D.L. Mitchell, R.P. Lin, A.W. Yau, Role of plasma waves in Mars’ atmospheric loss. Geophys. Res. Lett. 33, L14103 (2006). https://doi.org/10.1029/2006GL025785

    ADS  Article  Google Scholar 

  35. K. Fan, M. Fränz, Y. Wei, J. Cui, Z. Rong, L. Chai, E. Duninin, Deflection of global ion flow by the Martian crustal magnetic fields. Astrophys. J. Lett. 898, L54 (2020). https://doi.org/10.3847/2041-8213/aba519

    ADS  Article  Google Scholar 

  36. A. Fedorov et al., Comparative analysis of Venus and Mars magnetotails. Planet. Space Sci. 56, 812–817 (2008). https://doi.org/10.1016/j.pss.2007.12.012

    ADS  Article  Google Scholar 

  37. A. Fedorov, S. Barabash, J.A. Sauvaud, Y. Futaana, T.L. Zhang, R. Lundin, R. Ferrier, Measurements of the ion escape rates from Venus for solar minimum. J. Geophys. Res. 116, A07220 (2011). https://doi.org/10.1029/2011JA016427

    ADS  Article  Google Scholar 

  38. I. Finch, M. Lockwood, Solar wind-magnetosphere coupling functions on timescales of 1 day to 1 year. Ann. Geophys. 25(2), 495–506 (2007). https://doi.org/10.5194/angeo-25-495-2007

    ADS  Article  Google Scholar 

  39. C.M. Fowler et al., MAVEN observations of solar wind-driven magnetosonic waves heating the Martian dayside ionosphere. J. Geophys. Res. Space Phys. 123, 4129–4149 (2018). https://doi.org/10.1029/2018JA025208

    ADS  Article  Google Scholar 

  40. J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527–544 (2009). https://doi.org/10.1016/j.icarus.2009.07.005

    ADS  Article  Google Scholar 

  41. L.A. Frank, K.L. Ackerson, D.M. Yeager, Observations of atomic oxygen (O+) in the Earth’s magnetotail. J. Geophys. Res. 82(1), 129–134 (1977). https://doi.org/10.1029/JA082i001p00129

    ADS  Article  Google Scholar 

  42. S.F. Fung, R.A. Hoffman, A search for parallel electric fields by observing secondary electrons and photoelectrons in the low-altitude auroral zone. J. Geophys. Res. 96(A3), 3533–3548 (1991). https://doi.org/10.1029/90JA02244

    ADS  Article  Google Scholar 

  43. Y. Futaana, J.Y. Chaufray, H.T. Smith, P. Garnier, H. Lichtenegger, M. Delva, H. Gröller, A. Mura, Exospheres and energetic neutral atoms of Mars, Venus and Titan. Space Sci. Rev. 162, 213–266 (2011). https://doi.org/10.1007/s11214-011-9834-4

    ADS  Article  Google Scholar 

  44. N.Yu. Ganushkina, M.W. Liemohn, S. Dubyagin, Current systems in the Earth’s magnetosphere. Rev. Geophys. 56, 309–332 (2018). https://doi.org/10.1002/2017RG000590

    ADS  Article  Google Scholar 

  45. J.S. Halekas et al., MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophys. Res. Lett. 42, 8901–8909 (2015a). https://doi.org/10.1002/2015GL064693

    ADS  Article  Google Scholar 

  46. J.S. Halekas, E.R. Taylor, G. Dalton, G. Johnson, D.W. Curtis, J.P. McFadden, D.L. Mitchell, R.P. Lin, B.M. Jakosky, The solar wind ion analyzer for MAVEN. Space Sci. Rev. 195, 125–151 (2015b). https://doi.org/10.1007/s11214-013-0029-z

    ADS  Article  Google Scholar 

  47. T. Hara et al., MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field. J. Geophys. Res. Space Phys. 122, 1083–1101 (2017). https://doi.org/10.1002/2016JA023348

    ADS  Article  Google Scholar 

  48. B.M. Jakosky et al., MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science 350(6261), aad0210-1 (2015). https://doi.org/10.1126/science.aad0210

    Article  Google Scholar 

  49. A. Keiling, J.R. Wygant, C.A. Cattell, F.S. Mozer, C.T. Russell, The global morphology of wave Poynting flux: Powering the aurora. Science 299(5605), 383–386 (2003). https://doi.org/10.1126/science.1080073

    ADS  Article  Google Scholar 

  50. L.M. Kistler et al., Escape of O+ through the distant tail plasma sheet. Geophys. Res. Lett. 37, L21101 (2010). https://doi.org/10.1029/2010GL045075

    ADS  Article  Google Scholar 

  51. D.M. Klumpar et al., The time-of-flight energy, angle, mass spectrograph (TEAMS) experiment for FAST, in The FAST Mission (2001), pp. 197–219. ISBN: 978-94-010-3847-8

    Chapter  Google Scholar 

  52. P. Kollmann, P.C. Brandt, G. Collinson, Z.J. Rong, Y. Futaana, T.L. Zhang, Properties of planetward ion flows in Venus’ magnetotail. Icarus 274, 73–82 (2016). https://doi.org/10.1016/j.icarus.2016.02.053

    ADS  Article  Google Scholar 

  53. H. Lammer, Origin and Evolution of Planetary Atmospheres (Springer, Berlin, 2013). ISBN: 978-3-642-32086-6. https://doi.org/10.1007/978-3-642-32087-3

    Book  Google Scholar 

  54. O.W. Lennartsson, H.L. Collin, Solar wind control of Earth’s H+ and O+ outflow rates in the 15-eV to 33-keV energy range. J. Geophys. Res. 109(A12212) (2004). https://doi.org/10.1029/2004JA010690

  55. K. Li, Y. Wei, M. André, A. Eriksson, S. Haaland, E.A. Kronberg, H. Nilsson, L. Maes, Z.J. Rong, W.X. Wan, Cold ion outflow modulated by the solar wind energy input and tilt of the geomagnetic dipole. J. Geophys. Res. Space Phys. 122(10), 10658–10668 (2017). https://doi.org/10.1002/2017JA024642

    ADS  Article  Google Scholar 

  56. R.J. Lillis, H.V. Frey, M. Manga, Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars. Geophys. Res. Lett. 35, L14203 (2008). https://doi.org/10.1029/2008GL034338

    ADS  Article  Google Scholar 

  57. R.J. Lillis et al., Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. J. Geophys. Res. Space Phys. 122, 3815–3836 (2017). https://doi.org/10.1002/2016JA023525

    ADS  Article  Google Scholar 

  58. M. Lockwood, Does adding solar wind Poynting flux improve the optimum solar wind-magnetosphere coupling function? J. Geophys. Res. Space Phys. 124, 5498–5515 (2019). https://doi.org/10.1029/2019JA026639

    ADS  Article  Google Scholar 

  59. R. Lundin, B. Hultqvist, S. Olsen, R. Pellinen, I. Liede, A. Zakharov, E. Dubinin, N. Pissarenko, The ASPERA experiment on the Soviet Phobos spacecraft, in Solar System Plasma Physics. American Geophysical Union Monograph Series, vol. 54 (1985), pp. 417–424. ISBN: 9780875900742

    Google Scholar 

  60. R. Lundin et al., ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere. Geophys. Res. Lett. 17(6), 873–876 (1990). https://doi.org/10.1029/GL017i006p00873

    ADS  Article  Google Scholar 

  61. R. Lundin, S. Barabash, A. Fedorov, M. Holmström, H. Nilsson, J.A. Sauvaud, M. Yamauchi, Solar forcing and planetary ion escape from Mars. Geophys. Res. Lett. 35, L09203 (2008a). https://doi.org/10.1029/2007GL032884

    ADS  Article  Google Scholar 

  62. R. Lundin, S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, M. Fraenz, E.M. Dubinin, A comet-like escape of ionospheric plasma from Mars. Geophys. Res. Lett. 35, L18203 (2008b). https://doi.org/10.1029/2008GL034811

    ADS  Article  Google Scholar 

  63. R. Lundin, S. Barabash, Y. Futaana, J.A. Sauvaud, A. Fedorov, H. Perez-de-Tejada, Ion flow and momentum transfer in the Venus plasma environment. Icarus 215, 751–758 (2011). https://doi.org/10.1016/j.icarus.2011.06.034

    ADS  Article  Google Scholar 

  64. R. Lundin, S. Barabash, M. Holmström, H. Nilsson, Y. Futaana, R. Ramstad, M. Yamauchi, E. Dubinin, M. Fraenz, Solar cycle effects on the ion escape from Mars. Geophys. Res. Lett. 40, 6028–6032 (2013). https://doi.org/10.1002/2013GL058154

    ADS  Article  Google Scholar 

  65. L.R. Lyons, T.W. Speiser, Ohm’s law for a current sheet. J. Geophys. Res. 90(A9), 8543–8546 (1985). https://doi.org/10.1029/JA090iA09p08543

    ADS  Article  Google Scholar 

  66. N. Mangold, D. Baratoux, O. Witasse, T. Encrenaz, C. Sotin, Mars: A small terrestrial planet. Astron. Astrophys. Rev. 24(1), 15 (2016). https://doi.org/10.1007/s00159-016-0099-5

    ADS  Article  Google Scholar 

  67. K. Masunaga, Y. Futaana, M. Persson, S. Barabash, T.L. Zhang, Z.J. Rong, A. Fedorov, Effects of the solar wind and the solar EUV flux on O+ escape rates from Venus. Icarus 321, 379–387 (2019). https://doi.org/10.1016/j.icarus.2018.11.017

    ADS  Article  Google Scholar 

  68. D.J. McComas, H.E. Spence, C.T. Russell, M.A. Saunders, The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res. Space Phys. 91, 7939–7953 (1986). https://doi.org/10.1029/JA091iA07p07939

    ADS  Article  Google Scholar 

  69. D.J. McComas et al., Pluto’s interaction with the solar wind. J. Geophys. Res. Space Phys. 121, 4232–4246 (2016). https://doi.org/10.1002/2016JA022599

    ADS  Article  Google Scholar 

  70. J.P. McFadden et al., MAVEN SupraThermal and Thermal Ion Composition (STATIC) instrument. Space Sci. Rev. 195, 199–256 (2015). https://doi.org/10.1007/s11214-015-0175-6

    ADS  Article  Google Scholar 

  71. S.E. Milan, Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval. Geophys. Res. Lett. 36, L18101 (2009). https://doi.org/10.1029/2009GL039997

    ADS  Article  Google Scholar 

  72. A. Mittelholz, C.L. Johnson, J.M. Feinberg, B. Langlais, R.J. Phillips, Timing of the Martian dynamo: New constraints for a core field 4.5 and 3.7 Ga ago. Sci. Adv. 6(18), eaba0513 (2020). https://doi.org/10.1126/sciadv.aba0513

    ADS  Article  Google Scholar 

  73. T.E. Moore, J.L. Horwitz, Stellar ablation of planetary atmospheres. Rev. Geophys. 45, RG3002 (2007). https://doi.org/10.1029/2005RG000194

    ADS  Article  Google Scholar 

  74. H. Nilsson, E. Carlsson, D.A. Brain, M. Yamauchi, M. Holmström, S. Barabash, R. Lundin, Y. Futaana, Ion escape from Mars as a function of solar wind conditions: A statistical study. Icarus 206, 40–49 (2010). https://doi.org/10.1016/j.icarus.2009.03.006

    ADS  Article  Google Scholar 

  75. H. Nilsson, N.J.T. Edberg, G. Stenberg, S. Barabash, M. Holmström, Y. Futaana, R. Lundin, A. Fedorov, Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus 215, 475–484 (2011). https://doi.org/10.1016/j.icarus.2011.08.003

    ADS  Article  Google Scholar 

  76. H. Nilsson, I.A. Bargouthi, R. Slapak, A.I. Eriksson, M. André, Hot and cold ion outflow: Spatial distributions of ion heating. J. Geophys. Res. 117, A11201 (2012a). https://doi.org/10.1029/2012JA017974

    ADS  Article  Google Scholar 

  77. H. Nilsson, G. Stenberg, Y. Futaana, M. Holmström, S. Barabash, R. Lundin, N.J.T. Edberg, A. Fedorov, Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes. Earth Planets Space 64, 135–148 (2012b). https://doi.org/10.5047/eps.2011.04.011

    ADS  Article  Google Scholar 

  78. T. Nordström, G. Stenberg, H. Nilsson, S. Barabash, T.L. Zhang, Venus ion outflow estimates at solar minimum: Influence of reference frames and disturbed solar wind conditions. J. Geophys. Res. Space Phys. 118, 3592–3601 (2013). https://doi.org/10.1002/jgra.50305

    ADS  Article  Google Scholar 

  79. S. Ohtani, S. Wing, V.G. Merkin, T. Higuchi, Solar cycle dependence of nightside field-aligned currents: Effects of dayside ionospheric conductivity on the solar wind-magnetosphere-ionosphere coupling. J. Geophys. Res. Space Phys. 119, 322–334 (2014). https://doi.org/10.1002/2013JA019410

    ADS  Article  Google Scholar 

  80. E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958). https://doi.org/10.1086/146579

    ADS  Article  Google Scholar 

  81. M. Persson, Y. Futaana, A. Fedorov, H. Nilsson, M. Hamrin, S. Barabash, H+/O+ escape rate ratio in the Venus magnetotail and its dependence on the solar cycle. Geophys. Res. Lett. 45, 10805–10811 (2018). https://doi.org/10.1029/2018GL079454

    ADS  Article  Google Scholar 

  82. M. Persson, Y. Futaana, R. Ramstad, K. Masunaga, H. Nilsson, M. Hamrin, A. Fedorov, S. Barabash, The Venusian atmospheric oxygen ion escape: Extrapolation to the early solar system. J. Geophys. Res., Planets 125, e2019JE006336 (2020). https://doi.org/10.1029/2019JE006336

    ADS  Article  Google Scholar 

  83. W.K. Peterson, H.L. Collin, A.W. Yau, O.W. Lennartsson, Polar/toroidal imaging mass-angle spectrograph observations of suprathermal ion outflow during solar minimum conditions. J. Geophys. Res. 106(A4), 6059–6066 (2001). https://doi.org/10.1029/2000JA003006

    ADS  Article  Google Scholar 

  84. J.L. Phillips, J.G. Luhmann, C.T. Russell, K.R. Moore, Finite Larmor radius effect on ion pickup at Venus. J. Geophys. Res. 92(A9), 9920–9930 (1987). https://doi.org/10.1029/JA092iA09p09920

    ADS  Article  Google Scholar 

  85. A. Rahmati, D.E. Larson, T.E. Cravens, R.J. Lillis, J.S. Halekas, J.P. McFadden, D.L. Mitchell, E.M.B. Thiemann, J.E.P. Connerney, P.A. Dunn, C.O. Lee, F.G. Eparvier, G.A. DiBraccio, J.R. Espley, J.G. Luhmann, C. Mazelle, B.M. Jakosky, Seasonal variability of neutral escape from Mars as derived from MAVEN pickup ion observations. J. Geophys. Res., Planets 123, 1192–1202 (2018). https://doi.org/10.1029/2018JE005560

    ADS  Article  Google Scholar 

  86. R.M. Ramirez, A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297, 71–82 (2017). https://doi.org/10.1016/j.icarus.2017.06.025

    ADS  Article  Google Scholar 

  87. R.M. Ramirez, R. Kopparapu, M.E. Zugger, T.D. Robinson, R. Freedman, J.F. Kasting, Warming early Mars with CO2 and H2. Nat. Geosci. 7(1), 59–63 (2014). https://doi.org/10.1038/NGEO2000

    ADS  Article  Google Scholar 

  88. R. Ramstad, Ion escape from Mars: Measurements in the present to understand the past. Doctoral thesis, Umeå University (2017). ISBN: 978-91-982951-3-9, ISSN: 0284-1703

  89. R. Ramstad, Y. Futaana, S. Barabash, H. Nilsson, S.M. del Campo B, R. Lundin, K. Schwingenschuh, Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum. Geophys. Res. Lett. 40(1–6), 477–481 (2013). https://doi.org/10.1002/grl.50149

    ADS  Article  Google Scholar 

  90. R. Ramstad, S. Barabash, Y. Futaana, H. Nilsson, X.-D. Wang, M. Holmström, The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations. J. Geophys. Res., Planets 120, 1298–1309 (2015). https://doi.org/10.1002/2015JE004816

    ADS  Article  Google Scholar 

  91. R. Ramstad, S. Barabash, Y. Futaana, M. Holmström, Solar wind and EUV dependent models for the sizes and shapes of the Martian plasma boundaries based on Mars Express observations. J. Geophys. Res. Space Phys. 122, 7279–7290 (2017a). https://doi.org/10.1002/2017JA024098

    ADS  Article  Google Scholar 

  92. R. Ramstad, S. Barabash, Y. Futaana, H. Nilsson, M. Holmström, Global Mars–Solar wind coupling and ion escape. J. Geophys. Res. Space Phys. 122, 8051–8062 (2017b). https://doi.org/10.1002/2017JA024306

    ADS  Article  Google Scholar 

  93. R. Ramstad, S. Barabash, Y. Futaana, M. Yamauchi, H. Nilsson, M. Holmström, Mars under primordial solar wind conditions: Mars express observations of the strongest CME detected at Mars under solar cycle #24 and its impact on atmospheric ion escape. Geophys. Res. Lett. 44, 10805–10811 (2017c). https://doi.org/10.1002/2017GL075446

    ADS  Article  Google Scholar 

  94. R. Ramstad, S. Barabash, Y. Futaana, H. Nilsson, M. Holmström, Ion escape from Mars through time: An extrapolation of atmospheric loss based on 10 years of Mars Express measurements. J. Geophys. Res., Planets 123, 3051–3060 (2018). https://doi.org/10.1029/2018JE005727

    ADS  Article  Google Scholar 

  95. R. Ramstad, D.A. Brain, Y. Dong, J. Espley, J. Halekas, B. Jakosky, The current systems of the Martian induced magnetosphere. Nat. Astron. 4, 979–985 (2020). https://doi.org/10.1038/s41550-020-1099-y

    ADS  Article  Google Scholar 

  96. H. Rème, C. Aoustin, J.M. Bosqued, I. Dandouras, B. Lavraud et al., First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303–1354 (2001). https://doi.org/10.5194/angeo-19-1303-2001

    ADS  Article  Google Scholar 

  97. I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Evolution of solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys. J. 622(1), 680–694 (2005). https://doi.org/10.1086/427977

    ADS  Article  Google Scholar 

  98. W. Riedler et al., Magnetic fields near Mars: First results. Nature 341(6243), 604–607 (1989). https://doi.org/10.1038/341604a0

    ADS  Article  Google Scholar 

  99. C.T. Russell, J.G. Luhmann, R.C. Elphic, The properties of the low altitude magnetic belt in the Venus ionosphere. Adv. Space Sci. 2(10), 13–16 (1989). https://doi.org/10.1016/0273-1177(82)90356-8

    ADS  Article  Google Scholar 

  100. S. Sakai, K. Seki, N. Terada, H. Shinagawa, T. Tanaka, Y. Ebihara, Effects of a weak intrinsic magnetic field on atmospheric escape from Mars. Geophys. Res. Lett. 45, 9336–9343 (2018). https://doi.org/10.1029/2018GL079972

    ADS  Article  Google Scholar 

  101. M. Saunders, C. Russell, Average dimension and magnetic structure of the distant Venus magnetotail. J. Geophys. Res. 91(A5), 5589–5604 (1986). https://doi.org/10.1029/JA091iA05p05589

    ADS  Article  Google Scholar 

  102. A. Schillings, How does O+ outflow vary with solar wind conditions? Doctoral thesis, Luleå University (2019). ISBN: 978-91-7790-465-6, ISSN: 1402-1544

  103. A. Schillings, R. Slapak, H. Nilsson, M. Yamauchi, I. Dandouras, L.G. Westerberg, Earth atmospheric loss through the plasma mantle and its dependence on solar wind parameters. Earth Planets Space 71, 70 (2019). https://doi.org/10.1186/s40623-019-1048-0

    ADS  Article  Google Scholar 

  104. K. Seki, R.C. Elphic, M. Hirihara, T. Terasawa, T. Mukai, On atmospheric loss of oxygen from Earth through magnetospheric processes. Science 291, 1939 (2001). https://doi.org/10.1126/science.1058913

    ADS  Article  Google Scholar 

  105. E.G. Shelley, R.G. Johnson, R.D. Sharp, Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 77(31), 6104–6110 (1972). https://doi.org/10.1029/JA077i031p06104

    ADS  Article  Google Scholar 

  106. V.I. Shematovich, E.S. Kalinicheva, Oxygen atom escape from the Martian atmosphere during proton auroral events. Astron. Rep. 64(7), 628–635 (2020). https://doi.org/10.1134/S1063772920080089

    ADS  Article  Google Scholar 

  107. SILSO World Data Center, The International Sunspot Number, International Sunspot Number Monthly Bulletin and online catalogue (2070–2020). http://www.sidc.be/silso/

  108. R. Slapak, A. Schillings, H. Nilsson, M. Yamauchi, L.G. Westerberg, I. Dandouras, Atmospheric loss from the dayside open polar region and its dependence on geomagnetic activity: Implications for atmospheric escape on evolutionary timescales. Ann. Geophys. 35, 721–731 (2017). https://doi.org/10.5194/angeo-35-721-2017

    ADS  Article  Google Scholar 

  109. R.J. Strangeway, R.E. Ergun, Y.J. Su, C.W. Carlson, R.C. Elphic, Factors controlling ionospheric outflows as observed at intermediate altitudes. J. Geophys. Res. 110, A03221 (2005). https://doi.org/10.1029/2004JA010829

    ADS  Article  Google Scholar 

  110. J.A. Tarduno et al., Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327(5970), 1238–1240 (2010). https://doi.org/10.1126/science.1183445

    ADS  Article  Google Scholar 

  111. P. Tenfjord, N. Østgaard, Energy transfer and flow in the solar wind–magnetosphere–ionosphere system: A new coupling function. J. Geophys. Res. Space Phys. 118(9), 5659–5672 (2013). https://doi.org/10.1002/jgra.50545

    ADS  Article  Google Scholar 

  112. L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, The extreme ultraviolet and X-ray Sun in Time: High-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015). https://doi.org/10.1051/0004-6361/201526146

    ADS  Article  Google Scholar 

  113. O.L. Vaisberg, V.N. Smirnov, The Martian magnetotail. Adv. Space Res. 6(1), 301–314 (1986). https://doi.org/10.1016/0273-1177(86)90046-3

    ADS  Article  Google Scholar 

  114. O.L. Vaisberg, V.N. Smirnov, A.N. Omeltchenko, Solar wind interaction with Martian magnetosphere. Preprint IKI, D-252 (1977)

  115. V.M. Vasyliunas, J.R. Kan, G.L. Siscoe, S.I. Akasofu, Scaling relations governing magnetospheric energy transfer. Planet. Space Sci. 30(4), 359–365 (1982). https://doi.org/10.1016/0032-0633(82)90041-1

    ADS  Article  Google Scholar 

  116. G.L. Villanueva, M.J. Mumma, R.E. Novak, H.U. Käufl, P. Hartogh, T. Encrenaz, A. Tokunaga, A. Khayat, M.D. Smith, Strong water isotopic anomalies in the Martian atmosphere: Probing current and ancient reservoirs. Science 348, 218–221 (2015). https://doi.org/10.1126/science.aaa3630

    ADS  Article  Google Scholar 

  117. H. Volland, A semiempirical model of large-scale magnetospheric electric fields. J. Geophys. Res. Space Phys. 78(1), 171–180 (1973). https://doi.org/10.1029/JA078i001p00171

    ADS  Article  Google Scholar 

  118. C. Wang, J.P. Han, H. Li, Z. Peng, J.D. Richardson, Solar wind–magnetosphere energy coupling function fitting: Results from a global MHD simulation. J. Geophys. Res. Space Phys. 119(8), 6199–6212 (2014). https://doi.org/10.1002/2014JA019834

    ADS  Article  Google Scholar 

  119. Y.C. Wang, J.G. Luhmann, X. Fang, F. Leblanc, R.E. Johnson, Y. Ma, W.-H. Ip, Statistical studies on Mars atmospheric sputtering by precipitating pickup \(\mathrm{O^{+}}\): Preparation for the MAVEN mission. J. Geophys. Res., Planets 120, 34–50 (2015). https://doi.org/10.1002/2014JE004660

    ADS  Article  Google Scholar 

  120. Y. Wei, M. Fraenz, E. Dubinin, J. Woch, H. Lühr, W. Wan, Q.G. Zong, T.L. Zhang, Z.Y. Pu, S.Y. Fu, S. Barabash, R. Lundin, I. Dandouras, Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region. J. Geophys. Res. 117, A03208 (2012). https://doi.org/10.1029/2011JA017340

    ADS  Article  Google Scholar 

  121. B.E. Wood, The solar wind and the Sun in the past. Space Sci. Rev. 126, 3–14 (2006). https://doi.org/10.1007/s11214-006-9006-0

    ADS  Article  Google Scholar 

  122. R. Wordsworth, Y. Kalugina, S. Lokshtanov, A. Vigasin, B. Ehlmann, J. Head, C. Sanders, H. Wang, Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017). https://doi.org/10.1002/2016GL071766

    ADS  Article  Google Scholar 

  123. S. Xu, D.L. Mitchell, J.P. McFadden, G. Collinson, Y. Harada, R. Lillis, C. Mazelle, J.E.P. Connerney, Field-aligned potentials at Mars from MAVEN observations. Geophys. Res. Lett. 45, 10119–10127 (2018). https://doi.org/10.1029/2018GL080136

    ADS  Article  Google Scholar 

  124. A.W. Yau, E.G. Shelley, W.K. Peterson, L. Lenchyshyn, Energetic auroral and polar ion outflow at DE 1 altitudes: Magnitude, composition, magnetic activity dependence, and long-term variations. J. Geophys. Res. 90(A9), 8417–8432 (1985). https://doi.org/10.1029/JA090iA09p08417

    ADS  Article  Google Scholar 

  125. A.W. Yau, W.K. Peterson, E.G. Shelley, Quantitative parametrization of energetic ionospheric ion outflow, in Modeling Magnetospheric Plasma, vol. 44, ed. by T.E. Moore, J. Waite Jr., T.W. Moorehead, W.B. Hanson (1988), pp. 211–217. https://doi.org/10.1029/GM044p0211

    Chapter  Google Scholar 

  126. A.W. Yau, T. Abe, W.K. Peterson, The polar wind: Recent observations. J. Atmos. Sol.-Terr. Phys. 69, 1936–1983 (2007). https://doi.org/10.1016/j.jastp.2007.08.010

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank William K. Peterson for helpful feedback on the initial manuscript. We are thankful for the insightful comments from Janet G. Luhmann and an anonymous reviewer, which solidified the broad scope of the paper. We also thank Kei Masunaga for providing detailed information on the upstream conditions included in the study by Masunaga et al. (2019). R.R. is supported by NASA’s Mars Exploration Program through its support of the MAVEN mission to Mars.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robin Ramstad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Understanding the Diversity of Planetary Atmospheres

Edited by François Forget, Oleg Korablev, Julia Venturini, Takeshi Imamura, Helmut Lammer and Michel Blanc

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramstad, R., Barabash, S. Do Intrinsic Magnetic Fields Protect Planetary Atmospheres from Stellar Winds?. Space Sci Rev 217, 36 (2021). https://doi.org/10.1007/s11214-021-00791-1

Download citation

Keywords

  • Magnetosphere
  • Atmospheric escape
  • Stellar wind