Abstract
Oxygen is the dominant element in our planetary system. It is therefore remarkable that it shows substantial isotopic diversity both in mass-dependent fractionation, because it is a light element, and in mass-independent fractionation, primarily associated with variation in abundance of 16O. On Earth, the primary variation in isotopic composition is related to temperature-dependent kinetic mass fractionation between hydrosphere and atmosphere. Meteorites provide samples of primitive bodies, that have not experienced melting, and planetesimals that have melted early in their history. Samples of Mars, Vesta, and the Moon are present in the meteorite collections. In meteorites, the cosmochemical fractionation related to the abundance of 16O provides a useful classification scheme. Inclusions in chondrites show a large range in 16O abundances from highly enriched (solar) through to compositions closer to terrestrial (planetary). The variability in 16O appears originally to be related to predissociation and self-shielding of carbon monoxide likely in the primordial molecular cloud. Within the chondrite parent bodies, exchange between 16O-poor fluids and relatively 16O-rich solids created isotopic mixing lines. This model makes specific predictions for isotopic compositions of silicates and water ice throughout the solar system. One prediction, that the Earth should be isotopically heavier than the Sun, appears to be verified. But other tests based on oxygen isotopes within the solar system require either remote analysis or sample return missions. Remote analysis will require new instrumentation and analytical techniques to achieve the precision and accuracy required for three oxygen isotope analysis. Methodologies associated with cavity ring-down spectroscopy appear promising. Sample return appears viable only for the inner solar system including Mars and asteroids. While sample return missions to either Venus or Mercury appear highly challenging, the scientific benefits are immense both in oxygen isotope characterisation, and in a variety of other geochemical analyses. Measurement of three oxygen isotopes throughout the solar system would further our concepts for formation of other solar systems, and give us insight into the general mechanisms of planetary system formation and the role of water in the formation and evolution of the chondrite parent bodies and planets.
This is a preview of subscription content, access via your institution.

















References
C.B. Agee, N.V. Wilson, F.M. McCubbin, K. Ziegler, V.J. Polyak, Z.D. Sharp, Y. Asmerom, M.H. Nunn, R. Shaheen, M.H. Thiemens, A. Steele, M.L. Fogel, R. Bowden, M. Glamoclija, Z. Zhang, S.M. Elardo, Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science 339, 780–785 (2013). https://doi.org/10.1126/science.1228858
C.M.O’D. Alexander, D.J. Barber, R. Hutchison, The microstructure of Semarkona and Bishunpur. Geochim. Cosmochim. Acta 53, 3045–3057 (1989). https://doi.org/10.1016/0016-7037(89)90180-4
A. Ali, I. Jabeen, D. Gregory, R. Verish, N.R. Banerjee, New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars. Meteorit. Planet. Sci. 51, 981–995 (2016). https://doi.org/10.1111/maps.12640
ALMA Partnership et al., The 2014 ALMA long baseline campaign: First results from high angular resolution observations toward the HL Tau region. Astrophys. J. Lett. 808, L3 (2015). https://doi.org/10.1088/2041-8205/808/1/L3
K. Altwegg et al., 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015). https://doi.org/10.1126/science.1261952
E. Anders, E. Zinner, Interstellar grains in primitive meteorites: Diamond, silicon carbide, and graphite. Meteoritics 28, 490–514 (1993). https://doi.org/10.1111/j.1945-5100.1993.tb00274.x
R.M.G. Armytage, R.B. Georg, H.M. Williams, A.N. Halliday, Silicon isotopes in lunar rocks: Implications for the Moon’s formation and the early history of the Earth. Geochim. Cosmochim. Acta 77, 504–524 (2012). https://doi.org/10.1016/j.gca.2011.10.032
J.N. Ávila, M. Lugaro, T.R. Ireland, F. Gyngard, E. Zinner, S. Cristallo, P. Holden, J. Buntain, S. Amari, A. Karakas, Tungsten isotopic compositions in Stardust SiC grains from the Murchison meteorite: Constraints on the s-process in the Hf-Ta-W-Re-Os region. Astrophys. J. 744, 49–62 (2012). https://doi.org/10.1088/0004-637X/744/1/49
J.N. Ávila, T.R. Ireland, F. Gyngard, E. Zinner, G. Malmann, P. Holden, S. Amari, Barium isotopic compositions in large Stardust SiC grains from the Murchison meteorite: A cautionary tale of unresolved mass interferences. Geochim. Cosmochim. Acta 120, 628–647 (2013a). https://doi.org/10.1016/j.gca.2013.03.039
J.N. Ávila, T.R. Ireland, M. Lugaro, F. Gyngard, E. Zinner, S. Cristallo, P. Holden, T. Rauscher, Europium s-process signature at close-to-solar metallicity in Stardust SiC grains from asymptotic giant branch stars. Astrophys. J. Lett. 768, L18 (2013b). https://doi.org/10.1088/2041-8205/768/1/L18
J.N. Ávila, T.R. Ireland, P. Holden, P. Lanc, A. Latimore, N. Schram, J. Foster, I.S. Williams, L. Loiselle, B. Fu, High-precision, high-accuracy oxygen isotope measurements of zircon reference materials with the SHRIMP-SI. J. Geostand. Geoanal. Res. (2020, in press). https://doi.org/10.1111/ggr.12298
P. Baertschi, Absolute 18O content of standard mean ocean water. Earth Planet. Sci. Lett. 31, 341–344 (1976). https://doi.org/10.1016/0012-821X(76)90115-1
P. Baertschi, S.R. Silverman, The determination of relative abundances of the oxygen isotopes in silicate rocks. Geochim. Cosmochim. Acta 1, 317–328 (1951). https://doi.org/10.1016/0016-7037(51)90006-3
J. Bally, W.D. Langer, Isotope-selective photodissociation of carbon monoxide. Astrophys. J. 255, 143–148 (1982). https://doi.org/10.1086/159812
H. Balsiger, K. Altwegg, F. Bühler, J. Geiss, A.G. Ghielmetti, B.E. Goldstein, R. Goldstein, W.T. Huntress, W.-H. Ip, A.J. Lazarus, A. Meier, M. Neugebauer, U. Rettenmund, H. Rosenbauer, R. Schwenn, R.D. Sharp, E.G. Shelley, E. Ungstrup, D.T. Young, Ion composition and dynamics at comet Halley. Nature 321, 330–334 (1986). https://doi.org/10.1038/321330a0
S.L.L. Barker, G.M. Dipple, F. Dong, D.S. Baer, Use of laser spectroscopy to measure the 13C/12C and 18O/16O compositions of carbonate minerals. Anal. Chem. 83, 2220–2226 (2011). https://doi.org/10.1021/ac103111y
J-A. Barrat, R.C. Greenwood, K. Keil, M.L. Rouget, J.S. Boesenberg, B. Zanda, I.A. Franchi, The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotopic compositions. Geochim. Cosmochim. Acta 192, 29–48 (2016). https://doi.org/10.1016/j.gca.2016.07.025
A. Basu Sarbadhikari, J.M.D. Day, Y. Liu, D. Rumble, L.A. Taylor, Petrogenesis of olivine-phyric shergottite Larkman Nunatak 06319: Implications for enriched components in martian basalts. Geochim. Cosmochim. Acta 73, 2190–2214 (2009). https://doi.org/10.1016/j.gca.2009.01.012
A. Bischoff, M. Horstmann, A. Pack, M. Laubenstein, S. Haberer, Asteroid 2008 TC3—Almahata Sitta: A spectacular breccia containing many different ureilitic and chondritic lithologies. Meteorit. Planet. Sci. 45, 1638–1656 (2010). https://doi.org/10.1111/j.1945-5100.2010.01108.x
A. Bischoff, N. Vogel, J. Roszjara, The Rumuruti chondrite group. Geochemistry 71, 101–133 (2011). https://doi.org/10.1016/j.chemer.2011.02.005
A. Bischoff, M. Horstmann, J-A. Barrat, M. Chaussidon, A. Pack, D. Herwartz, D. Ward, C. Vollmer, S. Decker, Trachyandesitic volcanism in the early Solar System. Proc. Natl. Acad. Sci. USA 111, 12689–12692 (2014). https://doi.org/10.1073/pnas.1404799111
J. Bradley, H. McSween, R. Harvey, Epitaxial growth of nanophase magnetite in martian meteorite Allan Hills 84001: Implications for biogenic mineralization. Meteorit. Planet. Sci. 33, 765–773 (1998). https://doi.org/10.1111/j.1945-5100.1998.tb01682.x
A.J. Brearley, R.H. Jones, Chondritic meteorites, in Planetary Materials, ed. by J.J. Papike. Reviews in Mineralogy, vol. 36 (1998), pp. 3-1–3-398
J.C. Bridges, T.R. Ireland, Oxygen isotope analyses by SHRIMP of chondrules in highly unequilibrated Ll3 chondrites, in Lunar and Planetary Science Conference XLVI (2015), abstract #1674
J.C. Bridges, S.P. Schwenzer, The nakhlite hydrothermal brine on Mars. Earth Planet. Sci. Lett. 359–360, 117–123 (2012). https://doi.org/10.1016/j.epsl.2012.09.044
J.C. Bridges, P.H. Warren, The SNC meteorites: Basaltic igneous processes on Mars. J. Geol. Soc., Lond. 163, 229–251 (2006). https://doi.org/10.1144/0016-764904-501
J.C. Bridges, I.A. Franchi, R. Hutchison, A.D. Morse, J.V.P. Long, C.T. Pillinger, Cristobalite- and tridymite-bearing clasts in Parnallee (LL3) and Farmington (L5). Meteoritics 30, 715–727 (1995). https://doi.org/10.1111/j.1945-5100.1995.tb01169.x
J.C. Bridges, I.A. Franchi, A.S. Sexton, C.T. Pillinger, Mineralogical controls on the oxygen isotopic compositions of UOCs. Geochim. Cosmochim. Acta 63, 945–951 (1999). https://doi.org/10.1016/S0016-7037(98)00317-2
J.C. Bridges, D.C. Catling, J.M. Saxton, T.D. Swindle, I.C. Lyon, M.M. Grady, Alteration assemblages in martian meteorites: Implications for near-surface processes, in Evolution of Mars, ed. by R. Kallenbach, J. Geiss, W.K. Hartmann (Kluwer, Dordrecht, 2001), pp. 365–392. https://doi.org/10.1023/A:101196582 [also published in Space Sci. Rev. 96, 365–392 (2001)]
J.C. Bridges, H.G. Changela, S. Nayakshin, N.A. Starkey, I.A. Franchi, Chondrule fragments from Comet Wild2: Evidence for high temperature processing in the outer solar system. Earth Planet. Sci. Lett. 341–344, 186–194 (2012). https://doi.org/10.1016/j.epsl.2012.06.011
J.C. Bridges, L.J. Hicks, A. Treiman, Carbonates on Mars, in Volatiles in the Martian Crust, ed. by J. Filiberto, S.P. Schwenzer (Elsevier, Amsterdam, 2019), pp. 89–118. https://doi.org/10.1016/B978-0-12-804191-8.00005-2
T.G. Brockwell, K.J. Meech, K. Pickens, J.H. Waite, G. Miller, J. Roberts, J.I. Lunine et al., The mass spectrometer for planetary exploration (MASPEX), in IEEE Aerospace Conference (2016). https://doi.org/10.1109/AERO.2016.7500777
D. Brownlee et al., Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006). https://doi.org/10.1126/science.1135840
E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957). https://doi.org/10.1103/RevModPhys.29.547
T. Burbine, Asteroids: Astronomical and Geological Bodies, Cambridge Planetary Science (Cambridge University Press, Cambridge, 2016). https://doi.org/10.1017/9781316156582
M.J. Burchell, S.A.J. Fairey, P. Wozniakiewicz, D.E. Brownlee, F. Hörz, A.T. Kearsley, T.H.S.P. Tsou, A. Westphal, S.F. Green, J.M. Trigo-Rodríguez, G. Domingúez, Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations. Meteorit. Planet. Sci. 43, 23–40 (2008). https://doi.org/10.1111/j.1945-5100.2008.tb00608.x
D.S. Burnett (Genesis Science Team), Solar composition from the Genesis Discovery Mission. Proc. Natl. Acad. Sci. 108, 19147–19151 (2011). https://doi.org/10.1073/pnas.1014877108
D.S. Burnett, B.L. Barraclough, R. Bennett, M. Neugebauer, L.P. Oldham, C.N. Sasaki, D. Sevilla, N. Smith, E. Stansbery, D. Sweetnam, R.C. Wiens, Genesis discovery mission: Return of solar matter to Earth. Space Sci. Rev. 105, 509–534 (2003). https://doi.org/10.1023/A:1024425810605
A.G.W. Cameron, J.W. Truran, The supernova trigger for formation of the solar system. Icarus 30, 447–461 (1977). https://doi.org/10.1016/0019-1035(77)90101-4
A.G.W. Cameron, W.R. Ward, The origin of the Moon, in 7th Lunar and Planetary Science Conference, vol. 7 (1976), pp. 120–122 (abstract)
R.M. Canup, Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012). https://doi.org/10.1126/science.1226073
R.M. Canup, E. Asphaug, Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001). https://doi.org/10.1038/35089010
C.D. Cappa, M.B. Hendricks, D.J. DePaolo, R.C. Cohen, Isotopic fractionation of water during evaporation. J. Geophys. Res., Atmos. 108, 4525 (2003). https://doi.org/10.1029/2003JD003597
N.L. Chabot, H. Haack, Evolution of asteroidal cores, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween Jr. (University of Arizona Press, Tucson, 2006), pp. 747–771, 943 pp.
B.-G. Choi, K.D. McKeegan, A.N. Krot, J.T. Wasson, Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites. Nature 392, 577–579 (1998). https://doi.org/10.1038/33356
R.N. Clayton, Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 15–149 (1993). https://doi.org/10.1146/annurev.ea.21.050193.000555
R.N. Clayton, Self-shielding in the solar nebula. Nature 415, 860–861 (2002). https://doi.org/10.1038/415860b
R.N. Clayton, Oxygen isotopes in the solar system. Space Sci. Rev. 106, 19–32 (2003). https://doi.org/10.1023/A:102466911
R.N. Clayton, T.K. Mayeda, The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 27, 43–52 (1963). https://doi.org/10.1016/0016-7037(63)90071-1
R.N. Clayton, T.K. Mayeda, Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999–2017 (1996). https://doi.org/10.1016/0016-7037(96)00074-9
R.N. Clayton, T.K. Mayeda, Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2089–2104 (1999). https://doi.org/10.1016/S0016-7037(99)00090-3
R.N. Clayton, L. Grossman, T.K. Mayeda, A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488 (1973). https://doi.org/10.1126/science.182.4111.485
R.N. Clayton, N. Onuma, T.K. Mayeda, A classification of meteorites based on oxygen isotopes. Earth Planet. Sci. Lett. 30, 10–18 (1976). https://doi.org/10.1016/0012-821X(76)90003-0
R.N. Clayton, N. Onuma, L. Grossman, T.K. Mayeda, Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth Planet. Sci. Lett. 34, 209–224 (1977). https://doi.org/10.1016/0012-821X(77)90005-X
R.N. Clayton, N. Onuma, Y. Ikeda, T.K. Mayeda, I.D. Hutcheon, E.J. Olsen, C. Molini-Velsko, Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites, in Chondrules and Their Origins, ed. by E.A. King (1983), pp. 37–43
R.N. Clayton, T.K. Mayeda, A.E. Rubin, Oxygen isotopic compositions of enstatite chondrites and aubrites. J. Geophys. Res. 89, 245–249 (1984). https://doi.org/10.1029/JB089iS01p0C245
R.N. Clayton, T.K. Mayeda, J.N. Goswami, E.J. Olsen, Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337 (1991). https://doi.org/10.1016/0016-7037(91)90107-G
P. Cloud, Paleoecological significance of the banded iron formation. Econ. Geol. 68, 1135–1143 (1973). https://doi.org/10.2113/gsecongeo.68.7.1135
B.A. Cohen, C.A. Malespin, K.A. Farley, P.E. Martin, Y. Cho, P.R. Mahaffy, In situ geochronology on Mars and the development of future instrumentation. Astrobiology 19(11), 1303–1314 (2019). https://doi.org/10.1089/ast.2018.1871
J.N. Connelly, J. Bollard, M. Bizzarro, Pb–Pb chronometry and the early Solar System. Geochim. Cosmochim. Acta 201, 345–363 (2017). https://doi.org/10.1016/j.gca.2016.10.044
H.C. Connolly Jr., R.H. Jones, Chondrules: The canonical and noncanonical views. J. Geophys. Res., Planets 121, 1885–1899 (2016). https://doi.org/10.1002/2016JE005113
A. Cousin, V. Sautter, V. Payré, O. Forni, N. Mangold, O. Gasnault, L. Le Deit, J. Johnson, S. Maurice, M. Salvatore, R.C. Wiend, P. Gasda, W. Rapin, Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus 288, 265–283 (2017). https://doi.org/10.1016/j.icarus.2017.01.014
H. Craig, Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133, 1833–1834 (1961). https://doi.org/10.1126/science.133.3467.1833
M. Ćuk, S.T. Stewart, Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science 338, 1047–1052 (2012). https://doi.org/10.1126/science.1225542
W. Dansgaard, Stable isotopes in precipitation. Tellus 16, 436–468 (1964). https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
J.R. Darling, D.E. Moser, I.R. Barker, K.T. Tait, K.R. Chamberlain, A.K. Schmitt, B.C. Hyde, Variable microstructural response of baddeleyite to shock metamorphism in young basaltic shergottite NWA 5298 and improved U–Pb dating of Solar System events. Earth Planet. Sci. Lett. 444, 1–12 (2016). https://doi.org/10.1016/j.epsl.2016.03.032
N. Dauphas, The isotopic nature of the Earth’s accreting material throughout time. Nature 541, 521–524 (2017). https://doi.org/10.1038/nature20830
N. Dauphas, C. Burkhardt, P.H. Warren, F-Z. Teng, Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. Lond. A 372, 20130244 (2014). https://doi.org/10.1098/rsta.2013.0244
F.E. DeMeo, R.P. Binzel, S.M. Slivan, S.J. Bus, An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009). https://doi.org/10.1016/j.icarus.2009.02.005
S.J. Desch, H.C. Connolly Jr., A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183–207 (2010). https://doi.org/10.1111/j.1945-5100.2002.tb01104.x
G. Dipierro, D. Price, G. Laibe, K. Hirsh, A. Cerioli, G. Lodato, On planet formation in HL Tau. Mon. Not. R. Astron. Soc. 453, L73–L77 (2015). https://doi.org/10.1093/mnrasl/slv105
P.H. Edwards, J.C. Bridges, R.C. Wiens, R. Anderson, D. Dyar, M. Fisk, L. Thompson, P. Gasda, J. Filiberto, S.P. Schwenzer, D. Blaney, I. Hutchinson, Basalt-trachybasalt samples in gale crater, Mars. Meteorit. Planet. Sci. 52, 2391–2410 (2017). https://doi.org/10.1111/maps.12953
J.M. Eiler, N. Kitchen, L. Leshin, M. Strausberg, Hosts of hydrogen in Allan Hills 84001: Evidence for hydrous martian salts in the oldest martian meteorite? Meteorit. Planet. Sci. 37, 395–405 (2002). https://doi.org/10.1111/j.1945-5100.2002.tb00823.x
S. Epstein, R.P. Sharp, A.J. Gow, Six-year record of oxygen and hydrogen isotope variations in South Pole Firn. J. Geophys. Res. 70, 1809–1814 (1965). https://doi.org/10.1029/JZ070i008p01809
A.J. Fahey, J.N. Goswami, K.D. McKeegan, E. Zinner, Evidence for extreme Ti-50 enrichments in primitive meteorites. Astrophys. J. Lett. 296, L17–L20 (1985). https://doi.org/10.1086/184539
A.J. Fahey, J.N. Goswami, K.D. McKeegan, E.K. Zinner, O-16 excesses in Murchison and Murray hibonites—A case against a late supernova injection origin of isotopic anomalies in O, Mg, Ca, and Ti. Astrophys. J. Lett. 323, L91–L95 (1987). https://doi.org/10.1086/185064
J. Farquhar, M.H. Thiemens, Oxygen cycle of the martian atmosphere-regolith system: \(\Delta ^{17}\)O of secondary phases in Nakhla and Lafayette. J. Geophys. Res., Planets 105, 11991–11997 (2000). https://doi.org/10.1029/1999JE001194
J. Farquhar, M.H. Thiemens, T. Jackson, Atmosphere-surface interactions on Mars: \(\Delta ^{17}\)O measurements of carbonate from ALH 84001. Science 280, 1580–1582 (1998). https://doi.org/10.1126/science.280.5369.1580
J. Farquhar, H. Bao, M. Thiemens, Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000). https://doi.org/10.1126/science.289.5480.756
G. Faure, Principles of Isotope Geology, 2nd edn. (Wiley, New York, 1986), 589 pp.
J. Filiberto, E. Chin, J.M.D. Day, I.A. Franchi, R.C. Greenwood, J. Gross, S.C. Penniston-Dorland, S.P. Schwenzer, A.H. Treiman, Geochemistry of intermediate olivine-phyric shergottite Northwest Africa 6234, with similarities to basaltic shergottite Northwest Africa 480 and olivine-phyric shergottite Northwest Africa 2990. Meteorit. Planet. Sci. 47, 1256–1273 (2012). https://doi.org/10.1111/j.1945-5100.2012.01382.x
A.E. Finzi, F.B. Zazzera, C. Dainese, F. Malnati, P.G. Magnani, E. Re, P. Bologna, S. Espinasse, A. Olivieri, SD2—How to sample a comet. Space Sci. Rev. 128, 281–299 (2007). https://doi.org/10.1007/s11214-006-9134-6
C. Floss, P. Haenecour, Presolar silicate grains: Abundances, isotopic and elemental compositions, and the effects of secondary processing. Geochem. J. 50, 3–25 (2016). https://doi.org/10.2343/geochemj.2.0377
I.A. Franchi, I.P. Wright, A.S. Sexton, C.T. Pillinger, The oxygen-isotopic composition of Earth and Mars. Meteorit. Planet. Sci. 34, 657–661 (1999). https://doi.org/10.1111/j.1945-5100.1999.tb01371.x
A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, K. Uesugi, The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330–1334 (2006). https://doi.org/10.1126/science.1125841pmid:16741107
G.D. Garlick, S. Epstein, Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks. Geochim. Cosmochim. Acta 31, 181–214 (1967). https://doi.org/10.1016/S0016-7037(67)80044-9
B.J. Giletti, M.P. Semet, R.A. Yund, Studies in diffusion- III. Oxygen in feldspars: An ion microprobe determination. Geochim. Cosmochim. Acta 42, 45–58 (1978). https://doi.org/10.1016/0016-7037(78)90215-6
F. Goesmann, H. Rosenbauer, R. Roll, C. Szopa, F. Raulin, R. Sternberg, G. Israel, U. Meierhenrich, W. Thiemann, G. Munoz-Caro, COSAC, the COmetary SAmpling and Composition experiment on Philae. Space Sci. Rev. 128, 257–280 (2007). https://doi.org/10.1007/s11214-006-9000-6
J.L. Gooding, S.J. Wentworth, M.E. Zolensky, Aqueous alteration of the Nakhla meteorite. Meteoritics 26, 135–143 (1991). https://doi.org/10.1111/j.1945-5100.1991.tb01029.x
S.F. Green, N. McBride, M.T.S.H. Colwell, J.A.M. McDonnell, A.J. Tuzzolino, T.E. Economou, B.C. Clark, Z. Sekanina, P. Tsou, D. Brownlee, Stardust Wild 2 dust measurements, in Proc. “Dust in Planetary Systems” ESA SP-64, ed. by H. Krueger, A. Graps (2007), pp. 35–44
R.C. Greenwood, I.A. Franchi, A. Jambon, J.A. Barrat, T.H. Burbine, Oxygen isotope variation in stony-iron meteorites. Science 313, 1763–1765 (2006). https://science.sciencemag.org/content/313/5794/176
R.C. Greenwood, I.A. Franchi, J.M. Gibson, G.K. Benedix, Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochim. Cosmochim. Acta 94, 146–163 (2012). https://doi.org/10.1016/j.gca.2012.06.025
R.C. Greenwood, J-A. Barrat, E.R.D. Scott, H. Haack, P.C. Buchanan, I.A. Franchi, A. Yamaguchi, D. Johnson, A.W.R. Bevan, T.H. Burbine, Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the “Great Dunite Shortage” and HED-mesosiderite connection. Geochim. Cosmochim. Acta 169, 115–136 (2015). https://doi.org/10.1016/j.gca.2015.07.023
R.C. Greenwood, T.H. Burbine, M.F. Miller, I.A. Franchi, Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies. Chem. Erde 77, 1–43 (2017). https://doi.org/10.1016/j.chemer.2016.09.005
R.C. Greenwood, J-A. Barrat, M.F. Miller, M. Anand, N. Dauphas, I.A. Franchi, P. Sillard, N.A. Starkey, Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact. Sci. Adv. 4, eaao5928 (2018). https://doi.org/10.1126/sciadv.aao5928
R.C. Greenwood, M. Anand, What is the oxygen isotope composition of Venus? The scientific case for sample return from Earth’s “sister” planet. Space Sci. Rev. (2020, accepted)
R.C. Greenwood, T.H. Burbine, I.A. Franchi, Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta (2020, accepted). https://doi.org/10.1016/j.gca.2020.02.004
L. Grossman, Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972). https://doi.org/10.1016/0016-7037(72)90078-6
L. Grossman, Petrography and mineral chemistry of Ca-rich inclusions in the Allende Meteorite. Geochim. Cosmochim. Acta 39, 433–454 (1975). https://doi.org/10.1016/0016-7037(75)90099-X
J.N. Grossman, C.M.O’D. Alexander, J. Wang, A.J. Brearley, Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteorit. Planet. Sci. 35, 467–486 (2000). https://doi.org/10.1111/j.1945-5100.2000.tb01429.x
F. Gyngard, E. Zinner, L.R. Nittler, A. Morgand, F.J. Stadermann, K.M. Hynes, Automated NanoSIMS measurements of spinel Stardust from the Murray meteorite. Astrophys. J. 717, 107–120 (2010). https://doi.org/10.1088/0004-637X/717/1/107
M.K. Haba, J-F. Wotzlaw, Y-J. Lai, A. Yamaguchi, M. Schönbächler, Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision. Nat. Geosci. 12, 510–515 (2019). https://doi.org/10.1038/s41561-019-0377-8
L.J. Hallis, M. Anand, R.C. Greenwood, M.F. Miller, I.A. Franchi, S.S. Russell, The oxygen isotope composition, petrology and geochemistry of mare basalts: Evidence for large-scale compositional variation in the lunar mantle. Geochim. Cosmochim. Acta 74, 6885–6899 (2010). https://doi.org/10.1016/j.gca.2010.09.023
B. Hapke, Space weathering from Mercury to the asteroid belt. J. Geophys. 106, 10039–10074 (2001). https://doi.org/10.1029/2000JE001338
W.K. Hartmann, D.R. Davis, Satellite-sized planetesimals and lunar origin. Icarus 24, 504–514 (1975). https://doi.org/10.1016/0019-1035(75)90070-6
K. Hashizume, N. Takahata, H. Naraoka, Y. Sano, Oxygen isotope anomaly with a solar origin detected in meteoritic organics. Nat. Geosci. 4, 165–168 (2011). https://doi.org/10.1038/NGEO1070
M. Hässig, K. Altwegg, H. Balsiger, J.J. Berthelier, U. Calmonte, M. Combi, J. De Keyser, B. Fiethe, S.A. Fuselier, M. Rubin, ROSINA/DFMS capabilities to measure isotopic ratios in water at comet 67P/Churyumov–Gerasimenko. Planet. Space Sci. 84, 148–152 (2013). https://doi.org/10.1016/j.pss.2013.05.014
J.E. Heidenreich III, M.H. Thiemens, A non-mass-dependent oxygen isotope effect in the production of ozone from molecular oxygen: The role of molecular symmetry in isotope chemistry. J. Chem. Phys. 84, 2129 (1986). https://doi.org/10.1063/1.450373
C.D.K. Herd et al., The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian. Geochim. Cosmochim. Acta 218, 1–26 (2017). https://doi.org/10.1016/j.gca.2017.08.037
D. Herwartz, A. Pack, B. Friedrichs, A. Bischoff, Identification of the giant impactor Theia in lunar rocks. Science 344, 1146–1150 (2014). https://doi.org/10.1126/science.1251117
H.R. Heydegger, J. Foster, W. Compston, Evidence of a new isotopic anomaly from titanium isotopic ratios in meteoric materials. Nature 278, 704–707 (1979). https://doi.org/10.1038/278704a0
L.J. Hicks, J.C. Bridges, S.J. Gurman, Ferric saponite and serpentine in the nakhlite martian meteorites. Geochim. Cosmochim. Acta 136, 194–210 (2014). https://doi.org/10.1016/j.gca.2014.04.010
L.J. Hicks, J. MacArthur, J.C. Bridges, M. Price, J. Wickham-Eade, M. Burchell, G. Hansford, A. Butterworth, S.J. Gurman, S. Baker, Magnetite in Comet Wild 2: Evidence for parent body aqueous alteration. Meteorit. Planet. Sci. 52, 2075–2096 (2017). https://doi.org/10.1111/maps.12909
J. Hoefs, Stable Isotope Geochemistry, 6th edn., vol. 285 (Springer, Berlin, 2009)
J.H. Hoffman, R.R. Hodges Jr., M.B. McElroy, T.M. Donahue, M. Kolpin, Composition and structure of the Venus atmosphere: Results from pioneer Venus. Science 205, 49–52 (1979). https://doi.org/10.1126/science.205.4401.49
H. Holland, The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B 361, 903–915 (2006). https://doi.org/10.1098/rstb.2006.1838
G. Holland, J.M. Saxton, I.C. Lyon, G. Turner, Negative \(\delta ^{18}\)O values in Allan Hills 84001 carbonate: Possible evidence for water precipitation on Mars. Geochim. Cosmochim. Acta 69, 1359–1369 (2005). https://doi.org/10.1016/j.gca.2004.08.023
M. Horstmann, A. Bischoff, A. Pack, N. Albrecht, M. Weyrauch, H. Hain, L. Roggon, K. Schneider, Mineralogy and oxygen isotope composition of new samples from the Almahata Sitta strewn field, in 75th Annual Meeting of the Meteoritical Society, held August 12-17, 2012 in Cairns, Australia. Published in Meteoritics and Planetary Science Supplement, id. 5052. 2012M&PSA..75.5052H
F. Hörz et al., Impact features on Stardust: Implications for Comet 81P/Wild 2 dust. Science 314, 1716–1719 (2006). https://doi.org/10.1126/science.1135705
M. Humayun, A. Nemchin, B. Zanda, R.H. Hewins, M. Grange, A. Kennedy, J.-P. Lorand, C. Göpel, C. Fieni, S. Pont, D. Deldicque, Origin and age of the earliest martian crust from meteorite NWA 7533. Nature 503, 513–516 (2013). https://doi.org/10.1038/nature12764
R. Hutchison, C.M.O’D. Alexander, D.J. Barber, The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications. Geochim. Cosmochim. Acta 51, 1875–1882 (1987). https://doi.org/10.1016/0016-7037(87)90178-5
R.B. Ickert, J. Hiess, I.S. Williams, P. Holden, T.R. Ireland, P. Lanc, N. Schram, J.J. Foster, S.W. Clement, Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem. Geol. 257, 114–128 (2008). https://doi.org/10.1016/j.chemgeo.2008.08.024
T.R. Ireland, Presolar isotopic and chemical signatures in hibonite-bearing refractory inclusions from the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta 54, 3219–3237 (1990). https://doi.org/10.1016/0016-7037(90)90136-9
T.R. Ireland, Oxygen isotope tracing of the solar system. Aust. J. Earth Sci. 59, 225–236 (2012). https://doi.org/10.1080/08120099.2012.620626
T.R. Ireland, Ion microscopes and microprobes, in Treatise on Geochemistry, vol. 15, ed. by H.D. Holland, K.K. Turekian, 2nd edn. (Elsevier, Oxford, 2014), pp. 385–409
T.R. Ireland, B. Fegley Jr., The solar system’s earliest chemistry: Systematics of refractory inclusions. Int. Geol. Rev. 42, 865–894 (2000). https://doi.org/10.1080/00206810009465116
T.R. Ireland, E.K. Zinner, A.J. Fahey, T.M. Esat, Evidence for distillation in the formation of HAL and related hibonite inclusions. Geochim. Cosmochim. Acta 56, 2503–2520 (1992). https://doi.org/10.1016/0016-7037(92)90205-W
T.R. Ireland, P. Holden, M.D. Norman, J. Clarke, Isotopic enhancements of 17O and 18O from solar wind particles in the lunar regolith. Nature 440, 776–778 (2006). https://doi.org/10.1038/nature04611
T.R. Ireland, N. Schram, P. Holden, P. Lanc, J. Ávila, R. Armstrong, Y. Amelin, A. Latimore, D. Corrigan, S. Clement, J.J. Foster, W. Compston, Charge-mode electrometer measurements of S-isotopic compositions on SHRIMP-SI. Int. J. Mass Spectrom. 359, 26–37 (2014). https://doi.org/10.1016/j.ijms.2013.12.020
A.J. Irving, S.M. Kuehner, C.D.K. Herd, M. Gellissen, R.L. Korotev, I. Puchtel, R.J. Walker, T. Lapen, D. Rumble, Petrologic, elemental and multi-isotopic characterization of permafic olivine-phyric shergottite northwest Africa 5789: A primitive magma derived from depleted martian mantle, in 41st Lunar and Planetary Science Conference (2010), abstract #1547
H.A. Ishii, J.P. Bradley, Z.R. Dai, M. Chi, A.T. Kearsley, M.J. Burchell, N.D. Browning, F. Molster, Comparison of Comet 81P/WIld 2 dust with interplanetary dust from comets. Science 319, 447–450 (2008). https://doi.org/10.1126/science.1150683
I. Jabeen, M. Kusakabe, Determination of \(\delta ^{17}\)O values of reference water samples VSMOW and SLAP. Chem. Geol. 143, 115–119 (1997). https://doi.org/10.1016/S0009-2541(97)00109-5
M. Jadhav, E.K. Zinner, S. Amari, T. Maruoka, K.K. Marhas, R. Gallino, Multi-element isotopic analyses of presolar graphite grains from Orgueil. Geochim. Cosmochim. Acta 113, 193–224 (2013). https://doi.org/10.1016/j.gca.2013.01.018
E. Jarosewich, R.S. Clarke Jr., J.N. Barrows, in Allende Meteorite Reference Sample. Smithsonian Contributions to the Earth Sciences, vol. 27 (1987), pp. 1–49. https://doi.org/10.5479/si.00810274.27.1
S. Johnsen, W. Dansgaard, H. Clausen et al., Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235, 429–434 (1972). https://doi.org/10.1038/235429a0
J.E. Johnson, A. Gerpheide, M.P. Lamb, W.W. Fischer, O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol. Soc. Am. Bull. 126, 813–830 (2014). https://doi.org/10.1130/B30949
D.J. Joswiak, D. Nakashima, D.E. Brownlee, G. Matrajt, T. Ushikubo, N.T. Kita, S. Messenger, M. Ito, Terminal particle from Stardust track 130: Possible Al-rich chondrule fragment from comet Wild 2. Geochim. Cosmochim. Acta 144, 277–298 (2014). https://doi.org/10.1016/j.gca.2014.08.017
H.R. Karlsson, R.N. Clayton, E.K. Gibson, T.K. Mayeda, Water in SNC meteorites—Evidence for a martian hydrosphere. Science 255, 1409–1411 (1992). https://doi.org/10.1126/science.11537889
J. Kawaguchi, A. Fujiwara, T. Uesugi, Hayabusa—Its technology and science accomplishment summary and Hayabusa-2. Acta Astronaut. 62, 639–647 (2008). https://doi.org/10.1016/j.actaastro.2008.01.028
Y. Kawai, T. Hondo, K.R. Jensen, M. Toyoda, K. Terada, Improved quantitative dynamic range of time-of-flight mass spectrometry by simultaneously waveform-averaging and ion-counting data acquisition. J. Am. Soc. Mass Spectrom. 29, 1403–1407 (2018). https://doi.org/10.1007/s13361-018-1967-1
J. Kissel et al., Composition of comet Halley dust particles from Vega observations. Nature 321, 280–282 (1986). https://doi.org/10.1038/321280a0
J. Kissel, F.R. Krueger, J. Silén, B.C. Clark, The Cometary Impact Dust Analyzer (CIDA). Science 304, 1774–1776 (2004). https://doi.org/10.1126/science.1098836
S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127, 741 (1931). https://doi.org/10.1038/127741a0
N. Kita, T. Ushikubo, B. Fu, J. Valley, High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem. Geol. 264, 43–57 (2009). https://doi.org/10.1016/j.chemgeo.2009.02.012
N.T. Kita, H. Nagahara, S. Tachibana, S. Tomomura, M.J. Spicuzza, J.H. Fournelle, J.W. Valley, High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochim. Cosmochim. Acta 74, 6610–6635 (2010). https://doi.org/10.1016/j.gca.2010.08.011
S. Kobayashi, H. Imai, H. Yurimoto, New extreme 16O-rich reservoir in the early solar system. Geochem. J. 37, 663–669 (2003). https://doi.org/10.2343/geochemj.37.663
L. Kööp, A.M. Davis, D. Nakashima, C. Park, A.N. Krot, K. Nagashima, T.J. Tenner, P.R. Heck, N.T. Kita, A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochim. Cosmochim. Acta 189, 70–95 (2016). https://doi.org/10.1016/j.gca.2016.05.014
A.N. Krot, K. Keil, E.R.D. Scott, C.A. Goodrich, M.K. Weisberg, Classification of meteorites and their genetic relationships, in Meteorites and Cosmochemical Processes, vol. 1, Treatise on Geochemistry, ed. by A.M. Davis, 2nd edn. (Elsevier, Oxford, 2014), pp. 1–63
A.N. Krot, K. Nagashima, K. Fintor, E. Pal-Molnar, Evidence for oxygen-isotope exchange in refractory inclusions from Kaba (CV3.1) carbonaceous chondrite during fluid-rock interaction on the CV parent asteroid. Geochim. Cosmochim. Acta 246, 419–435 (2019). https://doi.org/10.1016/j.gca.2018.11.002
T.S. Kruijer, C. Burkhardt, G. Budde, T. Kleine, Dating the formation of Jupiter. Proc. Natl. Acad. Sci. 114, 6712–6716 (2017). https://doi.org/10.1073/pnas.1704461114
C.J. Lada, E.A. Lada, D.P. Clemens, J. Bally, Dust extinction and molecular gas in the dark cloud IC 5146. Astrophys. J. 429, 694–709 (1994). https://doi.org/10.1086/174354
T.J. Lapen et al., Two billion years of magmatism recorded from a single Mars meteorite ejection site. Sci. Adv. 3(2), e1600922 (2017). https://doi.org/10.1126/sciadv.1600922
D.S. Lauretta et al., The unexpected surface of asteroid (101955) Bennu. Nature 568, 55–60 (2019). https://doi.org/10.1038/s41586-019-1033-6
T. Lee, D.A. Papanastassiou, G.J. Wasserburg, Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett. 3, 41–44 (1976). https://doi.org/10.1029/GL003i001p00041
L.A. Leshin, K.D. McKeegan, P.K. Carpenter, R.P. Harvey, Oxygen isotopic constraints on the genesis of carbonates from martian meteorite ALH84001. Geochim. Cosmochim. Acta 62, 3–13 (1998). https://doi.org/10.1016/S0016-7037(97)00331-1
W. Li, N. Baoling, J. Dequi, Z. Qinglian, Measurement of the absolute abundance of oxygen-17 in VSMOW. Chin. Sci. Bull. 33, 1610–1613 (1988). https://doi.org/10.1360/sb1988-33-19-1610
M.C. Liu, K.D. McKeegan, J.N. Goswami, K.K. Marhas, S. Sahijpal, T.R. Ireland, A.M. Davis, Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the solar nebula. Geochim. Cosmochim. Acta 73, 5051–5079 (2009). https://doi.org/10.1016/j.gca.2009.02.039
J. Llorca, J. Roszjar, J. Roszjar, J.A. Cartwright, A. Bischoff, U. Ott, A. Pack, S. Merchel, G. Rugel, L. Fimiani, P. Ludwig, J.V. Casado, D. Allepuz, The Ksar Ghilane 002 shergottite—The 100th registered martian meteorite fragment. Meteorit. Planet. Sci. 48, 493–513 (2013). https://doi.org/10.1111/maps.12074
S.J. Lock, S.T. Stewart, M.I. Petaev, Z. Leinhardt, M.T. Mace, S.B. Jacobsen, M. Ćuk, The origin of the Moon within a terrestrial synestia. J. Geophys. Res., Planets 123, 910–951 (2018). https://doi.org/10.1002/2017JE005333
L. Loiselle, P. Holden, J.N. Ávila, P. Lanc, J.C. Bridges, J.L. MacArthur, T.R. Ireland, The O isotope composition of martian meteorites using SHRIMP SI: Evidence of multiple reservoirs in silicate minerals of the regolith breccia Northwest Africa 8114, in 50th Lunar and Planetary Science Conference (2019), abstract #2648
J.R. Lyons, E.D. Young, CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435, 317–320 (2005). https://doi.org/10.1038/nature03557
J. MacArthur, J.C. Bridges, L.J. Hicks, R. Burgess, K. Joy, M.J. Branney, G.M. Hansford, S.H. Baker, S.P. Schwenzer, S.J. Gurmand, N.R. Stephen, E.D. Steer, J.D. Piercy, T.R. Ireland, Mineralogical constraints on the thermal history of martian regolith breccia Northwest Africa 8114. Geochim. Cosmochim. Acta 246, 267–298 (2019). https://doi.org/10.1016/j.gca.2018.11.026
P.R. Mahaffy, C.R. Webster, S.K. Atreya, H. Franz, M. Wong, P.G. Conrad, D. Harpold, J.J. Jones, L.A. Leshin, H. Manning, T. Owen, R.O. Pepin, S. Squyres, M. Trainer (MSL Science Team), Abundance and isotopic composition of gases in the martian atmosphere from the curiosity rover. Science 341, 263–266 (2013). https://doi.org/10.1126/science.1237966
U.B. Marvin, The discovery and initial characterization of Allan Hills 81005: The first lunar meteorite. Geophys. Res. Lett. 10(9), 775–778 (1983). https://doi.org/10.1029/GL010i009p00775
Y. Matsuhisa, J.R. Goldsmith, R.N. Clayton, Mechanism of hydrothermal crystallization of quartz at \(250\,^{\circ}\mbox{C}\) and 15 kbar. Geochim. Cosmochim. Acta 42, 173–182 (1978). https://doi.org/10.1016/0016-7037(78)90130-8
P. Mayewski et al., Holocene climate variability. Quat. Res. 62(3), 243–255 (2004). https://doi.org/10.1016/j.yqres.2004.07.001
T.B. McCord, J.B. Adams, T.V. Johnson, Asteroid Vesta: Spectral reflectivity and compositional implications. Science 168, 1445–1447 (1970). https://doi.org/10.1126/science.168.3938.1445
F.M. McCubbin et al., Geologic history of martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the martian crust. J. Geophys. Res., Planets 121, 2120–2149 (2016). https://doi.org/10.1002/2016JE005143
D.S. McKay, E.K. Gibson, K.L. Thomas-Keprta, H. Vali, C.S. Romanek, S.J. Clemett, X.D. Chillier, C.R. Maechling, R.N. Zare, Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science 273, 924–930 (1996). https://doi.org/10.1126/science.273.5277.924
K.D. McKeegan, Oxygen isotopes in refractory stratospheric dust particles: Proof of extraterrestrial origin. Science 237, 1468–1471 (1987). https://doi.org/10.1126/science.237.4821.1468
K.D. McKeegan, R.M. Walker, E. Zinner, Ion microprobe isotopic measurements of individual interplanetary dust particles. Geochim. Cosmochim. Acta 49, 1971–1987 (1985). https://doi.org/10.1016/0016-7037(85)90091-2
K.D. McKeegan, C.D. Coath, P.H. Mao, G. Jarzebinski, D. Burnett, A high energy secondary ion mass spectrometer for the analysis of captured solar wind, in 36th Lunar and Planetary Science Conference (2004), abstract #2000
K.D. McKeegan et al., Isotopic compositions of cometary matter returned by Stardust. Science 314, 1724–1728 (2006). https://doi.org/10.1126/science.1135992
K.D. McKeegan, A. Kallio, V. Heber, G. Jarzebinski, P. Mao, C. Coath, T. Kunihiro, R. Wiens, J. Nordholt, R. Moses, D. Reisenfeld, A. Jurewicz, D. Burnett, The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 1528–1532 (2011). https://doi.org/10.1126/science.1204636
S.M. McLennan, Large-ion lithophile element fractionation during the early differentiation of Mars and the composition of the martian primitive mantle. Meteorit. Planet. Sci. 38, 895–904 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00286.x
H.Y. McSween, SNC meteorites: Are they martian rocks? Geology 12, 3–6 (1984). https://doi.org/10.1130/0091-7613(1984)12%3C3:SMATMR%3E2.0.CO;2
H.Y. McSween, S.W. Ruff, R.V. Morris, R. Gellert, G. Klingelhöfer, P.R. Christensen, T.J. McCoy, A. Ghosh, J.M. Moersch, B.A. Cohen, A.D. Rogers, C. Schröder, S.W. Squyres, J. Crisp, A. Yen, Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X-Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra. J. Geophys. Res. 113, E06S04 (2008). https://doi.org/10.1029/2007JE002970
H.Y. McSween, D.W. Mittlefehldt, A.W. Beck, R.G. Mayne, T.J. McCoy, HED meteorites and their relationship to the geology of Vesta and the dawn mission. Space Sci. Rev. 163, 141–174 (2011). https://doi.org/10.1007/s11214-010-9637-z
S. Messenger, L.P. Keller, F.J. Stadermann, R.M. Walker, E. Zinner, Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science 300, 105–108 (2003). https://doi.org/10.1126/science.1080576
M.F. Miller, Isotopic fractionation and the quantification of \(\Delta ^{17}\)O anomalies in the oxygen three-isotope system—An appraisal and geochemical significance. Geochim. Cosmochim. Acta 66, 1881–1889 (2002). https://doi.org/10.1016/S0016-7037(02)00832-3
M.F. Miller, R.C. Greenwood, I.A. Franchi, Comment on “The triple oxygen isotope composition of the Earth mantle and understanding \(\Delta ^{17}\)O variations in terrestrial rocks and minerals” by A. Pack and D. Herwartz [Earth Planet. Sci. Lett. 390, 138–145 (2014)]. Earth Planet. Sci. Lett. 418, 181–183 (2015). https://doi.org/10.1016/j.epsl.2014.12.026
M.F. Miller, A. Pack, I.N. Bindeman, R.C. Greenwood, Standardizing the reporting of \(\Delta ^{17}\)O data from high precision oxygen triple-isotope ratio measurements of silicate rocks and minerals. Chem. Geol. (2020, accepted). https://doi.org/10.1016/j.chemgeo.2019.119332
D.W. Mittlefehldt, ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan. Meteorit. Planet. Sci. 29, 214–221 (1994). https://doi.org/10.1111/j.1945-5100.1994.tb00673.x
D.W. Mittlefehldt, T.J. McCoy, C.A. Goodrich, A. Kracher, Non-chondritic meteorites from asteroidal bodies, in Planetary Materials, ed. by J.J. Papike. Reviews in Mineralogy, vol. 36 (Mineralogical Society of America, Chantilly, 1998), pp. 4.1–4.195
D.E. Moser et al., Solving the martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon. Nature 499, 454–457 (2013). https://doi.org/10.1038/nature12341
K. Nagao et al., Irradiation history of Itokawa regolith material deduced from noble gases in the Hayabusa samples. Science 333, 1128–1131 (2011). https://doi.org/10.1126/science.1207785
K. Nagashima, A.N. Krot, H. Yurimoto, Stardust silicates from primitive meteorites. Nature 428, 921–924 (2004). https://doi.org/10.1038/nature02510
T. Nakamura, T. Noguchi, A. Tsuchiyama, T. Ushikubo, N.T. Kita, J.W. Valley, M.E. Zolensky, Y. Kakazu, K. Sakamoto, E. Mashio, K. Uesugi, T. Nakano, Chondrule-like objects in short-period Comet 81P/Wild 2. Science 321, 1664–1667 (2008). https://doi.org/10.1126/science.1160995
T. Nakamura et al., Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science 333, 1113–1116 (2011). https://doi.org/10.1126/science.1207758
E. Nakamura, A. Makishima, T. Moriguti, K. Kobayashi, R. Tanaka, T. Kunihiro, T. Tsujimori, C. Sakaguchi, H. Kitagawa, T. Ota, Y. Yachi, T. Yada, M. Abe, A. Fujimura, M. Ueno, T. Mukai, M. Yoshikawa, J. Kawaguchi, Space environment of an asteroid preserved on micrograins returned by the Hayabusa spacecraft. Proc. Natl. Acad. Sci. USA 109, E624–E629 (2012). https://doi.org/10.1073/pnas.1116236109
D. Nakashima, N.T. Kita, T. Ushikubo, T. Noguchi, T. Nakamura, J.W. Valley, Oxygen three-isotope ratios of silicate particles returned from asteroid Itokawa by the Hayabusa spacecraft: A strong link with equilibrated LL chondrites. Earth Planet. Sci. Lett. 379, 127–136 (2013). https://doi.org/10.1016/j.epsl.2013.08.009
O. Navon, G.J. Wasserburg, Self-shielding in O2—A possible explanation for oxygen isotopic anomalies in meteorites? Earth Planet. Sci. Lett. 73, 1–16 (1985)
H.B. Niemann, R.E. Hartle, W.T. Kasprzak, N.W. Spencer, D.M. Hunten, G.R. Carignan, Venus upper atmosphere neutral composition: Preliminary results from the pioneer Venus orbiter. Science 203, 770–772 (1979). https://doi.org/10.1126/science.203.4382.770
P.B. Niles, L. Leshin, Y. Guan, Microscale carbon isotope variability in ALH84001 carbonates and a discussion of possible formation environments. Geochim. Cosmochim. Acta 69, 2931–2944 (2005). https://doi.org/10.1016/j.gca.2004.12.012
L.R. Nittler, Presolar oxide grains in meteorites. AIP Conf. Proc. 402, 59–82 (1997). https://doi.org/10.1063/1.53320
L.R. Nittler, F. Ciesla, Astrophysics with extraterrestrial materials. Annu. Rev. Astron. Astrophys. 54, 53–93 (2016). https://doi.org/10.1146/annurev-astro-082214-122505
L.R. Nittler, C.M.O’.D. Alexander, J. Wang, X. Gao, Meteoritic oxide grain from supernova found. Nature 393, 222 (1998). https://doi.org/10.1038/30377
L.E. Nyquist, C.-Y. Shih, D.D. Bogard, Ages and geologic histories of martian meteorites, in Chronology and Evolution of Mars, ed. by R. Kallenbach, J. Geiss, W.K. Hartmann (Kluwer, Dordrecht, 2001), pp. 105–164
L.E. Nyquist, C-Y. Shih, F.M. McCubbin, A.R. Santos, C.K. Shearer, Z.X. Peng, P.V. Burger, C.B. Agee, Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of martian breccia Northwest Africa 7034. Meteorit. Planet. Sci. 51, 483–498 (2016)
A. O’Keefe, D.A.G. Deacon, Cavity ring-down Optical Spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544 (1988). https://doi.org/10.1063/1.1139895
A. Pack, D. Herwartz, The triple oxygen isotope composition of the Earth mantle and understanding \(\Delta ^{17}\)O variations in terrestrial rocks and minerals. Earth Planet. Sci. Lett. 390, 138–145 (2014). https://doi.org/10.1016/j.epsl.2014.01.017
K. Pahlevan, D.J. Stevenson, Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007). https://doi.org/10.1016/j.epsl.2007.07.055
A.A. Pavlov, J.F. Kasting, Mass-independent fractionation of sulfur isotopes in archean sediments: Strong evidence for an anoxic archean atmosphere. Astrobiology 2, 27–41 (2002). https://doi.org/10.1089/153110702753621321
R. Pepin, Meteorites: Evidence of martian origins. Nature 317, 473–475 (1985). https://doi.org/10.1038/317473a0
P.N. Peplowski, D.J. Lawrence, T.H. Prettyman, N. Yamashita, D. Bazell, W.C. Feldman, L. Le Corre, T.J. McCoy, V. Reddy, R.C. Reedy, C.T. Russell, M.J. Toplis, Compositional variability on the surface of 4 Vesta revealed through GRaND measurements of high-energy gamma rays. Meteorit. Planet. Sci. 48, 2252–2270 (2013). https://doi.org/10.1111/maps.12176
L. Qin, L.R. Nittler, C.M.O’D. Alexander, J. Wang, F.J. Stadermann, R.W. Carlson, Extreme 54Cr-rich nano-oxides in the CI chondrite orgueil—Implications for a late supernova injection into the solar system. Geochim. Cosmochim. Acta 75, 629–644 (2011). https://doi.org/10.1016/j.gca.2010.10.017
R. Reinhard, The Giotto encounter with comet Halley. Nature 321, 313–318 (1986). https://doi.org/10.1038/321313a0
F. Richter, A.M. Davis, D.S. Ebel, A. Hashimoto, Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: Experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta 66, 521–540 (2002). https://doi.org/10.1016/S0016-7037(01)00782-7
D. Rumble, A.J. Irving, Dispersion of oxygen isotopic compositions among 42 martian meteorites determined by laser fluorination: Evidence for assimilation of (ancient) altered crust, in 40th Lunar and Planetary Science Conference (2009), abstract #2293
D. Rumble, M.F. Miller, I.A. Franchi, R.C. Greenwood, Oxygen three-isotope fractionation line in terrestrial silicate minerals: An inter laboratory comparison of hydrothermal quartz and eclogitic garnet. Geochim. Cosmochim. Acta 71, 3592–3600 (2007). https://doi.org/10.1016/j.gca.2007.05.011
D. Rumble, M.E. Zolensky, J.M. Friedrich, P. Jenniskens, M.H. Shaddad, The oxygen isotope composition of Almahata Sitta. Meteorit. Planet. Sci. 45, 1765–1770 (2010). https://doi.org/10.1111/j.1945-5100.2010.01099.x
C.T. Russell, H.Y. McSween, R. Jaumann, C.A. Raymond, The dawn mission to Vesta and ceres, in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (University of Arizona Press, Tucson, 2015), pp. 419–432. https://muse.jhu.edu/chapter/1705177
F.J. Ryerson, K.D. McKeegan, Determination of oxygen self-diffusion in åkermanite, anorthite, diopside, and spinel: Implications for oxygen isotopic anomalies and the thermal histories of Ca-Al-rich inclusions. Geochim. Cosmochim. Acta 58, 3713–3734 (1994). https://doi.org/10.1016/0016-7037(94)90161-9
J. Saito et al., Detailed images of asteroid 25143 Itokawa from Hayabusa. Science 312, 1341–1344 (2006). https://doi.org/10.1126/science.1125722
N. Sakamoto, Y. Seto, S. Itoh, K. Kuramoto, K. Fujino, K. Nagashima, A.N. Krot, H. Yurimoto, Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317, 231–233 (2007). https://doi.org/10.1126/science.1142021
R. Salmeron, T.R. Ireland, Formation of chondrules in magnetic winds blowing through the proto-asteroid belt. Earth Planet. Sci. Lett. 327–328, 61–67 (2012a). https://doi.org/10.1016/j.epsl.2012.01.033
R. Salmeron, T.R. Ireland, The role of protostellar jets in star formation and the evolution of the early solar system: Astrophysical and meteoritical perspectives. Meteorit. Planet. Sci. 47, 1922–1940 (2012b). https://doi.org/10.1111/maps.12029
L. Sangély, B. Boyer, E. de Chambost, N. Valle, J.-N. Audinot, T. Ireland, M. Wiedenbeck, J. Aleon, H. Jungnickel, J.-P. Barnes, P. Bienvenu, U. Breuer, Secondary ion mass spectrometry, in Sector Field Mass Spectrometry for Elemental and Isotopic Analysis (The Royal Society of Chemistry, London, 2015), pp. 439–499. Chap. 15
V. Sautter, M.J. Toplis, R.C. Wiens, A. Cousin, C. Fabre, O. Gasnault, S. Maurice, O. Forni, J. Lasue, A. Ollila, J.C. Bridges, N. Mangold, S. Le Mouélic, M. Fisk, P.-Y. Meslin, P. Beck, P. Pinet, L. Le Deit, W. Rapin, E.M. Stolper, H. Newsom, D. Dyar, N. Lanza, D. Vaniman, S. Clegg, In situ evidence for continental crust on early Mars. Nat. Geosci. 8, 605–609 (2015). https://doi.org/10.1038/ngeo2474
S.M. Savin, S. Epstein, The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim. Cosmochim. Acta 34, 25–42 (1970). https://doi.org/10.1016/0016-7037(70)90149-3
J. Saxton, I. Lyon, G. Turner, Correlated chemical and isotopic zoning in carbonates in the martian meteorite ALH84001. Earth Planet. Sci. Lett. 160, 811–822 (1998). https://doi.org/10.1016/S0012-821X(98)00129-0
J.M. Saxton, I.C. Lyon, G. Turner, Oxygen isotopes in forsterite grains from Julesburg and Allende: Oxygen-16-rich material in an ordinary chondrite. Meteorit. Planet. Sci. 33, 1017–1027 (2010). https://doi.org/10.1111/j.1945-5100.1998.tb01708.x
B. Schueler, J. Morton, K. Mauersberger, Measurement of isotopic abundances in collected stratospheric ozone samples. Geophys. Res. Lett. 17, 1295–1298 (1990). https://doi.org/10.1029/GL017i009p01295
S.P. Schwenzer, R.C. Greenwood, S.P. Kelley, U. Ott, A.G. Tindle, R. Haubold, S. Herrmann, J.M. Gibson, M. Anand, S. Hammond, I.A. Franchi, Quantifying noble gas contamination during terrestrial alteration in martian meteorites from Antarctica. Meteorit. Planet. Sci. 48, 929–954 (2013). https://doi.org/10.1111/maps.12110
E.R.D. Scott, K. Keil, J.L. Goldstein, E. Asphaug, W.F. Bottke, N.A. Moskovitz, Early impact history and dynamical origin of differentiated meteorites and asteroids, in Asteroids IV, ed. by P. Michel, F. DeMeo, W.F. Bottke (University of Arizona Press, Tucson, 2015), pp. 573–595
E.R.D. Scott, A.N. Krot, I.S. Sanders, Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk. Astrophys. J. 854, 164 (2018). https://doi.org/10.3847/1538-4357/aaa5a5
Z. Sekanina, A model for comet 81P/Wild 2. J. Geophys. Res., Planets 108, 8112 (2003). https://doi.org/10.1029/2003JE002093
N. Shackleton, N. Opdyke, Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a \(10^{5}\) year and \(10^{6}\) year scale. Quat. Res. 3, 39–55 (1973). https://doi.org/10.1016/0033-5894(73)90052-5
R. Shaheen, P.B. Niles, K. Chong, C.M. Corrigan, M.H. Thiemens, Carbonate formation events in ALH84001 trace the evolution of the martian atmosphere. Proc. Natl. Acad. Sci. 112, 336–341 (2015). https://doi.org/10.1073/pnas.1315615112
Z.D. Sharp, A laser-based microanalytical method for the in situ determination of oxygen isotope ratios in silicates and oxides. Geochim. Cosmochim. Acta 54, 1353–1357 (1990). https://doi.org/10.1016/0016-7037(90)90160-M
F.H. Shu, H. Shang, T. Lee, Toward an astrophysical theory of chondrites. Science 271, 1545–1552 (1996). https://doi.org/10.1126/science.271.5255.1545
M. Siddall, E. Rohling, A. Almogi-Labin et al., Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003). https://doi.org/10.1038/nature01690
H. Sierks et al., On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science 347, aaa1044 (2015). https://doi.org/10.1126/science.aaa1044
G. Skrzypek, D. Ford, The stable isotope analysis of saline water samples on a cavity ring–down spectroscopy instrument. Environ. Sci. Technol. 48, 2827–2834 (2014). https://doi.org/10.1021/es4049412
J.V. Smith, A.T. Anderson, R.C. Newton, E.J. Olsen, P.J. Wyllie, A petrologic model for the Moon based on petrogenesis, experimental petrology, and physical properties. J. Geol. 78, 381–405 (1970). https://doi.org/10.1086/627537
M.L. Spicuzza, J.M.D. Day, L.A. Taylor, J.W. Valley, Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett. 253, 254–265 (2007). https://doi.org/10.1016/j.epsl.2006.10.030
F. Stadermann, T.K. Croat, T.J. Bernatowicz, S. Amari, S. Messenger, R.M. Walker, E. Zinner, Supernova graphite in the NanoSIMS: Carbon, oxygen and titanium isotopic compositions of a spherule and its TiC sub-components. Geochim. Cosmochim. Acta 69, 177–188 (2005). https://doi.org/10.1016/j.gca.2004.06.017
D.J. Stevenson, A.N. Halliday, The origin of the Moon. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 372, 20140289 (2014). https://doi.org/10.1098/rsta.2014.0289
S. Sugita et al., The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science 364, eaaw0422 (2019). https://doi.org/10.1126/science.aaw0422
T.D. Swindle, A.H. Treiman, D.J. Lindstrom, M.K. Burkland, B.A. Cohen, J.A. Grier, B. Li, E.K. Olson, Noble gases in iddingsite from the Lafayette meteorite: Evidence for liquid water on Mars in the last few hundred million years. Meteorit. Planet. Sci. 35, 107–115 (2010). https://doi.org/10.1111/j.1945-5100.2000.tb01978.x
R. Tanaka, E. Nakamura, Determination of 17O-excess of terrestrial silicate/oxide minerals with respect to Vienna Standard Mean Ocean Water (VSMOW). Rapid Commun. Mass Spectrom. 27, 285–297 (2012). https://doi.org/10.1002/rcm.6453
H.P. Taylor, S. Epstein, Relationship between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks: Part 1: Principles and experimental results. Geol. Soc. Am. Bull. 73, 461–480 (1962a). https://doi.org/10.1130/0016-7606(1962)73[461:RBORIC]2.0.CO;2
H.P. Taylor, S. Epstein, Relationship between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks: Part 2. Application to petrologic problems. Geol. Soc. Am. Bull. 73, 675–693 (1962b). https://doi.org/10.1130/0016-7606(1962)73[675:RBORIC]2.0.CO;2
M.G.G.T. Taylor et al., Rosetta begins its Comet Tale. Science 347, 387 (2015). https://doi.org/10.1126/science.aaa4542
M. Thiemens, Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345 (1999). https://doi.org/10.1126/science.283.5400.341
M. Thiemens, J.E. Heidenreich III, The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications. Science 219, 1073–1075 (1983). https://doi.org/10.1126/science.219.4588.1073
D.J. Tholen, M.A. Barucci, Asteroid taxonomy, in Asteroids II; Proceedings of the Conference, Tucson, AZ, Mar. 8–11, 1988 (A90-27001 10-91) (University of Arizona Press, Tucson, 1989), pp. 298–315. https://doi.org/10.1016/0012-821X(85)90030-5
A. Tonotani, K. Bajo, S. Itose, M. Ishihara, K. Uchino, H. Yurimoto, Evaluation of multi-turn time-of-flight mass spectrum of laser ionization mass nanoscope. Surf. Interface Anal. 48, 1122–1126 (2016). https://doi.org/10.1002/sia.6112
A.H. Treiman, Olivine and carbonate globules in ALH84001: A terrestrial analog, and implications for water on Mars, in 36th Lunar and Planetary Science Conference XXXVI (2005), abstract #1107
A.H. Treiman, E.J. Essene, Chemical composition of magnetite in martian meteorite ALH 84001: Revised appraisal from thermochemistry of phases in Fe–Mg–C–O. Geochim. Cosmochim. Acta 75, 5324–5335 (2011). https://doi.org/10.1016/j.gca.2011.06.038
T. Ushikubo, M. Kimura, N.T. Kita, J.W. Valley, Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochim. Cosmochim. Acta 90, 242–264 (2012). https://doi.org/10.1016/j.gca.2012.05.010
W.R. Van Schmus, J.A. Wood, A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, 747–754 (1967). https://doi.org/10.1016/S0016-7037(67)80030-9
J.H. Waite Jr., M.R. Combi, W.-H. Ip, T.E. Cravens, R.L. McNutt Jr., W. Kasprzak, R. Yelle, J. Luhmann, H. Niemann, D. Gell, B. Magee, G. Fletcher, J. Lunine, W.-L. Tseng, Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006). https://doi.org/10.1126/science.1121290
S. Wakita, Y. Matsumoto, S. Oshino, Y. Hasegawa, Planetesimal collisions as a chondrule forming event. Astrophys. J. 834, 125 (2017). https://doi.org/10.3847/1538-4357/834/2/125
H. Wang, C. Lineweaver, T.R. Ireland, The volatility trend of protosolar and terrestrial elemental abundances. Icarus 328, 287–305 (2019). https://doi.org/10.1016/j.icarus.2019.03.018
P. Warren, Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011). https://doi.org/10.1016/j.epsl.2011.08.047
S. Watanabe et al., Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top—Shaped rubble pile. Science 364, 268–272 (2019). https://doi.org/10.1126/science.aav8032
C.R. Webster, P.R. Mahaffy, G.J. Flesch, P.B. Niles, J.H. Jones, L.A. Leshin, S.K. Atreya, J.C. Stern, L.E. Christensen, T. Owen, H. Franz, R.O. Pepin, A. Steele (the MSL Science Team), Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere. Science 341, 260–263 (2013). https://doi.org/10.1126/science.1237961
M.K. Weisberg, M. Prinz, R.N. Clayton, T.K. Mayeda, M.M. Grady, I. Franchi, C.T. Pillinger, G.W. Kallemeyn, The K (Kakangari) chondrite grouplet. Geochim. Cosmochim. Acta 60, 4253–4263 (1996). https://doi.org/10.1016/S0016-7037(96)00233-5
M.K. Weisberg, T.J. McCoy, A.N. Krot, Systematics and evaluation of meteorite classification, in Meteorites and the Early Solar System II, ed. by D.S. Lauetta, H.Y. McSween Jr. (University of Arizona Press, Tucson, 2006), pp. 19–52
A.J. Westphal et al., Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft. Science 345, 786–791 (2014). https://doi.org/10.1126/science.1252496
U. Wiechert, A.N. Halliday, D-C. Lee, G.A. Snyder, L.A. Taylor, D. Rumble, Oxygen isotopes and the Moon-forming Giant Impact. Science 294, 345–348 (2001). https://doi.org/10.1126/science.1063037
W.C. Wiley, I.H. McLaren, Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26, 1150 (1955). https://doi.org/10.1063/1.1715212
A. Wittmann, R.L. Korotev, B. Jolliff, A.J. Irving, D.F. Moser, I. Barker, D. Rumble, Petrography and composition of martian regolith breccia meteorite Northwest Africa 7475. Meteorit. Planet. Sci. 50, 326–352 (2015). https://doi.org/10.1111/maps.12425
J.A. Wood, J.S. Dickey, U.B. Marvin, B.N. Powell, Lunar anorthosites. Science 167, 602–604 (1970). https://doi.org/10.1126/science.167.3918.602
I.P. Wright, J. Barber, G.H. Morgan, A.D. Morse, S. Sheridan, D.J. Andrews, J. Maynard, D. Yau, T. Evans, M.R. Leese, J.C. Zarnecki, B.J. Kent, N.R. Waltham, M.S. Whalley, S. Heys, D.L. Drummond, R.L. Edeson, E.C. Sawyer, R.F. Turner, C.T. Pillinger, Ptolemy—An instrument to measure stable isotopic ratios of key volatiles on a cometary nucleus. Space Sci. Rev. 128, 363–381 (2007). https://doi.org/10.1007/s11214-006-9001-5
S. Yokota, Isotope mass spectrometry in the solar system exploration. Mass Spectrom. 7, S0076 (2018). https://doi.org/10.5702/massspectrometry.S0076
E.D. Young, S.S. Russell, Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 452–455 (1998). https://doi.org/10.1126/science.282.5388.452
E.D. Young, I.E. Kohl, P.H. Warren, D.C. Rubie, S.A. Jacobson, A. Morbidelli, Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351, 493–496 (2016). https://doi.org/10.1126/science.aad0525
H. Yurimoto, Oxygen isotopes, in Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth, ed. by W.M. White (Springer, Cham, 2018), pp. 1129–1135
H. Yurimoto, K. Kuramoto, Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305, 1763–1766 (2004). https://doi.org/10.1126/science.1100989
H. Yurimoto, J.T. Wasson, Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very 16O-rich olivine and a 26Mg-excess. Geochim. Cosmochim. Acta 66, 4355–4363 (2002). https://doi.org/10.1016/S0016-7037(02)01218-8
H. Yurimoto, A.N. Krot, B. Choi, J. Aléon, T. Kunihiro, A.J. Brearley, Oxygen isotopes of chondritic components. Rev. Mineral. Geochem. 68, 141–186 (2008)
H. Yurimoto et al., Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science 333, 1116–1119 (2011). https://doi.org/10.1126/science.1207776
G. Zeff, Q. Williams, Fractional crystallization of martian magma oceans and formation of a thermochemical boundary layer at the base of the mantle. Geophys. Res. Lett. 46, 10997–11007 (2019)
J. Zhang, N. Dauphas, A.M. Davis, I. Leya, A. Fedkin, The proto-Earth as a significant source of lunar material. Nat. Geosci. 5, 251–255 (2012). https://doi.org/10.1038/ngeo1429
K. Ziegler, Z.D. Sharp, C.B. Agee, The unique NWA 7034 martian meteorite: Evidence for multiple oxygen isotope reservoirs, in 44th Lunar and Planetary Science Conference (2013), abstract #2639
E. Zinner, Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites. Annu. Rev. Earth Planet. Sci. 26, 147–188 (1998). https://doi.org/10.1146/annurev.earth.26.1.147
E.K. Zinner, Presolar grains, in Treatise on Geochemistry, vol. 1, ed. by A.M. Davis, H.D. Holland, K.K. Turekian (Elsevier, Amsterdam, 2003), pp. 17–39. https://doi.org/10.1016/B0-08-043751-6/01144-0
E.K. Zinner, A.J. Fahey, J.N. Goswami, T.R. Ireland, K.D. McKeegan, Large 48Ca anomalies are associated with 50Ti anomalies in Murchison and Murray hibonites. Astrophys. J. Lett. 311, L103–L106 (1986). https://doi.org/10.1086/184807
M. Zolensky et al., Mineralogy and petrology of Comet 81P/Wild 2 nucleus samples. Science 314, 1735–1739 (2006). https://doi.org/10.1126/science.1135842
Acknowledgements
TRI and RCG acknowledge ISSI support to attend the Europlanet & International Space Science Institute Workshop on the Role of Sample Return in Addressing Major Outstanding Questions in Planetary Sciences held in Bern, Switzerland, 5-9 February 2018. We are grateful to the two reviewers whose suggestions significantly improved the manuscript and to the patience of Mahesh Anand. RCG is funded through a Consolidated Grant from the Science and Technology Facilities Council (STFC), UK Grant Number: ST/L000776/1. LJH and JCB are funded by STFC grant ST/S000429/1. TRI was supported by Australian Research Council Discovery Project Grant DP190102760. Thanks to all our friends and colleagues at ESA, JAXA, and NASA.
Author information
Authors and Affiliations
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Role of Sample Return in Addressing Major Questions in Planetary Sciences
Edited by Mahesh Anand, Sara Russell, Yangting Lin, Meenakshi Wadhwa, Kuljeet Kaur Marhas and Shogo Tachibana
Rights and permissions
About this article
Cite this article
Ireland, T.R., Avila, J., Greenwood, R.C. et al. Oxygen Isotopes and Sampling of the Solar System. Space Sci Rev 216, 25 (2020). https://doi.org/10.1007/s11214-020-0645-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11214-020-0645-3
Keywords
- Oxygen isotopes
- Sample return
- Remote analysis
- Cosmochemistry