Skip to main content

Mars Oxygen ISRU Experiment (MOXIE)

Abstract

MOXIE is a technology demonstration that addresses the Mars 2020 (Perseverance) objective of preparing for future human exploration by demonstrating In Situ Resource Utilization (ISRU) in the form of dissociating atmospheric CO2 into O2. The primary goals of the MOXIE project are to verify and validate the technology of Mars ISRU as a springboard for the future, and to establish achievable performance requirements and design approaches that will lead to a full-scale ISRU system based on MOXIE technology.

MOXIE has three top-level requirements: to be capable of producing at least 6 g/hr of oxygen in the context of the Mars 2020 mission (assuming atmospheric intake at 5 Torr, typical of Jezero Crater, and \(0~^{\circ}\text{C}\), typical of the rover interior); to produce oxygen with \(>98\%\) purity; and to meet these first two requirements for at least 10 operational cycles after delivery. Since MOXIE is expected to operate in all seasons and at all times of day and night on Mars, these requirements are intended to be satisfied under worst-case environmental conditions, including during a dust storm, if possible.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44

Notes

  1. 1.

    The somewhat unusual unit of g/hr reflects initial requirements on the MOXIE system and will be used consistently through descriptions of the flow system.

  2. 2.

    When discussing instrumentation, pressure is generally expressed in Torr, while in atmospheric studies it is typically expressed in mbar.

  3. 3.

    MathWorks®, Simulink®, Release R2020a, March, 2020.

  4. 4.

    MathWorks®, MATLAB®, Release R2020a, March, 2020.

  5. 5.

    MathWorks®, Simscape, Release R2020a, March, 2020.

Abbreviations

APB:

Advance Peripheral Bus

ASR:

Area Specific Resistance

CAC:

CO2 Acquisition and Compression System

CSA:

Ceramatec SOXE Assembly

DAC:

Digital-to-Analog Converter

DRA:

Design Reference Architecture

EDL:

Entry, Descent, and Landing

EM:

Engineering Model

FPGA:

Field Programmable Gate Array

FM:

Flight Model

FS:

Flight Spare

GUI:

Graphical User Interface

HEPA:

High Efficiency Particulate Air filter

iASR:

Intrinsic Area Specific Resistance

ISRU:

In Situ Resource Utilization

JPL:

Jet Propulsion Laboratory

JSA:

JPL SOXE Assembly

LOX:

Liquid Oxygen

MAV:

Mars Ascent Vehicle

MEDA:

Mars Environmental Dynamics Analyzer

MMRTG:

Multi-Mission Radioisotope Thermoelectric Generator

MOXIE:

Mars Oxygen ISRU Experiment

MRAM:

Magneto-resistive Random Access Memory

MT:

Metric Tons

NASA:

National Aeronautics and Space Administration

NDIR:

Non-Dispersive Infrared Radiation

OCV:

Open Circuit Voltage

OC#:

Operating Cycle number

PET:

Polyethylene Terephthalate

PID:

Proportional-Integral-Differential

PMC:

Process Monitor and Control

PRT:

Platinum Resistance Thermometer

PWM:

Pulse Width Modulation

RAMP:

Rover Avionics Mounting Panel

RCE:

Rover Compute Element

RCT:

Run Control Table

ScSZ:

Scandia-Stabilized-Zirconia

SOXE:

Solid Oxide Electrolysis unit

SRS:

Shock Response Spectrum

TVAC:

Thermal Vacuum

VFCD:

Viscous Flow Control Device

References

  1. J.H. Agui, Filter media tests under simulated Martian atmospheric conditions, in Proceedings of the 15th Biennial ASCE Conference on Engineering, Science, Construction, and Operations in Challenging Environments, 11–15 April 2016, Orlando, FL (2016). https://doi.org/10.1061/9780784479971

    Chapter  Google Scholar 

  2. J.H. Agui, A scroll filter system for in situ resource utilization CO2 acquisition of the Martian atmosphere. Space Resources Roundtable, 11–14 June 2019, Golden, CO. Report number GRC-E-DAA-TN69432 (2019)

  3. I. Barin, O. Knacke, O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1977)

    Book  Google Scholar 

  4. R.C. Brown, Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters (Pergamon Press, Oxford/New York, 1993)

    Google Scholar 

  5. H. Chen-Chen, S. Pérez-Hoyos, A. Sánchez-Lavegas, Dust particle size and optical depth on Mars retrieved by the MSL navigation cameras. Icarus 319, 43–57 (2019). https://doi.org/10.1016/j.icarus.2018.09.010

    Article  ADS  Google Scholar 

  6. D.L. Clark et al., Carbon dioxide collection and purification system for Mars, in AIAA 2001-4660 (2001)

    Google Scholar 

  7. C.N. Davies, Air filtration (Academic Press, New York, 1973)

    Google Scholar 

  8. B.G. Drake (ed.), Human exploration of Mars design reference architecture 5.0. NASA Report NASA/SP-2009-566 (2009)

  9. J.E. Hansen, L.D. Travis, Light scattering in planetary atmospheres. Space Science Reviews 16, 527–610 (1974). https://doi.org/10.1007/BF00168069

    Article  ADS  Google Scholar 

  10. J.J. Hartvigsen, S. Elangovan, D. Larsen, J. Elwell, M. Bokil, L.J. Frost, L.M. Clark, Challenges of solid oxide electrolysis for production of fuel and oxygen from Mars atmospheric CO2. ECS Trans. 68(1), 3563–3583 (2015)

    Article  ADS  Google Scholar 

  11. J. Hartvigsen, S. Elangovan, J. Elwell, D. Larsen, Oxygen production from Mars atmosphere carbon dioxide using solid oxide electrolysis. ECS Trans. 78, 2953 (2017a)

    Article  ADS  Google Scholar 

  12. J. Hartvigsen, S. Elangovan, J. Elwell, D. Larsen, L. Clark, T. Meaders, Mechanical, structural, and thermal qualification of solid oxide electrolysis for oxygen production from Mars atmosphere carbon dioxide. ECS Trans. 78, 3317 (2017b)

    Article  ADS  Google Scholar 

  13. M.H. Hecht, J.B. McClean, W.T. Pike, P.H. Smith, M.B. Madsen, D. Rapp (the MOXIE Team), Dust in the atmosphere of Mars and its impact on human exploration, 13–15 June 2017, Houston, TX, abstract #6036 (2017)

  14. C. Holstein-Rathlou, J. Merrison, J.J. Iversen, A.B. Jakobsen, R. Nicolajsen, P. Nornberg, K. Rasmussen, A. Merlone, G. Lopardo, T. Hudson, D. Banfield, G. Portyankina, An environmental wind tunnel facility for testing meteorological sensor systems. J. Atmos. Ocean. Technol. 31, 447–457 (2014). https://doi.org/10.1175/JTECH-D-13-00141.1

    Article  ADS  Google Scholar 

  15. J.F. Kok, E.J.R. Parteli, T.I. Michaels, D. Bou Karam, The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012). https://doi.org/10.1088/0034-4885/75/10/10690

    Article  ADS  Google Scholar 

  16. L. Komguem, J.A. Whiteway, C. Dickinson, M. Daly, M.T. Lemmon, Phoenix LIDAR measurements of Mars atmospheric dust. Icarus 223(2), 649–653 (2013). https://doi.org/10.1016/j.icarus.2013.01.020

    Article  ADS  Google Scholar 

  17. O. Korablev, V.I. Moroz, E.V. Petrova, A.V. Rodin, Optical properties of dust and the opacity of the Martian atmosphere. Adv. Space Res. 35, 21–30 (2005). https://doi.org/10.1016/j.asr.2003.04.06

    Article  ADS  Google Scholar 

  18. G. Landis, D. Linne, Mars rocket vehicle using in situ propellants. J. Spacecr. Rockets 35(5), 730–735 (2001). https://doi.org/10.2514/2.3739

    Article  ADS  Google Scholar 

  19. R.B. Leighton, B.C. Murray, Behavior of carbon dioxide and other volatiles on Mars. Science 153, 136–144 (1966). https://doi.org/10.1126/science.153.3732.136

    Article  ADS  Google Scholar 

  20. M.T. Lemmon, M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity. Science 306(5702), 1753–1756 (2004). https://doi.org/10.1126/science.1104474

    Article  ADS  Google Scholar 

  21. M.T. Lemmon, M.J. Wolff, J.F. Bell III, M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds, and atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015). https://doi.org/10.1016/j.icarus.2014.03.029

    Article  ADS  Google Scholar 

  22. M.T. Lemmon, S.D. Guzewich, T. McConnochie, A. de Vicente-Retortillo, G. Martínez, M.D. Smith, J.F. Bell III, D. Wellington, S. Jacob, Large dust aerosol sizes seen during the 2018 Martian global dust event by the Curiosity rover. Geophys. Res. Lett. 46, 9448–9456 (2019). https://doi.org/10.1029/2019GL084407

    Article  ADS  Google Scholar 

  23. P. Li, C. Wang, Y. Zhang, F. Wei, Air filtration in the free molecular flow regime: a review of high efficiency particulate air filters based on carbon nanotubes. Small 10(22), 4543–4561 (2014). https://doi.org/10.1002/smll.201401553

    Article  Google Scholar 

  24. G.M. Martínez, C.N. Newman, A. De Vicente-Retortillo, E. Fischer, N.O. Renno, M.I. Richardson, A.G. Fairén, M. Genzer, S.D. Guzewich, R.M. Haberle, A.-M. Harri, O. Kemppinen, M.T. Lemmon, M.D. Smith, M. de la Torre-Juárez, A. Vasavada, The modern near-surface Martian climate: a review of in-situ meteorological data from Viking to Curiosity. Space Sci. Rev. 212(1–2), 295–338 (2017). https://doi.org/10.1007/s11214-017-0360-x

    Article  ADS  Google Scholar 

  25. J.B. McClean, J.P. Merrison, J.J. Iversen et al., Testing the Mars 2020 oxygen in-situ resource utilization experiment (MOXIE) HEPA filter and scroll pump in simulated Mars conditions, in 48th Lunar and Planetary Science Conference, 20–24 March 2017, The Woodlands, TX (2017), abstract #2410

    Google Scholar 

  26. J.B. McClean, J.P. Merrison, J.J. Iversen, W.T. Pike, the MOXIE science team, Dust loading and pressure drop of fibrous filters for atmospheric in-situ resource utilization on Mars 2020, in 2018 European Planetary Science Congress, 16-21 September 2018, Berlin, Germany, (2018) abstract 11

    Google Scholar 

  27. J.B. McClean, J.P. Merrison, J.J. Iversen, M. Azimian, A. Wiegmann, W.T. Pike, M.H. Hecht (the MOXIE Science Team), Filtration of simulated Martian atmosphere for in-situ oxygen production. Planet. Space Sci. 191, 104975 (2020). https://doi.org/10.1016/j.pss.2020.104975

    Article  Google Scholar 

  28. J.P. Merrison, H. Bechtold, H. Gunnlaugsson, A. Jensen, K. Kinch, P. Nørnberg, K. Rasmussen, An environmental simulation wind tunnel for studying aeolian transport on Mars. Planet. Space Sci. 56(3–4), 426–437 (2008). https://doi.org/10.1016/j.pss.2007.11.007

    Article  ADS  Google Scholar 

  29. S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder camera. Geophys. Res. Lett. 26, 18 (1999). https://doi.org/10.1029/1999GL008341

    Article  Google Scholar 

  30. F.E. Meyen, System modeling, design, and control of the Mars oxygen in-situ resource utilization experiment (MOXIE) and implications for atmospheric ISRU processing plants. Ph.D. dissertation, Massachusetts Inst. of Technology (2017)

  31. N. Minh, B. Chung, R. Doshi, K. Montgomery et al., Zirconia electrolysis cells for oxygen generation from carbon dioxide for Mars in-situ resource utilization applications. SAE Technical Paper 981655 (1998)

  32. V.I. Moroz, V. Petrova, L.V. Ksanfomality, Spectrophotometry of Mars in the KRFM experiment of the Phobos mission: some properties of the particles of atmospheric aerosols and the surface. Planet. Space Sci. 41(8), 569–585 (1993). https://doi.org/10.1016/0032-0633(93)90077-F

    Article  ADS  Google Scholar 

  33. A. Muscatello et al., Atmospheric processing module for Mars propellant production (2014). https://ntrs.nasa.gov/search.jsp?R=20150001478

  34. M.H. Nehrir, C. Wang, Modeling and Control of Fuel Cells: Distributed Generation Applications (Wiley, New York, 2009)

    Book  Google Scholar 

  35. M. Ni, Modeling of a solid oxide electrolysis cell for carbon dioxide electrolysis. Chem. Eng. J. 164(1), 246–254 (2010)

    Article  Google Scholar 

  36. M. Ni, M.K. Leung, D.Y. Leung, A modeling study on concentration overpotentials of a reversible solid oxide fuel cell. J. Power Sources 163(1), 460–466 (2006)

    Article  ADS  Google Scholar 

  37. P. Nørnberg, H.P. Gunnlaugsson, J.P. Merrison, A.L. Vendelboe, Salten Skov I: A Martian magnetic dust analogue. Planet. Space Sci. 57, 628–631 (2009). https://doi.org/10.1016/j.pss.2008.08.017

    Article  ADS  Google Scholar 

  38. J.R.I. Phillips, J.R.S. Pollard, M.R. Johansen, P.J. Mackey, J.S. Clements, C.I. Calle, in Proceedings of the 15th Biennial ASCE Conference on Engineering, Science, Construction, and Operations in Challenging Environments, 11–15 April 2016, Orlando, FL (2016). https://doi.org/10.1061/9780784479971

    Chapter  Google Scholar 

  39. J. Pich, Pressure characteristics of fibrous aerosol filters. J. Colloid Interface Sci. 37, 912–917 (1971). https://doi.org/10.1016/0021-9797(71)90372-9

    Article  ADS  Google Scholar 

  40. J.B. Pollack, D. Colburn, R. Kahn, J. Hunter, W. Van Camp, C.E. Carlston, M.R. Wolf, Properties of aerosols in the Martian atmosphere, as inferred from Viking Lander imaging data. J. Geophys. Res. 82(28), 4479–4496 (1977). https://doi.org/10.1029/JS082i028p04479

    Article  ADS  Google Scholar 

  41. J.B. Pollack, D.S. Colburn, F.M. Flasar, R. Kahn, C.E. Carlston, D. Pidek, Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res. 84(B6), 2929–2945 (1979). https://doi.org/10.1029/JB084iB06p02929

    Article  ADS  Google Scholar 

  42. J.B. Pollack, M.E. Ockert-Bell, M.K. Shepard, Viking Lander image analysis of Martian atmospheric dust. J. Geophys. Res., Planets 100(E3), 5235–5250 (1995). https://doi.org/10.1029/94JE02640

    Article  ADS  Google Scholar 

  43. T. Polsgrove, H.D. Thomas, W. Stephens, M.A. Rucker, Mars ascent vehicle design for human exploration, in AIAA SPACE 2015 Conference and Exposition, AIAA SPACE Forum, AIAA 2015-4415 (2015)

    Google Scholar 

  44. D.S.F. Portree, in Humans to Mars: Fifty Years of Mission Planning, 1950–2000, NASA History Division, Office of Policy and Plans, NASA Headquarters, Washington, DC 20546. Monographs in Aerospace History, Series, vol. 21, (2001)

    Google Scholar 

  45. D. Rapp, Human Missions to Mars, 2nd edn. (Springer, Berlin, 2015)

    Google Scholar 

  46. D. Rapp, P. Karlmann, D.L. Clark, C.M. Carr, Adsorption compressor for acquisition and compression of atmospheric CO2 on Mars, in AIAA 97-2763 (1997)

    Google Scholar 

  47. J.B. Sanders, D.I. Kaplan, Mars ISPP Precursor (MIP): the first flight demonstration of in-situ propellant production, in 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 13–15 July 1998, Cleveland, OH (1998), abstract 983306

    Google Scholar 

  48. Y. Shao, Physics and Modelling of Wind Erosion, 2nd edn. (Springer, Berlin, 2008), p. 452

    Google Scholar 

  49. T.K. Skafte, Z. Guan, M.L. Machala, C.B. Gopal, M. Monti, L. Martinez, E. Stamate, S. Sanna, J.A. Garrido Torres, E. Crumlin, M. García-Melchor, M. Bajdich, W.C. Chueh, C. Graves, Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates. Nat. Energy 4, 846–855 (2019). https://doi.org/10.1038/s41560-019-0457-4

    Article  ADS  Google Scholar 

  50. P.H. Smith, L.K. Tamppari, R.E. Arvidson, D. Bass, D. Blaney, W.V. Boynton, A. Carswell, D.C. Catling, B.C. Clark, T. Duck, E. DeJong, D. Fisher, W. Goetz, H.P. Gunnlaugsson, M.H. Hecht, V. Hipkin, J. Hoffman, S.F. Hviid, H.U. Keller, S.P. Kounaves, C.F. Lange, M.T. Lemmon, M.B. Madsen, W.J. Markiewicz, J. Marhsall, C.P. McKay, M.T. Mellon, D.W. Ming, R.V. Morris, W.T. Pike, N. Renno, U. Satufer, C. Stoker, P. Taylor, J.A. Whiteway, A.P. Zent, H2O at the Phoenix Landing Site. Science 325(5936), 58–61 (2009). https://doi.org/10.1126/science.1172339

    Article  ADS  Google Scholar 

  51. K.R. Sridhar, B.T. Vaniman, Oxygen production on Mars using solid oxide electrolysis. Solid State Ion. 93(3–4), 321–328 (1997). https://doi.org/10.1016/S0167-2738(96)00513-9

    Article  Google Scholar 

  52. G. Tao, K.R. Sridhar, C.L. Chan, Study of carbon dioxide electrolysis at electrode/electrolyte interface: part I. Pt/YSZ interface. Solid State Ion. 175(1–4), 615–619 (2004)

    Article  Google Scholar 

  53. P.A. Taylor, P.-Y. Li, D.V. Michelangeli, J. Pathak, W. Weng, Modelling dust distributions in the atmospheric boundary layer on Mars. Boundary-Layer Meteorology 125, 305–328 (2007). https://doi.org/10.1007/s10546-007-9158-9

    Article  ADS  Google Scholar 

  54. D. Thomas, A. Charvet, N. Bardin-Monnier, J.-C. Appert-Colin, Aerosol Filtration (ISTE Press, London, 2017)

    Google Scholar 

  55. M.G. Tomasko, L.R. Doose, M. Lemmon, P.H. Smith, E. Wegryn, Properties of dust in the Martian atmosphere from the imager on Mars Pathfinder. J. Geophys. Res. 104(E4), 8987–9007 (1999). https://doi.org/10.1029/1998JE900016

    Article  ADS  Google Scholar 

  56. Á. Vicente-Retortillo, G.M. Martínez, N.O. Renno, M.T. Lemmon, M. de la Torre-Juárez, Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements. Geophys. Res. Lett. 44(8), 3502–3508 (2017). https://doi.org/10.1002/2017GL072589

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Portions of this research were carried out at MIT under a contract with the National Aeronautics and Space Administration (NNH17CH01C) and at the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 80NM0018D0004. Test of MOXIE inlet filters at the Mars Simulation Laboratory at Aarhus University, Denmark, was supported by Carlsberg Foundation grants CF16-0981, and CF17-0979. We thank Gavin Kohn for modeling the dust loading rate and capture fraction.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Hoffman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Mars 2020 Mission

Edited by Kenneth A. Farley, Kenneth H. Williford and Kathryn M. Stack

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hecht, M., Hoffman, J., Rapp, D. et al. Mars Oxygen ISRU Experiment (MOXIE). Space Sci Rev 217, 9 (2021). https://doi.org/10.1007/s11214-020-00782-8

Download citation

Keywords

  • In-situ resource utilization
  • ISRU
  • Mars atmosphere
  • Oxygen production on Mars
  • Mars 2020
  • MOXIE