Skip to main content
Log in

Mercury Dust Monitor (MDM) Onboard the Mio Orbiter of the BepiColombo Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

An in-situ cosmic-dust instrument called the Mercury Dust Monitor (MDM) had been developed as a part of the science payload for the Mio (Mercury Magnetospheric Orbiter, MMO) stage of the joint European Space Agency (ESA)–JAXA Mercury-exploration mission. The BepiColombo spacecraft was successfully launched by an Ariane 5 rocket on October 20, 2018, and commissioning tests of the science payload were successfully completed in near-earth orbit before injection into a long journey to Mercury. MDM has a sensor consisting of four plates of piezoelectric lead zirconate titanate (PZT), which converts the mechanical stress (or strain) induced by dust-particle impacts into electrical signals. After the commencement of scientific operations, MDM will measure the impact momentum at which dust particles in orbit around the Sun collide with the sensor and record the arrival direction. This paper provides basic information concerning the MDM instrument and its predicted scientific operation as a future reference for scientific articles concerning the MDM’s observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • J. Agarwal, M. Muller, W.T. Reach, M.V. Sykes, H. Boehnhardt, E. Grün, The dust trail of Comet 67P/Churyumov-Gerasimenko between 2004 and 2006. Icarus 207, 992–1012 (2010)

    Article  ADS  Google Scholar 

  • O.E. Berg, E. Grün, Evidence of hyperbolic cosmic dust particles. Space Res. Conf. 2, 1047–1055 (1973)

    ADS  Google Scholar 

  • A.A. Christou, R.M. Killen, M.H. Burger, The meteoroid stream of comet Encke at Mercury: implications for mercury surface, space environment, geochemistry, and ranging observations of the exosphere. Geophys. Res. Lett. 42, 7311–7318 (2015)

    Article  ADS  Google Scholar 

  • G. Cremonese, F. Capaccioni, M.T. Capria, A. Doressoundiram, P. Palumbo, M. Vincendon, M. Massironi, S. Debei, M. Zusi, F. Altieri, M. Amoroso, G. Aroldi, M. Baroni, A. Barucci, G. Bellucci, J. Benkhoff, S. Besse, C. Bettanini, M. Blecka, D. Borrelli, J.R. Brucato, C. Carli, V. Carlier, P. Cerroni, A. Cicchetti, L. Colangeli, M. Dami, V. Da Deppo, V. Della Corte, M.C. De Sanctis, S. Erard, F. Esposito, D. Fantinel, L. Ferranti, F. Ferri, I. Ficai Veltroni, G. Filacchione, E. Flamini, G. Forlani, S. Fornasier, O. Forni, M. Fulchignoni, V. Galluzzi, K. Gwinner, W. Ip, L. Jorda, Y. Langevin, L. Lara, F. Leblanc, C. Leyrat, Y. Li, S. Marchi, L. Marinangeli, F. Marzari, E. Mazzotta Epifani, M. Mendillo, V. Mennella, R. Mugnuolo, K. Muinonen, G. Naletto, R. Noschese, E. Palomba, R. Paolinetti, D. Perna, G. Piccioni, R. Politi, F. Poulet, R. Ragazzoni, C. Re, M. Rossi, A. Rotundi, G. Salemi, M. Sgavetti, E. Simioni, N. Thomas, L. Tommasi, A. Turella, T. Van Hoolst, L. Wilson, F. Zambon, A. Aboudan, O. Barraud, N. Bott, P. Borin, G. Colombatti, M. El Yazidi, S. Ferrari, J. Flahaut, L. Giacomini, L. Guzzetta, A. Lucchetti, E. Martellato, M. Pajola, A. Slemer, G. Tognon, D. Turrini, SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Sci. Rev. 216, 75 (2020)

    Article  ADS  Google Scholar 

  • V. Dikarev, E. Grün, J. Baggaley, D. Galligan, M. Landgraf, R. Jehn, The new ESA meteoroid model. Adv. Space Res. 35, 1282–1289 (2005a)

    Article  ADS  Google Scholar 

  • V. Dikarev, E. Grün, M. Landgraf, R. Jehn, Update of the ESA meteoroid model, in 4th European Conference on Space Debris, ed. by D. Danesy. ESA Special Publication, vol. 587 (2005b), p. 271

    Google Scholar 

  • D.L. Domingue, C.R. Chapman, R.M. Killen, T.H. Zurbuchen, J.A. Gilbert, M. Sarantos, M. Benna, J.A. Slavin, D. Schriver, P.M. Trávníček, T.M. Orlando, A.L. Sprague, D.T. Blewett, J.J. Gillis-Davis, W.C. Feldman, D. Lawrence, G.C. Ho, D.S. Ebel, L.N. Nittler, F. Vilas, C.M. Pieters, S.C. Solomon, C.L. Johnson, R.M. Winslow, J. Helbert, P.N. Peplowski, S.Z. Weider, N. Mouawad, N.R. Izenberg, W.E. McClintock, Mercury’s weather-beaten surface: understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev. 181, 121–214 (2014)

    Article  ADS  Google Scholar 

  • C.I. Fassett, M.C. Crowley, C. Leight, M.D. Dyar, D.A. Minton, M. Hirabayashi, B.J. Thomson, Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry. Geophys. Res. Lett. 44(11), 5326–5335 (2017)

    Article  ADS  Google Scholar 

  • H. Fechtig in Comets, ed. by H. Wilkening (University of Arizona Press, Tucson, 1982), p. 383

    Google Scholar 

  • E. Grün, N. Pailer, H. Fechtig, J. Kissel, Orbital and physical characteristics of micrometeoroids in the inner solar system as observed by HELIOS1. Space Sci. 28, 333–349 (1980)

    Article  ADS  Google Scholar 

  • E. Grün, H.A. Zook, H. Fechtig, R.H. Giese, Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985)

    Article  ADS  Google Scholar 

  • E. Grün, M. Baguhl, H. Svedhem, H.A. Zook, In situ measurements of cosmic dust, in Interplanetary Dust, vol. 295, p., ed. by E. Grün, B.A.S. Gustafson, S. Dermott, H. Fechtig (Springer, Berlin, Heidelberg, 2001)

    Chapter  Google Scholar 

  • B. Hapke, Space weathering from Mercury to the Asteroid Belt. J. Geophys. Res. 106(E5), 10039–10073 (2001)

    Article  ADS  Google Scholar 

  • M. Hattori, M. Kobayashi, T. Miyachi, S. Takechi, O. Okudaira, T. Iwai, S. Sugita, Position-dependent behavior of piezoelectric lead–zirconate–titanate cosmic dust detector. Jpn. J. Appl. Phys. 51, 098004 (2012)

    Article  ADS  Google Scholar 

  • M. Hattori, M. Kobayashi, T. Miyachi, S. Takechi, O. Okudaira, T. Iwai, N. Okada, S. Sugita, Influence of a polyimide surface layer on the piezoelectric response of lead–zirconate–titanate cosmic dust detector. Jpn. J. Appl. Phys. 52, 028002 (2013)

    Article  ADS  Google Scholar 

  • M. Hirabayashi, B.A. Howl, C.I. Fassett, J.M. Soderblom, D.A. Minton, H.J. Melosh, The role of breccia lenses in regolith generation from the formation of small, simple craters: application to the Apollo 15 landing site. J. Geophys. Res., Planets 123(2), 527–543 (2018)

    Article  ADS  Google Scholar 

  • M. Horányi, J. Szalay, S. Kempf, J. Schmidt, E. Grün, R. Srama, Z. Sternovsky et al., A permanent, asymmetric dust cloud around the Moon. Nature 522, 324–326 (2015)

    Article  ADS  Google Scholar 

  • K.R. Housen, K.A. Holsapple, Ejecta from impact craters. Icarus 211(1), 856–875 (2011)

    Article  ADS  Google Scholar 

  • S. Kameda, I. Yoshikawa, M. Kakitani, S. Okano, Interplanetary dust distribution and temporal variability of Mercury’s atmospheric Na. Geophys. Res. Lett. 36, L15201 (2009)

    Article  ADS  Google Scholar 

  • S. Kameda, M. Kakitani, S. Okano, Source process of exospheric sodium on Mercury and temporal variability of sodium density, in 42nd LPSC, LPI Contribution No. 1608, (2011), p. 1654

    Google Scholar 

  • Y. Kasaba, T. Takashima, S. Matsuda, S. Eguchi, M. Endo, T. Miyabara, M. Taeda, Y. Kuroda, Y. Kasahara, T. Imachi, H. Kojima, S. Yagitani, M. Moncuquet, J.-E. Wahlund, A. Kumamoto, A. Matsuoka, W. Baumjohann, S. Yokota, K. Asamura, Y. Saito, D. Delcourt, M. Hirahara, S. Barabash, N. Andre, M. Kobayashi, I. Yoshikawa, G. Murakami, H. Hayakawa, Mission Data Processor aboard the BepiColombo Mio Spacecraft: Design and Scientific Operation Concept. Space Sci. Rev. 216, 34 (2020)

    Article  ADS  Google Scholar 

  • R. Killen, G. Cremonese, H. Lammer et al., Processes that promote and deplete the exosphere of Mercury. Space Sci. Rev. 132(2–4), 433–509 (2007)

    Article  ADS  Google Scholar 

  • R.M. Killen, J.M. Hahn, Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus 250, 230–237 (2015)

    Article  ADS  Google Scholar 

  • A.V. Krivov, M. Sremčević, F. Spahn, V.V. Dikarev, K.V. Kholshevnikov, Impact-generated dust clouds around planetary satellites: spherically symmetric case. Planet. Space Sci. 51, 251–269 (2003)

    Article  ADS  Google Scholar 

  • H. Krüger, M. Sremčević, A.V. Krivov, E. Grün, Impact-generated dust clouds surrounding the Galilean moons. Icarus 164, 170–187 (2003)

    Article  ADS  Google Scholar 

  • G. Murakami, I. Yoshikawa, S. Kameda, O. Korablev, V. Kottsov, M. Kuwabara, T. Sato, Y. Suzuki, K. Yoshioka, A. Tavrov, Mercury Sodium Atmosphere Spectral Imager (MSASI) onboard the BepiColombo/Mio spacecraft: overviews, calibrated performances, and observation plans. Space Sci. Rev. (2020a, this issue)

  • G. Murakami, H. Hayakawa, H. Ogawa, S. Matsuda, T. Seki, Y. Kasaba, Y. Saito, I. Yoshikawa, M. Kobayashi, W. Baumjohann, A. Matsuoka, H. Kojima, S. Yagitani, M. Moncuquet, J.-E. Wahlund, D. Delcourt, M. Hirahara, S. Barabash, O. Korablev, M. Fujimoto, Mio—first comprehensive exploration of Mercury’s space environment: mission overview. Space Sci. Rev. 216, 113 (2020b)

    Article  ADS  Google Scholar 

  • M. Müller, S.F. Green, N. McBride, D. Koschny, J.C. Zarnecki, M.S. Bentley, Estimation of the dust flux near Mercury. Planet. Space Sci. 50, 1101–1115 (2002)

    Article  ADS  Google Scholar 

  • K. Nogami et al., M. Fujii, H. Ohashi, T. Miyachi, S. Sasaki, S. Hasegawa, H. Yano, H. Shibata, T. Iwai, S. Minami, S. Takechi, E. Gruen, R. Srama, Development of the Mercury dust monitor (MDM) onboard the BepiColombo mission Planet. Space Sci. 58, 108–115 (2010)

    Article  ADS  Google Scholar 

  • W.T. Reach, M.S. Kelley, M.V. Sykes, A survey of debris trails from short-period comets. Icarus 191(1), 298–322 (2007)

    Article  ADS  Google Scholar 

  • M.A. Riner, P.G. Lucey, Spectral effects of space weathering on Mercury: the role of composition and environment. Geophys. Res. Lett. 39, L12201 (2012)

    Article  ADS  Google Scholar 

  • S. Sasaki, E. Kurahashi, Space weathering on Mercury. Adv. Space Res. 33, 2152–2155 (2004)

    Article  ADS  Google Scholar 

  • M. Sgavetti, L. Pompilio, C. Carli, M.C. de Sanctis, F. Capaccioni, G. Cremonese, E. Flamini, BepiColombo SIMBIO-SYS data: Preliminary evaluation for rock discrimination and recognition in both low and high resolution spectroscopic data in the visible and near infrared spectral intervals Planet. Space Sci. 55, 1596–1613 (2007)

    Article  ADS  Google Scholar 

  • R.H. Soja, J.T. Herzog, M. Sommer, J. Rodmann, J. Vaubaillon, P. Strub, T. Albin, V. Sterken, A. Hornig, L. Bausch, E. Grun, R. Srama, Meteor storms and showers with the IMEX model, in International Meteor Conference, Mistelbach, Austria, ed. by J.-L. Rault, P. Roggemans (2015a), pp. 66–69

    Google Scholar 

  • R.H. Soja, M. Sommer, J. Herzog, J. Agarwal, J. Rodmann, R. Srama, J. Vaubaillon, P. Strub, A. Hornig, L. Bausch, E. Grun, Characteristics of the dust trail of 67P/Churyumov-Gerasimenko: an application of the IMEX model. Astron. Astrophys. 583, A18 (2015b)

    Article  ADS  Google Scholar 

  • M. Sremčević, A.V. Krivov, F. Spahn, Impact-generated dust clouds around planetary satellites: asymmetry effects. Planet. Space Sci. 51, 455–471 (2003)

    Article  ADS  Google Scholar 

  • M. Sremčević, A.V. Krivov, H. Krüger, F. Spahn, Impact-generated dust clouds around planetary satellites: model versus Galileo data. Planet. Space Sci. 53, 625–641 (2005)

    Article  ADS  Google Scholar 

  • G. Stenborg, J.R. Stauffer, R.A. Howard, Evidence for a circumsolar dust ring near Mercury’s orbit. Astrophys. J. 868(1), 74 (2018)

    Article  ADS  Google Scholar 

  • P. Strub, V.J. Sterken, R. Soja, H. Krüger, E. Grün, R. Srama, Heliospheric modulation of the interstellar dust flow on to Earth. Astron. Astrophys. 621, A54 (2019)

    Article  ADS  Google Scholar 

  • M.V. Sykes, L.A. Lebofsky, D.M. Hunten, F. Low, The discovery of dust trails in the orbits of periodic comets. Science 232(4754), 1115–1117 (1986)

    Article  ADS  Google Scholar 

  • H.A. Zook, O.E. Berg, A source for hyperbolic cosmic dust particles. Planet. Space Sci. 23, 183–203 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to give heartfelt thanks to Mr. S. Bugiel, who operates the Van de Graaff accelerator of the Heidelberg Dust Accelerator Facility in MPI-K, and also to Mr. T. Omata, who operates the Van de Graaff accelerator of HIT at the University of Tokyo for MDM calibration. We also gratefully appreciate the elaborative support from Meisei Electric Co., Ltd. for the development of the MDM system. H.K. gratefully acknowledges support from the Japan Society for the Promotion of Science (JSPS grant S16740) for a research visit at the Planetary Exploration Research Center at the Chiba Institute of Technology, during which a significant part of the numerical simulation work presented in this paper was performed. The IMEM and IMEX Dust Streams in Space models were developed under ESA funding (contracts 21928/08/NL/AT and 4000106316/12/NL/AF-IMEX). Finally, this study was supported by the Hypervelocity Impact Facility (former facility name: the Space Plasma Laboratory), ISAS, JAXA.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The BepiColombo mission to Mercury

Edited by Johannes Benkhoff, Go Murakami and Ayako Matsuoka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, M., Shibata, H., Nogami, K. et al. Mercury Dust Monitor (MDM) Onboard the Mio Orbiter of the BepiColombo Mission. Space Sci Rev 216, 144 (2020). https://doi.org/10.1007/s11214-020-00775-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00775-7

Keywords

Navigation