Skip to main content

PIXL: Planetary Instrument for X-Ray Lithochemistry

A Correction to this article was published on 17 February 2021

This article has been updated

Abstract

Planetary Instrument for X-ray Lithochemistry (PIXL) is a micro-focus X-ray fluorescence spectrometer mounted on the robotic arm of NASA’s Perseverance rover. PIXL will acquire high spatial resolution observations of rock and soil chemistry, rapidly analyzing the elemental chemistry of a target surface. In 10 seconds, PIXL can use its powerful 120 μm-diameter X-ray beam to analyze a single, sand-sized grain with enough sensitivity to detect major and minor rock-forming elements, as well as many trace elements. Over a period of several hours, PIXL can autonomously raster-scan an area of the rock surface and acquire a hyperspectral map comprised of several thousand individual measured points. When correlated to a visual image acquired by PIXL’s camera, these maps reveal the distribution and abundance variations of chemical elements making up the rock, tied accurately to the physical texture and structure of the rock, at a scale comparable to a 10X magnifying geological hand lens. The many thousands of spectra in these postage stamp-sized elemental maps may be analyzed individually or summed together to create a bulk rock analysis, or subsets of spectra may be summed, quantified, analyzed, and compared using PIXLISE data analysis software. This hand lens-scale view of the petrology and geochemistry of materials at the Perseverance landing site will provide a valuable link between the larger, centimeter- to meter-scale observations by Mastcam-Z, RIMFAX and Supercam, and the much smaller (micron-scale) measurements that would be made on returned samples in terrestrial laboratories.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85
Fig. 86
Fig. 87
Fig. 88
Fig. 89
Fig. 90
Fig. 91
Fig. 92
Fig. 93
Fig. 94
Fig. 95
Fig. 96
Fig. 97

Change history

Notes

  1. Contamination levels are defined by IEST-STD-CC1246D, which is the successor to Mil. Std. 1246D.

References

  • A.C. Allwood, M.R. Walter, B.S. Kamber, C.P. Marshall, I.W. Burch, Stromatolite reef from the Early Archaean era of Australia. Nature 414, 714–718 (2006). https://doi.org/10.1038/nature04764

    ADS  Article  Google Scholar 

  • A.C. Allwood, M.R. Walter, I.W. Burch, Stratigraphy and facies of the 3.43 Ga Strelley Pool Chert in the Southwest North Pole Dome. Geological Survey of Western Australia (2007a)

  • A.C. Allwood, M.R. Walter, I.W. Burch, B.S. Kamber, 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambrian Res. 158, 198–227 (2007b). https://doi.org/10.1016/j.precamres.2007.04.013

    ADS  Article  Google Scholar 

  • A.C. Allwood, J.P. Grotzinger, A.H. Knoll, I.W. Burch, M.S. Anderson, M.L. Coleman, I. Kanik, Controls on development and diversity of Early Archean stromatolites. Proc. Natl. Acad. Sci. USA 106, 9548–9555 (2009). https://doi.org/10.1073/pnas.0903323106

    ADS  Article  Google Scholar 

  • A.C. Allwood, D. Beaty, D. Bass, C. Conley, K. Kminek, M. Race, S. Vance, F. Westall, Conference summary: Life detection in extraterrestrial samples. Astrobiology 13, 203–216 (2013a). https://doi.org/10.1089/ast.2012.0931

    ADS  Article  Google Scholar 

  • A.C. Allwood, I.W. Burch, J.M. Rouchy, M.L. Coleman, Morphological biosignatures in gypsum: Diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Astrobiology 1(4), 447–465 (2013b). https://doi.org/10.1089/153110701753593856

    Article  Google Scholar 

  • A.C. Allwood, M.T. Rosing, D.T. Flannery, J.A. Hurowitz, C.M. Heirwegh, Reassessing evidence of like in 3,700-million-year-old rocks of Greenland. Nature 563, 241–244 (2018). https://doi.org/10.1038/s41586-018-0610-4

    ADS  Article  Google Scholar 

  • J.F. Banfield, J.W. Moreau, C.S. Chan, S.A. Welch, B. Little, Mineralogical biosignatures and the search for life on Mars. Astrobiology 1(4), 447–465 (2004). https://doi.org/10.1089/153110701753593856

    ADS  Article  Google Scholar 

  • H.N. Becker, D. Santos-Costa, J.L. Jørgensen, T. Denver, A. Adriani, A. Mura, J.E.P. Connerney, S.J. Bolton, S.M. Levin, R.M. Thorne, J.W. Alexander, V. Adumitroaie, E.A. Manor-Chapman, I.J. Daubar, C. Lee, M. Benn, J. Sushkova, A. Cicchetti, R. Noschese, Observations of MeV electrons in Jupiter’s innermost radiation belts and polar regions by the Juno radiation monitoring investigations: Perijoves 1 and 3. Geophys. Res. Lett. 44(10), 4481–4488 (2017). https://doi.org/10.1002/2017GL073091

    ADS  Article  Google Scholar 

  • M. Benn, J.L. Jørgensen, Autonomous vision based detection of non-stellar objects flying in formation with camera point of view, in Proceedings of 5th International Conference on Spacecraft Formation Flying Missions and Technologies (2013)

    Google Scholar 

  • M. Benn, J.L. Jørgensen, T. Denver, P. Brauer, P.S. Jørgensen, A.C. Andersen, J.E.P. Connerney, R.J. Oliversen, S.J. Bolton, S.M. Levin, Observations of interplanetary dust by the Juno magnetometer investigation. Geophys. Res. Lett. 44(10), 4701–4708 (2017). https://doi.org/10.1002/2017GL073186

    ADS  Article  Google Scholar 

  • J.A. Berger, M.E. Schmidt, R. Gellert, J.L. Campbell, P.L. King, R.L. Flemming, D.W. Ming, B.C. Clark, I. Pradler, S.J.V. VanBommel, M.E. Minitti, A.G. Fairén, N.I. Boyd, L.M. Thompson, G.M. Perrett, B.E. Elliott, E. Desouza, A global Mars dust composition refined by the alpha-particle X-ray spectrometer in Gail Crater. Geophys. Res. Lett. 43(1), 67–75 (2016)

    ADS  Article  Google Scholar 

  • P. Bhandari, P. Karlmann, K. Anderson, K. Novac, CO2 insulation for thermal control of the Mars Science Laboratory, in 41st International Conference on Environmental Systems (2011)

    Google Scholar 

  • P. Bhandari, G. Birur, D. Bame, A.J. Mastropietro, J. Miller, P. Karlmann, Y. Liu, K. Anderson, Performance of the mechanically pumped fluid loop rover heat rejection system used for thermal control of the Mars science laboratory curiosity rover on the surface of Mars, in 43rd International Conference on Environmental Systems, Vail, CO (2013). https://doi.org/10.2514/6.2013-3323

    Chapter  Google Scholar 

  • T.R.R. Bontognali, A.L. Sessions, A.C. Allwood, W.W. Fischer, J.P. Grotzinger, R.E. Summons, J.M. Eiler, Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc. Natl. Acad. Sci. USA 109(38), 15146–15151 (2012). https://doi.org/10.1073/pnas.1207491109

    ADS  Article  Google Scholar 

  • J.E.P. Connerney, M. Benn, J.B. Bjarnø, T. Denver, J. Espley, J.L. Jorgensen, P.S. Jorgensen, P. Lawton, A. Malinnikova, J.M. Merayo, S. Murphy, J. Odom, R. Oliversen, R. Schnurr, D. Sheppard, E.J. Smith, The Juno magnetic field investigation. Space Sci. Rev. 213(1–4), 39–138 (2017)

    ADS  Article  Google Scholar 

  • M. Cooley, Human-centred systems, in Designing Human-Centered Technology, ed. by H. Rosenbrock The Springer Series on Artificial Intelligence and Society (Springer, London, 1989)

    Google Scholar 

  • G. Doran, T. Estlin, D.R. Thompson, Precision instrument targeting via image registration for the Mars 2020 rover, in International Joint Conference on Artificial Intelligence (2016)

    Google Scholar 

  • W.T. Elam, B.D. Ravel, J.R. Siber, A new atomic database for X-ray spectroscopic calculations. Radiat. Phys. Chem. 63(2), 121–128 (2002)

    ADS  Article  Google Scholar 

  • J.D. Farmer, D.J. Des Marais, Marais, exploring for a record of ancient Martian life. J. Geophys. Res., Planets 104(E11), 26977–26995 (1999). https://doi.org/10.1029/1998JE000540

    ADS  Article  Google Scholar 

  • M.A. Fischler, R.C. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM (1981). https://doi.org/10.1145/358669.358692

    MathSciNet  Article  Google Scholar 

  • D.T. Flannery, A.C. Allwood, R.E. Summons, K.H. Williford, W. Abbey, E.D. Matys, N. Ferralis, Spatially-resolved isotopic study of carbon trapped in ∼3.43 Ga Strelley Pool Formation stromatolites. Geochim. Cosmochim. Acta 223, 21–35 (2018). https://doi.org/10.1016/j.gca.2017.11.028

    ADS  Article  Google Scholar 

  • R. Gellert, R. Rieder, J. Bruckner, B.C. Clark, G. Dreibus, G. Klingelhofer, G. Lugmair, D.W. Ming, H. Wanke, A. Yen, J. Zipfel, S.W. Squyres, Alpha Particle X-ray Spectrometer (APXS): Results from Gusev crater and calibration report. J. Geophys. Res., Planets 111(E2) (2006). https://doi.org/10.1029/2005JE002555

  • D.B. Gennery, Generalized camera calibration including fish-eye lenses. Int. J. Comput. Vis. 68(3), 239–266 (2006). https://doi.org/10.1007/s11263-006-5168-1

    Article  Google Scholar 

  • J.P. Grotzinger, D.Y. Sumner, L.C. Kah, K. Stack, S. Gupta, L. Edgar, D. Rubin, K. Lewis, J. Schieber, N. Mangold, R. Milliken, P.G. Conrad, D. DesMarais, J. Farmer, K. Siebach, F. Calef III, J. Hurowitz, S.M. McLennan, D. Ming, D. Vaniman, J. Crisp, A. Vasavada, K.S. Edgett, M. Malin, D. Blake, R. Gellert, P. Mahaffy, R.C. Wiens, S. Maurice, J.A. Grant, S. Wilson, R.C. Anderson, L. Beegle, R. Arvidson, B. Hallet, R.S. Sletten, M. Rice, J. Bell III, J. Griffes, B. Ehlmann, R.B. Anderson, T.F. Bristow, W.E. Dietrich, G. Dromart, J. Eigenbrode, A. Fraeman, C. Hardgrove, K. Herkenhoff, L. Jandura, G. Kocurek, S. Lee, L.A. Leshin, R. Leveille, D. Limonadi, J. Maki, S. McCloskey, M. Meyer, M. Minitti, H. Newsom, D. Oehler, A. Okon, M. Palucis, T. Parker, S. Rowland, M. Schmidt, S. Squyres, A. Steele, E. Stolper, R. Summons, A. Treiman, R. Williams, A. Yingst (MSL Science Team), A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343(6169), 1242777 (2014). https://doi.org/10.1126/science.1242777

    Article  Google Scholar 

  • J.P. Grotzinger, S. Gupta, M.C. Malin, D.M. Rubin, J. Schieber, K. Siebach, D.Y. Sumner, K.M. Stack, A.R. Vasavada, R.E. Arvidson, F. Calef III, L. Edgar, W. Fischer, J.A. Grant, J. Griffes, L.C. Kah, M.P. Lamb, K.W. Lewis, N. Mangold, M.E. Minitti, M. Palucis, M. Rice, R.M.E. Williams, R.A. Yingst, D. Blake, D. Blaney, P. Conrad, J. Crisp, W.E. Dietrich, G. Dromart, K.S. Edgett, R.C. Ewing, R. Gellert, J.A. Hurowitz, G. Kocurek, P. Mahaffy, M.J. McBride, S.M. McLennan, M. Mischna, D. Ming, R. Milliken, H. Newsom, D. Oehler, T.J. Parker, D. Vaniman, R.C. Wiens, S.A. Wilson, Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350(6257), aac7575 (2015). https://doi.org/10.1126/science.aac7575

    ADS  Article  Google Scholar 

  • C.M. Heirwegh, W.T. Elam, D.T. Flannery, A.C. Allwood, An empirical derivation of the X-ray optic transmission profile used in calibrating the Planetary Instrument for X-ray Lithochemistry (PIXL) for Mars 2020. Powder Diffr. 33(2), 162–165 (2018). https://doi.org/10.1017/S0885715618000416

    ADS  Article  Google Scholar 

  • J. Hesch, S. Roumeliotis, A direct least-squares (dls) solution for PnP, in Proceedings of the International Conference on Computer Vision (IEEE, Barcelona, 2011)

    Google Scholar 

  • T.M. Hoehler, An energy balance concept for habitability. Astrobiology 7(6), 824–838 (2007). https://doi.org/10.1089/ast.2006.0095

    ADS  Article  Google Scholar 

  • D. Holten, Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)

    Article  Google Scholar 

  • J.A. Hurowitz, S.M. McLennan, A ∼3.5Ga record of water-limited acidic weathering conditions on Mars. Earth Planet. Sci. Lett. 260, 432–443 (2007). https://doi.org/10.1016/j.epsl.2007.05.043

    ADS  Article  Google Scholar 

  • J.A. Hurowitz, J.P. Grotzinger, W.W. Fischer, R.E. Milliken, N. Stein, A.R. Vasavada, D.F. Blake, E. Dehouck, J.L. Eigenbrode, A.G. Fairen, J. Frydenvang, R. Gellert, J.A. Grant, S. Gupta, K.E. Herkenhoff, S.M. McLennan, D.W. Ming, E.B. Rampe, M.E. Schmidt, K. Siebach, K. Stack-Morgan, D.Y. Sumner, R.C. Wiens, Redox stratification of an ancient lake in Gale Crater, Mars. Science 356(6341), eaah6849 (2017). https://doi.org/10.1126/science.aah6849

    ADS  Article  Google Scholar 

  • K.P. Jochum, M. Willbold, I. Raczek, B. Stoll, K. Herwig, Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanal. Res. 29(3), 285–302 (2005)

    Article  Google Scholar 

  • J.L. Jørgensen, M. Benn, VBS – the optical rendezvous and docking sensor for PRISMA, in NordicSpace (2010), pp. 16–19

    Google Scholar 

  • D.A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, H. Ziegler, Visual analytics: Scope and challenges, in Visual Data Mining, ed. by S.J. Simoff, M.H. Böhlen, A. Mazeika. Lecture Notes in Computer Science, vol. 4404 (Springer, Berlin, 2008)

    Chapter  Google Scholar 

  • C.C. Liebe, C. Padgett, J. Chapsky, D. Wilson, K. Brown, S. Jerebets, H. Goldberg, J. Schroeder, Spacecraft hazard avoidance utilizing structured light, in 2006 IEEE Aerospace Conference, Big Sky, MT (2006), p. 10. https://doi.org/10.1109/AERO.2006.1655898

    Chapter  Google Scholar 

  • J.A. Manrique et al., this issue

  • S. Maurice, R.C. Wiens, M. Saccoccio, B. Barraclough, O. Gasnault, O. Forni, N. Mangold, D. Baratoux, S. Bender, G. Berger, J. Bernardin, M. Berthé, N. Bridges, D. Blaney, M. Bouyé, P. Caïs, B. Clark, S. Clegg, A. Cousin, D. Cremers, A. Cros, L. DeFlores, C. Derycke, B. Dingler, G. Dromart, B. Dubois, M. Dupieux, E. Durand, L. d’Uston, C. Fabre, B. Faure, A. Gaboriaud, T. Gharsa, K. Herkenhoff, E. Kan, L. Kirkland, D. Kouach, J.-L. Lacour, Y. Langevin, J. Lasue, S. Le Mouélic, M. Lescure, E. Lewin, D. Limonadi, G. Manhès, P. Mauchien, C. McKay, P.-Y. Meslin, Y. Michel, E. Miller, H.E. Newsom, G. Orttner, A. Paillet, L. Parès, Y. Parot, R. Pérez, P. Pinet, F. Poitrasson, B. Quertier, B. Sallé, C. Sotin, V. Sautter, H. Séran, J.J. Simmonds, J.-B. Sirven, R. Stiglich, N. Striebig, J.-J. Thocaven, M.J. Toplis, D. Vaniman, The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Science objectives and mast unit description. Space Sci. Rev. 170, 95–166 (2012). https://doi.org/10.1007/s11214-012-9912-2

    ADS  Article  Google Scholar 

  • S. Maurice et al., this issue

  • H. McSween Jr., G. Taylor, M. Wyatt, Elemental composition of the Martian crust. Science 324(5928), 736–739 (2009). https://doi.org/10.1126/science.1165871

    ADS  Article  Google Scholar 

  • J.M.G. Merayo, J.L. Jørgensen, E. Friis-Christensen, P. Brauer, F. Primdahl, P.S. Jørgensen, T.H. Allin, T. Denver, The swarm magnetometry package, in Small Satellites for Earth Observation (2008), pp. 143–151

    Chapter  Google Scholar 

  • J.F. Mustard, M. Adler, A. Allwood, D.S. Bass, D.W. Beaty, J.F. Bell III, W.B. Brinckerhoff, M. Carr, D.J. Des Marais, B. Drake, K.S. Edgett, J. Eigenbrode, L.T. Elkins-Tanton, J.A. Grant, S.M. Milkovich, D. Ming, C. Moore, S. Murchie, T.C. Onstott, S.W. Ruff, M.A. Sephton, A. Steele, A. Treiman, Report of the Mars 2020 Science Definition Team. (Mars Exploration Program Analysis Group [MEPAG], 2013). http://mepag.jpl.nasa.gov/reports/MEP/Mars_2020_SDT_Report_Final.pdf

  • J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7(4), 309–313 (1965). https://doi.org/10.1093/comjnl/7.4.308

    MathSciNet  Article  MATH  Google Scholar 

  • A.P. Nutman, V.C. Bennett, C.R.L. Friend, M.J. Van Kranendonk, A.R. Chivas, Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538 (2016). https://doi.org/10.1038/nature19355

    ADS  Article  Google Scholar 

  • C.D. O’Connell-Cooper, J.G. Spray, L.M. Thompson, R. Gellert, J.A. Berger, N.I. Boyd, E.D. Desouza, G.M. Perrett, M. Schmidt, S.J. VanBommel, APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average. J. Geophys. Res., Planets 122, 2623–2643 (2017). https://doi.org/10.1002/2017JE005268

    ADS  Article  Google Scholar 

  • J.H. Oehler, Experimental studies in Precambrian paleontology: Structural and chemical changes in blue-green algae during simulated fossilization in synthetic chert. Geol. Soc. Am. Bull. 87, 117–129 (1976)

    ADS  Article  Google Scholar 

  • J.H. Oehler, J.W. Schopf, Artificial microfossils: Experimental studies of permineralization of blue-green algae in silica. Science 174, 1229–1231 (1971)

    ADS  Article  Google Scholar 

  • D.A.K. Pedersen, A.H. Jørgensen, M. Benn, T. Denver, P.S. Jørgensen, J.B. Bjarnø, A. Massaro, J.L. Jørgensen, MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging. Acta Astronaut. 118, 308–315 (2016). https://doi.org/10.1016/j.actaastro.2015.11.001

    ADS  Article  Google Scholar 

  • D.A.K. Pedersen, C.C. Liebe, J.L. Jørgensen, Structured light system on Mars rover robotic arm instrument. IEEE Trans. Aerosp. Electron. Syst. 55(4), 1612–1623 (2019)

    ADS  Article  Google Scholar 

  • P. Rosa, P.F. Silva, B. Parreira, M. Hagenfeldt, A. Fabrizi, A. Pagano, A. Russo, S. Salvi, M. Kerr, S. Radu, A. Daoud-Moraru, C.A. Pandele, A.M. Stoica, S.S. Mihai, D.A.K. Pedersen, J.L. Jørgensen, S.T. Riveras, R. Contreras, A. Cropp, J. Grzymisch, Autonomous close-proximity operations in space: The PRoBa-3 rendezvous experiment (P3RVX), in Proceedings of the 69th International Astronautical Congress (IAC 2018) (International Astronautical Federation, Bremen, 2018)

    Google Scholar 

  • E. Rosten, R. Porter, T. Drummond, Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    Article  Google Scholar 

  • E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: An efficient alternative to SIFT or SURF, in Proceedings of the IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  • C.G. Ryan, E. Clayton, W.L. Griffin, S.H. Sie, D.R. Cousens, SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 34(3), 396–402 (1988)

    ADS  Article  Google Scholar 

  • D. Schurman, P. Nair, S. Davidoff, A. Galvin, A. Allwood, Y. Liu, D. Flannery, R.P. Hodyss, S. Lombeyda, M. Hendrie, H. Mushkin, C. Heirwegh, PIXELATE: Novel visualization and computational methods for the analysis of astrobiological spectroscopy data, in Proceedings of AbSciCon 2019, Seattle (2019)

    Google Scholar 

  • B. Shneiderman, The eyes have it: A task by data type taxonomy for information visualizations, in IEEE Symposium on Visual Languages (1996), pp. 336–343

    Google Scholar 

  • S.C. Spinks, J. Parnell, S.A. Bowden, Reduction spots in the Mesoproterozoic age: Implications for life in the early terrestrial record. Int. J. Astrobiol. 9(4), 209–216 (2010). https://doi.org/10.1017/S1473550410000273

    ADS  Article  Google Scholar 

  • K.M. Stack, J.P. Grotzinger, M.P. Lamb, S. Gupta, D.M. Rubin, L.C. Kah, L.A. Edgar, D.M. Fey, J.A. Hurowitz, M. McBride, F. Rivera-Hernández, D.Y. Sumner, J.K. Van Beek, R.M.E. Williams, R.A. Yingst, Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation, Gale crater, Mars. Sedimentology 66(5), 1768–1802 (2018). https://doi.org/10.1111/sed.12558

    Article  Google Scholar 

  • D.R. Thompson, D.T. Flannery, R.A. Kiran, A.C. Allwood, B.D. Bue, B. Clark, W. Timothy Elam, T. Estlin, R. Hodyss, J.A. Hurowitz, Y. Liu, L. Wade, Automating X-ray fluorescence analysis for rapid astrobiology surveys. Astrobiology 15(11), 961–976 (2015)

    ADS  Article  Google Scholar 

  • R. Van Grieken, A. Markowicz (eds.), Handbook of X-Ray Spectrometry (CRC Press, Boca Raton, 2001)

    Google Scholar 

  • D. Wacey, M.R. Kilburn, M. Saunders, J. Cliff, M. Brasier, Microfossils of sulfur-metabolizing cells in 3.4 billion-year-old rocks of Western Australia. Nat. Geosci. 4, 698–702 (2011)

    ADS  Article  Google Scholar 

  • R.C. Wiens, S. Maurice, B. Barraclough, M. Saccoccio, W.C. Barkley, J.F. Bell III, S. Bender, J. Bernardin, D. Blaney, J. Blank, M. Bouyé, N. Bridges, N. Bultman, P. Caïs, R.C. Clanton, B. Clark, S. Clegg, A. Cousin, D. Cremers, A. Cros, L. DeFlores, D. Delapp, R. Dingler, C. D’Uston, M. Darby Dyar, T. Elliott, D. Enemark, C. Fabre, M. Flores, O. Forni, O. Gasnault, T. Hale, C. Hays, K. Herkenhoff, E. Kan, L. Kirkland, D. Kouach, D. Landis, Y. Langevin, N. Lanza, F. LaRocca, J. Lasue, J. Latino, D. Limonadi, C. Lindensmith, C. Little, N. Mangold, G. Manhes, P. Mauchien, C. McKay, E. Miller, J. Mooney, R.V. Morris, L. Morrison, T. Nelson, H. Newsom, A. Ollila, M. Ott, L. Pares, R. Perez, F. Poitrasson, C. Provost, J.W. Reiter, T. Roberts, F. Romero, V. Sautter, S. Salazar, J.J. Simmonds, R. Stiglich, S. Storms, N. Striebig, J. Thocaven, T. Trujillo, M. Ulibarri, D. Vaniman, N. Warner, R. Waterbury, R. Whitaker, J. Witt, B. Wong-Swanson, The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests. Space Sci. Rev. 170, 167–227 (2012). https://doi.org/10.1007/s11214-012-9902-4

    ADS  Article  Google Scholar 

  • R.C. Wiens et al., this issue

  • L. Wilkinson, M. Friendly, The history of the cluster heat map. Am. Stat. 63(2), 179–184 (2009)

    MathSciNet  Article  Google Scholar 

  • A.S. Yen, R. Gellert, C. Schröder, R.V. Morris, J.F. Bell III, A.T. Knudson, B.C. Clark, D.W. Ming, J.A. Crisp, R.E. Arvidson, D. Blaney, J. Brückner, P.R. Christensen, D.J. Des Marais, P.A. de Souza Jr., Th.E. Economou, A. Ghosh, B.C. Hahn, K.E. Herkenhoff, L.A. Haskin, J.A. Hurowitz, B.L. Joliff, J.R. Johnson, G. Klingelhöfer, M.B. Madsen, S.M. McLennan, H.Y. McSween, L. Richter, R. Rieder, D. Rodionov, L. Soderblom, S.W. Squyres, N.J. Tosca, A. Wang, M. Wyatt, J. Zipfel, An integrated view of the chemistry and mineralogy of Martian soils. Nature 436, 49–54 (2005). https://doi.org/10.1038/nature03637

    ADS  Article  Google Scholar 

  • Z. Zhang, A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The authors gratefully acknowledge two anonymous reviewers for their helpful contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail C. Allwood.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Mars 2020 Mission

Edited by Kenneth A. Farley, Kenneth H. Williford and Kathryn M. Stack

Appendices

Appendix A: Parameters

Table 13 This is a complete list of parameters that are in place when a scan is initiated that are returned in data products. All of these can be changed by uplink

Appendix B: Acronyms

\(\mu \)ASC:

micro Advanced Stellar Compass

6DoF:

six degrees of freedom

AFE:

analog front end

AFT:

allowable flight temperature

APXS:

Alpha Proton X-ray Spectrometer

BUE:

body unit electronics

CC:

Contamination Control

CDSM:

camera detectors SLI mount

CRF:

command reply frame

DAC:

digital-to-analog converter

DEM:

digital elevation model

DFE:

direct from Earth

DSPC:

detector signal processing chain

DTU:

Technical University of Denmark

ECF:

element-specific calibration factor

EM:

engineering model

ePUDL:

engineering uplink/downlink lead

FLI:

flood light illuminators

FLIE:

flood light illuminator electronics

FP:

fundamental parameter

FWHM:

full width at half maximum

gDRT:

gas Dust Removal Tool

HES:

Hall-effect sensor

HMR:

heat microbial reduction

HOP:

high-output paraffin

HVMM:

high-voltage multiplier module

HVPS:

high-voltage power supply

iFSW:

instrument flight software

iSDS:

instrument science data system

JPL:

Jet Propulsion Laboratory

LVCM:

low-voltage control module

MCC:

micro context camera

MCCE:

micro context camera electronics

MSL:

Mars Science Laboratory

MTF:

modulation transfer function

NTE:

not-to-exceed

NVR:

non-volatile residue

OFS:

optical fiducial subsystem

PDS:

Planetary Data Systems

PGE:

product generation executable

PIXL:

Planetary Instrument for X-ray Lithochemistry

PP:

Planetary Protection

PQV:

packaging qualification and verification

PTFE:

Polytetrafluoroethylene

RAMP:

rover avionics mounting panel

RANSAC:

random sample consensus

ROI:

region of interest

RSS:

root sum square

SCS:

sample caching system

SDD:

silicon-drift detectors

SDF:

Science Data Frame

SLIs:

structured light illuminators

SLIE:

structured light illuminator electronics

SMR:

spherically mounted retroreflectors

SMS:

small movement scans

SPRL:

Space Physics Research Laboratory

sPUDL:

science uplink/downlink lead

TEC:

thermoelectric cooler

TM/TC:

telemetry/command

TRT:

terrain relative translation

USGS:

United States Geological Survey

WCC:

worst cold case

WHC:

worst hot case

XRF:

X-ray fluorescence

XRSA:

X-ray source assembly

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allwood, A.C., Wade, L.A., Foote, M.C. et al. PIXL: Planetary Instrument for X-Ray Lithochemistry. Space Sci Rev 216, 134 (2020). https://doi.org/10.1007/s11214-020-00767-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00767-7

Keywords

  • X-ray
  • Petrology
  • Mars
  • Astrobiology