Skip to main content

Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections

Abstract

A clear understanding of the nature of the pre-eruptive magnetic field configurations of Coronal Mass Ejections (CMEs) is required for understanding and eventually predicting solar eruptions. Only two, but seemingly disparate, magnetic configurations are considered viable; namely, sheared magnetic arcades (SMA) and magnetic flux ropes (MFR). They can form via three physical mechanisms (flux emergence, flux cancellation, helicity condensation). Whether the CME culprit is an SMA or an MFR, however, has been strongly debated for thirty years. We formed an International Space Science Institute (ISSI) team to address and resolve this issue and report the outcome here. We review the status of the field across modeling and observations, identify the open and closed issues, compile lists of SMA and MFR observables to be tested against observations and outline research activities to close the gaps in our current understanding. We propose that the combination of multi-viewpoint multi-thermal coronal observations and multi-height vector magnetic field measurements is the optimal approach for resolving the issue conclusively. We demonstrate the approach using MHD simulations and synthetic coronal images.

Our key conclusion is that the differentiation of pre-eruptive configurations in terms of SMAs and MFRs seems artificial. Both observations and modeling can be made consistent if the pre-eruptive configuration exists in a hybrid state that is continuously evolving from an SMA to an MFR. Thus, the ‘dominant’ nature of a given configuration will largely depend on its evolutionary stage (SMA-like early-on, MFR-like near the eruption).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. A. Alexakis, P.D. Mininni, A. Pouquet, On the inverse cascade of magnetic helicity. Astrophys. J. 640, 335–343 (2006). https://doi.org/10.1086/500082. physics/0509069

    ADS  Article  Google Scholar 

  2. T. Amari, P. Démoulin, P. Browning, A. Hood, E. Priest, The creation of the magnetic environment for prominence formation in a coronal arcade. Astron. Astrophys. 241, 604–612 (1991)

    ADS  Google Scholar 

  3. T. Amari, J.F. Luciani, J.J. Aly, M. Tagger, Plasmoid formation in a single sheared arcade and application to coronal mass ejections. Astron. Astrophys. 306, 913 (1996)

    ADS  Google Scholar 

  4. T. Amari, J.F. Luciani, Z. Mikic, J. Linker, Three-dimensional solutions of magnetohydrodynamic equations for prominence magnetic support: Twisted magnetic flux rope. Astrophys. J. Lett. 518, L57–L60 (1999). https://doi.org/10.1086/312053

    ADS  Article  Google Scholar 

  5. T. Amari, J.F. Luciani, Z. Mikic, J. Linker, A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys. J. Lett. 529, L49–L52 (2000). https://doi.org/10.1086/312444

    ADS  Article  Google Scholar 

  6. T. Amari, J.J. Aly, Z. Mikic, J. Linker, Coronal mass ejection initiation and complex topology configurations in the flux cancellation and breakout models. Astrophys. J. Lett. 671, L189–L192 (2007). https://doi.org/10.1086/524942

    ADS  Article  Google Scholar 

  7. T. Amari, A. Canou, J.J. Aly, F. Delyon, F. Alauzet, Magnetic cage and rope as the key for solar eruptions. Nature 554, 211–215 (2018). https://doi.org/10.1038/nature24671

    ADS  Article  Google Scholar 

  8. S.K. Antiochos, Helicity condensation as the origin of coronal and solar wind structure. Astrophys. J. 772, 72 (2013). https://doi.org/10.1088/0004-637X/772/1/72. 1211.4132

    ADS  Article  Google Scholar 

  9. S.K. Antiochos, J.A. Klimchuk, A model for the formation of solar prominences. Astrophys. J. 378, 372–377 (1991). https://doi.org/10.1086/170437

    ADS  Article  Google Scholar 

  10. S.K. Antiochos, R.B. Dahlburg, J.A. Klimchuk, The magnetic field of solar prominences. Astrophys. J. Lett. 420, L41–L44 (1994). https://doi.org/10.1086/187158

    ADS  Article  Google Scholar 

  11. S.K. Antiochos, C.R. DeVore, J.A. Klimchuk, A model for solar coronal mass ejections. Astrophys. J. 510, 485–493 (1999). https://doi.org/10.1086/306563. astro-ph/9807220

    ADS  Article  Google Scholar 

  12. S.K. Antiochos, P.J. MacNeice, D.S. Spicer, The thermal nonequilibrium of prominences. Astrophys. J. 536, 494–499 (2000). https://doi.org/10.1086/308922

    ADS  Article  Google Scholar 

  13. V. Archontis, Magnetic flux emergence in the Sun. J. Geophys. Res. Space Phys. 113(A12), 3 (2008). https://doi.org/10.1029/2007JA012422

    Article  Google Scholar 

  14. V. Archontis, Magnetic flux emergence and associated dynamic phenomena in the Sun. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 370(1970), 3088–3113 (2012). https://doi.org/10.1098/rsta.2012.0001

    ADS  Article  Google Scholar 

  15. V. Archontis, A.W. Hood, Formation of Ellerman bombs due to 3D flux emergence. Astron. Astrophys. 508, 1469–1483 (2009). https://doi.org/10.1051/0004-6361/200912455

    ADS  Article  Google Scholar 

  16. V. Archontis, A.W. Hood, Flux emergence and coronal eruption. Astron. Astrophys. 514, A56 (2010). https://doi.org/10.1051/0004-6361/200913502

    ADS  Article  Google Scholar 

  17. V. Archontis, A.W. Hood, Magnetic flux emergence: A precursor of solar plasma expulsion. Astron. Astrophys. 537, A62 (2012). https://doi.org/10.1051/0004-6361/201116956

    ADS  Article  Google Scholar 

  18. V. Archontis, P. Syntelis, The emergence of magnetic flux and its role on the onset of solar dynamic events. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 377(2148), 20180387 (2019). https://doi.org/10.1098/rsta.2018.0387. 1904.06274

    ADS  Article  Google Scholar 

  19. V. Archontis, T. Török, Eruption of magnetic flux ropes during flux emergence. Astron. Astrophys. 492, L35–L38 (2008). https://doi.org/10.1051/0004-6361:200811131

    ADS  Article  Google Scholar 

  20. V. Archontis, F. Moreno-Insertis, K. Galsgaard, A. Hood, E. O’Shea, Emergence of magnetic flux from the convection zone into the corona. Astron. Astrophys. 426, 1047–1063 (2004). https://doi.org/10.1051/0004-6361:20035934

    ADS  Article  Google Scholar 

  21. V. Archontis, A.W. Hood, A. Savcheva, L. Golub, E. Deluca, On the structure and evolution of complexity in sigmoids: A flux emergence model. Astrophys. J. 691, 1276–1291 (2009). https://doi.org/10.1088/0004-637X/691/2/1276

    ADS  Article  Google Scholar 

  22. V. Archontis, A.W. Hood, K. Tsinganos, The emergence of weakly twisted magnetic fields in the Sun. Astrophys. J. 778, 42 (2013). https://doi.org/10.1088/0004-637X/778/1/42

    ADS  Article  Google Scholar 

  23. V. Archontis, A.W. Hood, K. Tsinganos, Recurrent explosive eruptions and the “sigmoid-to-arcade” transformation in the Sun driven by dynamical magnetic flux emergence. Astrophys. J. Lett. 786, L21 (2014). https://doi.org/10.1088/2041-8205/786/2/L21

    ADS  Article  Google Scholar 

  24. G. Aulanier, P. Démoulin, 3-D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astron. Astrophys. 329, 1125–1137 (1998)

    ADS  Google Scholar 

  25. G. Aulanier, P. Démoulin, Amplitude and orientation of prominence magnetic fields from constant-alpha magnetohydrostatic models. Astron. Astrophys. 402, 769–780 (2003). https://doi.org/10.1051/0004-6361:20030227

    ADS  Article  Google Scholar 

  26. G. Aulanier, B. Schmieder, Magnetic helicity and solar prominence formation, in SF2A-2008, ed. by C. Charbonnel, F. Combes, R. Samadi (2008), p. 543

    Google Scholar 

  27. G. Aulanier, P. Démoulin, N. Mein, L. van Driel-Gesztelyi, P. Mein, B. Schmieder, 3-D magnetic configurations supporting prominences. III. Evolution of fine structures observed in a filament channel. Astron. Astrophys. 342, 867–880 (1999)

    ADS  Google Scholar 

  28. G. Aulanier, C.R. DeVore, S.K. Antiochos, Prominence magnetic dips in three-dimensional sheared arcades. Astrophys. J. Lett. 567, L97–L101 (2002). https://doi.org/10.1086/339436

    ADS  Article  Google Scholar 

  29. G. Aulanier, E. Pariat, P. Démoulin, Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astron. Astrophys. 444(3), 961–976 (2005). https://doi.org/10.1051/0004-6361:20053600

    ADS  Article  Google Scholar 

  30. G. Aulanier, C.R. DeVore, S.K. Antiochos, Solar prominence merging. Astrophys. J. 646(2), 1349–1357 (2006a). https://doi.org/10.1086/505020

    ADS  Article  Google Scholar 

  31. G. Aulanier, E. Pariat, P. Démoulin, C.R. DeVore, Slip-running reconnection in quasi-separatrix layers. Sol. Phys. 238, 347–376 (2006b). https://doi.org/10.1007/s11207-006-0230-2

    ADS  Article  Google Scholar 

  32. G. Aulanier, T. Török, P. Démoulin, E.E. DeLuca, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314–333 (2010). https://doi.org/10.1088/0004-637X/708/1/314

    ADS  Article  Google Scholar 

  33. H.W. Babcock, H.D. Babcock, The Sun’s magnetic field, 1952-1954. Astrophys. J. 121, 349 (1955). https://doi.org/10.1086/145994

    ADS  Article  Google Scholar 

  34. U. Bąk-Stȩślicka, S.E. Gibson, Y. Fan, C. Bethge, B. Forland, L.A. Rachmeler, The magnetic structure of solar prominence cavities: New observational signature revealed by coronal magnetometry. Astrophys. J. Lett. 770, L28 (2013). https://doi.org/10.1088/2041-8205/770/2/L28. 1304.7388

    ADS  Article  Google Scholar 

  35. D. Baker, L. van Driel-Gesztelyi, L.M. Green, Forecasting a CME by spectroscopic precursor? Sol. Phys. 276, 219–239 (2012). https://doi.org/10.1007/s11207-011-9893-4

    ADS  Article  Google Scholar 

  36. B.M. Bein, S. Berkebile-Stoiser, A.M. Veronig, M. Temmer, B. Vršnak, Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J. 755(1), 44 (2012). https://doi.org/10.1088/0004-637X/755/1/44. 1206.2144

    ADS  Article  Google Scholar 

  37. M.A. Berger, Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30(1), 79–104 (1984). https://doi.org/10.1080/03091928408210078

    ADS  Article  Google Scholar 

  38. T.E. Berger, A.M. Title, On the dynamics of small-scale solar magnetic elements. Astrophys. J. 463, 365 (1996). https://doi.org/10.1086/177250

    ADS  Article  Google Scholar 

  39. S. Berkebile-Stoiser, A.M. Veronig, B.M. Bein, M. Temmer, Relation between the coronal mass ejection acceleration and the non-thermal flare characteristics. Astrophys. J. 753(1), 88 (2012). https://doi.org/10.1088/0004-637X/753/1/88

    ADS  Article  Google Scholar 

  40. P.N. Bernasconi, D.M. Rust, M.K. Georgoulis, B.J. Labonte, Moving dipolar features in an emerging flux region. Sol. Phys. 209, 119–139 (2002). https://doi.org/10.1023/A:1020943816174

    ADS  Article  Google Scholar 

  41. D. Biskamp, Nonlinear Magnetohydrodynamics (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  42. M.G. Bobra, A.A. van Ballegooijen, E.E. DeLuca, Modeling nonpotential magnetic fields in solar active regions. Astrophys. J. 672, 1209–1220 (2008). https://doi.org/10.1086/523927

    ADS  Article  Google Scholar 

  43. V. Bommier, J.L. Leroy, Global pattern of the magnetic field vectors above neutral lines from 1974 to 1982: Pic-du-Midi observations of prominences, in IAU Colloq. 167: New Perspectives on Solar Prominences, ed. by D.F. Webb, B. Schmieder, D.M. Rust. Astronomical Society of the Pacific Conference Series, vol. 150 (1998), p. 434

    Google Scholar 

  44. V. Bommier, E. Landi Degl’Innocenti, J.L. Leroy, S. Sahal-Brechot, Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarization measurements in the HeI D3 and H-alpha lines. Sol. Phys. 154, 231–260 (1994). https://doi.org/10.1007/BF00681098

    ADS  Article  Google Scholar 

  45. A. Brandenburg, K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005). https://doi.org/10.1016/j.physrep.2005.06.005. astro-ph/0405052

    ADS  MathSciNet  Article  Google Scholar 

  46. L. Burlaga, E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock - Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673–6684 (1981). https://doi.org/10.1029/JA086iA08p06673

    ADS  Article  Google Scholar 

  47. R. Cameron, M. Schüssler, A. Vögler, V. Zakharov, Radiative magnetohydrodynamic simulations of solar pores. Astron. Astrophys. 474(1), 261–272 (2007). https://doi.org/10.1051/0004-6361:20078140

    ADS  Article  Google Scholar 

  48. A. Canou, T. Amari, V. Bommier, B. Schmieder, G. Aulanier, H. Li, Evidence for a pre-eruptive twisted flux rope using the THEMIS vector magnetograph. Astrophys. J. Lett. 693, L27–L30 (2009). https://doi.org/10.1088/0004-637X/693/1/L27

    ADS  Article  Google Scholar 

  49. J. Chae, Y.J. Moon, A.A. Pevtsov, Observational evidence of magnetic flux submergence in flux cancellation sites. Astrophys. J. Lett. 602, L65–L68 (2004). https://doi.org/10.1086/382222

    ADS  Article  Google Scholar 

  50. R. Chandra, C.H. Mandrini, B. Schmieder, B. Joshi, G.D. Cristiani, H. Cremades, E. Pariat, F.A. Nuevo, A.K. Srivastava, W. Uddin, Blowout jets and impulsive eruptive flares in a bald-patch topology. Astron. Astrophys. 598, A41 (2017). https://doi.org/10.1051/0004-6361/201628984. 1610.01918

    ADS  Article  Google Scholar 

  51. J. Chen, Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J. 338, 453–470 (1989). https://doi.org/10.1086/167211

    ADS  MathSciNet  Article  Google Scholar 

  52. P.F. Chen, Coronal mass ejections: Models and their observational basis. Living Rev. Sol. Phys. 8, 1 (2011). https://doi.org/10.12942/lrsp-2011-1

    ADS  Article  Google Scholar 

  53. B. Chen, T.S. Bastian, D.E. Gary, Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection. Astrophys. J. 794, 149 (2014). https://doi.org/10.1088/0004-637X/794/2/149. 1408.6473

    ADS  Article  Google Scholar 

  54. Y. Chen, G. Du, D. Zhao, Z. Wu, W. Liu, B. Wang, G. Ruan, S. Feng, H. Song, Imaging a magnetic-breakout solar eruption. Astrophys. J. Lett. 820, L37 (2016). https://doi.org/10.3847/2041-8205/820/2/L37

    ADS  Article  Google Scholar 

  55. F. Chen, M. Rempel, Y. Fan, Emergence of magnetic flux generated in a solar convective dynamo. I. The formation of sunspots and active regions, and the origin of their asymmetries. Astrophys. J. 846(2), 149 (2017). https://doi.org/10.3847/1538-4357/aa85a0. 1704.05999

    ADS  Article  Google Scholar 

  56. X. Cheng, M.D. Ding, The characteristics of the footpoints of solar magnetic flux ropes during eruptions. Astrophys. J. Suppl. Ser. 225, 16 (2016). https://doi.org/10.3847/0067-0049/225/1/16. 1605.04047

    ADS  Article  Google Scholar 

  57. X. Cheng, J. Zhang, Y. Liu, M.D. Ding, Observing flux rope formation during the impulsive phase of a solar eruption. Astrophys. J. Lett. 732, L25 (2011). https://doi.org/10.1088/2041-8205/732/2/L25. 1103.5084

    ADS  Article  Google Scholar 

  58. X. Cheng, J. Zhang, M.D. Ding, Y. Liu, W. Poomvises, The driver of coronal mass ejections in the low corona: A flux rope. Astrophys. J. 763, 43 (2013). https://doi.org/10.1088/0004-637X/763/1/43. 1211.6524

    ADS  Article  Google Scholar 

  59. X. Cheng, M.D. Ding, Y. Guo, J. Zhang, A. Vourlidas, Y.D. Liu, O. Olmedo, J.Q. Sun, C. Li, Tracking the evolution of a coherent magnetic flux rope continuously from the inner to the outer corona. Astrophys. J. 780, 28 (2014a). https://doi.org/10.1088/0004-637X/780/1/28. 1310.6782

    ADS  Article  Google Scholar 

  60. X. Cheng, M.D. Ding, J. Zhang, X.D. Sun, Y. Guo, Y.M. Wang, B. Kliem, Y.Y. Deng, Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520. Astrophys. J. 789(2), 93 (2014b). https://doi.org/10.1088/0004-637X/789/2/93. 1405.4923

    ADS  Article  Google Scholar 

  61. X. Cheng, M.D. Ding, C. Fang, Imaging and spectroscopic diagnostics on the formation of two magnetic flux ropes revealed by SDO/AIA and IRIS. Astrophys. J. 804(2), 82 (2015). https://doi.org/10.1088/0004-637X/804/2/82. 1502.07801

    ADS  Article  Google Scholar 

  62. X. Cheng, Y. Guo, M. Ding, Origin and structures of solar eruptions I: Magnetic flux rope. Sci. China Earth Sci. 60, 1383–1407 (2017). https://doi.org/10.1007/s11430-017-9074-6. 1705.08198

    ADS  Article  Google Scholar 

  63. X. Cheng, J. Zhang, B. Kliem, T. Török, C. Xing, Z.J. Zhou, B. Inhester, M.D. Ding, Initiation and early kinematic evolution of solar eruptions. Astrophys. J. 894(2), 85 (2020). https://doi.org/10.3847/1538-4357/ab886a. 2004.03790

    ADS  Article  Google Scholar 

  64. M.C.M. Cheung, H. Isobe, Flux emergence (theory). Living Rev. Sol. Phys. 11(1), 3 (2014). https://doi.org/10.12942/lrsp-2014-3

    ADS  Article  Google Scholar 

  65. M.C.M. Cheung, M. Rempel, A.M. Title, M. Schüssler, Simulation of the formation of a solar active region. Astrophys. J. 720, 233–244 (2010). https://doi.org/10.1088/0004-637X/720/1/233

    ADS  Article  Google Scholar 

  66. M.C.M. Cheung, M. Rempel, G. Chintzoglou, F. Chen, P. Testa, J. Martínez-Sykora, A. Sainz Dalda, M.L. DeRosa, A. Malanushenko, V. Hansteen, B. De Pontieu, M. Carlsson, B. Gudiksen, S.W. McIntosh, A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare. Nat. Astron. 3, 160–166 (2019). https://doi.org/10.1038/s41550-018-0629-3

    ADS  Article  Google Scholar 

  67. G. Chintzoglou, S. Patsourakos, A. Vourlidas, Formation of magnetic flux ropes during a confined flaring well before the onset of a pair of major coronal mass ejections. Astrophys. J. 809, 34 (2015). https://doi.org/10.1088/0004-637X/809/1/34. 1507.01165

    ADS  Article  Google Scholar 

  68. G. Chintzoglou, J. Zhang, M.C.M. Cheung, M. Kazachenko, The origin of major solar activity: Collisional shearing between nonconjugated polarities of multiple bipoles emerging within active regions. Astrophys. J. 871, 67 (2019). https://doi.org/10.3847/1538-4357/aaef30. 1811.02186

    ADS  Article  Google Scholar 

  69. G.S. Choe, L.C. Lee, Formation of solar prominences by photospheric shearing motions. Sol. Phys. 138(2), 291–329 (1992). https://doi.org/10.1007/BF00151917

    ADS  Article  Google Scholar 

  70. K. Dalmasse, G. Aulanier, P. Démoulin, B. Kliem, T. Török, E. Pariat, The origin of net electric currents in solar active regions. Astrophys. J. 810, 17 (2015). https://doi.org/10.1088/0004-637X/810/1/17. 1507.05060

    ADS  Article  Google Scholar 

  71. S. Danilovic, S.K. Solanki, P. Barthol, A. Gandorfer, L. Gizon, J. Hirzberger, T.L. Riethmüller, M. van Noort, J. Blanco Rodríguez, J.C. Del Toro Iniesta, D. Orozco Suárez, W. Schmidt, V. Martínez Pillet, M. Knölker, Photospheric response to an Ellerman bomb-like event—an analogy of sunrise/IMaX observations and MHD simulations. Astrophys. J. Suppl. Ser. 229, 5 (2017). https://doi.org/10.3847/1538-4365/229/1/5

    ADS  Article  Google Scholar 

  72. P. Démoulin, G. Aulanier, Criteria for flux rope eruption: Non-equilibrium versus torus instability. Astrophys. J. 718, 1388–1399 (2010). https://doi.org/10.1088/0004-637X/718/2/1388. 1006.1785

    ADS  Article  Google Scholar 

  73. P. Démoulin, J.C. Hénoux, E.R. Priest, C.H. Mandrini, Quasi-separatrix layers in solar flares. I. Method. Astron. Astrophys. 308, 643–655 (1996)

    ADS  Google Scholar 

  74. K.P. Dere, G.E. Brueckner, R.A. Howard, M.J. Koomen, C.M. Korendyke, R.W. Kreplin, D.J. Michels, J.D. Moses, N.E. Moulton, D.G. Socker, O.C. St. Cyr, J.P. Delaboudinière, G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, F. Millier, X.Y. Song, J.P. Chauvineau, J.P. Marioge, J.M. Defise, C. Jamar, P. Rochus, R.C. Catura, J.R. Lemen, J.B. Gurman, W. Neupert, F. Clette, P. Cugnon, E.L. van Dessel, P.L. Lamy, A. Llebaria, R. Schwenn, G.M. Simnett, EIT and LASCO observations of the initiation of a coronal mass ejection. Sol. Phys. 175, 601–612 (1997). https://doi.org/10.1023/A:1004907307376

    ADS  Article  Google Scholar 

  75. C.R. DeVore, S.K. Antiochos, Dynamical formation and stability of helical prominence magnetic fields. Astrophys. J. 539, 954–963 (2000). https://doi.org/10.1086/309275

    ADS  Article  Google Scholar 

  76. C.R. DeVore, S.K. Antiochos, G. Aulanier, Solar prominence interactions. Astrophys. J. 629, 1122–1134 (2005). https://doi.org/10.1086/431721

    ADS  Article  Google Scholar 

  77. S.K. Dhakal, G. Chintzoglou, J. Zhang, A study of a compound solar eruption with two consecutive erupting magnetic structures. Astrophys. J. 860(1), 35 (2018). https://doi.org/10.3847/1538-4357/aac028. 1807.00206

    ADS  Article  Google Scholar 

  78. A. Duan, C. Jiang, W. He, X. Feng, P. Zou, J. Cui, A study of pre-flare solar coronal magnetic fields: Magnetic flux ropes. Astrophys. J. 884(1), 73 (2019). https://doi.org/10.3847/1538-4357/ab3e33. 1908.08643

    ADS  Article  Google Scholar 

  79. J. Dudík, G. Aulanier, B. Schmieder, V. Bommier, T. Roudier, Topological departures from translational invariance along a filament observed by THEMIS. Sol. Phys. 248, 29–50 (2008). https://doi.org/10.1007/s11207-008-9155-2

    ADS  Article  Google Scholar 

  80. Y. Fan, The emergence of a twisted \(\Omega \)-tube into the solar atmosphere. Astrophys. J. Lett. 554, L111–L114 (2001). https://doi.org/10.1086/320935

    ADS  Article  Google Scholar 

  81. Y. Fan, Magnetic fields in the solar convection zone. Living Rev. Sol. Phys. 6(1), 4 (2009a). https://doi.org/10.12942/lrsp-2009-4

    ADS  Article  Google Scholar 

  82. Y. Fan, The emergence of a twisted flux tube into the solar atmosphere: Sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697, 1529–1542 (2009b). https://doi.org/10.1088/0004-637X/697/2/1529

    ADS  Article  Google Scholar 

  83. Y. Fan, MHD simulation of prominence eruption. Astrophys. J. 862(1), 54 (2018). https://doi.org/10.3847/1538-4357/aaccee. 1806.06305

    ADS  Article  Google Scholar 

  84. Y. Fan, S.E. Gibson, Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J. 609, 1123–1133 (2004). https://doi.org/10.1086/421238

    ADS  Article  Google Scholar 

  85. F. Fang, Y. Fan, \(\delta \)-Sunspot formation in simulation of active-region-scale flux emergence. Astrophys. J. 806(1), 79 (2015). https://doi.org/10.1088/0004-637X/806/1/79. 1504.04393

    ADS  Article  Google Scholar 

  86. F. Fang, W. Manchester, W.P. Abbett, B. van der Holst, Simulation of flux emergence from the convection zone to the corona. Astrophys. J. 714, 1649–1657 (2010). https://doi.org/10.1088/0004-637X/714/2/1649

    ADS  Article  Google Scholar 

  87. F. Fang, W. Manchester IV, W.P. Abbett, B. van der Holst, Buildup of magnetic shear and free energy during flux emergence and cancellation. Astrophys. J. 754, 15 (2012). https://doi.org/10.1088/0004-637X/754/1/15. 1205.3764

    ADS  Article  Google Scholar 

  88. F. Fang, Y. Fan, S.W. McIntosh, Rotating solar jets in simulations of flux emergence with thermal conduction. Astrophys. J. Lett. 789, L19 (2014). https://doi.org/10.1088/2041-8205/789/1/L19

    ADS  Article  Google Scholar 

  89. G.H. Fisher, W.P. Abbett, D.J. Bercik, M.D. Kazachenko, B.J. Lynch, B.T. Welsch, J.T. Hoeksema, K. Hayashi, Y. Liu, A.A. Norton, A.S. Dalda, X. Sun, M.L. DeRosa, M.C.M. Cheung, The coronal global evolutionary model: Using HMI vector magnetogram and Doppler data to model the buildup of free magnetic energy in the solar corona. Space Weather 13(6), 369–373 (2015). https://doi.org/10.1002/2015SW001191. 1505.06018

    ADS  Article  Google Scholar 

  90. G.D. Fleishman, D.E. Gary, B. Chen, N. Kuroda, S. Yu, G.M. Nita, Decay of the coronal magnetic field can release sufficient energy to power a solar flare. Science 367(6475), 278–280 (2020). https://doi.org/10.1126/science.aax6874

    ADS  Article  Google Scholar 

  91. C.R. Foley, L.K. Harra, J.L. Culhane, K.O. Mason, Eruption of a flux rope on the disk of the Sun: Evidence for the coronal mass ejection trigger? Astrophys. J. Lett. 560(1), L91–L94 (2001). https://doi.org/10.1086/324059

    ADS  Article  Google Scholar 

  92. B.C. Forland, S.E. Gibson, J.B. Dove, L.A. Rachmeler, Y. Fan, Coronal cavity survey: Morphological clues to eruptive magnetic topologies. Sol. Phys. 288, 603–615 (2013). https://doi.org/10.1007/s11207-013-0361-1

    ADS  Article  Google Scholar 

  93. H.S. Fu, A. Vaivads, Y.V. Khotyaintsev, M. André, J.B. Cao, V. Olshevsky, J.P. Eastwood, A. Retinò, Intermittent energy dissipation by turbulent reconnection. Geophys. Res. Lett. 44, 37–43 (2017). https://doi.org/10.1002/2016GL071787

    ADS  Article  Google Scholar 

  94. V. Gaizauskas, Formation of a switchback during the rising phase of solar cycle 21. Sol. Phys. 211, 179–188 (2002). https://doi.org/10.1023/A:1022579419832

    ADS  Article  Google Scholar 

  95. V. Gaizauskas, J.B. Zirker, C. Sweetland, A. Kovacs, Formation of a solar filament channel. Astrophys. J. 479, 448 (1997). https://doi.org/10.1086/512788

    ADS  Article  Google Scholar 

  96. V. Gaizauskas, D.H. Mackay, K.L. Harvey, Evolution of solar filament channels observed during a major poleward surge of photospheric magnetic flux. Astrophys. J. 558, 888–902 (2001). https://doi.org/10.1086/322298

    ADS  Article  Google Scholar 

  97. M.K. Georgoulis, V.S. Titov, Z. Mikić, Non-neutralized electric current patterns in solar active regions: Origin of the shear-generating Lorentz force. Astrophys. J. 761(1), 61 (2012a). https://doi.org/10.1088/0004-637X/761/1/61. 1210.2919

    ADS  Article  Google Scholar 

  98. M.K. Georgoulis, K. Tziotziou, N.E. Raouafi, Magnetic energy and helicity budgets in the active-region solar corona. II. Nonlinear force-free approximation. Astrophys. J. 759, 1 (2012b). https://doi.org/10.1088/0004-637X/759/1/1. 1209.5606

    ADS  Article  Google Scholar 

  99. M.K. Georgoulis, A. Nindos, H. Zhang, The source and engine of coronal mass ejections. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 377(2148), 20180094 (2019). https://doi.org/10.1098/rsta.2018.0094

    ADS  Article  Google Scholar 

  100. G.P.S. Gibb, D.H. Mackay, L.M. Green, K.A. Meyer, Simulating the formation of a sigmoidal flux rope in AR10977 from SOHO/MDI magnetograms. Astrophys. J. 782, 71 (2014). https://doi.org/10.1088/0004-637X/782/2/71

    ADS  Article  Google Scholar 

  101. S. Gibson, Coronal cavities: Observations and implications for the magnetic environment of prominences, in Astrophysics and Space Science Library, vol. 415 (Springer, Berlin, 2015), p. 323. https://doi.org/10.1007/978-3-319-10416-4_13

    Chapter  Google Scholar 

  102. S.E. Gibson, Y. Fan, Coronal prominence structure and dynamics: A magnetic flux rope interpretation. J. Geophys. Res. Space Phys. 111(A12), A12103 (2006a). https://doi.org/10.1029/2006JA011871

    ADS  Article  Google Scholar 

  103. S.E. Gibson, Y. Fan, The partial expulsion of a magnetic flux rope. Astrophys. J. Lett. 637, L65–L68 (2006b). https://doi.org/10.1086/500452

    ADS  Article  Google Scholar 

  104. S.E. Gibson, T.A. Kucera, D. Rastawicki, J. Dove, G. de Toma, J. Hao, S. Hill, H.S. Hudson, C. Marqué, P.S. McIntosh, L. Rachmeler, K.K. Reeves, B. Schmieder, D.J. Schmit, D.B. Seaton, A.C. Sterling, D. Tripathi, D.R. Williams, M. Zhang, Three-dimensional morphology of a coronal prominence cavity. Astrophys. J. 724, 1133–1146 (2010). https://doi.org/10.1088/0004-637X/724/2/1133

    ADS  Article  Google Scholar 

  105. H.R. Gilbert, T.E. Holzer, J.T. Burkepile, Observational interpretation of an active prominence on 1999 May 1. Astrophys. J. 549, 1221–1230 (2001). https://doi.org/10.1086/319444

    ADS  Article  Google Scholar 

  106. L.M. Green, B. Kliem, Flux rope formation preceding coronal mass ejection onset. Astrophys. J. Lett. 700, L83–L87 (2009). https://doi.org/10.1088/0004-637X/700/2/L83. 0906.4794

    ADS  Article  Google Scholar 

  107. L.M. Green, B. Kliem, Observations of flux rope formation prior to coronal mass ejections, in Nature of Prominences and Their Role in Space Weather, ed. by B. Schmieder, J.M. Malherbe, S.T. Wu. IAU Symposium, vol. 300 (2014), pp. 209–214. https://doi.org/10.1017/S1743921313010983. 1312.4388

    Chapter  Google Scholar 

  108. L.M. Green, B. Kliem, A.J. Wallace, Photospheric flux cancellation and associated flux rope formation and eruption. Astron. Astrophys. 526, A2 (2011). https://doi.org/10.1051/0004-6361/201015146. 1011.1227

    ADS  Article  Google Scholar 

  109. L.M. Green, G. Valori, F.P. Zuccarello, S. Zharkov, S.A. Matthews, S.L. Guglielmino, The 2013 February 17 sunquake in the context of the active region’s magnetic field configuration. Astrophys. J. 849, 40 (2017). https://doi.org/10.3847/1538-4357/aa8db6. 1709.04874

    ADS  Article  Google Scholar 

  110. L.M. Green, T. Török, B. Vršnak, W. Manchester, A. Veronig, The origin, early evolution and predictability of solar eruptions. Space Sci. Rev. 214, 46 (2018). https://doi.org/10.1007/s11214-017-0462-5. 1801.04608

    ADS  Article  Google Scholar 

  111. S. Gunár, J. Dudík, G. Aulanier, B. Schmieder, P. Heinzel, Importance of the H\(\alpha \) visibility and projection effects for the interpretation of prominence fine-structure observations. Astrophys. J. 867, 115 (2018). https://doi.org/10.3847/1538-4357/aae4e1

    ADS  Article  Google Scholar 

  112. Y. Guo, B. Schmieder, P. Démoulin, T. Wiegelmann, G. Aulanier, T. Török, V. Bommier, Coexisting flux rope and dipped arcade sections along one solar filament. Astrophys. J. 714, 343–354 (2010). https://doi.org/10.1088/0004-637X/714/1/343

    ADS  Article  Google Scholar 

  113. Y. Guo, M.D. Ding, X. Cheng, J. Zhao, E. Pariat, Twist accumulation and topology structure of a solar magnetic flux rope. Astrophys. J. 779, 157 (2013). https://doi.org/10.1088/0004-637X/779/2/157. 1311.1883

    ADS  Article  Google Scholar 

  114. M.J. Hagyard, J.B. Smith Jr., D. Teuber, E.A. West, A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring. Sol. Phys. 91, 115–126 (1984). https://doi.org/10.1007/BF00213618

    ADS  Article  Google Scholar 

  115. Y. Hanaoka, T. Sakurai, Statistical study of the magnetic field orientation in solar filaments. Astrophys. J. 851, 130 (2017). https://doi.org/10.3847/1538-4357/aa9cf1. 1711.07735

    ADS  Article  Google Scholar 

  116. V.H. Hansteen, V. Archontis, T.M.D. Pereira, M. Carlsson, L. Rouppe van der Voort, J. Leenaarts, Bombs and flares at the surface and lower atmosphere of the Sun. Astrophys. J. 839, 22 (2017). https://doi.org/10.3847/1538-4357/aa6844

    ADS  Article  Google Scholar 

  117. V. Hansteen, A. Ortiz, V. Archontis, M. Carlsson, T.M.D. Pereira, J.P. Bjørgen, Ellerman bombs and UV bursts: Transient events in chromospheric current sheets. Astron. Astrophys. 626, A33 (2019). https://doi.org/10.1051/0004-6361/201935376. 1904.11524

    ADS  Article  Google Scholar 

  118. L.K. Harra, S. Matthews, J.L. Culhane, M.C.M. Cheung, E.P. Kontar, H. Hara, The location of non-thermal velocity in the early phases of large flares—revealing pre-eruption flux ropes. Astrophys. J. 774(2), 122 (2013). https://doi.org/10.1088/0004-637X/774/2/122

    ADS  Article  Google Scholar 

  119. K.L. Harvey, H.P. Jones, C.J. Schrijver, M.J. Penn, Does magnetic flux submerge at flux cancelation sites? Sol. Phys. 190, 35–44 (1999). https://doi.org/10.1023/A:1005237719407

    ADS  Article  Google Scholar 

  120. A.W. Hood, E.R. Priest, Critical conditions for magnetic instabilities in force-free coronal loops. Geophys. Astrophys. Fluid Dyn. 17, 297–318 (1981). https://doi.org/10.1080/03091928108243687

    ADS  Article  MATH  Google Scholar 

  121. A.W. Hood, V. Archontis, K. Galsgaard, F. Moreno-Insertis, The emergence of toroidal flux tubes from beneath the solar photosphere. Astron. Astrophys. 503, 999–1011 (2009). https://doi.org/10.1051/0004-6361/200912189

    ADS  Article  Google Scholar 

  122. A.W. Hood, V. Archontis, D. MacTaggart, 3D MHD flux emergence experiments: Idealised models and coronal interactions. Sol. Phys. 278(1), 3–31 (2012). https://doi.org/10.1007/s11207-011-9745-2. 1103.3685

    ADS  Article  Google Scholar 

  123. Q. Hu, B. Dasgupta, An improved approach to non-force-free coronal magnetic field extrapolation. Sol. Phys. 247(1), 87–101 (2008). https://doi.org/10.1007/s11207-007-9090-7

    ADS  Article  Google Scholar 

  124. R.M.E. Illing, A.J. Hundhausen, Observation of a coronal transient from 1.2 to 6 solar radii. J. Geophys. Res. 90, 275–282 (1985). https://doi.org/10.1029/JA090iA01p00275

    ADS  Article  Google Scholar 

  125. S. Inoue, K. Hayashi, K. Kusano, Structure and stability of magnetic fields in solar active region 12192 based on the nonlinear force-free field modeling. Astrophys. J. 818, 168 (2016). https://doi.org/10.3847/0004-637X/818/2/168. 1601.00791

    ADS  Article  Google Scholar 

  126. S. Inoue, D. Shiota, Y. Bamba, S.H. Park, Magnetohydrodynamic modeling of a solar eruption associated with an X9.3 flare observed in the active region 12673. Astrophys. J. 867(1), 83 (2018). https://doi.org/10.3847/1538-4357/aae079. 1809.02309

    ADS  Article  Google Scholar 

  127. H. Isobe, D. Tripathi, A. Asai, R. Jain, Large-amplitude oscillation of an erupting filament as seen in EUV, H\(\alpha \), and microwave observations. Sol. Phys. 246, 89–99 (2007). https://doi.org/10.1007/s11207-007-9091-6

    ADS  Article  Google Scholar 

  128. H. Isobe, M.R.E. Proctor, N.O. Weiss, Convection-driven emergence of small-scale magnetic fields and their role in coronal heating and solar wind acceleration. Astrophys. J. Lett. 679, L57 (2008). https://doi.org/10.1086/589150

    ADS  Article  Google Scholar 

  129. A.W. James, G. Valori, L.M. Green, Y. Liu, M.C.M. Cheung, Y. Guo, L. van Driel-Gesztelyi, An observationally constrained model of a flux rope that formed in the solar corona. Astrophys. J. Lett. 855, L16 (2018). https://doi.org/10.3847/2041-8213/aab15d. 1802.07965

    ADS  Article  Google Scholar 

  130. C. Jiang, S.T. Wu, X. Feng, Q. Hu, Formation and eruption of an active region sigmoid. I. A study by nonlinear force-free field modeling. Astrophys. J. 780, 55 (2014). https://doi.org/10.1088/0004-637X/780/1/55. 1310.8196

    ADS  Article  Google Scholar 

  131. C. Jiang, S.T. Wu, V. Yurchyshyn, H. Wang, X. Feng, Q. Hu, How did a major confined flare occur in super solar active region 12192? Astrophys. J. 828, 62 (2016). https://doi.org/10.3847/0004-637X/828/1/62. 1606.09334

    ADS  Article  Google Scholar 

  132. N.C. Joshi, A.C. Sterling, R.L. Moore, T. Magara, Y.J. Moon, Onset of a large ejective solar eruption from a typical coronal-jet-base field configuration. Astrophys. J. 845, 26 (2017). https://doi.org/10.3847/1538-4357/aa7c1b. 1706.09176

    ADS  Article  Google Scholar 

  133. T. Kaneko, T. Yokoyama, Impact of dynamic state on the mass condensation rate of solar prominences. Astrophys. J. 869(2), 136 (2018). https://doi.org/10.3847/1538-4357/aaee6f. 1811.00828

    ADS  Article  Google Scholar 

  134. N. Karna, W.D. Pesnell, J. Zhang, Appearances and statistics of coronal cavities during the ascending phase of solar cycle 24. Astrophys. J. 810, 123 (2015a). https://doi.org/10.1088/0004-637X/810/2/123

    ADS  Article  Google Scholar 

  135. N. Karna, J. Zhang, W.D. Pesnell, S.A. Hess Webber, Study of the 3D geometric structure and temperature of a coronal cavity using the limb synoptic map method. Astrophys. J. 810, 124 (2015b). https://doi.org/10.1088/0004-637X/810/2/124

    ADS  Article  Google Scholar 

  136. J.T. Karpen, S.K. Antiochos, M. Hohensee, J.A. Klimchuk, P.J. MacNeice, Are magnetic dips necessary for prominence formation? Astrophys. J. Lett. 553, L85–L88 (2001). https://doi.org/10.1086/320497

    ADS  Article  Google Scholar 

  137. J.T. Karpen, S.K. Antiochos, J.A. Klimchuk, The origin of high-speed motions and threads in prominences. Astrophys. J. 637, 531–540 (2006). https://doi.org/10.1086/498237

    ADS  Article  Google Scholar 

  138. J.T. Karpen, S.K. Antiochos, C.R. DeVore, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81 (2012). https://doi.org/10.1088/0004-637X/760/1/81

    ADS  Article  Google Scholar 

  139. B. Kliem, T. Török, Torus instability. Phys. Rev. Lett. 255, 002 (2006). https://doi.org/10.1103/PhysRevLett.96.255002. arXiv:physics/0605217

    Article  Google Scholar 

  140. B. Kliem, Y.N. Su, A.A. van Ballegooijen, E.E. DeLuca, Magnetohydrodynamic modeling of the solar eruption on 2010 April 8. Astrophys. J. 779, 129 (2013). https://doi.org/10.1088/0004-637X/779/2/129. 1304.6981

    ADS  Article  Google Scholar 

  141. B. Kliem, J. Lin, T.G. Forbes, E.R. Priest, T. Török, Catastrophe versus instability for the eruption of a toroidal solar magnetic flux rope. Astrophys. J. 789, 46 (2014a). https://doi.org/10.1088/0004-637X/789/1/46. 1404.5922

    ADS  Article  Google Scholar 

  142. B. Kliem, T. Török, V.S. Titov, R. Lionello, J.A. Linker, R. Liu, C. Liu, H. Wang, Slow rise and partial eruption of a double-decker filament. II. A double flux rope model. Astrophys. J. 792, 107 (2014b). https://doi.org/10.1088/0004-637X/792/2/107. 1407.2272

    ADS  Article  Google Scholar 

  143. B. Kliem, J. Lee, S.M. White, C. Liu, S. Masuda, Flux rope formation by a confined solar flare preceding a coronal mass ejection. Astrophys. J. (2020, submitted)

  144. J.A. Klimchuk, Shear-induced inflation of coronal magnetic fields. Astrophys. J. 354, 745–754 (1990). https://doi.org/10.1086/168731

    ADS  Article  Google Scholar 

  145. J.A. Klimchuk, On solving the coronal heating problem. Sol. Phys. 234, 41–77 (2006). https://doi.org/10.1007/s11207-006-0055-z. astro-ph/0511841

    ADS  Article  Google Scholar 

  146. J.A. Klimchuk, P.A. Sturrock, W.H. Yang, Coronal magnetic fields produced by photospheric shear. Astrophys. J. 335, 456–467 (1988). https://doi.org/10.1086/166939

    ADS  Article  Google Scholar 

  147. K.J. Knizhnik, S.K. Antiochos, C.R. DeVore, Filament channel formation via magnetic helicity condensation. Astrophys. J. 809, 137 (2015). https://doi.org/10.1088/0004-637X/809/2/137. 1411.5396

    ADS  Article  Google Scholar 

  148. K.J. Knizhnik, S.K. Antiochos, C.R. DeVore, P.F. Wyper, The mechanism for the energy buildup driving solar eruptive events. Astrophys. J. Lett. 851, L17 (2017). https://doi.org/10.3847/2041-8213/aa9e0a. 1711.00166

    ADS  Article  Google Scholar 

  149. K.J. Knizhnik, M.G. Linton, C.R. DeVore, The role of twist in kinked flux rope emergence and delta-spot formation. Astrophys. J. 864(1), 89 (2018). https://doi.org/10.3847/1538-4357/aad68c. 1808.05562

    ADS  Article  Google Scholar 

  150. I. Kontogiannis, M.K. Georgoulis, S.H. Park, J.A. Guerra, Non-neutralized electric currents in solar active regions and flare productivity. Sol. Phys. 292, 159 (2017). https://doi.org/10.1007/s11207-017-1185-1. 1708.07087

    ADS  Article  Google Scholar 

  151. C. Kuckein, V. Martínez Pillet, R. Centeno, An active region filament studied simultaneously in the chromosphere and photosphere. I. Magnetic structure. Astron. Astrophys. 539, A131 (2012). https://doi.org/10.1051/0004-6361/201117675. 1112.1672

    ADS  Article  Google Scholar 

  152. P. Kumar, V. Yurchyshyn, K.S. Cho, H. Wang, Multiwavelength observations of a flux rope formation by series of magnetic reconnection in the chromosphere. Astron. Astrophys. 603, A36 (2017). https://doi.org/10.1051/0004-6361/201629295. 1703.09871

    ADS  Article  Google Scholar 

  153. M. Kuperus, M.A. Raadu, The support of prominences formed in neutral sheets. Astron. Astrophys. 31, 189 (1974)

    ADS  Google Scholar 

  154. B.J. LaBonte, M.K. Georgoulis, D.M. Rust, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671, 955–963 (2007). https://doi.org/10.1086/522682

    ADS  Article  Google Scholar 

  155. J.E. Leake, T.D. Arber, The emergence of magnetic flux through a partially ionised solar atmosphere. Astron. Astrophys. 450, 805–818 (2006). https://doi.org/10.1051/0004-6361:20054099

    ADS  Article  Google Scholar 

  156. J.E. Leake, M.G. Linton, T. Török, Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. Astrophys. J. 778, 99 (2013). https://doi.org/10.1088/0004-637X/778/2/99. 1308.6204

    ADS  Article  Google Scholar 

  157. J.E. Leake, M.G. Linton, S.K. Antiochos, Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys. J. 787, 46 (2014). https://doi.org/10.1088/0004-637X/787/1/46

    ADS  Article  Google Scholar 

  158. E.J. Lee, V. Archontis, A.W. Hood, Helical blowout jets in the Sun: Untwisting and propagation of waves. Astrophys. J. Lett. 798, L10 (2015). https://doi.org/10.1088/2041-8205/798/1/L10

    ADS  Article  Google Scholar 

  159. J. Leenaarts, Radiation hydrodynamics in simulations of the solar atmosphere. Living Rev. Sol. Phys. 17(1), 3 (2020). https://doi.org/10.1007/s41116-020-0024-x. 2002.03623

    ADS  Article  Google Scholar 

  160. J.L. Leroy, V. Bommier, S. Sahal-Brechot, The magnetic field in the prominences of the polar crown. Sol. Phys. 83, 135–142 (1983). https://doi.org/10.1007/BF00148248

    ADS  Article  Google Scholar 

  161. J.L. Leroy, V. Bommier, S. Sahal-Brechot, New data on the magnetic structure of quiescent prominences. Astron. Astrophys. 131, 33–44 (1984)

    ADS  Google Scholar 

  162. X. Li, H. Morgan, D. Leonard, L. Jeska, A solar tornado observed by AIA/SDO: Rotational flow and evolution of magnetic helicity in a prominence and cavity. Astrophys. J. Lett. 752, L22 (2012). https://doi.org/10.1088/2041-8205/752/2/L22. 1205.3819

    ADS  Article  Google Scholar 

  163. L.P. Li, H. Peter, F. Chen, J. Zhang, Conversion from mutual helicity to self-helicity observed with IRIS. Astron. Astrophys. 570, A93 (2014). https://doi.org/10.1051/0004-6361/201424377. 1410.5597

    ADS  Article  Google Scholar 

  164. J. Lin, T.G. Forbes, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375–2392 (2000). https://doi.org/10.1029/1999JA900477

    ADS  Article  Google Scholar 

  165. Y. Lin, O.R. Engvold, J.E. Wiik, Counterstreaming in a large polar crown filament. Sol. Phys. 216, 109–120 (2003). https://doi.org/10.1023/A:1026150809598

    ADS  Article  Google Scholar 

  166. J. Lin, J.C. Raymond, A.A. van Ballegooijen, The role of magnetic reconnection in the observable features of solar eruptions. Astrophys. J. 602, 422–435 (2004). https://doi.org/10.1086/380900

    ADS  Article  Google Scholar 

  167. Y. Lin, O. Engvold, L.H.M. Rouppe van der Voort, Small-scale, dynamic bright blobs in solar filaments and active regions. Astrophys. J. 747, 129 (2012). https://doi.org/10.1088/0004-637X/747/2/129. 1201.0406

    ADS  Article  Google Scholar 

  168. J.A. Linker, R. Lionello, Z. Mikić, T. Amari, Magnetohydrodynamic modeling of prominence formation within a helmet streamer. J. Geophys. Res. 106, 25165–25176 (2001). https://doi.org/10.1029/2000JA004020

    ADS  Article  Google Scholar 

  169. R. Lionello, J.A. Linker, Z. Mikić, Including the transition region in models of the large-scale solar corona. Astrophys. J. 546, 542–551 (2001). https://doi.org/10.1086/318254

    ADS  Article  Google Scholar 

  170. R. Lionello, Z. Mikić, J.A. Linker, T. Amari, Magnetic field topology in prominences. Astrophys. J. 581, 718–725 (2002). https://doi.org/10.1086/344222

    ADS  Article  Google Scholar 

  171. B.W. Lites, Magnetic flux ropes in the solar photosphere: The vector magnetic field under active region filaments. Astrophys. J. 622, 1275–1291 (2005). https://doi.org/10.1086/428080

    ADS  Article  Google Scholar 

  172. B.W. Lites, B.C. Low, V. Martinez Pillet, P. Seagraves, A. Skumanich, Z.A. Frank, R.A. Shine, S. Tsuneta, The possible ascent of a closed magnetic system through the photosphere. Astrophys. J. 446, 877 (1995). https://doi.org/10.1086/175845

    ADS  Article  Google Scholar 

  173. B.W. Lites, M. Kubo, T. Berger, Z. Frank, R. Shine, T. Tarbell, A. Title, T.J. Okamoto, K. Otsuji, Emergence of helical flux and the formation of an active region filament channel. Astrophys. J. 718, 474–487 (2010). https://doi.org/10.1088/0004-637X/718/1/474

    ADS  Article  Google Scholar 

  174. R. Liu, Magnetic flux ropes in the solar corona: Structure and evolution toward eruption (2020). arXiv e-prints. arXiv:2007.11363

  175. R. Liu, C. Liu, S. Wang, N. Deng, H. Wang, Sigmoid-to-flux-rope transition leading to a loop-like coronal mass ejection. Astrophys. J. Lett. 725, L84–L90 (2010). https://doi.org/10.1088/2041-8205/725/1/L84. 1011.1181

    ADS  Article  Google Scholar 

  176. R. Liu, B. Kliem, T. Török, C. Liu, V.S. Titov, R. Lionello, J.A. Linker, H. Wang, Slow rise and partial eruption of a double-decker filament. I. Observations and interpretation. Astrophys. J. 756, 59 (2012). https://doi.org/10.1088/0004-637X/756/1/59. 1207.1757

    ADS  Article  Google Scholar 

  177. R. Liu, B. Kliem, V.S. Titov, J. Chen, Y. Wang, H. Wang, C. Liu, Y. Xu, T. Wiegelmann, Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. Astrophys. J. 818, 148 (2016). https://doi.org/10.3847/0004-637X/818/2/148. 1512.02338

    ADS  Article  Google Scholar 

  178. Y. Liu, X. Sun, T. Török, V.S. Titov, J.E. Leake, Electric-current neutralization, magnetic shear, and eruptive activity in solar active regions. Astrophys. J. Lett. 846, L6 (2017). https://doi.org/10.3847/2041-8213/aa861e. 1708.04411

    ADS  Article  Google Scholar 

  179. L. Liu, X. Cheng, Y. Wang, Z. Zhou, Y. Guo, J. Cui, Rapid buildup of a magnetic flux rope during a confined X2.2 class flare in NOAA AR 12673. Astrophys. J. Lett. 867(1), L5 (2018). https://doi.org/10.3847/2041-8213/aae826. 1810.04424

    ADS  Article  Google Scholar 

  180. S.H.B. Livi, J. Wang, S.F. Martin, The cancellation of magnetic flux. I - On the quiet Sun. Aust. J. Phys. 38, 855–873 (1985). https://doi.org/10.1071/PH850855

    ADS  Article  Google Scholar 

  181. D.W. Longcope, I. Klapper, Dynamics of a thin twisted flux tube. Astrophys. J. 488, 443–453 (1997). https://doi.org/10.1086/304680

    ADS  Article  Google Scholar 

  182. B.C. Low, J.R. Hundhausen, Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. Astrophys. J. 443, 818–836 (1995). https://doi.org/10.1086/175572

    ADS  Article  Google Scholar 

  183. M. Luna, J.T. Karpen, C.R. DeVore, Formation and evolution of a multi-threaded solar prominence. Astrophys. J. 746, 30 (2012). https://doi.org/10.1088/0004-637X/746/1/30. 1201.3559

    ADS  Article  Google Scholar 

  184. B.J. Lynch, S.K. Antiochos, C.R. DeVore, J.G. Luhmann, T.H. Zurbuchen, Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J. 683, 1192–1206 (2008). https://doi.org/10.1086/589738

    ADS  Article  Google Scholar 

  185. D.H. Mackay, Formation and large-scale patterns of filament channels and filaments, in Solar Prominences, Astrophysics and Space Science Library, vol. 415, ed. by J.C. Vial, O. Engvold (2015), p. 355. https://doi.org/10.1007/978-3-319-10416-4_14

    Chapter  Google Scholar 

  186. D.H. Mackay, A.A. van Ballegooijen, New results in modeling the hemispheric pattern of solar filaments. Astrophys. J. Lett. 621, L77–L80 (2005). https://doi.org/10.1086/428904

    ADS  Article  Google Scholar 

  187. D.H. Mackay, V. Gaizauskas, A.R. Yeates, Where do solar filaments form?: Consequences for theoretical models. Sol. Phys. 248, 51–65 (2008). https://doi.org/10.1007/s11207-008-9127-6

    ADS  Article  Google Scholar 

  188. D.H. Mackay, J.T. Karpen, J.L. Ballester, B. Schmieder, G. Aulanier, Physics of solar prominences: II magnetic structure and dynamics. Space Sci. Rev. 151, 333–399 (2010). https://doi.org/10.1007/s11214-010-9628-0. 1001.1635

    ADS  Article  Google Scholar 

  189. D.H. Mackay, L.M. Green, A. van Ballegooijen, Modeling the dispersal of an active region: Quantifying energy input into the corona. Astrophys. J. 729, 97 (2011). https://doi.org/10.1088/0004-637X/729/2/97. 1102.5296

    ADS  Article  Google Scholar 

  190. D.H. Mackay, V. Gaizauskas, A.R. Yeates, Where do solar filaments form? in Nature of Prominences and Their Role in Space Weather, ed. by B. Schmieder, J.M. Malherbe, S.T. Wu. IAU Symposium, vol. 300 (2014), pp. 445–446. https://doi.org/10.1017/S1743921313011484

    Chapter  Google Scholar 

  191. D.H. Mackay, A.R. Yeates, F.X. Bocquet, Impact of an L5 magnetograph on nonpotential solar global magnetic field modeling. Astrophys. J. 825, 131 (2016). https://doi.org/10.3847/0004-637X/825/2/131

    ADS  Article  Google Scholar 

  192. D.H. Mackay, C.R. DeVore, S.K. Antiochos, A.R. Yeates, Magnetic helicity condensation and the solar cycle. Astrophys. J. 869, 62 (2018). https://doi.org/10.3847/1538-4357/aaec7c

    ADS  Article  Google Scholar 

  193. D. MacTaggart, A.W. Hood, On the emergence of toroidal flux tubes: General dynamics and comparisons with the cylinder model. Astron. Astrophys. 507, 995–1004 (2009). https://doi.org/10.1051/0004-6361/200912930. 0909.3987

    ADS  Article  MATH  Google Scholar 

  194. T. Magara, A possible mechanism of flux cancellation via U-loop emergence on the Sun. Publ. Astron. Soc. Jpn. 63, 417–426 (2011). https://doi.org/10.1093/pasj/63.2.417

    ADS  Article  Google Scholar 

  195. T. Magara, D.W. Longcope, Sigmoid structure of an emerging flux tube. Astrophys. J. Lett. 559, L55–L59 (2001). https://doi.org/10.1086/323635

    ADS  Article  Google Scholar 

  196. T. Magara, D.W. Longcope, Injection of magnetic energy and magnetic helicity into the solar atmosphere by an emerging magnetic flux tube. Astrophys. J. 586, 630–649 (2003). https://doi.org/10.1086/367611

    ADS  Article  Google Scholar 

  197. W. Manchester IV, The role of nonlinear Alfvén waves in shear formation during solar magnetic flux emergence. Astrophys. J. 547, 503–519 (2001). https://doi.org/10.1086/318342

    ADS  Article  Google Scholar 

  198. W. Manchester IV, T. Gombosi, D. DeZeeuw, Y. Fan, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588–596 (2004). https://doi.org/10.1086/421516

    ADS  Article  Google Scholar 

  199. W. Manchester, E.K.J. Kilpua, Y.D. Liu, N. Lugaz, P. Riley, T. Török, B. Vršnak, The physical processes of CME/ICME evolution. Space Sci. Rev. 212, 1159–1219 (2017). https://doi.org/10.1007/s11214-017-0394-0

    ADS  Article  Google Scholar 

  200. S.F. Martin, Conditions for the formation and maintenance of filaments (invited review). Sol. Phys. 182, 107–137 (1998). https://doi.org/10.1023/A:1005026814076

    ADS  Article  Google Scholar 

  201. S.F. Martin, S.H.B. Livi, J. Wang, The cancellation of magnetic flux. II - In a decaying active region. Aust. J. Phys. 38, 929–959 (1985). https://doi.org/10.1071/PH850929

    ADS  Article  Google Scholar 

  202. S.F. Martin, O. Panasenco, M.A. Berger, O. Engvold, Y. Lin, A.A. Pevtsov, N. Srivastava, The build-up to eruptive solar events viewed as the development of chiral systems, in Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona, ed. by T.R. Rimmele, A. Tritschler, F. Wöger, M. Collados Vera, H. Socas-Navarro, R. Schlichenmaier, M. Carlsson, T. Berger, A. Cadavid, P.R. Gilbert, P.R. Goode, M. Knölker. Astronomical Society of the Pacific Conference Series, vol. 463 (2012), p. 157. 1212.3646

    Google Scholar 

  203. J. Martínez-Sykora, V. Hansteen, M. Carlsson, Twisted flux tube emergence from the convection zone to the corona. Astrophys. J. 679(1), 871–888 (2008). https://doi.org/10.1086/587028. 0712.3854

    ADS  Article  Google Scholar 

  204. Z. Mikic, J.A. Linker, Disruption of coronal magnetic field arcades. Astrophys. J. 430, 898–912 (1994). https://doi.org/10.1086/174460

    ADS  Article  Google Scholar 

  205. P.K. Mitra, B. Joshi, A. Prasad, A.M. Veronig, R. Bhattacharyya, Successive flux rope eruptions from \(\delta \)-sunspots region of NOAA 12673 and associated X-class eruptive flares on 2017 September 6. Astrophys. J. 869(1), 69 (2018). https://doi.org/10.3847/1538-4357/aaed26. 1810.13146

    ADS  Article  Google Scholar 

  206. R.L. Moore, G. Roumeliotis, Triggering of Eruptive Flares - Destabilization of the Preflare Magnetic Field Configuration, vol. 399 (Springer, Berlin, 1992), p. 69. https://doi.org/10.1007/3-540-55246-4_79

    Book  Google Scholar 

  207. R.L. Moore, M.J. Hagyard, J.M. Davis, Flare research with the NASA/MSFC vector magnetograph: Observed characteristics of sheared magnetic fields that produce flares. Sol. Phys. 113(1–2), 347–352 (1987). https://doi.org/10.1007/BF00147721

    ADS  Article  Google Scholar 

  208. R.L. Moore, A.C. Sterling, H.S. Hudson, J.R. Lemen, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833–848 (2001). https://doi.org/10.1086/320559

    ADS  Article  Google Scholar 

  209. F. Moreno-Insertis, Three-dimensional numerical experiments of flux emergence into the corona, in New Solar Physics with Solar-B Mission, ed. by K. Shibata, S. Nagata, T. Sakurai. Astronomical Society of the Pacific Conference Series, vol. 369 (2007), p. 335

    Google Scholar 

  210. F. Moreno-Insertis, K. Galsgaard, Plasma jets and eruptions in solar coronal holes: A three-dimensional flux emergence experiment. Astrophys. J. 771, 20 (2013). https://doi.org/10.1088/0004-637X/771/1/20

    ADS  Article  Google Scholar 

  211. F. Moreno-Insertis, J. Martinez-Sykora, V.H. Hansteen, D. Muñoz, Small-scale magnetic flux emergence in the quiet Sun. Astrophys. J. Lett. 859(2), L26 (2018). https://doi.org/10.3847/2041-8213/aac648. 1806.00489

    ADS  Article  Google Scholar 

  212. D. Müller, O.C. St. Cyr, I. Zouganelis, H.R. Gilbert, R. Marsden, T. Nieves-Chinchilla, E. Antonucci, F. Auchère, D. Berghmans, T.S. Horbury, R.A. Howard, S. Krucker, M. Maksimovic, C.J. Owen, P. Rochus, J. Rodriguez-Pacheco, M. Romoli, S.K. Solanki, R. Bruno, M. Carlsson, A. Fludra, L. Harra, D.M. Hassler, S. Livi, P. Louarn, H. Peter, U. Schühle, L. Teriaca, J.C. del Toro Iniesta, R.F. Wimmer-Schweingruber, E. Marsch, M. Velli, A. De Groof, A. Walsh, D. Williams, The solar orbiter mission. Science overview. Astron. Astrophys. 642, A1 (2020). https://doi.org/10.1051/0004-6361/202038467. 2009.00861

    Article  Google Scholar 

  213. M.J. Murray, A.W. Hood, F. Moreno-Insertis, K. Galsgaard, V. Archontis, 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astron. Astrophys. 460, 909–923 (2006). https://doi.org/10.1051/0004-6361:20065950

    ADS  Article  Google Scholar 

  214. T. Nieves-Chinchilla, A. Vourlidas, J.C. Raymond, M.G. Linton, N. Al-haddad, N.P. Savani, A. Szabo, M.A. Hidalgo, Understanding the internal magnetic field configurations of ICMEs using more than 20 years of wind observations. Sol. Phys. 293, 25 (2018). https://doi.org/10.1007/s11207-018-1247-z

    ADS  Article  Google Scholar 

  215. A. Nindos, M.D. Andrews, The association of big flares and coronal mass ejections: What is the role of magnetic helicity? Astrophys. J. Lett. 616, L175–L178 (2004). https://doi.org/10.1086/426861

    ADS  Article  Google Scholar 

  216. A. Nindos, S. Patsourakos, T. Wiegelmann, On the role of the background overlying magnetic field in solar eruptions. Astrophys. J. Lett. 748, L6 (2012). https://doi.org/10.1088/2041-8205/748/1/L6

    ADS  Article  Google Scholar 

  217. A. Nindos, S. Patsourakos, A. Vourlidas, C. Tagikas, How common are hot magnetic flux ropes in the low solar corona? A statistical study of EUV observations. Astrophys. J. 808, 117 (2015). https://doi.org/10.1088/0004-637X/808/2/117. 1507.03766

    ADS  Article  Google Scholar 

  218. D. Nóbrega-Siverio, F. Moreno-Insertis, J. Martínez-Sykora, On the importance of the nonequilibrium ionization of Si IV and O IV and the line of sight in solar surges. Astrophys. J. 858(1), 8 (2018). https://doi.org/10.3847/1538-4357/aab9b9. 1803.10251

    ADS  Article  Google Scholar 

  219. Å. Nordlund, R.F. Stein, M. Asplund, Solar surface convection. Living Rev. Sol. Phys. 6(1), 2 (2009). https://doi.org/10.12942/lrsp-2009-2

    ADS  Article  Google Scholar 

  220. T.J. Okamoto, S. Tsuneta, T.E. Berger, K. Ichimoto, Y. Katsukawa, B.W. Lites, S. Nagata, K. Shibata, T. Shimizu, R.A. Shine, Y. Suematsu, T.D. Tarbell, A.M. Title, Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318(5856), 1577 (2007). https://doi.org/10.1126/scien.1145447. 0801.1958

    ADS  Article  Google Scholar 

  221. T.J. Okamoto, S. Tsuneta, B.W. Lites, M. Kubo, T. Yokoyama, T.E. Berger, K. Ichimoto, Y. Katsukawa, S. Nagata, K. Shibata, T. Shimizu, R.A. Shine, Y. Suematsu, T.D. Tarbell, A.M. Title, Emergence of a helical flux rope under an active region prominence. Astrophys. J. Lett. 673, L215 (2008). https://doi.org/10.1086/528792. 0801.1956

    ADS  Article  Google Scholar 

  222. Y. Ouyang, Y.H. Zhou, P.F. Chen, C. Fang, Chirality and magnetic configurations of solar filaments. Astrophys. J. 835, 94 (2017). https://doi.org/10.3847/1538-4357/835/1/94. 1612.01054

    ADS  Article  Google Scholar 

  223. E. Pariat, G. Aulanier, B. Schmieder, M.K. Georgoulis, D.M. Rust, P.N. Bernasconi, Resistive emergence of undulatory flux tubes. Astrophys. J. 614(2), 1099–1112 (2004). https://doi.org/10.1086/423891

    ADS  Article  Google Scholar 

  224. E. Pariat, J.E. Leake, G. Valori, M.G. Linton, F.P. Zuccarello, K. Dalmasse, Relative magnetic helicity as a diagnostic of solar eruptivity. Astron. Astrophys. 601, A125 (2017). https://doi.org/10.1051/0004-6361/201630043. 1703.10562

    ADS  Article  Google Scholar 

  225. S.H. Park, J. Lee, G.S. Choe, J. Chae, H. Jeong, G. Yang, J. Jing, H. Wang, The variation of relative magnetic helicity around major flares. Astrophys. J. 686, 1397–1403 (2008). https://doi.org/10.1086/591117. 1004.2856

    ADS  Article  Google Scholar 

  226. Sh. Park, J. Chae, H. Wang, Productivity of solar flares and magnetic helicity injection in active regions. Astrophys. J. 718, 43–51 (2010). https://doi.org/10.1088/0004-637X/718/1/43. 1005.3416

    ADS  Article  Google Scholar 

  227. E.N. Parker, Magnetic neutral sheets in evolving fields - Part two - Formation of the solar corona. Astrophys. J. 264, 642 (1983). https://doi.org/10.1086/160637

    ADS  Article  Google Scholar 

  228. S. Patsourakos, A. Vourlidas, B. Kliem, Toward understanding the early stages of an impulsively accelerated coronal mass ejection. SECCHI observations. Astron. Astrophys. 522, A100 (2010). https://doi.org/10.1051/0004-6361/200913599. 1008.1171

    ADS  Article  Google Scholar 

  229. S. Patsourakos, A. Vourlidas, G. Stenborg, Direct evidence for a fast coronal mass ejection driven by the prior formation and subsequent destabilization of a magnetic flux rope. Astrophys. J. 764, 125 (2013). https://doi.org/10.1088/0004-637X/764/2/125. 1211.7211

    ADS  Article  Google Scholar 

  230. A.A. Pevtsov, Active-region filaments and X-ray sigmoids. Sol. Phys. 207, 111–123 (2002). https://doi.org/10.1023/A:1015589802234

    ADS  Article  Google Scholar 

  231. A.A. Pevtsov, R.C. Canfield, T.R. Metcalf, Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. Lett. 440, L109 (1995). https://doi.org/10.1086/187773

    ADS  Article  Google Scholar 

  232. A.A. Pevtsov, M.A. Berger, A. Nindos, A.A. Norton, L. van Driel-Gesztelyi, Magnetic helicity, tilt, and twist. Space Sci. Rev. 186, 285–324 (2014). https://doi.org/10.1007/s11214-014-0082-2

    ADS  Article  Google Scholar 

  233. D.J. Price, J. Pomoell, E. Lumme, E.K.J. Kilpua, Time-dependent data-driven coronal simulations of AR 12673 from emergence to eruption. Astron. Astrophys. 628, A114 (2019). https://doi.org/10.1051/0004-6361/201935535

    ADS  Article  Google Scholar 

  234. E. Priest, Magnetohydrodynamics of the Sun (Cambridge University Press, Cambridge, 2014). https://doi.org/10.1017/CBO9781139020732

    Book  Google Scholar 

  235. E.R. Priest, D.W. Longcope, The creation of twist by reconnection of flux tubes. Sol. Phys. 295(3), 48 (2020). https://doi.org/10.1007/s11207-020-01608-0

    ADS  Article  Google Scholar 

  236. E.R. Priest, A.W. Hood, U. Anzer, A twisted flux-tube model for solar prominences. I - General properties. Astrophys. J. 344, 1010–1025 (1989). https://doi.org/10.1086/167868

    ADS  Article  Google Scholar 

  237. E.R. Priest, D.W. Longcope, M. Janvier, Evolution of magnetic helicity during eruptive flares and coronal mass ejections. Sol. Phys. 291, 2017–2036 (2016). https://doi.org/10.1007/s11207-016-0962-6. 1607.03874

    ADS  Article  Google Scholar 

  238. L.A. Rachmeler, S.E. Gibson, J.B. Dove, C.R. DeVore, Y. Fan, Polarimetric properties of flux ropes and sheared arcades in coronal prominence cavities. Sol. Phys. 288, 617–636 (2013). https://doi.org/10.1007/s11207-013-0325-5. 1304.7594

    ADS  Article  Google Scholar 

  239. M. Rempel, M.C.M. Cheung, Numerical simulations of active region scale flux emergence: From spot formation to decay. Astrophys. J. 785(2), 90 (2014). https://doi.org/10.1088/0004-637X/785/2/90. 1402.4703

    ADS  Article  Google Scholar 

  240. G. Roumeliotis, P.A. Sturrock, S.K. Antiochos, A numerical study of the sudden eruption of sheared magnetic fields. Astrophys. J. 423, 847 (1994). https://doi.org/10.1086/173862

    ADS  Article  Google Scholar 

  241. D.M. Rust, B.J. LaBonte, Observational evidence of the kink instability in solar filament eruptions and sigmoids. Astrophys. J. Lett. 622, L69–L72 (2005). https://doi.org/10.1086/429379

    ADS  Article  Google Scholar 

  242. A. Savcheva, A. van Ballegooijen, Nonlinear force-free modeling of a long-lasting coronal sigmoid. Astrophys. J. 703, 1766–1777 (2009). https://doi.org/10.1088/0004-637X/703/2/1766

    ADS  Article  Google Scholar 

  243. A.S. Savcheva, L.M. Green, A.A. van Ballegooijen, E.E. DeLuca, Photospheric flux cancellation and the build-up of sigmoidal flux ropes on the Sun. Astrophys. J. 759, 105 (2012). https://doi.org/10.1088/0004-637X/759/2/105

    ADS  Article  Google Scholar 

  244. A.S. Savcheva, S.C. McKillop, P.I. McCauley, E.M. Hanson, E.E. DeLuca, A new sigmoid catalog from hinode and the solar dynamics observatory: Statistical properties and evolutionary histories. Sol. Phys. 289, 3297–3311 (2014). https://doi.org/10.1007/s11207-013-0469-3

    ADS  Article  Google Scholar 

  245. B. Schmieder, M.A. Raadu, J.E. Wiik, Fine structure of solar filaments. II - Dynamics of threads and footpoints. Astron. Astrophys. 252, 353–365 (1991)

    ADS  Google Scholar 

  246. B. Schmieder, P. Démoulin, G. Aulanier, L. Golub, Differential magnetic field shear in an active region. Astrophys. J. 467, 881 (1996). https://doi.org/10.1086/177662

    ADS  Article  Google Scholar 

  247. B. Schmieder, M. Zapiór, A. López Ariste, P. Levens, N. Labrosse, R. Gravet, Reconstruction of a helical prominence in 3D from IRIS spectra and images. Astron. Astrophys. 606, A30 (2017). https://doi.org/10.1051/0004-6361/201730839. 1706.08078

    ADS  Article  Google Scholar 

  248. C.J. Schrijver, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117–L120 (2007). https://doi.org/10.1086/511857

    ADS  Article  Google Scholar 

  249. C.J. Schrijver, A.M. Title, T.E. Berger, L. Fletcher, N.E. Hurlburt, R.W. Nightingale, R.A. Shine, T.D. Tarbell, J. Wolfson, L. Golub, J.A. Bookbinder, E.E. Deluca, R.A. McMullen, H.P. Warren, C.C. Kankelborg, B.N. Handy, B. de Pontieu, A new view of the solar outer atmosphere by the transition region and coronal explorer. Sol. Phys. 187, 261–302 (1999). https://doi.org/10.1023/A:1005194519642

    ADS  Article  Google Scholar 

  250. C.J. Schrijver, M.L. DeRosa, T. Metcalf, G. Barnes, B. Lites, T. Tarbell, J. McTiernan, G. Valori, T. Wiegelmann, M.S. Wheatland, T. Amari, G. Aulanier, P. Démoulin, M. Fuhrmann, K. Kusano, S. Régnier, J.K. Thalmann, Nonlinear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection. Astrophys. J. 675, 1637–1644 (2008). https://doi.org/10.1086/527413. 0712.0023

    ADS  Article  Google Scholar 

  251. N. Seehafer, Electric current helicity in the solar atmosphere. Sol. Phys. 125(2), 219–232 (1990). https://doi.org/10.1007/BF00158402

    ADS  Article  Google Scholar 

  252. R.F. Stein, Solar surface magneto-convection. Living Rev. Sol. Phys. 9(1), 4 (2012). https://doi.org/10.12942/lrsp-2012-4

    ADS  Article  Google Scholar 

  253. R.F. Stein, Å. Nordlund, Solar small-scale magnetoconvection. Astrophys. J. 642, 1246–1255 (2006). https://doi.org/10.1086/501445

    ADS  Article  Google Scholar 

  254. R.F. Stein, Å. Nordlund, On the formation of active regions. Astrophys. J. Lett. 753, L13 (2012). https://doi.org/10.1088/2041-8205/753/1/L13

    ADS  Article  Google Scholar 

  255. R.F. Stein, A. Lagerfjärd, Å. Nordlund, D. Georgobiani, Solar flux emergence simulations. Sol. Phys. 268, 271–282 (2011). https://doi.org/10.1007/s11207-010-9510-y

    ADS  Article  Google Scholar 

  256. A.C. Sterling, R.L. Moore, EIT crinkles as evidence for the breakout model of solar eruptions. Astrophys. J. 560, 1045–1057 (2001a). https://doi.org/10.1086/322241

    ADS  Article  Google Scholar 

  257. A.C. Sterling, R.L. Moore, Internal and external reconnection in a series of homologous solar flares. J. Geophys. Res. 106, 25227–25238 (2001b). https://doi.org/10.1029/2000JA004001

    ADS  Article  Google Scholar 

  258. A.C. Sterling, R.L. Moore, Evidence for gradual external reconnection before explosive eruption of a solar filament. Astrophys. J. 602, 1024–1036 (2004). https://doi.org/10.1086/379763

    ADS  Article  Google Scholar 

  259. A.C. Sterling, R.L. Moore, B.J. Thompson, EIT and SXT observations of a quiet-region filament ejection: First eruption, then reconnection. Astrophys. J. Lett. 561, L219–L222 (2001). https://doi.org/10.1086/324765

    ADS  Article  Google Scholar 

  260. Z. Sturrock, A.W. Hood, Sunspot rotation. II. Effects of varying the field strength and twist of an emerging flux tube. Astron. Astrophys. 593, A63 (2016). https://doi.org/10.1051/0004-6361/201628360

    ADS  Article  Google Scholar 

  261. Z. Sturrock, A.W. Hood, V. Archontis, C.M. McNeill, Sunspot rotation. I. A consequence of flux emergence. Astron. Astrophys. 582, A76 (2015). https://doi.org/10.1051/0004-6361/201526521

    ADS  Article  Google Scholar 

  262. Y. Su, A. van Ballegooijen, B. Schmieder, A. Berlicki, Y. Guo, L. Golub, G. Huang, Flare energy build-up in a decaying active region near a coronal hole. Astrophys. J. 704, 341–353 (2009). https://doi.org/10.1088/0004-637X/704/1/341

    ADS  Article  Google Scholar 

  263. Y. Su, V. Surges, A. van Ballegooijen, E. DeLuca, L. Golub, Observations and magnetic field modeling of the flare/coronal mass ejection event on 2010 April 8. Astrophys. J. 734(1), 53 (2011). https://doi.org/10.1088/0004-637X/734/1/53

    ADS  Article  Google Scholar 

  264. J.J. Sudol, J.W. Harvey, Longitudinal magnetic field changes accompanying solar flares. Astrophys. J. 635, 647–658 (2005). https://doi.org/10.1086/497361. 2005ApJ...635..647S

    ADS  Article  Google Scholar 

  265. X. Sun, J.T. Hoeksema, Y. Liu, T. Wiegelmann, K. Hayashi, Q. Chen, J. Thalmann, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77 (2012). https://doi.org/10.1088/0004-637X/748/2/77. 1201.3404

    ADS  Article  Google Scholar 

  266. P. Syntelis, V. Archontis, C. Gontikakis, K. Tsinganos, Emergence of non-twisted magnetic fields in the Sun: Jets and atmospheric response. Astron. Astrophys. 584, A10 (2015). https://doi.org/10.1051/0004-6361/201423781

    ADS  Article  Google Scholar 

  267. P. Syntelis, V. Archontis, K. Tsinganos, Recurrent CME-like eruptions in emerging flux regions. I. On the mechanism of eruptions. Astrophys. J. 850, 95 (2017). https://doi.org/10.3847/1538-4357/aa9612

    ADS  Article  Google Scholar 

  268. P. Syntelis, V. Archontis, A. Hood, Successful and failed flux tube emergence in the solar interior. Astrophys. J. 874, 15 (2019a). https://doi.org/10.3847/1538-4357/ab0959. 1902.07969

    ADS  Article  Google Scholar 

  269. P. Syntelis, V. Archontis, K. Tsinganos, Recurrent CME-like eruptions in emerging flux regions. II. Scaling of energy and collision of successive eruptions. Astrophys. J. 876(1), 61 (2019b). https://doi.org/10.3847/1538-4357/ab16d2. 1904.03923

    ADS  Article  Google Scholar 

  270. P. Syntelis, E.J. Lee, C.W. Fairbairn, V. Archontis, A.W. Hood, Eruptions and flaring activity in emerging quadrupolar regions. Astron. Astrophys. 630, A134 (2019c). https://doi.org/10.1051/0004-6361/201936246. 1909.01446

    ADS  Article  Google Scholar 

  271. S. Takasao, Y. Fan, M.C.M. Cheung, K. Shibata, Numerical study on the emergence of kinked flux tube for understanding of possible origin of \(\delta \)-spot regions. Astrophys. J. 813(2), 112 (2015). https://doi.org/10.1088/0004-637X/813/2/112. 1511.02863

    ADS  Article  Google Scholar 

  272. K. Takizawa, R. Kitai, Y. Zhang, Prominent photospheric downflows on magnetic neutral line in a delta-type sunspot. Sol. Phys. 281, 599–609 (2012). https://doi.org/10.1007/s11207-012-0116-4

    ADS  Article  Google Scholar 

  273. K. Tanaka, Studies on a very flare-active delta group - Peculiar delta SPOT evolution and inferred subsurface magnetic rope structure. Sol. Phys. 136, 133–149 (1991). https://doi.org/10.1007/BF00151700

    ADS  Article  Google Scholar 

  274. M. Temmer, A.M. Veronig, E.P. Kontar, S. Krucker, B. Vršnak, Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys. J. 712(2), 1410–1420 (2010). https://doi.org/10.1088/0004-637X/712/2/1410. 1002.3080

    ADS  Article  Google Scholar 

  275. V.S. Titov, E.R. Priest, P. Démoulin, Conditions for the appearance of “bald patches” at the solar surface. Astron. Astrophys. 276, 564 (1993)

    ADS  Google Scholar 

  276. V.S. Titov, G. Hornig, P. Démoulin, Theory of magnetic connectivity in the solar corona. J. Geophys. Res. 107, 1164 (2002)

    Google Scholar 

  277. V.S. Titov, T. Török, Z. Mikic, J.A. Linker, A method for embedding circular force-free flux ropes in potential magnetic fields. Astrophys. J. 790(2), 163 (2014). https://doi.org/10.1088/0004-637X/790/2/163

    ADS  Article  Google Scholar 

  278. V.S. Titov, Z. Mikić, T. Török, J.A. Linker, O. Panasenco, 2010 August 1-2 sympathetic eruptions. II. Magnetic topology of the MHD background field. Astrophys. J. 845, 141 (2017). https://doi.org/10.3847/1538-4357/aa81ce. 1707.07773

    ADS  Article  Google Scholar 

  279. V.S. Titov, C. Downs, Z. Mikić, T. Török, J.A. Linker, R.M. Caplan, Regularized biot-savart laws for modeling magnetic flux ropes. Astrophys. J. Lett. 852, L21 (2018). https://doi.org/10.3847/2041-8213/aaa3da. 1712.06708

    ADS  Article  Google Scholar 

  280. S. Tomczyk, E. Landi, J.T. Burkepile, R. Casini, E.E. DeLuca, Y. Fan, S.E. Gibson, H. Lin, S.W. McIntosh, S.C. Solomon, G. Toma, A.G. Wijn, J. Zhang, Scientific objectives and capabilities of the coronal solar magnetism observatory. J. Geophys. Res. Space Phys. 121, 7470–7487 (2016). https://doi.org/10.1002/2016JA022871

    ADS  Article  Google Scholar 

  281. S. Toriumi, Observations and modeling of the solar flux emergence. Publ. Astron. Soc. Jpn. 66, S6 (2014). https://doi.org/10.1093/pasj/psu100

    ADS  Article  Google Scholar 

  282. S. Toriumi, H. Hotta, Spontaneous generation of \(\delta \)-sunspots in convective magnetohydrodynamic simulation of magnetic flux emergence. Astrophys. J. Lett. 886(1), L21 (2019). https://doi.org/10.3847/2041-8213/ab55e7. 1911.03909

    ADS  Article  Google Scholar 

  283. S. Toriumi, S. Takasao, Numerical simulations of flare-productive active regions: \(\delta \)-sunspots, sheared polarity inversion lines, energy storage, and predictions. Astrophys. J. 850, 39 (2017). https://doi.org/10.3847/1538-4357/aa95c2

    ADS  Article  Google Scholar 

  284. S. Toriumi, H. Wang, Flare-productive active regions. Living Rev. Sol. Phys. 16(1), 3 (2019). https://doi.org/10.1007/s41116-019-0019-7. 1904.12027

    ADS  Article  Google Scholar 

  285. S. Toriumi, T. Yokoyama, Two-step emergence of the magnetic flux sheet from the solar convection zone. Astrophys. J. 714, 505–516 (2010). https://doi.org/10.1088/0004-637X/714/1/505

    ADS  Article  Google Scholar 

  286. S. Toriumi, Y. Iida, K. Kusano, Y. Bamba, S. Imada, Formation of a flare-productive active region: Observation and numerical simulation of NOAA AR 11158. Sol. Phys. 289, 3351–3369 (2014). https://doi.org/10.1007/s11207-014-0502-1. 1403.4029

    ADS  Article  Google Scholar 

  287. T. Török, B. Kliem, The evolution of twisting coronal magnetic flux tubes. Astron. Astrophys. 406, 1043–1059 (2003). https://doi.org/10.1051/0004-6361:20030692

    ADS  Article  Google Scholar 

  288. T. Török, B. Kliem, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97–L100 (2005). https://doi.org/10.1086/462412. arXiv:astro-ph/0507662

    ADS  Article  Google Scholar 

  289. T. Török, B. Kliem, Numerical simulations of fast and slow coronal mass ejections. Astron. Nachr. 328, 743 (2007). https://doi.org/10.1002/asna.200710795. 0705.2100

    ADS  Article  Google Scholar 

  290. T. Török, B. Kliem, V.S. Titov, Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys. 413, L27–L30 (2004). https://doi.org/10.1051/0004-6361:20031691. astro-ph/0311198

    ADS  Article  MATH  Google Scholar 

  291. T. Török, M.A. Berger, B. Kliem, The writhe of helical structures in the solar corona. Astron. Astrophys. 516, A49 (2010). https://doi.org/10.1051/0004-6361/200913578. 1004.3918

    ADS  Article  Google Scholar 

  292. T. Török, B. Kliem, M.A. Berger, M.G. Linton, P. Démoulin, L. van Driel-Gesztelyi, The evolution of writhe in kink-unstable flux ropes and erupting filaments. Plasma Phys. Control. Fusion 56(6), 064012 (2014a). https://doi.org/10.1088/0741-3335/56/6/064012. 1403.1565

    ADS  Article  Google Scholar 

  293. T. Török, J.E. Leake, V.S. Titov, V. Archontis, Z. Mikić, M.G. Linton, K. Dalmasse, G. Aulanier, B. Kliem, Distribution of electric currents in solar active regions. Astrophys. J. Lett. 782, L10 (2014b). https://doi.org/10.1088/2041-8205/782/1/L10. 1401.2931

    ADS  Article  Google Scholar 

  294. T. Török, C. Downs, J.A. Linker, R. Lionello, V.S. Titov, Z. Mikić, P. Riley, R.M. Caplan, J. Wijaya, Sun-to-Earth MHD simulation of the 2000 July 14 Bastille day eruption. Astrophys. J. 856, 75 (2018a). https://doi.org/10.3847/1538-4357/aab36d. 1801.05903

    ADS  Article  Google Scholar 

  295. T. Török, J.E. Leake, V.S. Titov, X. Sun, M. Linton, Z. Mikic, R. Lionello, R.L. Moore, A.C. Sterling, Conjoined flux ropes: A new mechanism for filament-channel formation at external polarity inversion lines, in AGU Fall Meeting Abstracts, vol. 2018 (2018b), pp. SH12A–04

    Google Scholar 

  296. J. Tschernitz, A.M. Veronig, J.K. Thalmann, J. Hinterreiter, W. Pötzi, Reconnection fluxes in eruptive and confined flares and implications for superflares on the Sun. Astrophys. J. 853(1), 41 (2018). https://doi.org/10.3847/1538-4357/aaa199. 1712.04701

    ADS  Article  Google Scholar 

  297. K. Tziotziou, M.K. Georgoulis, N.E. Raouafi, The magnetic energy-helicity diagram of solar active regions. Astrophys. J. Lett. 759, L4 (2012). https://doi.org/10.1088/2041-8205/759/1/L4. 1209.5612

    ADS  Article  Google Scholar 

  298. K. Tziotziou, M.K. Georgoulis, Y. Liu, Interpreting eruptive behavior in NOAA AR 11158 via the region’s magnetic energy and relative-helicity budgets. Astrophys. J. 772, 115 (2013). https://doi.org/10.1088/0004-637X/772/2/115. 1306.2135

    ADS  Article  Google Scholar 

  299. A.A. van Ballegooijen, Observations and modeling of a filament on the Sun. Astrophys. J. 612, 519–529 (2004). https://doi.org/10.1086/422512

    ADS  Article  Google Scholar 

  300. A.A. van Ballegooijen, P.C.H. Martens, Formation and eruption of solar prominences. Astrophys. J. 343, 971–984 (1989). https://doi.org/10.1086/167766

    ADS  Article  Google Scholar 

  301. A.A. van Ballegooijen, E.R. Priest, D.H. Mackay, Mean field model for the formation of filament channels on the Sun. Astrophys. J. 539, 983–994 (2000). https://doi.org/10.1086/309265

    ADS  Article  Google Scholar 

  302. L. van Driel-Gesztelyi, L.M. Green, Evolution of active regions. Living Rev. Sol. Phys. 12(1), 1 (2015). https://doi.org/10.1007/lrsp-2015-1

    ADS  Article  Google Scholar 

  303. L. van Driel-Gesztelyi, J.M. Malherbe, P. Démoulin, Emergence of a U-loop - Sub-photospheric link between solar active regions. Astron. Astrophys. 364, 845–852 (2000)

    ADS  Google Scholar 

  304. S. Vargas Domínguez, D. MacTaggart, L. Green, L. van Driel-Gesztelyi, A.W. Hood, On signatures of twisted magnetic flux tube emergence. Sol. Phys. 278, 33–45 (2012). https://doi.org/10.1007/s11207-011-9789-3. 1105.0758

    ADS  Article  Google Scholar 

  305. A.M. Veronig, W. Polanec, Magnetic reconnection rates and energy release in a confined X-class flare. Sol. Phys. 290, 2923–2942 (2015). https://doi.org/10.1007/s11207-015-0789-6. 1509.07089

    ADS  Article  Google Scholar 

  306. A.M. Veronig, T. Podladchikova, K. Dissauer, M. Temmer, D.B. Seaton, D. Long, J. Guo, B. Vršnak, L. Harra, B. Kliem, Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection. Astrophys. J. 868, 107 (2018). https://doi.org/10.3847/1538-4357/aaeac5. 1810.09320

    ADS  Article  Google Scholar 

  307. A. Vourlidas, The flux rope nature of coronal mass ejections. Plasma Phys. Control. Fusion 064, 001 (2014). https://doi.org/10.1088/0741-3335/56/6/064001

    Article  Google Scholar 

  308. A. Vourlidas, Mission to the Sun-Earth l5 Lagrangian point: An optimal platform for space weather research. Space Weather 13, 197–201 (2015). https://doi.org/10.1002/2015SW001173

    ADS  Article  Google Scholar 

  309. A. Vourlidas, R.A. Howard, J.S. Morrill, S. Munz, Analysis of lasco observations of streamer blowout events, in Solar-Terrestrial Magnetic Activity and Space Environment, vol. 14, ed. by H. Wang, R. Xu (2002), p. 201

    Google Scholar 

  310. A. Vourlidas, B. Sanchez Andrade-Nuño, E. Landi, S. Patsourakos, L. Teriaca, U. Schühle, C.M. Korendyke, I. Nestoras, The structure and dynamics of the upper chromosphere and lower transition region as revealed by the subarcsecond VAULT observations. Sol. Phys. 261(1), 53–75 (2010). https://doi.org/10.1007/s11207-009-9475-x. 0912.2272

    ADS  Article  Google Scholar 

  311. A. Vourlidas, B.J. Lynch, R.A. Howard, Y. Li, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Sol. Phys. 284, 179–201 (2013). https://doi.org/10.1007/s11207-012-0084-8. 1207.1599

    ADS  Article  Google Scholar 

  312. A. Vourlidas, L.A. Balmaceda, G. Stenborg, A. Dal Lago, Multi-viewpoint coronal mass ejection catalog based on STEREO COR2 observations. Astrophys. J. 838, 141 (2017). https://doi.org/10.3847/1538-4357/aa67f0

    ADS  Article  Google Scholar 

  313. A. Vourlidas, S. Patsourakos, N.P. Savani, Predicting the geoeffective properties of coronal mass ejections: Current status, open issues and path forward. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 377(2148), 20180096 (2019). https://doi.org/10.1098/rsta.2018.0096

    ADS  Article  Google Scholar 

  314. B. Vrsnak, Dynamics and internal structure of an eruptive prominence. Sol. Phys. 127(1), 129–137 (1990). https://doi.org/10.1007/BF00158518

    ADS  Article  Google Scholar 

  315. Y.M. Wang, K. Muglach, On the formation of filament channels. Astrophys. J. 666, 1284–1295 (2007). https://doi.org/10.1086/520623

    ADS  Article  Google Scholar 

  316. Y.M. Wang, K. Muglach, Transient brightenings associated with flux cancellation along a filament channel. Astrophys. J. 763, 97 (2013). https://doi.org/10.1088/0004-637X/763/2/97

    ADS  Article  Google Scholar 

  317. Y.M. Wang, G. Stenborg, Spinning motions in coronal cavities. Astrophys. J. Lett. 719, L181–L184 (2010). https://doi.org/10.1088/2041-8205/719/2/L181

    ADS  Article  Google Scholar 

  318. H. Wang, W. Cao, C. Liu, Y. Xu, R. Liu, Z. Zeng, J. Chae, H. Ji, Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope. Nat. Commun. 6, 7008 (2015). https://doi.org/10.1038/ncomms8008

    ADS  Article  Google Scholar 

  319. T. Wiegelmann, Nonlinear force-free modeling of the solar coronal magnetic field. J. Geophys. Res. Space Phys. 113, A03S02 (2008). https://doi.org/10.1029/2007JA012432. 0801.2902

    ADS  Article  Google Scholar 

  320. T. Wiegelmann, J.K. Thalmann, S.K. Solanki, The magnetic field in the solar atmosphere. Astron. Astrophys. Rev. 22, 78 (2014). https://doi.org/10.1007/s00159-014-0078-7. 1410.4214

    ADS  Article  Google Scholar 

  321. M.M. Woods, S. Inoue, L.K. Harra, S.A. Matthews, K. Kusano, Serial flaring in an active region: Exploring why only one flare is eruptive. Astrophys. J. 890(1), 84 (2020). https://doi.org/10.3847/1538-4357/ab6bc8

    ADS  Article  Google Scholar 

  322. A.N. Wright, Partitioning of magnetic helicity in reconnected flux tubes. Astrophys. J. 878(2), 102 (2019). https://doi.org/10.3847/1538-4357/ab2120

    ADS  Article  Google Scholar 

  323. S.T. Wu, J.J. Bao, C.H. An, E. Tandberg-Hanssen, The role of condensation and heat conduction in the formation of prominences - A magnetohydrodynamic simulation. Sol. Phys. 125(2), 277–293 (1990). https://doi.org/10.1007/BF00158407

    ADS  Article  Google Scholar 

  324. P.F. Wyper, D.I. Pontin, Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets. Phys. Plasmas 21(10), 102102 (2014a). https://doi.org/10.1063/1.4896060. 1406.6120

    ADS  Article  Google Scholar 

  325. P.F. Wyper, D.I. Pontin, Non-linear tearing of 3D null point current sheets. Phys. Plasmas 21(8), 082114 (2014b). https://doi.org/10.1063/1.4893149. 1406.1622

    ADS  Article  Google Scholar 

  326. C. Xia, R. Keppens, Formation and plasma circulation of solar prominences. Astrophys. J. 823, 22 (2016). https://doi.org/10.3847/0004-637X/823/1/22. 1603.05397

    ADS  Article  Google Scholar 

  327. C. Xia, R. Keppens, P. Antolin, O. Porth, Simulating the in situ condensation process of solar prominences. Astrophys. J. Lett. 792, L38 (2014). https://doi.org/10.1088/2041-8205/792/2/L38. 1408.4249

    ADS  Article  Google Scholar 

  328. Z. Xu, A. Lagg, S. Solanki, Y. Liu, Magnetic fields of an active region filament from full Stokes analysis of Si I 1082.7 nm and He I 1083.0 nm. Astrophys. J. 749, 138 (2012). https://doi.org/10.1088/0004-637X/749/2/138. 1202.4562

    ADS  Article  Google Scholar 

  329. Z. Xue, X. Yan, X. Cheng, L. Yang, Y. Su, B. Kliem, J. Zhang, Z. Liu, Y. Bi, Y. Xiang, K. Yang, L. Zhao, Observing the release of twist by magnetic reconnection in a solar filament eruption. Nat. Commun. 7, 11837 (2016). https://doi.org/10.1038/ncomms11837

    ADS  Article  Google Scholar 

  330. W.H. Yang, P.A. Sturrock, S.K. Antiochos, Force-free magnetic fields - The magneto-frictional method. Astrophys. J. 309, 383–391 (1986). https://doi.org/10.1086/164610

    ADS  Article  Google Scholar 

  331. S. Yang, J. Zhang, J.M. Borrero, Dipolar evolution in a coronal hole region. Astrophys. J. 703, 1012–1020 (2009). https://doi.org/10.1088/0004-637X/703/1/1012. 0908.0578

    ADS  Article  Google Scholar 

  332. S.L. Yardley, L.M. Green, D.R. Williams, L. van Driel-Gesztelyi, G. Valori, S. Dacie, Flux cancellation and the evolution of the eruptive filament of 2011 June 7. Astrophys. J. 827, 151 (2016). https://doi.org/10.3847/0004-637X/827/2/151. 1606.08264

    ADS  Article  Google Scholar 

  333. S.L. Yardley, L.M. Green, L. van Driel-Gesztelyi, D.R. Williams, D.H. Mackay, The role of flux cancellation in eruptions from bipolar ARs. Astrophys. J. 866, 8 (2018a). https://doi.org/10.3847/1538-4357/aade4a. 1808.10635

    ADS  Article  Google Scholar 

  334. S.L. Yardley, D.H. Mackay, L.M. Green, Simulating the coronal evolution of AR 11437 using SDO/HMI magnetograms. Astrophys. J. 852(2), 82 (2018b). https://doi.org/10.3847/1538-4357/aa9f20. 1712.00396

    ADS  Article  Google Scholar 

  335. A.R. Yeates, D.H. Mackay, Initiation of coronal mass ejections in a global evolution model. Astrophys. J. 699(2), 1024–1037 (2009). https://doi.org/10.1088/0004-637X/699/2/1024. 0904.4419

    ADS  Article  Google Scholar 

  336. A.R. Yeates, D.H. Mackay, Chirality of high-latitude filaments over solar cycle 23. Astrophys. J. Lett. 753, L34 (2012). https://doi.org/10.1088/2041-8205/753/2/L34. 1206.2327

    ADS  Article  Google Scholar 

  337. A.R. Yeates, D.H. Mackay, A.A. van Ballegooijen, Evolution and distribution of current helicity in full-Sun simulations. Astrophys. J. Lett. 680, L165 (2008). https://doi.org/10.1086/590057. 0805.1883

    ADS  Article  Google Scholar 

  338. L. Yelles Chaouche, C. Kuckein, V. Martínez Pillet, F. Moreno-Insertis, The three-dimensional structure of an active region filament as extrapolated from photospheric and chromospheric observations. Astrophys. J. 748, 23 (2012). https://doi.org/10.1088/0004-637X/748/1/23. 1201.2456

    ADS  Article  Google Scholar 

  339. J. Zhang, K.P. Dere, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649(2), 1100–1109 (2006). https://doi.org/10.1086/506903

    ADS  Article  Google Scholar 

  340. J. Zhang, K.P. Dere, R.A. Howard, A. Vourlidas, A study of the kinematic evolution of coronal mass ejections. Astrophys. J. 604(1), 420–432 (2004). https://doi.org/10.1086/381725

    ADS  Article  Google Scholar 

  341. J. Zhang, X. Cheng, M.D. Ding, Observation of an evolving magnetic flux rope before and during a solar eruption. Nat. Commun. 3, 747 (2012). https://doi.org/10.1038/ncomms1753. 1203.4859

    ADS  Article  Google Scholar 

  342. H. Zhang, A. Brandenburg, D.D. Sokoloff, Magnetic helicity and energy spectra of a solar active region. Astrophys. J. Lett. 784, L45 (2014). https://doi.org/10.1088/2041-8205/784/2/L45. 1311.2432

    ADS  Article  Google Scholar 

  343. H. Zhang, A. Brandenburg, D.D. Sokoloff, Evolution of magnetic helicity and energy spectra of solar active regions. Astrophys. J. 819, 146 (2016). https://doi.org/10.3847/0004-637X/819/2/146. 1503.00846

    ADS  Article  Google Scholar 

  344. L. Zhao, C.R. DeVore, S.K. Antiochos, T.H. Zurbuchen, Numerical simulations of helicity condensation in the solar corona. Astrophys. J. 805, 61 (2015). https://doi.org/10.1088/0004-637X/805/1/61

    ADS  Article  Google Scholar 

  345. J. Zhao, S.A. Gilchrist, G. Aulanier, B. Schmieder, E. Pariat, H. Li, Hooked flare ribbons and flux-rope-related QSL footprints. Astrophys. J. 823, 62 (2016). https://doi.org/10.3847/0004-637X/823/1/62. 1603.07563

    ADS  Article  Google Scholar 

  346. Z. Zhou, J. Zhang, Y. Wang, R. Liu, G. Chintzoglou, Toward understanding the 3D structure and evolution of magnetic flux ropes in an extremely long duration eruptive flare. Astrophys. J. 851, 133 (2017). https://doi.org/10.3847/1538-4357/aa9bd9

    ADS  Article  Google Scholar 

  347. Y.H. Zhou, C. Xia, R. Keppens, C. Fang, P.F. Chen, Three-dimensional MHD simulations of solar prominence oscillations in a magnetic flux rope. Astrophys. J. 856(2), 179 (2018). https://doi.org/10.3847/1538-4357/aab614. 1803.03385

    ADS  Article  Google Scholar 

  348. X. Zhu, H. Wang, Z. Du, H. He, Forced field extrapolation of the magnetic structure of the H\(\alpha \) fibrils in the solar chromosphere. Astrophys. J. 826(1), 51 (2016). https://doi.org/10.3847/0004-637X/826/1/51. 1604.00455

    ADS  Article  Google Scholar 

  349. C. Zhu, J. Qiu, P. Liewer, A. Vourlidas, M. Spiegel, Q. Hu, How does magnetic reconnection drive the early-stage evolution of coronal mass ejections? Astrophys. J. 893(2), 141 (2020). https://doi.org/10.3847/1538-4357/ab838a. 2003.11134

    ADS  Article  Google Scholar 

  350. H. Zirin, M.A. Liggett, Delta spots and great flares. Sol. Phys. 113, 267–281 (1987). https://doi.org/10.1007/BF00147707

    ADS  Article  Google Scholar 

  351. I. Zouganelis, A. De Groof, A.P. Walsh, D.R. Williams, D. Müller, O.C. St. Cyr, F. Auchère, D. Berghmans, A. Fludra, T.S. Horbury, R.A. Howard, S. Krucker, M. Maksimovic, C.J. Owen, J. Rodríguez-Pacheco, M. Romoli, S.K. Solanki, C. Watson, L. Sanchez, J. Lefort, P. Osuna, H.R. Gilbert, T. Nieves-Chinchilla, L. Abbo, O. Alexandrova, A. Anastasiadis, V. Andretta, E. Antonucci, T. Appourchaux, A. Aran, C.N. Arge, G. Aulanier, D. Baker, S.D. Bale, M. Battaglia, L. Bellot Rubio, A. Bemporad, M. Berthomier, K. Bocchialini, X. Bonnin, A.S. Brun, R. Bruno, E. Buchlin, J. Büchner, R. Bucik, F. Carcaboso, R. Carr, I. Carrasco-Blázquez, B. Cecconi, I. Cernuda Cangas, C.H.K. Chen, L.P. Chitta, T. Chust, K. Dalmasse, R. D’Amicis, V. Da Deppo, R. De Marco, S. Dolei, L. Dolla, T. Dudok de Wit, L. van Driel-Gesztelyi, J.P. Eastwood, F. Espinosa Lara, L. Etesi, A. Fedorov, F. Félix-Redondo, S. Fineschi, B. Fleck, D. Fontaine, N.J. Fox, A. Gandorfer, V. Génot, M.K. Georgoulis, S. Gissot, A. Giunta, L. Gizon, R. Gómez-Herrero, C. Gontikakis, G. Graham, L. Green, T. Grundy, M. Haberreiter, L.K. Harra, D.M. Hassler, J. Hirzberger, G.C. Ho, G. Hurford, D. Innes, K. Issautier, A.W. James, N. Janitzek, M. Janvier, N. Jeffrey, J. Jenkins, Y. Khotyaintsev, K.L. Klein, E.P. Kontar, I. Kontogiannis, C. Krafft, V. Krasnoselskikh, M. Kretzschmar, N. Labrosse, A. Lagg, F. Landini, B. Lavraud, I. Leon, S.T. Lepri, G.R. Lewis, P. Liewer, J. Linker, S. Livi, D.M. Long, P. Louarn, O. Malandraki, S. Maloney, V. Martinez-Pillet, M. Martinovic, A. Masson, S. Matthews, L. Matteini, N. Meyer-Vernet, K. Moraitis, R.J. Morton, S. Musset, G. Nicolaou, A. Nindos, H. O’Brien, D. Orozco Suarez, M. Owens, M. Pancrazzi, A. Papaioannou, S. Parenti, E. Pariat, S. Patsourakos, D. Perrone, H. Peter, R.F. Pinto, C. Plainaki, D. Plettemeier, S.P. Plunkett, J.M. Raines, N. Raouafi, H. Reid, A. Retino, L. Rezeau, P. Rochus, L. Rodriguez, L. Rodriguez-Garcia, M. Roth, A.P. Rouillard, F. Sahraoui, C. Sasso, J. Schou, U. Schühle, L. Sorriso-Valvo, J. Soucek, D. Spadaro, M. Stangalini, D. Stansby, M. Steller, A. Strugarek, Š. Štverák, R. Susino, D. Telloni, C. Terasa, L. Teriaca, S. Toledo-Redondo, J.C. del Toro Iniesta, G. Tsiropoula, A. Tsounis, K. Tziotziou, F. Valentini, A. Vaivads, A. Vecchio, M. Velli, C. Verbeeck, A. Verdini, D. Verscharen, N. Vilmer, A. Vourlidas, R. Wicks, R.F. Wimmer-Schweingruber, T. Wiegelmann, P.R. Young, A.N. Zhukov, The Solar Orbiter Science Activity Plan. Translating solar and heliospheric physics questions into action. Astron. Astrophys. 642, A3 (2020). https://doi.org/10.1051/0004-6361/202038445. 2009.10772

    Article  Google Scholar 

  352. F.P. Zuccarello, G. Aulanier, S.A. Gilchrist, Critical decay index at the onset of solar eruptions. Astrophys. J. 814, 126 (2015). https://doi.org/10.1088/0004-637X/814/2/126. 1510.03713

    ADS  Article  Google Scholar 

  353. F.P. Zuccarello, G. Aulanier, S.A. Gilchrist, The apparent critical decay index at the onset of solar prominence eruptions. Astrophys. J. Lett. 821(2), L23 (2016). https://doi.org/10.3847/2041-8205/821/2/L23

    ADS  Article  Google Scholar 

  354. C. Zwaan, Elements and patterns in the solar magnetic field. Annu. Rev. Astron. Astrophys. 25, 83–111 (1987). https://doi.org/10.1146/annurev.aa.25.090187.000503

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the International Space Science Institute (ISSI) in Bern Switzerland for their generous support for travel and accommodations. The authors would like to thank the two anonymous referees for their very useful comments and suggestions on the manuscript. A.V. was supported by NASA grant NNX16AH70G and the LWS program through NNX15AT42G under ROSES NNH13ZDA001N. B.K. acknowledges useful discussions with Antonia Savcheva and Nishu Karna and support by the DFG and by NASA under Grants 80NSSC17K0016, 80NSSC18K1705, 80NSSC19K0082, and 80NSSC19K0860. J.Z. is supported by NASA grant NNH17ZDA001N-HSWO2R. J.E.L. acknowledges support by the NASA Living With a Star & Solar and Heliospheric Physics programs, and the Office of Naval Research 6.1 Program and by the NRL-Hinode analysis Program; the simulations were performed under a grant of computer time from the DoD HPC program. S.L.Y. would like to acknowledge STFC for support via the Consolidated Grant SMC1/YST025 and for a PhD Studentship. T.T. was supported by NASA’s HGI and HSR programs (awards 80NSSC19K0263 and 80NSSC19K0858) and by NSF’s PREEVENTS and Solar Terrestrial programs (awards ICER-1854790 and AGS-1923365). X.C. is funded by NSFC grants 11722325, 11733003, 11790303, Jiangsu NSF grants BK20170011, and “Dengfeng B” program of Nanjing University. V.A. and P.S. acknowledge support by the ERC synergy grant “The Whole Sun”. S.P. and A.V. would like to thank L. Vlahos for suggesting to establish an ISSI team.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Patsourakos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A Suggested Approach Towards Deciphering the Pre-Eruption Configuration

Appendix: A Suggested Approach Towards Deciphering the Pre-Eruption Configuration

We suggest that vector magnetic field measurements at multiple heights spanning from the photosphere to the lower corona and multi-viewpoint hot plasma observations in the corona could advance our understanding of pre-eruptive configurations and may eventually lead to predicting their eruptions. To demonstrate the potential of such observations, we create and analyze synthetic data from an MHD flux-emergence simulation, as follows.

First, we extract data-cubes of the vector magnetic field in the lower solar atmosphere from the MHD flux-emergence simulation of Syntelis et al. (2017) (SAT17, hereafter). Note that the SAT17 simulation had a different objective. It was not meant to simulate a large-scale CME but it has all the necessary characteristics to demonstrate our approach. We select representative pre-eruptive configurations from this simulation at two consecutive times (Fig. 19). The configuration at the earlier time (top panels) consists predominantly of sheared, high-arching field lines of similar orientation, resembling a ‘2.5D-like’ SMA that has a much simpler structure than the flat 3D SMAs described in Sect. 3.1. At the later time (bottom panels), the configuration contains also twisted field lines, i.e., it has transitioned into an MFR. The central and right panels show the horizontal magnetic field, \(B_{h}\), at two different heights (corresponding roughly to the lower chromosphere and middle transition region). The orientation of \(B_{h}\) with respect to the PIL is significantly different for the two magnetic configurations. For the SMA, \(B_{h}\) points roughly along the same direction in both atmospheric layers. For the MFR, Bh is much more sheared and flips orientation across the PIL with increasing height, which suggests a transition across the center of an MFR. This suggests that mapping the orientation of Bh as a function of height in the low solar atmosphere may be a powerful approach for assessing the evolutionary stage (SMA-to-MFR transition) of pre-eruptive configurations. The height of this transition will depend on the physical parameters of a given region on the Sun. For this reason, multiple height coverage extending to coronal heights will be needed to properly capture the evolution of the system across the range of ARs and phases of solar activity. As a side benefit, the use of constraints from multiple atmospheric layers will greatly improve the quality of NLFFF (or non-force free) extrapolations and should lead to a more accurate specification of the magnetic field in the corona.

Magnetic field observations above the photosphere should also capture field changes induced by eruptions (e.g., Fleishman et al. 2020). Such changes have been notoriously difficult to detect in photospheric magnetograms (Sudol and Harvey 2005), leading to uncertainties of the amount of magnetic flux removed by CMEs. We demonstrate this by exploiting the recurrent eruption characteristic of the SAT17 simulation in Fig. 20. We see that while the photospheric magnetic flux exhibits a smooth behavior characterized by a sharp increase followed by a plateau (black line), the magnetic flux higher up undergoes several dips, each associated with an eruption (colored lines). It is, therefore, conceivable, that we could measure the flux (and by extension, the magnetic energy) that participates in an eruption by following the magnetic flux evolution above the photosphere. Constraining the energetics of eruptions with such direct measurements would greatly advance our understanding of explosive energy release and help establish the geo-effective potential of CMEs at a very early stage of the eruption process (Vourlidas et al. 2019).

Fig. 20
figure20

Temporal evolution of magnetic flux at various heights for the Syntelis et al. (2017) simulation. The snapshots employed in Figs. 19 and 21 are taken before t=50 min. The vertical dashed lines show the kinetic energy maxima inside the numerical domain indicating the four eruptions in the simulation

Finally, we calculate synthetic images resulting from LOS-integration of the squared electric current density, \(J^{2}\), (Fig. 21). These images can be considered as proxies for high-temperature plasma emissions in the EUV or SXR. We use the same simulation snapshots as in Fig. 19. The top view of the SMA (Fig. 21, top left) is reminiscent of a sigmoidal structure. This is, however, easily dismissed by inspecting the side view (top right). On the other hand, both views of the MFR snapshot display a clear sigmoidal structure. We emphasize that this is just a proof-of-concept attempt. It should be expanded with more rigorous calculations by, for instance, calculating synthetic Stokes profiles from the MHD simulations and inverting them as done with real data.

Fig. 21
figure21

LOS-integrations of \({J}^{2}\) for the two simulation snapshots of Fig. 19. The left panels correspond to top views of the SMA and MFR in Fig. 19. The right panels correspond to side views of the SMA and MFR. A reverse color-table is used

These diagnostics can be exploited once vector magnetic field observations at several layers above the photosphere become available. Photospheric and chromospheric vector magnetic field observations (albeit over a limited FOV) will be available from DKIST, beginning in late 2020. In addition, the Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP) of DKIST will obtain off-limb observations in HeI 10830 Å and FeXII 10747 Å for estimates of magnetic field magnitudes and orientation in prominences and coronal loops. Even though these are not vector magnetograms, the polarization information along with forward modeling can be used to decipher the nature of pre-eruptive structures within coronal cavities as shown by Rachmeler et al. (2013). In late 2021, the remote sensing instruments on Solar Orbiter (Müller et al. 2020; Zouganelis et al. 2020) will start science operations, including photospheric vector magnetic field measurements by the Polarimetric and Helioseismic Imager (PHI) from non-Earth viewpoints, thus providing additional constraints on the photospheric boundary conditions for magnetic-field extrapolations and possibly allowing concurrent coronal and photospheric magnetic field estimates when combined with Cryo-NIRSP.

Multi-viewpoint observations of hot plasmas are less certain in the near future, although some research can be undertaken either with past (2007-2014) EUVI 284 Å observations from STEREO-A and -B or now with comparisons between STEREO/EUVI 284 Å (currently at L5 and approaching Earth) and SUVI 284 Å observations. In addition, the off-ecliptic viewpoints from Solar Orbiter will supply complementary high-resolution views of prominences and hot plasmas from the EUI and SPICE instruments, which could be compared with Earth-based observations (e.g., SDO/AIA and SUVI).

Further in the future, we are looking forward to exciting mission and instrument concepts. The proposed COSMO observatory (Tomczyk et al. 2016) will derive some coronal magnetic field quantities (e.g. strength, azimuth) and plasma properties further from the limb than DKIST. The SOLAR-C mission, recently approved by JAXA, will carry a next-generation upper atmospheric imaging spectrograph that will greatly enhance our diagnostics of the thermal structure and the dynamics of pre-eruptive configurations. Based on our earlier discussion, an EUV channel similar to the 131 Å channel of SDO/AIA, at an off Sun-Earth viewpoint, along with a vector magnetograph would make great addition to a scientific payload for an L5 mission (Vourlidas 2015). An observatory at that location could play a major role in understanding CME initiation because it would increase the observational coverage of the solar surface magnetic field and the identification and tracking of magnetic regions would be possible for longer times (e.g., Mackay et al. 2016). All these observations combined with a well-crafted modeling program will allow us to finally fully characterize the nature and evolution of pre-eruptive configurations towards eruption.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patsourakos, S., Vourlidas, A., Török, T. et al. Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections. Space Sci Rev 216, 131 (2020). https://doi.org/10.1007/s11214-020-00757-9

Download citation

Keywords

  • Plasmas
  • Sun: activity
  • Sun: corona
  • Sun: magnetic fields
  • Sun: Coronal Mass Ejections
  • Sun: space weather