Skip to main content

Nitrogen Atmospheres of the Icy Bodies in the Solar System

Abstract

This brief review will discuss the current knowledge on the origin and evolution of the nitrogen atmospheres of the icy bodies in the solar system, particularly of Titan, Triton and Pluto. An important tool to analyse and understand the origin and evolution of these atmospheres can be found in the different isotopic signatures of their atmospheric constituents. The 14N/15N ratio of the N2-dominated atmospheres of these bodies serve as a footprint of the building blocks from which Titan, Triton and Pluto originated and of the diverse fractionation processes that shaped these atmospheres over their entire evolution. Together with other measured isotopic and elemental ratios such as 12C/13C or 36Ar/N2 these atmospheres can give important insights into the history of the icy bodies in the solar system, the diverse processes that affect their N2-dominated atmospheres, and the therewith connected solar activity evolution. Titan’s gaseous envelope most likely originated from ammonia ices with possible contributions from refractory organics. Its isotopic signatures can yet be seen in the – compared to Earth – comparatively heavy 14N/15N ratio of 167.7, even though this value slightly evolved over its history due to atmospheric escape and photodissociation of N2. The origin and evolution of Pluto’s and Triton’s tenuous nitrogen atmospheres remain unclear, even though it might be likely that their atmospheres originated from the protosolar nebula or from comets. An in-situ space mission to Triton such as the recently proposed Trident mission, and/or to the ice giants would be a crucial cornerstone for a better understanding of the origin and evolution of the icy bodies in the outer solar system and their atmospheres in general. Due to the importance of the isotopic measurements for understanding the origin and evolution of the icy bodies in the solar system, this review will also give a brief discussion on the diverse isotope measurement techniques with a focus on nitrogen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • M.M. Abbas, A. LeClair, T. Owen, B.J. Conrath, F.M. Flasar, V.G. Kunde, C.A. Nixon, R.K. Achterberg, G. Bjoraker, D.J. Jennings, G. Orton, P.N. Romani, The nitrogen isotopic ratio in Jupiter’s atmosphere from observations by the composite infrared spectrometer on the Cassini spacecraft. Astrophys. J. 602, 1063–1074 (2004). https://doi.org/10.1086/381084

    ADS  Article  Google Scholar 

  • J. Aléon, Multiple origins of nitrogen isotopic anomalies in meteorites and comets. Astrophys. J. 722, 1342–1351 (2010). https://doi.org/10.1088/0004-637X/722/2/1342

    ADS  Article  Google Scholar 

  • J. Aléon, F. Robert, M. Chaussidon, B. Marty, Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles. Geochim. Cosmochim. Acta 67, 3773–3783 (2003). https://doi.org/10.1016/S0016-7037(03)00170-4

    ADS  Article  Google Scholar 

  • C.M.O.D. Alexander, A common origin for organics in meteorites and comets: was it interstellar? Proc. Int. Astron. Union 7, 288–301 (2011). https://doi.org/10.1017/S1743921311025051

    Article  Google Scholar 

  • C.M.O.D. Alexander, M. Fogel, H. Yabuta, G.D. Cody, The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71, 4380–4403 (2007). https://doi.org/10.1016/j.gca.2007.06.052

    ADS  Article  Google Scholar 

  • C.M.O. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, L.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 80(337), 721–723 (2012). https://doi.org/10.1126/science.1223474

    ADS  Article  Google Scholar 

  • C.M.O.D. Alexander, G.D. Cody, B.T. De Gregorio, L.R. Nittler, R.M. Stroud, The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Chem. Erde 77, 227–256 (2017). https://doi.org/10.1016/j.chemer.2017.01.007

    Article  Google Scholar 

  • R. Arevalo, Z. Ni, R.M. Danell, Mass spectrometry and planetary exploration: a brief review and future projection. J. Mass Spectrom. 55, e4454 (2020). https://doi.org/10.1002/jms.4454

    ADS  Article  Google Scholar 

  • C. Arpigny, E. Jehin, J. Manfroid, D. Hutsemékers, R. Schulz, J.A. Stüwe, J.M. Zucconi, I. Ilyin, Anomalous nitrogen isotope ratio in comets. Science 80(301), 1522–1524 (2003). https://doi.org/10.1126/science.1086711

    ADS  Article  Google Scholar 

  • S.K. Atreya, T.M. Donahue, W.R. Kuhn, Evolution of a nitrogen atmosphere on Titan. Science 80(201), 611–613 (1978). https://doi.org/10.1126/science.201.4356.611

    ADS  Article  Google Scholar 

  • G. Avice, B. Marty, Perspectives on atmospheric evolution from noble gas and nitrogen isotopes on Earth, Mars & vEnus. Space Sci. Rev. (2020). https://doi.org/10.1007/s11214-020-00655-0

    Article  Google Scholar 

  • G. Avice, B. Marty, R. Burgess, A. Hofmann, P. Philippot, K.J. Zahnle, D. Zakharov, Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochim. Cosmochim. Acta 232, 82–100 (2018). https://doi.org/10.1016/j.gca.2018.04.018

    ADS  Article  Google Scholar 

  • J.W.M. Baars, B.G. Hooghoudt, P.G. Mezger, M.J. de Jonge, The IRAM 30-m millimeter radio telescope on Pico Veleta, Spain. Astron. Astrophys. 175(1–2), 319–326 (1987)

    ADS  Google Scholar 

  • A. Bar-Nun, I. Kleinfeld, E. Kochavi, Trapping of gas mixtures by amorphous water ice. Phys. Rev. B 38, 7749–7754 (1988). https://doi.org/10.1103/PhysRevB.38.7749

    ADS  Article  Google Scholar 

  • R.H. Becker, R.O. Pepin, The case for a martian origin of the shergottites: nitrogen and noble gases in EETA 79001. Earth Planet. Sci. Lett. 69, 225–242 (1984). https://doi.org/10.1016/0012-821X(84)90183-3

    ADS  Article  Google Scholar 

  • A.A. Berezhnoi, The role of photochemical processes in evolution of the isotopic composition of the atmosphere of Titan. Sol. Syst. Res. 44, 498–506 (2010). https://doi.org/10.1134/s0038094610060031

    ADS  Article  Google Scholar 

  • T. Bertrand, F. Forget, Observed glacier and volatile distribution on Pluto from atmosphere–topography processes. Nature 540, 86–89 (2016). https://doi.org/10.1038/nature19337

    ADS  Article  Google Scholar 

  • N. Biver, R. Moreno, D. Bockelée-Morvan, A. Sandqvist, P. Colom, J. Crovisier, D.C. Lis, J. Boissier, V. Debout, G. Paubert, S. Milam, A. Hjalmarson, S. Lundin, T. Karlsson, M. Battelino, U. Frisk, D. Murtagh, t.O. team, Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy). Astron. Astrophys. 589, A78 (2016). https://doi.org/10.1051/0004-6361/201528041

    ADS  Article  Google Scholar 

  • D. Bockelée-Morvan, N. Biver, E. Jehin, A.L. Cochran, H. Wiesemeyer, J. Manfroid, D. Hutsemékers, C. Arpigny, J. Boissier, W. Cochran, P. Colom, J. Crovisier, N. Milutinovic, R. Moreno, J.X. Prochaska, I. Ramirez, R. Schulz, J.-M. Zucconi, Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from Comet 17P/Holmes. Astrophys. J. 679, L49–L52 (2008). https://doi.org/10.1086/588781

    ADS  Article  Google Scholar 

  • A.S. Bosh, M.J. Person, S.E. Levine, C.A. Zuluaga, A.M. Zangari, A.A.S. Gulbis, G.H. Schaefer, E.W. Dunham, B.A. Babcock, A.B. Davis, J.M. Pasachoff, P. Rojo, E. Servajean, F. Förster, T. Oswalt, D. Batcheldor, D. Bell, P. Bird, D. Fey, T. Fulwider, E. Geisert, D. Hastings, C. Keuhler, T. Mizusawa, P. Solenski, B. Watson, The state of Pluto’s atmosphere in 2012–2013. Icarus 246, 237–246 (2015). https://doi.org/10.1016/j.icarus.2014.03.048

    ADS  Article  Google Scholar 

  • A.L. Broadfoot, B.R. Sandel, D.E. Shemansky, J.B. Holberg, G.R. Smith, D.F. Strobel, J.C. McConnell, S. Kumar, D.M. Hunten, S.K. Atreya, T.M. Donahue, H.W. Moos, J.L. Bertaux, J.E. Blamont, R.B. Pomphrey, S. Linick, Extreme ultraviolet observations from voyager 1 encounter with Saturn. Science 80(212), 206–211 (1981). https://doi.org/10.1126/science.212.4491.206

    ADS  Article  Google Scholar 

  • N. Brosch, The 1985 stellar occultation by Pluto. Mon. Not. R. Astron. Soc. 276, 571–578 (1995). https://doi.org/10.1093/mnras/276.2.571

    ADS  Article  Google Scholar 

  • H. Busemann, A.F. Young, C.M.O.D. Alexander, P. Hoppe, S. Mukhopadhyay, L.R. Nittler, Interstellar chemistry recorded in organic matter from primitive meteorites. Science 80(312), 727–730 (2006). https://doi.org/10.1126/science.1123878

    ADS  Article  Google Scholar 

  • H. Busemann, A.N. Nguyen, G.D. Cody, P. Hoppe, A.L.D. Kilcoyne, R.M. Stroud, T.J. Zega, L.R. Nittler, Ultra-primitive interplanetary dust particles from the comet 26P/Grigg-Skjellerup dust stream collection. Earth Planet. Sci. Lett. 288, 44–57 (2009). https://doi.org/10.1016/j.epsl.2009.09.007

    ADS  Article  Google Scholar 

  • R.W. Carlson, A tenuous carbon dioxide atmosphere on Jupiter’s Moon Callisto. Science (80–.). 283, 820–821 (1999). https://doi.org/10.1126/science.283.5403.820

    ADS  Article  Google Scholar 

  • P. Cartigny, Stable isotopes and the origin of diamond. Elements 1, 79–84 (2005). https://doi.org/10.2113/gselements.1.2.79

    Article  Google Scholar 

  • P. Cartigny, B. Marty, Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9, 359–366 (2013). https://doi.org/10.2113/gselements.9.5.359

    Article  Google Scholar 

  • W.S. Cassata, Meteorite constraints on Martian atmospheric loss and paleoclimate. Earth Planet. Sci. Lett. 479, 322–329 (2017). https://doi.org/10.1016/j.epsl.2017.09.034

    ADS  Article  Google Scholar 

  • J.C. Castillo-Rogez, J.I. Lunine, Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. 37, 1–5 (2010). https://doi.org/10.1029/2010GL044398

    Article  Google Scholar 

  • M.A. Cordiner, C.A. Nixon, S.B. Charnley, N.A. Teanby, E.M. Molter, Z. Kisiel, V. Vuitton, Interferometric imaging of Titan’s HC 3 N, H 13 CCCN, and HCCC 15 N. Astrophys. J. 859, L15 (2018). https://doi.org/10.3847/2041-8213/aac38d

    ADS  Article  Google Scholar 

  • R. Courtin, B.M. Swinyard, R. Moreno, T. Fulton, E. Lellouch, M. Rengel, P. Hartogh, First results of Herschel-SPIRE observations of Titan. Astron. Astrophys. 536, 2–5 (2011). https://doi.org/10.1051/0004-6361/201118304

    ADS  Article  Google Scholar 

  • A. Coustenis, B. Bézard, Titan’s atmosphere from voyager infrared observations. IV. Latitudinal variations of temperature and composition. Icarus 115, 126–140 (1995). https://doi.org/10.1006/icar.1995.1084

    ADS  Article  Google Scholar 

  • A. Coustenis, T. Tokano, M.H. Burger, T.A. Cassidy, R.M. Lopes, R.D. Lorenz, K.D. Retherford, G. Schubert, Atmospheric/exospheric characteristics of icy satellites. Space Sci. Rev. 153, 155–184 (2010). https://doi.org/10.1007/s11214-009-9615-5

    ADS  Article  Google Scholar 

  • D.P. Cruikshank, P.M. Silvaggio, The surface and atmosphere of Pluto. Icarus 41, 96–102 (1980). https://doi.org/10.1016/0019-1035(80)90162-1

    ADS  Article  Google Scholar 

  • T. De Graauw, L.N. Haser, D.A. Beintema, P.R. Roelfsema, H. Van Agthoven, L. Barl, O.H. Bauer, H.E.G. Bekenkamp, A.-J. Boonstra, D.R. Boxhoorn, J. Coté, P. De Groene, C. Van Dijkhuizen, S. Drapatz, J. Evers, H. Feuchtgruber, M. Frericks, R. Genzel, G. Haerendel, A.M. Heras, K.A. Van Der Hucht, T. Van Der Hulst, R. Huygen, H. Jacobs, G. Jakob, T. Kamperman, R.O. Katterloher, D.J.M. Kester, D. Kunze, D. Kussendrager, F. Lahuis, H.J.G.L.M. Lamers, K. Leech, S. Vanderlei, R. Van Der Linden, W. Luinge, D. Lutz, F. Melzner, P.W. Morris, D. Vannguyen, G. Ploeger, S. Price, A. Salama, S.G. Schaeidt, N. Sijm, C. Smoorenburg, J. Spakman, H. Spoon, J. Stoecker, B. Vandenbussche, H. Visser, L.B.F.M. Waters, J. Wensink, P.R. Wesselius, E. Wiezorrek, E. Wieprecht, J.J. Wijnbergen, K.J. Wildeman, E. Young, Observing with the ISO short-wavelength spectrometer? Astron. Astrophys. 315, L49–L54 (1996)

    ADS  Google Scholar 

  • B.T. De Gregorio, R.M. Stroud, L.R. Nittler, C.M.O.D. Alexander, A.L.D. Kilcoyne, T.J. Zega, Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation. Geochim. Cosmochim. Acta 74, 4454–4470 (2010). https://doi.org/10.1016/j.gca.2010.05.010

    ADS  Article  Google Scholar 

  • A. Dias-Oliveira, B. Sicardy, E. Lellouch, R. Vieira-Martins, M. Assafin, J.I.B. Camargo, F. Braga-Ribas, A.R. Gomes-Júnior, G. Benedetti-Rossi, F. Colas, A. Decock, A. Doressoundiram, C. Dumas, M. Emilio, J.F. Polleri, R. Gil-Hutton, M. Gillon, J. Girard, G. Hau, V.D. Ivanov, E. Jehin, J. Lecacheux, R. Leiva, C. Lopez-Sisterna, L. Mancini, A. Maury, E. Meza, N. Morales, L. Nagy, C. Opitom, J.L. Ortiz, J. Pollock, F. Roques, C. Snodgrass, J.F. Soulier, A. Thirouin, L. Vanzi, T. Widemann, D.E. Reichart, A.P. LaCluyze, J.B. Haislip, K.M. Ivarsen, M. Dominik, U. Jørgensen, J. Skottfelt, J. Skottfelt, Pluto’s atmosphere from stellar occultations in 2012 and 2013. Astrophys. J. 811(1), 53 (2015). https://doi.org/10.1088/0004-637X/811/1/53.

    ADS  Article  Google Scholar 

  • M.K. Dougherty, K.K. Khurana, F.M. Neubauer, C.T. Russell, J. Saur, J.S. Leisner, M.E. Burton, Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 80(311), 1406–1409 (2006). https://doi.org/10.1126/science.1120985

    ADS  Article  Google Scholar 

  • J.L. Elliot, E.W. Dunham, A.S. Bosh, S.M. Slivan, L.A. Young, L.H. Wasserman, R.L. Millis, Pluto’s atmosphere. Icarus 77, 148–170 (1989). https://doi.org/10.1016/0019-1035(89)90014-6

    ADS  Article  Google Scholar 

  • J.L. Elliot, A. Ates, B.A. Babcock, A.S. Bosh, M.W. Buie, K.B. Clancy, E.W. Dunham, S.S. Eikenberry, D.T. Hall, S.D. Kern, S.K. Leggett, S.E. Levine, D.-S. Moon, C.B. Olkin, D.J. Osip, J.M. Pasachoff, B.E. Penprase, M.J. Person, S. Qu, J.T. Rayner, L.C. Roberts, C.V. Salyk, S.P. Souza, R.C. Stone, B.W. Taylor, D.J. Tholen, J.E. Thomas-Osip, D.R. Ticehurst, L.H. Wasserman, The recent expansion of Pluto’s atmosphere. Nature 424, 165–168 (2003). https://doi.org/10.1038/nature01762

    ADS  Article  Google Scholar 

  • T. Encrenaz, M. Combes, Y. Zeau, The spectrum of Jupiter between 10 and 13 ∼i. Astron. Astrophys. 70, 29 (1978). 1978A&A....70...29E/abstract

    ADS  Google Scholar 

  • N.V. Erkaev, H. Lammer, P. Odert, Y.N. Kulikov, K.G. Kislyakova, Extreme hydrodynamic atmospheric loss near the critical thermal escape regime. Mon. Not. R. Astron. Soc. 448(2), 1916–1921 (2015). https://doi.org/10.1093/mnras/stv130

    ADS  Article  Google Scholar 

  • N.V. Erkaev, M. Scherf, S.E. Thaller, H. Lammer, A.V. Mezentsev, V.A. Ivanov, K.E. Mandt, Escape and evolution of Titan’s N2 atmosphere constrained by 14N/15N isotope ratios. Mon. Not. R. Astron. Soc. (2020). https://doi.org/10.1093/mnras/staa3151

    Article  Google Scholar 

  • ESA, CDF Study Report Ice Giants a Mission to the Ice Giants – Neptune and Uranus, vol. 187 (2019), pp. 1–431

    Google Scholar 

  • P.D. Feldman, M.A. McGrath, D.F. Strobel, H.W. Moos, K.D. Retherford, B.C. Wolven, HST/STIS ultraviolet imaging of polar aurora on Ganymede. Astrophys. J. 535(2), 1085–1090 (2000). https://doi.org/10.1086/308889

    ADS  Article  Google Scholar 

  • U. Fink, B.A. Smith, D. Chris Benner, J.R. Johnson, H.J. Reitsema, J.A. Westphal, Detection of a CH4 atmosphere on Pluto. Icarus 44, 62–71 (1980). https://doi.org/10.1016/0019-1035(80)90055-X

    ADS  Article  Google Scholar 

  • F.M. Flasar, V.G. Kunde, M.M. Abbas, R.K. Achterberg, P. Ade, Exploring the Saturn system in the thermal infrared: the composite infrared spectrometer, in The Cassini-Huygens Mission, ed. by C.T. Russell (Springer, Dordrecht, 2004). https://doi.org/10.1007/1-4020-3874-7_4

    Chapter  Google Scholar 

  • L.N. Fletcher, T.K. Greathouse, G.S. Orton, P.G.J. Irwin, O. Mousis, J.A. Sinclair, R.S. Giles, The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio. Icarus 238, 170–190 (2014). https://doi.org/10.1016/j.icarus.2014.05.007

    ADS  Article  Google Scholar 

  • L.N. Fletcher, N. André, D. Andrews, M. Bannister, E. Bunce, T. Cavalié, S. Charnoz, F. Ferri, J. Fortney, D. Grassi, L. Griton, P. Hartogh, R. Helled, R. Hueso, G. Jones, Y. Kaspi, L. Lamy, A. Masters, H. Melin, J. Moses, O. Mousis, N. Nettleman, C. Plainaki, E. Roussos, J. Schmidt, A. Simon, G. Tobie, P. Tortora, F. Tosi, D. Turrini, Ice Giant Systems: The Scientific Potential of Missions to Uranus and Neptune (ESA Voyage 2050 White Paper) (2019). arXiv:1907.02963

    Google Scholar 

  • C. Floss, F.J. Stadermann, J.P. Bradley, Z.R. Dai, S. Bajt, G. Graham, A.S. Lea, Identification of isotopically primitive interplanetary dust particles: a NanoSIMS isotopic imaging study. Geochim. Cosmochim. Acta 70, 2371–2399 (2006). https://doi.org/10.1016/j.gca.2006.01.023

    ADS  Article  Google Scholar 

  • T. Fouchet, E. Lellouch, B. Bézard, T. Encrenaz, P. Drossart, H. Feuchtgruber, T. De Graauw, ISO-SWS observations of Jupiter: measurement of the ammonia tropospheric profile and of the 15N/14N isotopic ratio. Icarus 143, 223–243 (2000). https://doi.org/10.1006/icar.1999.6255

    ADS  Article  Google Scholar 

  • T. Fouchet, P.G.J. Irwin, P. Parrish, S.B. Calcutt, F.W. Taylor, C.A. Nixon, T. Owen, Search for spatial variation in the jovian 15N/14N ratio from Cassini/CIRS observations. Icarus 172, 50–58 (2004). https://doi.org/10.1016/j.icarus.2003.11.011

    ADS  Article  Google Scholar 

  • E. Füri, B. Marty, Nitrogen isotope variations in the Solar System. Nat. Geosci. 8, 515–522 (2015). https://doi.org/10.1038/ngeo2451

    ADS  Article  Google Scholar 

  • G.R. Gladstone, L.A. Young, New Horizons Observations of the Atmosphere of Pluto. Annu. Rev. Earth Planet. Sci. 47, 119–140 (2019). https://doi.org/10.1146/annurev-earth-053018-060128

    ADS  Article  Google Scholar 

  • G.R. Gladstone, S.A. Stern, K. Ennico, C.B. Olkin, H.A. Weaver, L.A. Young, M.E. Summers, D.F. Strobel, D.P. Hinson, J.A. Kammer, A.H. Parker, A.J. Steffl, I.R. Linscott, J.W. Parker, A.F. Cheng, D.C. Slater, M.H. Versteeg, T.K. Greathouse, K.D. Retherford, H. Throop, N.J. Cunningham, W.W. Woods, K.N. Singer, C.C.C. Tsang, E. Schindhelm, C.M. Lisse, M.L. Wong, Y.L. Yung, X. Zhu, W. Curdt, P. Lavvas, E.F. Young, G.L. Tyler, F. Bagenal, W.M. Grundy, W.B. McKinnon, J.M. Moore, J.R. Spencer, T. Andert, J. Andrews, M. Banks, B. Bauer, J. Bauman, O.S. Barnouin, P. Bedini, K. Beisser, R.A. Beyer, S. Bhaskaran, R.P. Binzel, E. Birath, M. Bird, D.J. Bogan, A. Bowman, V.J. Bray, M. Brozovic, C. Bryan, M.R. Buckley, M.W. Buie, B.J. Buratti, S.S. Bushman, A. Calloway, B. Carcich, S. Conard, C.A. Conrad, J.C. Cook, D.P. Cruikshank, O.S. Custodio, C.M.D. Ore, C. Deboy, Z.J.B. Dischner, P. Dumont, A.M. Earle, H.A. Elliott, J. Ercol, C.M. Ernst, T. Finley, S.H. Flanigan, G. Fountain, M.J. Freeze, J.L. Green, Y. Guo, M. Hahn, D.P. Hamilton, S.A. Hamilton, J. Hanley, A. Harch, H.M. Hart, C.B. Hersman, A. Hill, M.E. Hill, M.E. Holdridge, M. Horanyi, A.D. Howard, C.J.A. Howett, C. Jackman, R.A. Jacobson, D.E. Jennings, H.K. Kang, D.E. Kaufmann, P. Kollmann, S.M. Krimigis, D. Kusnierkiewicz, T.R. Lauer, J.E. Lee, K.L. Lindstrom, A.W. Lunsford, V.A. Mallder, N. Martin, D.J. McComas, R.L. McNutt, D. Mehoke, T. Mehoke, E.D. Melin, M. Mutchler, D. Nelson, F. Nimmo, J.I. Nunez, A. Ocampo, W.M. Owen, M. Paetzold, B. Page, F. Pelletier, J. Peterson, N. Pinkine, M. Piquette, S.B. Porter, S. Protopapa, J. Redfern, H.J. Reitsema, D.C. Reuter, J.H. Roberts, S.J. Robbins, G. Rogers, D. Rose, K. Runyon, M.G. Ryschkewitsch, P. Schenk, B. Sepan, M.R. Showalter, M. Soluri, D. Stanbridge, T. Stryk, J.R. Szalay, M. Tapley, A. Taylor, H. Taylor, O.M. Umurhan, A.J. Verbiscer, M.H. Versteeg, M. Vincent, R. Webbert, S. Weidner, G.E. Weigle, O.L. White, K. Whittenburg, B.G. Williams, K. Williams, S. Williams, A.M. Zangari, E. Zirnstein, The atmosphere of Pluto as observed by New Horizons. Science 351, aad8866 (2016). https://doi.org/10.1126/science.aad8866

    ADS  Article  Google Scholar 

  • C.R. Glein, Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan. Icarus 250, 570–586 (2015). https://doi.org/10.1016/j.icarus.2015.01.001

    ADS  Article  Google Scholar 

  • C.R. Glein, A whiff of nebular gas in Titan’s atmosphere – potential implications for the conditions and timing of Titan’s formation. Icarus 293, 231–242 (2017). https://doi.org/10.1016/j.icarus.2017.02.026

    ADS  Article  Google Scholar 

  • C.R. Glein, J.H. Waite, Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto. Icarus 313, 79–92 (2018). https://doi.org/10.1016/j.icarus.2018.05.007

    ADS  Article  Google Scholar 

  • C. Glein, M. Zolotov, The oxidation state of hydrothermal systems on early Enceladus. Icarus 197, 157–163 (2008). https://doi.org/10.1016/j.icarus.2008.03.021

    ADS  Article  Google Scholar 

  • C.R. Glein, S.J. Desch, E.L. Shock, The absence of endogenic methane on Titan and its implications for the origin of atmospheric nitrogen. Icarus 204, 637–644 (2009). https://doi.org/10.1016/j.icarus.2009.06.020

    ADS  Article  Google Scholar 

  • F. Goesmann, W.B. Brinckerhoff, F. Raulin, W. Goetz, R.M. Danell, S.A. Getty, S. Siljeström, H. Mißbach, H. Steininger, R.D. Arevalo, A. Buch, C. Freissinet, A. Grubisic, U.J. Meierhenrich, V.T. Pinnick, F. Stalport, C. Szopa, J.L. Vago, R. Lindner, M.D. Schulte, J.R. Brucato, D.P. Glavin, N. Grand, X. Li, F.H.W. Van Amerom, The Mars Organic Molecule Analyzer (MOMA) instrument: characterization of organic material in Martian sediments. Astrobiology (2017). https://doi.org/10.1089/ast.2016.1551

    Article  Google Scholar 

  • G.S. Golitsyn, A possible atmosphere on Pluto. Sov. Astron. Lett. 1, 19, 20 (1975). Transl.: Pisma Astron. Zh. 1, 38–42. 1975SvAL....1...19G

  • M.J. Griffin, A. Abergel, A. Abreu, P.A.R. Ade, P. André, J.L. Augueres, T. Babbedge, Y. Bae, T. Baillie, J.P. Baluteau, M.J. Barlow, G. Bendo, D. Benielli, J.J. Bock, P. Bonhomme, D. Brisbin, C. Brockley-Blatt, M. Caldwell, C. Cara, N. Castro-Rodriguez, R. Cerulli, P. Chanial, S. Chen, E. Clark, D.L. Clements, L. Clerc, J. Coker, D. Communal, L. Conversi, P. Cox, D. Crumb, C. Cunningham, F. Daly, G.R. Davis, P. DeAntoni, J. Delderfield, N. Devin, A. Di Giorgio, I. Didschuns, K. Dohlen, M. Donati, A. Dowell, C.D. Dowell, L. Duband, L. Dumaye, R.J. Emery, M. Ferlet, D. Ferrand, J. Fontignie, M. Fox, A. Franceschini, M. Frerking, T. Fulton, J. Garcia, R. Gastaud, K. Gear W, J. Glenn, A. Goizel, D.K. Griffin, T. Grundy, S. Guest, L. Guillemet, P.C. Hargrave, M. Harwit, P. Hastings, E. Hatziminaoglou, M. Herman, B. Hinde, V. Hristov, M. Huang, P. Imhof, K.J. Isaak, U. Israelsson, R.J. Ivison, D. Jennings, B. Kiernan, K.J. King, A.E. Lange, W. Latter, G. Laurent, P. Laurent, S.J. Leeks, E. Lellouch, L. Levenson, B. Li, J. Li, J. Lilienthal, T. Lim, S.J. Liu, N. Lu, S. Madden, G. Mainetti, P. Marliani, D. McKay, K. Mercier, S. Molinari, H. Morris, H. Moseley, J. Mulder, M. Mur, D.A. Naylor, H. Nguyen, B. O’Halloran, S. Oliver, G. Olofsson, H.G. Olofsson, R. Orfei, J. Page M, I. Pain, P. Panuzzo, A. Papageorgiou, G. Parks, P. Parr-Burman, A. Pearce, C. Pearson, I. Pérez-Fournon, F. Pinsard, G. Pisano, J. Podosek, M. Pohlen, E.T. Polehampton, D. Pouliquen, D. Rigopoulou, D. Rizzo, G. Roseboom I, H. Roussel, M. Rowan-Robinson, B. Rownd, P. Saraceno, M. Sauvage, R. Savage, G. Savini, E. Sawyer, C. Scharmberg, D. Schmitt, N. Schneider, B. Schulz, A. Schwartz, R. Shafer, D.L. Shupe, B. Sibthorpe, S. Sidher, A. Smith, A.J. Smith, D. Smith, L. Spencer, B. Stobie, R. Sudiwala, K. Sukhatme, C. Surace, J.A. Stevens, B.M. Swinyard, M. Trichas, T. Tourette, H. Triou, S. Tseng, C. Tucker, A. Turner, M. Vaccari, I. Valtchanov, L. Vigroux, E. Virique, G. Voellmer, H. Walker, R. Ward, T. Waskett, M. Weilert, R. Wesson, G.J. White, N. Whitehouse, C.D. Wilson, B. Winter, A.L. Woodcraft, G.S. Wright, C.K. Xu, A. Zavagno, M. Zemcov, L. Zhang, E. Zonca , The Herschel-SPIRE instrument and its in-flight performance. Astron. Astrophys. 518 (2010). https://doi.org/10.1051/0004-6361/201014519

  • M. Güdel, The Sun through time. Space Sci. Rev. (2020, accepted)

  • E.M. Gurrola, Interpretation of Radar Data from the Icy Galilean Satellites and Triton. Thesis (Ph.D.), Stanford Univ., 1995. Source Diss. Abstr. Int., vol. 56-06, Sect. B (1995), p. 3353. http://adsabs.harvard.edu/abs/1995PhDT........12G

  • M.A. Gurwell, Submillimeter observations of Titan: global measures of stratospheric temperature, CO, HCN, HC 3 N, and the isotopic ratios 12 C/ 13 C and 14 N/ 15 N. Astrophys. J. 616, L7–L10 (2004). https://doi.org/10.1086/423954

    ADS  Article  Google Scholar 

  • D.T. Hall, D.F. Strobel, P.D. Feldman, M.A. McGrath, H.A. Weaver, Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373, 677–679 (1995). https://doi.org/10.1038/373677a0

    ADS  Article  Google Scholar 

  • D.T. Hall, P.D. Feldman, M.A. McGrath, D.F. Strobel, The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J. 499, 475–481 (1998). https://doi.org/10.1086/305604

    ADS  Article  Google Scholar 

  • C.J. Hansen, D.A. Paige, Seasonal nitrogen cycles on Pluto. Icarus 120, 247–265 (1996). https://doi.org/10.1006/icar.1996.0049

    ADS  Article  Google Scholar 

  • C.J. Hansen, D.A. Paige, L.A. Young, Pluto’s climate modeled with new observational constraints. Icarus 246, 183–191 (2015). https://doi.org/10.1016/j.icarus.2014.03.014

    ADS  Article  Google Scholar 

  • D. Harries, P. Hoppe, F. Langenhorst, Reactive ammonia in the solar protoplanetary disk and the origin of Earth’s nitrogen. Nat. Geosci. 8, 97–101 (2015). https://doi.org/10.1038/ngeo2339

    ADS  Article  Google Scholar 

  • M.H. Hart, A possible atmosphere for Pluto. Icarus 21, 242–247 (1974). https://doi.org/10.1016/0019-1035(74)90039-6

    ADS  Article  Google Scholar 

  • K. Hashizume, M. Chaussidon, B. Marty, F. Robert, Solar wind record on the moon: deciphering presolar from planetary nitrogen. Science 80(290), 1142–1145 (2000). https://doi.org/10.1126/science.290.5494.1142

    ADS  Article  Google Scholar 

  • P. Hily-Blant, V. Magalhaes de Souza, J. Kastner, T. ForveilleDonahue, Multiple nitrogen reservoirs in a protoplanetary disk at the epoch of comet and giant planet formation. Astron. Astrophys. 632, L12 (2019). https://doi.org/10.1051/0004-6361/201936750

    ADS  Article  Google Scholar 

  • J.H. Hoffman, R.R. Hodges, M.B. McElroy, T.M. Donahue, M. Kolpin, Composition and structure of the Venus atmosphere: results from pioneer Venus. Science 80(205), 49–52 (1979). https://doi.org/10.1126/science.205.4401.49

    ADS  Article  Google Scholar 

  • M.D. Hofstadter, A. Simon, K. Reh, J. Elliot, Ice Giants Pre-Decadal Study Final. Report 473–488 (2017). https://www.lpi.usra.edu/icegiants/mission_study/

  • S. Hörst, Titan’s atmosphere and climate. J. Geophys. Res., Planets 122(3), 432–482 (2017). https://doi.org/10.1002/2016JE005240

    ADS  Article  Google Scholar 

  • S.M. Hörst, V. Vuitton, R.V. Yelle, Origin of oxygen species in Titan’s atmosphere. J. Geophys. Res. 113, E10006 (2008). https://doi.org/10.1029/2008JE003135

    ADS  Article  Google Scholar 

  • W.B. Hubbard, D.M. Hunten, S.W. Dieters, K.M. Hill, R.D. Watson, Occultation evidence for an atmosphere on Pluto. Nature 336, 452–454 (1988). https://doi.org/10.1038/336452a0

    ADS  Article  Google Scholar 

  • D.M. Hunten, M.G. Tomasko, F.M. Flasar, R.E. Samuelson, D.F. Strobel, D.J. Stevenson, Titan, in Saturn (A85-33976 15-91) (Univ. Arizona Press, Tucson, 1984), pp. 671–759. http://adsabs.harvard.edu/abs/1984satn.book..671H

    Google Scholar 

  • D. Hutsemékers, J. Manfroid, E. Jehin, C. Arpigny, A. Cochran, R. Schulz, J.A. Stüwe, J.M. Zucconi, Isotopic abundances of carbon and nitrogen in Jupiter-family and Oort Cloud comets. Astron. Astrophys. 440, 21–24 (2005). https://doi.org/10.1051/0004-6361:200500160

    ADS  Article  Google Scholar 

  • T. Iino, H. Sagawa, T. Tsukagoshi, 14 N/ 15 N isotopic ratio in CH 3 CN of Titan’s atmosphere measured with ALMA. Astrophys. J. 890, 95 (2020). https://doi.org/10.3847/1538-4357/ab66b0

    ADS  Article  Google Scholar 

  • T.R. Ireland, Invited review article: recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry. Rev. Sci. Instrum. (2013). https://doi.org/10.1063/1.4765055

    Article  Google Scholar 

  • R. Ishimaru, Y. Sekine, T. Matsui, O. Mousis, Oxidizing proto-atmosphere on Titan: constraint from N2 formation by impact shock. Astrophys. J. 741, L10 (2011). https://doi.org/10.1088/2041-8205/741/1/L10

    ADS  Article  Google Scholar 

  • R. Jacovi, A. Bar-Nun, Removal of Titan’s noble gases by their trapping in its haze. Icarus 196, 302–304 (2008). https://doi.org/10.1016/j.icarus.2008.02.014

    ADS  Article  Google Scholar 

  • E. Jehin, J. Manfroid, A.L. Cochran, C. Arpigny, J.-M. Zucconi, D. Hutsemékers, W.D. Cochran, M. Endl, R. Schulz, The anomalous 14 N/ 15 N ratio in Comets 122P/1995 S1 (de Vico) and 153P/2002 C1 (Ikeya-Zhang). Astrophys. J. 613, L161–L164 (2004). https://doi.org/10.1086/425254

    ADS  Article  Google Scholar 

  • E. Jehin, D. Bockelée-Morvan, N. Dello Russo, J. Manfroid, D. Hutsemékers, H. Kawakita, H. Kobayashi, R. Schulz, A. Smette, J. Stüwe, M. Weiler, C. Arpigny, N. Biver, A. Cochran, J. Crovisier, P. Magain, H. Rauer, H. Sana, R.J. Vervack, H. Weaver, J.M. Zucconi, A multi-wavelength simultaneous study of the composition of the Halley Family comet 8P/Tuttle. Earth Moon Planets 105, 343–349 (2009). https://doi.org/10.1007/s11038-009-9317-8

    ADS  Article  Google Scholar 

  • K.L. Jessup, G.R. Gladstone, A.N. Heays, S.T. Gibson, B.R. Lewis, G. Stark, 14N15N detectability in Pluto’s atmosphere. Icarus 226, 1514–1526 (2013). https://doi.org/10.1016/j.icarus.2013.08.012

    ADS  Article  Google Scholar 

  • D.C. Jewitt, H.E. Matthews, T. Owen, R. Meier, Measurements of 12C/13C, 14N/15N, and 32S/34S ratios in comet Hale-Bopp (C/1995 O1). Science 80(278), 90–93 (1997). https://doi.org/10.1126/science.278.5335.90

    ADS  Article  Google Scholar 

  • C.P. Johnstone, M.L. Khodachenko, T. Lüftinger, K.G. Kislyakova, H. Lammer, M. Güdel, Extreme hydrodynamic losses of Earth-like atmospheres in the habitable zones of very active stars. Astron. Astrophys. 624, L10 (2019). https://doi.org/10.1051/0004-6361/201935279

    ADS  Article  Google Scholar 

  • C.P. Johnstone, H. Lammer, K.G. Kislyakova, M. Scherf, M. Güdel, High atmospheric carbon dioxide levels and low solar activity during the Earth’s Archean. Earth Planet. Sci. Lett. (2021, under revision)

  • R. Kallenbach, J. Geiss, F.M. Ipavich, G. Gloeckler, P. Bochsler, F. Gliem, S. Hefti, M. Hilchenbach, D. Hovestadt, Isotopic composition of solar wind nitrogen: first in situ determination with the CELIAS/MTOF spectrometer on board [ITAL]SOHO[/ITAL]. Astrophys. J. 507, L185–L188 (1998). https://doi.org/10.1086/311702

    ADS  Article  Google Scholar 

  • R. Kallenbach, T. Encrenaz, J. Geiss, K. Mauersberger, T.C. Owen, F. Robert, Solar System History from Isotopic Signatures of Volatile Elements: Volume Resulting from an ISSI Workshop, 14-18 January 2002, Bern, Switzerland. Springer, Bern (2003)

  • R. Kallenbach, K. Bamert, M. Hilchenbach, Isotopic composition of the solar wind inferred from in-situ spacecraft measurements. Space Sci. Rev. 130, 173–182 (2007). https://doi.org/10.1007/s11214-007-9216-0

    ADS  Article  Google Scholar 

  • J.F. Kerridge, Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707–1714 (1985). https://doi.org/10.1016/0016-7037(85)90141-3

    ADS  Article  Google Scholar 

  • V.A. Krasnopolsky, Hydrodynamic flow of N2 from Pluto. J. Geophys. Res., Planets 104, 5955–5962 (1999). https://doi.org/10.1029/1998JE900052

    ADS  Article  Google Scholar 

  • V.A. Krasnopolsky, Isotopic ratio of nitrogen on Titan: photochemical interpretation. Planet. Space Sci. 134, 61–63 (2016). https://doi.org/10.1016/j.pss.2016.10.008

    ADS  Article  Google Scholar 

  • V.A. Krasnopolsky, On the methylacetylene abundance and nitrogen isotope ratio in Pluto’s atmosphere. Planet. Space Sci. 192, 105044 (2020). https://doi.org/10.1016/j.pss.2020.105044

    Article  Google Scholar 

  • V.A. Krasnopolsky, D.P. Cruikshank, Photochemistry of Triton’s atmosphere and ionosphere. J. Geophys. Res. 100, 21271 (1995). https://doi.org/10.1029/95JE01904

    ADS  Article  Google Scholar 

  • V.A. Krasnopolsky, B.R. Sandel, F. Herbert, R.J. Vervack, Temperature, N2, and N density profiles of Triton’s atmosphere: observations and model. J. Geophys. Res., Planets 98, 3065–3078 (1993). https://doi.org/10.1029/92JE02680

    ADS  Article  Google Scholar 

  • G.P. Kuiper, Titan: a satellite with an atmosphere. Astrophys. J. 100, 378 (1944). https://doi.org/10.1086/144679

    ADS  Article  Google Scholar 

  • H. Lammer, Mass loss of N2 molecules from Triton by magnetospheric plasma interaction. Planet. Space Sci. 43, 845–850 (1995). https://doi.org/10.1016/0032-0633(94)00214-C

    ADS  Article  Google Scholar 

  • H. Lammer, W. Stumptner, G.J. Molina-Cuberos, S.J. Bauer, T. Owen, Nitrogen isotope fractionation and its consequence for Titan’s atmospheric evolution. Planet. Space Sci. 48, 529–543 (2000). https://doi.org/10.1016/S0032-0633(00)00043-X

    ADS  Article  Google Scholar 

  • H. Lammer, S.J. Bauer, Isotopic fractionation by gravitational escape. Space Sci. Rev. 106, 281–291 (2003). https://doi.org/10.1023/A:1024602124097

    ADS  Article  Google Scholar 

  • H. Lammer, W. Stumptner, G. Molina-Cuberos, S. Bauer, T. Owen, Nitrogen isotope fractionation and its consequence for Titan’s atmospheric evolution. Planet. Space Sci. 48, 529–543 (2002). https://doi.org/10.1016/s0032-0633(00)00043-x

    ADS  Article  Google Scholar 

  • H. Lammer, J.F. Kasting, E. Chassefière, R.E. Johnson, Y.N. Kulikov, F. Tian, Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008). https://doi.org/10.1007/s11214-008-9413-5

    ADS  Article  Google Scholar 

  • H. Lammer, M. Leitzinger, M. Scherf, P. Odert, C. Burger, D. Kubyshkina, C. Johnstone, T. Maindl, C.M. Schäfer, M. Güdel, N. Tosi, A. Nikolaou, E. Marcq, N.V. Erkaev, L. Noack, K.G. Kislyakova, L. Fossati, E. Pilat-Lohinger, F. Ragossnig, E.A. Dorfi, Constraining the early evolution of Venus and Earth through atmospheric Ar, Ne isotope and bulk K/U ratios. Icarus 339, 113551 (2020a). https://doi.org/10.1016/j.icarus.2019.113551

    Article  Google Scholar 

  • H. Lammer, M. Scherf, H. Kurokawa, Y. Ueno, C. Burger, Z. Leinhart, T. Maindl, C. Johnstone, M. Leizinger, M. Benedikt, L. Fossati, K.G. Kislyakova, B. Marty, G. Avice, B. Fegley, P. Odert, Loss and fractionation of noble gas isotopes and moderately volatile elements from planetary embryos and early. Space Sci. Rev. 216, 74 (2020b). https://doi.org/10.1007/s11214-020-00701-x

    ADS  Article  Google Scholar 

  • E. Lellouch, Atmospheric models of Titan and Triton. Ann. Geophys. 8, 653 (1990). https://ui.adsabs.harvard.edu/abs/1990AnGeo...8..653L/abstract

    ADS  Google Scholar 

  • E. Lellouch, M.A. McGrath, K.L. Jessup, Io’s atmosphere, in Io After Galileo (Springer, Berlin, 2007), pp. 231–264. https://doi.org/10.1007/978-3-540-48841-5_10

    Chapter  Google Scholar 

  • E. Lellouch, C. de Bergh, B. Sicardy, S. Ferron, H.-U. Käufl, Detection of CO in Triton’s atmosphere and the nature of surface-atmosphere interactions. Astron. Astrophys. 512, L8 (2010). https://doi.org/10.1051/0004-6361/201014339

    ADS  Article  Google Scholar 

  • E. Lellouch, C. de Bergh, B. Sicardy, H.U. Käufl, A. Smette, High resolution spectroscopy of Pluto’s atmosphere: detection of the 2.3 μm CH4 bands and evidence for carbon monoxide. Astron. Astrophys. 530, L4 (2011). https://doi.org/10.1051/0004-6361/201116954

    ADS  Article  Google Scholar 

  • E. Lellouch, M. Gurwell, B. Butler, T. Fouchet, P. Lavvas, D.F. Strobel, B. Sicardy, A. Moullet, R. Moreno, D. Bockelée-Morvan, N. Biver, L. Young, D. Lis, J. Stansberry, A. Stern, H. Weaver, E. Young, X. Zhu, J. Boissier, Detection of CO and HCN in Pluto’s atmosphere with ALMA. Icarus 286, 289–307 (2017). https://doi.org/10.1016/j.icarus.2016.10.013

    ADS  Article  Google Scholar 

  • J.S. Lewis, Satellites of the outer planets: their physical and chemical nature. Icarus 15, 174–185 (1971). https://doi.org/10.1016/0019-1035(71)90072-8

    ADS  Article  Google Scholar 

  • M.-C. Liang, A.N. Heays, B.R. Lewis, S.T. Gibson, Y.L. Yung, Source of nitrogen isotope anomaly in HCN in the atmosphere of Titan. Astrophys. J. 664, L115–L118 (2007). https://doi.org/10.1086/520881

    ADS  Article  Google Scholar 

  • G.F. Lindal, G.E. Wood, H.B. Hotz, D.N. Sweetnam, V.R. Eshleman, G.L. Tyler, The atmosphere of Titan: an analysis of the Voyager 1 radio occultation measurements. Icarus 53, 348–363 (1983). https://doi.org/10.1016/0019-1035(83)90155-0

    ADS  Article  Google Scholar 

  • K. Lodders, Solar system abundances of the elements, in Princ. Perspect. Cosmochem. Astrophys. Sp. Sci. Proceedings (Springer, Berlin, 2010), pp. 379–417. https://doi.org/10.1007/978-3-642-10352-0_8. ISBN 978-3-642-10351-3

    Chapter  Google Scholar 

  • A. Lofthus, P.H. Krupenie, The spectrum of molecular nitrogen. J. Phys. Chem. Ref. Data 6, 113–307 (1977). https://doi.org/10.1063/1.555546

    ADS  Article  Google Scholar 

  • R.D. Lorenz, E.P. Turtle, J.W. Barnes, M.G. Trainer, D.S. Adams, K.E. Hibbard, C.Z. Sheldon, K. Zacny, P.N. Peplowski, D.J. Lawrence, M.A. Ravine, T.G. McGee, K.S. Sotzen, S.M. MacKenzie, J.W. Langelaan, S. Schmitz, L.S. Wolfarth, P.D. Bedini, Dragonfly: a rotorcraft lander concept for scientific exploration at Titan. Johns Hopkins APL Tech. Dig. 34, 374–387 (2018)

    Google Scholar 

  • J.I. Lunine, M.C. Nolan, A massive early atmosphere on Triton. Icarus 100, 221–234 (1992). https://doi.org/10.1016/0019-1035(92)90031-2

    ADS  Article  Google Scholar 

  • J.I. Lunine, Y.L. Yung, R.D. Lorenz, On the volatile inventory of Titan from isotopic abundances in nitrogen and methane. Planet. Space Sci. 47, 1291–1303 (1999)

    ADS  Article  Google Scholar 

  • J.R. Lyons, Y. Yung, M. Allen, Solar control of the upper atmosphere of Triton. Science 80(256), 204–206 (1992). https://doi.org/10.1126/science.11540928

    ADS  Article  Google Scholar 

  • P.R. Mahaffy, C.R. Webster, M. Cabane, P.G. Conrad, P. Coll, S.K. Atreya, R. Arvey, M. Barciniak, M. Benna, L. Bleacher, W.B. Brinckerhoff, J.L. Eigenbrode, D. Carignan, M. Cascia, R.A. Chalmers, J.P. Dworkin, T. Errigo, P. Everson, H. Franz, R. Farley, S. Feng, G. Frazier, C. Freissinet, D.P. Glavin, D.N. Harpold, D. Hawk, V. Holmes, C.S. Johnson, A. Jones, P. Jordan, J. Kellogg, J. Lewis, E. Lyness, C.A. Malespin, D.K. Martin, J. Maurer, A.C. McAdam, D. McLennan, T.J. Nolan, M. Noriega, A.A. Pavlov, B. Prats, E. Raaen, O. Sheinman, D. Sheppard, J. Smith, J.C. Stern, F. Tan, M. Trainer, D.W. Ming, R.V. Morris, J. Jones, C. Gundersen, A. Steele, J. Wray, O. Botta, L.A. Leshin, T. Owen, S. Battel, B.M. Jakosky, H. Manning, S. Squyres, R. Navarro-González, C.P. McKay, F. Raulin, R. Sternberg, A. Buch, P. Sorensen, R. Kline-Schoder, D. Coscia, C. Szopa, S. Teinturier, C. Baffes, J. Feldman, G. Flesch, S. Forouhar, R. Garcia, D. Keymeulen, S. Woodward, B.P. Block, K. Arnett, R. Miller, C. Edmonson, S. Gorevan, E. Mumm, The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170, 401–478 (2012). https://doi.org/10.1007/s11214-012-9879-z

    ADS  Article  Google Scholar 

  • K.E. Mandt, J.H. Waite, W. Lewis, B. Magee, J. Bell, J. Lunine, O. Mousis, D. Cordier, Isotopic evolution of the major constituents of Titan’s atmosphere based on Cassini data. Planet. Space Sci. 57, 1917–1930 (2009). https://doi.org/10.1016/j.pss.2009.06.005

    ADS  Article  Google Scholar 

  • K.E. Mandt, J.H. Waite, B. Teolis, B.A. Magee, J. Bell, J.H. Westlake, C.A. Nixon, O. Mousis, J.I. Lunine, The 12C/13C ratio on Titan from Cassini INMS measurements and implications for the evolution of methane. Astrophys. J. 749, 160 (2012). https://doi.org/10.1088/0004-637X/749/2/160

    ADS  Article  Google Scholar 

  • K.E. Mandt, O. Mousis, J. Lunine, D. Gautier, Protosolar ammonia as the unique source of Titan’s nitrogen. Astrophys. J. Lett. 788, L24 (2014). https://doi.org/10.1088/2041-8205/788/2/L24

    ADS  Article  Google Scholar 

  • K.E. Mandt, O. Mousis, A. Luspay-Kuti, Isotopic constraints on the source of Pluto’s nitrogen and the history of atmospheric escape. Planet. Space Sci. 130, 104–109 (2016). https://doi.org/10.1016/j.pss.2016.02.011

    ADS  Article  Google Scholar 

  • K. Mandt, A. Luspay-kuti, M. Hamel, K. Jessup, in Photochemistry on Pluto: Part II HCN and Nitrogen Isotope Fractionation (2017), pp. 1–46

    Google Scholar 

  • J. Manfroid, E. Jehin, D. Hutsemékers, A. Cochran, J.M. Zucconi, C. Arpigny, R. Schulz, J.A. Stüwe, Isotopic abundance of nitrogen and carbon in distant comets. Astron. Astrophys. 432, 5–8 (2005). https://doi.org/10.1051/0004-6361:200500009

    ADS  Article  Google Scholar 

  • J. Manfroid, E. Jehin, D. Hutsemékers, A. Cochran, J.M. Zucconi, C. Arpigny, R. Schulz, J.A. Stüwe, I. Ilyin, The CN isotopic ratios in comets. Astron. Astrophys. 503, 613–624 (2009). https://doi.org/10.1051/0004-6361/200911859

    ADS  Article  Google Scholar 

  • N. Marounina, G. Tobie, S. Carpy, J. Monteux, B. Charnay, O. Grasset, Evolution of Titan’s atmosphere during the Late Heavy Bombardment. Icarus 257, 324–335 (2015). https://doi.org/10.1016/j.icarus.2015.05.011

    ADS  Article  Google Scholar 

  • A. Marten, T. Hidayat, R. Moreno, G. Paubert, B. Bezard, D. Gautier, H. Matthews, T. Owen, Saturn VI (Titan), in IAU Circ., vol. 6702 (1997), p. 1. 1997IAUC.6702....1M/abstract

    Google Scholar 

  • A. Marten, T. Hidayat, Y. Biraud, R. Moreno, New millimeter heterodyne observations of Titan: vertical distributions of nitriles HCN, HC3N, CH3CN, and the isotopic ratio 15N/14N in its atmosphere. Icarus 158, 532–544 (2002). https://doi.org/10.1006/icar.2002.6897

    ADS  Article  Google Scholar 

  • B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012). https://doi.org/10.1016/j.epsl.2011.10.040

    ADS  Article  Google Scholar 

  • B. Marty, L. Zimmermann, Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition. Geochim. Cosmochim. Acta 63, 3619–3633 (1999). https://doi.org/10.1016/S0016-7037(99)00169-6

    ADS  Article  Google Scholar 

  • B. Marty, L. Zimmermann, P.G. Burnard, R. Wieler, V.S. Heber, D.L. Burnett, R.C. Wiens, P. Bochsler, Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: evidence for large scale isotope heterogeneity in the early solar system. Geochim. Cosmochim. Acta 74, 340–355 (2010). https://doi.org/10.1016/j.gca.2009.09.007

    ADS  Article  Google Scholar 

  • B. Marty, M. Chaussidon, R.C. Wiens, A.J.G. Jurewicz, D.S. Burnett, A 15N-poor isotopic composition for the solar system as shown by genesis solar wind samples. Science 80(332), 1533–1536 (2011). https://doi.org/10.1126/science.1204656

    ADS  Article  Google Scholar 

  • K.J. Mathew, K. Marti, Early evolution of martian volatiles: nitrogen and noble gas components in ALH84001 and Chassigny. J. Geophys. Res., Planets 106, 1401–1422 (2001). https://doi.org/10.1029/2000JE001255

    ADS  Article  Google Scholar 

  • D.L. Matson, J.C. Castillo, J. Lunine, T.V. Johnson, Enceladus’ plume: compositional evidence for a hot interior. Icarus 187, 569–573 (2007). https://doi.org/10.1016/j.icarus.2006.10.016

    ADS  Article  Google Scholar 

  • S.R.N. McIntyre, C.H. Lineweaver, M.J. Ireland, Planetary magnetism as a parameter in exoplanet habitability. Mon. Not. R. Astron. Soc. 485, 3999–4012 (2019). https://doi.org/10.1093/mnras/stz667

    ADS  Article  Google Scholar 

  • C.P. McKay, T.W. Scattergood, J.B. Pollack, W.J. Borucki, H.T. Van Ghyseghem, High-temperature shock formation of N2 and organics on primordial Titan. Nature 332, 520–522 (1988). https://doi.org/10.1038/332520a0

    ADS  Article  Google Scholar 

  • K.D. McKeegan, J. Aleon, J. Bradley, D. Brownlee, H. Busemann, A. Butterworth, M. Chaussidon, S. Fallon, C. Floss, J. Gilmour, M. Gounelle, G. Graham, Y. Guan, P.R. Heck, P. Hoppe, I.D. Hutcheon, J. Huth, H. Ishii, M. Ito, S.B. Jacobsen, A. Kearsley, L.A. Leshin, M.-C. Liu, I. Lyon, K. Marhas, B. Marty, G. Matrajt, A. Meibom, S. Messenger, S. Mostefaoui, S. Mukhopadhyay, K. Nakamura-Messenger, L. Nittler, R. Palma, R.O. Pepin, D.A. Papanastassiou, F. Robert, D. Schlutter, C.J. Snead, F.J. Stadermann, R. Stroud, P. Tsou, A. Westphal, E.D. Young, K. Ziegler, L. Zimmermann, E. Zinner, Isotopic compositions of cometary matter returned by stardust. Science 80(314), 1724–1728 (2006). https://doi.org/10.1126/science.1135992

    ADS  Article  Google Scholar 

  • A. Meibom, A.N. Krot, F. Robert, S. Mostefaoui, S.S. Russell, M.I. Petaev, M. Gounelle, Nitrogen and carbon isotopic composition of the Sun inferred from a high-temperature solar nebular condensate. Astrophys. J. 656, L33–L36 (2007). https://doi.org/10.1086/512052

    ADS  Article  Google Scholar 

  • A. Meshik, C. Hohenberg, O. Pravdivtseva, D. Burnett, ScienceDirect heavy noble gases in solar wind delivered by Genesis mission. Geochim. Cosmochim. Acta 127, 326–347 (2014). https://doi.org/10.1016/j.gca.2013.11.030

    ADS  Article  Google Scholar 

  • A. Meshik, O. Pravdivtseva, D. Burnett, Refined composition of solar wind xenon delivered by Genesis NASA mission: comparison with xenon captured by extraterrestrial regolith soils. Geochim. Cosmochim. Acta 276, 289–298 (2020). https://doi.org/10.1016/j.gca.2020.03.001

    ADS  Article  Google Scholar 

  • S. Messenger, Identification of molecular-cloud material in interplanetary dust particles. Nature 404, 968–971 (2000). https://doi.org/10.1038/35010053

    ADS  Article  Google Scholar 

  • E. Meza, B. Sicardy, M. Assafin, J.L. Ortiz, T. Bertrand, E. Lellouch, J. Desmars, F. Forget, D. Bérard, Lower atmosphere and pressure evolution on Pluto from ground-based stellar occultations, 1988–2016. Astron. Astrophys. 625, A42 (2019)

    Article  Google Scholar 

  • M. Michael, R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, V.I. Shematovich, Ejection of nitrogen from Titan’s atmosphere by magnetospheric ions and pick-up ions. Icarus 175, 263–267 (2005). https://doi.org/10.1016/j.icarus.2004.11.004

    ADS  Article  Google Scholar 

  • K.E. Miller, C.R. Glein, J.H. Waite, Contributions from accreted organics to Titan’s atmosphere: new insights from cometary and chondritic data. Astrophys. J. 871, 59 (2019). https://doi.org/10.3847/1538-4357/aaf561

    ADS  Article  Google Scholar 

  • K.L. Mitchell, L.M. Prockter, W.E. Frazier, W.D. Smythe, B.M. Sutin, D.A. Bearden, T. Team, Implementation of trident: a discovery-class mission to Triton, in 50th Lunar and Planetary Science Conference, LPI Contribution No. 2132, id. 3200 (2019)

    Google Scholar 

  • E.M. Molter, C.A. Nixon, M.A. Cordiner, J. Serigano, P.G.J. Irwin, N.A. Teanby, S.B. Charnley, J.E. Lindberg, ALMA observations of HCN and its isotopologues on Titan. Astron. J. 152, 42 (2016). https://doi.org/10.3847/0004-6256/152/2/42

    ADS  Article  Google Scholar 

  • Y. Moulane, E. Jehin, P. Rousselot, J. Manfroid, Y. Shinnaka, F.J. Pozuelos, D. Hutsemékers, C. Opitom, B. Yang, Z. Benkhaldoun, Photometry and high-resolution spectroscopy of comet 21P/Giacobini-Zinner during its 2018 apparition 1–14 (2020). arXiv:2006.05017

  • H.B. Niemann, D.N. Harpold, S.K. Atreya, G.R. Carignan, D.M. Hunten, T.C. Owen, Galileo Probe Mass Spectrometer experiment. Space Sci. Rev. 60, 111–142 (1992). https://doi.org/10.1007/BF00216852

    ADS  Article  Google Scholar 

  • H.B. Niemann, S.K. Atreya, S.J. Bauer, K. Biemann, B. Block, G.R. Carignan, T.M. Donahue, R.L. Frost, D. Gautier, J.A. Haberman, D. Harpold, D.M. Hunten, G. Israel, J.I. Lunine, K. Mauersberger, T.C. Owen, F. Raulin, J.E. Richards, S.H. Way, The gas chromatograph mass spectrometer for the Huygens probe. Space Sci. Rev. 104, 553–591 (2002). https://doi.org/10.1023/A:1023680305259

    ADS  Article  Google Scholar 

  • H.B. Niemann, S.K. Atreya, S.J. Bauer, G.R. Carignan, J.E. Demick, R.L. Frost, D. Gautier, J.A. Haberman, D.N. Harpold, D.M. Hunten, G. Israel, J.I. Lunine, W.T. Kasprzak, T.C. Owen, M. Paulkovich, F. Raulin, E. Raaen, S.H. Way, The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779–784 (2005). https://doi.org/10.1038/nature04122

    ADS  Article  Google Scholar 

  • H.B. Niemann, S.K. Atreya, J.E. Demick, D. Gautier, J.A. Haberman, D.N. Harpold, W.T. Kasprzak, J.I. Lunine, T.C. Owen, F. Raulin, Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res., Planets 115, 1–22 (2010). https://doi.org/10.1029/2010JE003659

    Article  Google Scholar 

  • A.O. Nier, M.B. McElroy, Composition and structure of Mars’ Upper atmosphere: results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res. 82, 4341–4349 (1977). https://doi.org/10.1029/js082i028p04341

    ADS  Article  Google Scholar 

  • C.A. Nixon, B. Temelso, S. Vinatier, N.A. Teanby, B. Bézard, R.K. Achterberg, K.E. Mandt, C.D. Sherrill, P.G.J. Irwin, D.E. Jennings, P.N. Romani, A. Coustenis, F.M. Flasar, Isotopic ratios in titan’s methane: measurements and modeling. Astrophys. J. 749, 159 (2012). https://doi.org/10.1088/0004-637X/749/2/159

    ADS  Article  Google Scholar 

  • K.S. Noll, R.E. Johnson, A.L. Lane, D.L. Domingue, H.A. Weaver, Detection of ozone on Ganymede. Science 80(273), 341–343 (1996). https://doi.org/10.1126/science.273.5273.341

    ADS  Article  Google Scholar 

  • P. Odert, H. Lammer, N.V. Erkaev, A. Nikolaou, H.I.M. Lichtenegger, C.P. Johnstone, K.G. Kislyakova, M. Leitzinger, N. Tosi, Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus 307, 327–346 (2018). https://doi.org/10.1016/j.icarus.2017.10.031

    ADS  Article  Google Scholar 

  • C.B. Olkin, L.A. Young, R.G. French, E.F. Young, M.W. Buie, R.R. Howell, J. Regester, C.R. Ruhland, T. Natusch, D.J. Ramm, Pluto’s atmospheric structure from the July 2007 stellar occultation. Icarus 239, 15–22 (2014). https://doi.org/10.1016/j.icarus.2014.05.018

    ADS  Article  Google Scholar 

  • T. Owen, A. Bar-Nun, Comets, impacts, and atmospheres. Icarus 116, 215–226 (1995). https://doi.org/10.1006/icar.1995.1122

    ADS  Article  Google Scholar 

  • T. Owen, K. Biemann, D.R. Rushneck, J.E. Biller, D.W. Howarth, A.L. Lafleur, The composition of the atmosphere at the surface of Mars. J. Geophys. Res. 82, 4635–4639 (1977). https://doi.org/10.1029/js082i028p04635

    ADS  Article  Google Scholar 

  • T. Owen, P.R. Mahaffy, H.B. Niemann, S. Atreya, M. Wong, Protosolar nitrogen. Astrophys. J. 553, L77–L79 (2001). https://doi.org/10.1086/320501

    ADS  Article  Google Scholar 

  • P.T. Palmer, T.F. Limero, Mass spectrometry in the U.S. space program: past, present, and future. J. Am. Soc. Mass Spectrom. 12, 656–675 (2001). https://doi.org/10.1016/S1044-0305(01)00249-5

    Article  Google Scholar 

  • J. Pearl, R. Hanel, V. Kunde, W. Maguire, K. Fox, S. Gupta, C. Ponnamperuma, F. Raulin, Identification of gaseous SO2 and new upper limits for other gases on Io. Nature 280, 755–758 (1979). https://doi.org/10.1038/280755a0

    ADS  Article  Google Scholar 

  • T. Penz, H. Lammer, Y.N. Kulikov, H.K. Biernat, The influence of the solar particle and radiation environment on Titan’s atmosphere evolution. Adv. Space Res. 36, 241–250 (2005). https://doi.org/10.1016/j.asr.2005.03.043

    ADS  Article  Google Scholar 

  • L.M. Prockter, K.L. Mitchell, C.J.A. Howett, W.D. Smythe, B.M. Sutin, D.A. Bearden, W.E. Frazier, Exploring triton with trident: a discovery class mission, in 50th Lunar Planet. Sci. Conf., Woodlands, Texas, 18-22 March, 2019 (2019). LPI Contrib. No. 2132, id. 3188. http://adsabs.harvard.edu/abs/2019LPI....50.3188P

    Google Scholar 

  • Z. Ren, M. Guo, Y. Cheng, Y. Wang, W. Sun, H. Zhang, M. Dong, G. Li, A review of the development and application of space miniature mass spectrometers. Vacuum 155, 108–117 (2018). https://doi.org/10.1016/j.vacuum.2018.05.048

    ADS  Article  Google Scholar 

  • P. Rousselot, O. Pirali, E. Jehin, M. Vervloet, D. Hutsemékers, J. Manfroid, D. Cordier, M.A. Martin-Drumel, S. Gruet, C. Arpigny, A. Decock, O. Mousis, Toward a unique nitrogen isotopic ratio in cometary ICES. Astrophys. J. Lett. 780, 2–6 (2014). https://doi.org/10.1088/2041-8205/780/2/L17

    Article  Google Scholar 

  • R.E. Samuelson, N.R. Nath, A. Borysow, Gaseous abundances and methane supersaturation in Titan’s troposphere. Planet. Space Sci. 45, 959–980 (1997)

    ADS  Article  Google Scholar 

  • P. Saxena, R.M. Killen, V. Airapetian, N.E. Petro, N.M. Curran, A.M. Mandell, Was the Sun a slow rotator? Sodium and potassium constraints from the lunar regolith. Astrophys. J. 876, L16 (2019). https://doi.org/10.3847/2041-8213/ab18fb

    ADS  Article  Google Scholar 

  • K. Schaepe, H. Jungnickel, T. Heinrich, J. Tentschert, A. Luch, W.E.S. Unger, Secondary ion mass spectrometry, in Characterization of Nanoparticles: Measurement Processes for Nanoparticles (Elsevier, Amsterdam, 2019), pp. 481–509. https://doi.org/10.1016/B978-0-12-814182-3.00025-0

    Chapter  Google Scholar 

  • Y. Sekine, H. Genda, S. Sugita, T. Kadono, T. Matsui, Replacement and late formation of atmospheric N2 on undifferentiated Titan by impacts. Nat. Geosci. 4, 359–362 (2011). https://doi.org/10.1038/ngeo1147

    ADS  Article  Google Scholar 

  • V.I. Shematovich, R.E. Johnson, M. Michael, J.G. Luhmann, Nitrogen loss from Titan. J. Geophys. Res. 108, 5087 (2003). https://doi.org/10.1029/2003JE002094

    Article  Google Scholar 

  • Y. Shinnaka, H. Kawakita, Nitrogen isotopic ratio of cometary ammonia from high-resolution optical spectroscopic observations of C/2014 Q2 (Lovejoy). Astron. J. 152, 145 (2016). https://doi.org/10.3847/0004-6256/152/5/145

    ADS  Article  Google Scholar 

  • Y. Shinnaka, H. Kawakita, H. Kobayashi, M. Nagashima, D.C. Boice, 14NH2/15NH2 ratio in comet C/2012 S1 (ISON) observed during its outburst in 2013 November. Astrophys. J. 782, L16 (2014a). https://doi.org/10.1088/2041-8205/782/2/L16

    ADS  Article  Google Scholar 

  • Y. Shinnaka, H. Kawakita, E. Jehin, A. Decock, D. Hutsemékers, J. Manfroid, A. Arai, Nitrogen isotopic ratios of NH2 in comets: implication for 15N-fractionation in cometary ammonia. Mon. Not. R. Astron. Soc. 462, S195–S209 (2016). https://doi.org/10.1093/mnras/stw2410

    ADS  Article  Google Scholar 

  • B. Sicardy, T. Widemann, E. Lellouch, C. Veillet, J.-C. Cuillandre, F. Colas, F. Roques, W. Beisker, M. Kretlow, A.-M. Lagrange, E. Gendron, F. Lacombe, J. Lecacheux, C. Birnbaum, A. Fienga, C. Leyrat, A. Maury, E. Raynaud, S. Renner, M. Schultheis, K. Brooks, A. Delsanti, O.R. Hainaut, R. Gilmozzi, C. Lidman, J. Spyromilio, M. Rapaport, P. Rosenzweig, O. Naranjo, L. Porras, F. Díaz, H. Calderón, S. Carrillo, A. Carvajal, E. Recalde, L.G. Cavero, C. Montalvo, D. Barría, R. Campos, R. Duffard, H. Levato, Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature 424, 168–170 (2003). https://doi.org/10.1038/nature01766

    ADS  Article  Google Scholar 

  • K.N. Singer, S.A. Stern, On the provenance of Pluto’s nitrogen (N2). Astrophys. J. Lett. 808(2), L50 (2015). https://doi.org/10.1088/2041-8205/808/2/l50.

    ADS  Article  Google Scholar 

  • B.A. Smith, L.A. Soderblom, D. Banfield, c. Barnet, A.T. Basilevsky, R.F. Beebe, K. Bollinger, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, c. Chyba, s.A. Collins, T. Colvin, A.F. Cook, D. Crisp, S.K. Croft, D. Cruikshank, J.N. Cuzzi, G.E. Danielson, M.E. Davies, E. De Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, V.R. Haemmerle, H. Hammel, c.J. Hansen, c.P. Helfenstein, C. Howell, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, J. Kargel, R. Kirk, D.I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J.B. Pollack, C.C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E.M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synott, R.J. Terrile, P. Thomas, W.R. Thompson, A. Verbiscer, J. Veverka, Imaging science results. Science 80(246), 1422–1449 (1989). https://doi.org/10.1126/science.246.4936.1422. Voyager 2 at Neptune

    ADS  Article  Google Scholar 

  • C. Snodgrass, G.H. Jones, The European Space Agency’s comet interceptor lies in wait. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-13470-1

    Article  Google Scholar 

  • J.C. Solá, Observations des satellites principaux de Jupiter et de Titan. Astron. Nachr. 179, 289–290 (1908). https://doi.org/10.1002/asna.19081791807

    ADS  Article  Google Scholar 

  • S.A. Stern, F. Bagenal, K. Ennico, G.R. Gladstone, W.M. Grundy, W.B. McKinnon, J.M. Moore, C.B. Olkin, J.R. Spencer, H.A. Weaver, L.A. Young, T. Andert, J. Andrews, M. Banks, B. Bauer, J. Bauman, O.S. Barnouin, P. Bedini, K. Beisser, R.A. Beyer, S. Bhaskaran, R.P. Binzel, E. Birath, M. Bird, D.J. Bogan, A. Bowman, V.J. Bray, M. Brozovic, C. Bryan, M.R. Buckley, M.W. Buie, B.J. Buratti, S.S. Bushman, A. Calloway, B. Carcich, A.F. Cheng, S. Conard, C.A. Conrad, J.C. Cook, D.P. Cruikshank, O.S. Custodio, C.M.D. Ore, C. Deboy, Z.J.B. Dischner, P. Dumont, A.M. Earle, H.A. Elliott, J. Ercol, C.M. Ernst, T. Finley, S.H. Flanigan, G. Fountain, M.J. Freeze, T. Greathouse, J.L. Green, Y. Guo, M. Hahn, D.P. Hamilton, S.A. Hamilton, J. Hanley, A. Harch, H.M. Hart, C.B. Hersman, A. Hill, M.E. Hill, D.P. Hinson, M.E. Holdridge, M. Horanyi, A.D. Howard, C.J.A. Howett, C. Jackman, R.A. Jacobson, D.E. Jennings, J.A. Kammer, H.K. Kang, D.E. Kaufmann, P. Kollmann, S.M. Krimigis, D. Kusnierkiewicz, T.R. Lauer, J.E. Lee, K.L. Lindstrom, I.R. Linscott, C.M. Lisse, A.W. Lunsford, V.A. Mallder, N. Martin, D.J. McComas, R.L. McNutt, D. Mehoke, T. Mehoke, E.D. Melin, M. Mutchler, D. Nelson, F. Nimmo, J.I. Nunez, A. Ocampo, W.M. Owen, M. Paetzold, B. Page, A.H. Parker, J.W. Parker, F. Pelletier, J. Peterson, N. Pinkine, M. Piquette, S.B. Porter, S. Protopapa, J. Redfern, H.J. Reitsema, D.C. Reuter, J.H. Roberts, S.J. Robbins, G. Rogers, D. Rose, K. Runyon, K.D. Retherford, M.G. Ryschkewitsch, P. Schenk, E. Schindhelm, B. Sepan, M.R. Showalter, K.N. Singer, M. Soluri, D. Stanbridge, A.J. Steffl, D.F. Strobel, T. Stryk, M.E. Summers, J.R. Szalay, M. Tapley, A. Taylor, H. Taylor, H.B. Throop, C.C.C. Tsang, G.L. Tyler, O.M. Umurhan, A.J. Verbiscer, M.H. Versteeg, M. Vincent, R. Webbert, S. Weidner, G.E. Weigle, O.L. White, K. Whittenburg, B.G. Williams, K. Williams, S. Williams, W.W. Woods, A.M. Zangari, E. Zirnstein, The Pluto system: initial results from its exploration by New Horizons. Science 350(6258), aad1815 (2015). https://doi.org/10.1126/science.aad1815.

    ADS  Article  Google Scholar 

  • D.F. Strobel, Chemistry and evolution of Titan’s atmosphere. Planet. Space Sci. 30, 839–848 (1982). https://doi.org/10.1016/0032-0633(82)90116-7

    ADS  Article  Google Scholar 

  • D.F. Strobel, N2 escape rates from Pluto’s atmosphere. Icarus 193, 612–619 (2008). https://doi.org/10.1016/j.icarus.2007.08.021

    ADS  Article  Google Scholar 

  • D.F. Strobel, X. Zhu, Comparative planetary nitrogen atmospheres: density and thermal structures of Pluto and Triton. Icarus 291, 55–64 (2017). https://doi.org/10.1016/j.icarus.2017.03.013

    ADS  Article  Google Scholar 

  • M.E. Summers, D.F. Strobel, Triton’s atmosphere: a source of \(N\) and \(H\) for Neptune’s magnetosphere. Geophys. Res. Lett. 18, 2309–2312 (1991). https://doi.org/10.1029/91GL01334

    ADS  Article  Google Scholar 

  • F. Tian, O.B. Toon, Hydrodynamic escape of nitrogen from Pluto. Geophys. Res. Lett. 32, L18201 (2005). https://doi.org/10.1029/2005GL023510

    ADS  Article  Google Scholar 

  • F. Tian, J.F. Kasting, S.C. Solomon, Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36, 1–5 (2009). https://doi.org/10.1029/2008GL036513

    Article  Google Scholar 

  • G. Tobie, J.I. Lunine, C. Sotin, Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440, 61–64 (2006). https://doi.org/10.1038/nature04497

    ADS  Article  Google Scholar 

  • G. Tobie, D. Gautier, F. Hersant, Titan’s bulk composition constrained by Cassini-Huygens: implication for internal outgassing. Astrophys. J. 752, 125 (2012). https://doi.org/10.1088/0004-637X/752/2/125

    ADS  Article  Google Scholar 

  • A.T. Tokunaga, S.T. Ridgway, L. Wallace, R.F. Knacke, High-resolution spectra of Jupiter in the 744-980 inverse centimeter spectral range. Astrophys. J. 232, 603 (1979). https://doi.org/10.1086/157319

    ADS  Article  Google Scholar 

  • L. Trafton, S.A. Stern, On the global distribution of Pluto’s atmosphere. Astrophys. J. 267, 872 (1983). https://doi.org/10.1086/160921

    ADS  Article  Google Scholar 

  • L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015). https://doi.org/10.1051/0004-6361/201526146

    ADS  Article  Google Scholar 

  • O.J. Tucker, J.T. Erwin, J.I. Deighan, A.N. Volkov, R.E. Johnson, Thermally driven escape from Pluto’s atmosphere: a combined fluid/kinetic model. Icarus 217(1), 408–415 (2011). https://doi.org/10.1016/j.icarus.2011.11.017

    ADS  Article  Google Scholar 

  • E.P. Turtle, J.W. Barnes, M.G. Trainer, R.D. Lorenz, K.E. Hibbard, D.S. Adams, P. Bedini, W.B. Brinckerhoff, M.L. Cable, C. Ernst, C. Freissinet, K. Hand, A.G. Hayes, S.M. Horst, J.R. Johnson, E. Karkoschka, J.W. Langelaan, D.J. Lawrence, A. Le Gall, J.M. Lora, S.M. MacKenzie, C.P. McKay, C.D. Neish, C.E. Newman, J. Palacios, M.P. Panning, A.M. Parsons, P.N. Peplowski, J. Radebaugh, S.C.R. Rafkin, M.A. Ravine, S. Schmitz, J.M. Soderblom, K.S. Sotzen, A.M. Stickle, E.R. Stofan, T. Tokano, C. Wilson, R.A. Yingst, K. Zacny, Dragonfly: in situ exploration of Titan’s organic chemistry and habitability, in 49th Lunar Planet. Sci. Conf., Woodlands, Texas, 19-23 March, 2018 (2018). LPI Contrib. No. 2083, id. 1641. 2018LPI....49.1641T

    Google Scholar 

  • R.J. Vervack, B.R. Sandel, D.F. Strobel, New perspectives on Titan’s upper atmosphere from a reanalysis of the Voyager 1 UVS solar occultations. Icarus 170, 91–112 (2004). https://doi.org/10.1016/j.icarus.2004.03.005

    ADS  Article  Google Scholar 

  • S. Vinatier, B. Bézard, C.A. Nixon, The Titan 14N/15N and 12C/13C isotopic ratios in HCN from Cassini/CIRS. Icarus 191, 712–721 (2007). https://doi.org/10.1016/j.icarus.2007.06.001

    ADS  Article  Google Scholar 

  • A.N. Volkov, R.E. Johnson, O.J. Tucker, J.T. Erwin, Thermally driven atmospheric escape: transition from hydrodynamic to Jeans escape. Astrophys. J. Lett. 729, L24 (2011). https://doi.org/10.1088/2041-8205/729/2/L24

    ADS  Article  Google Scholar 

  • A. Vorburger, M. Pfleger, J. Lindkvist, M. Holmström, H. Lammer, H.I.M. Lichtenegger, A. Galli, M. Rubin, P. Wurz, Three-Dimensional Modeling of Callisto’s Surface Sputtered Exosphere Environment. J. Geophys. Res. Space Phys. (2019). https://doi.org/10.1029/2019JA026610

    Article  Google Scholar 

  • J.H. Waite, W.S. Lewis, W.T. Kasprzak, V.G. Anicich, B.P. Block, T.E. Cravens, G.G. Fletcher, J.G. Luhmann, R.L. Mcnutt, H.B. Niemann, J.K. Parejko, J.E. Richards, R.L. Thorpe, E.M. Walter, R.V. Yelle, The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation. Space Sci. Rev. 114, 113–231 (2004). https://doi.org/10.1007/s11214-004-1408-2

    ADS  Article  Google Scholar 

  • J.H. Waite, H. Niemann, R.V. Yelle, W.T. Kasprzak, T.E. Cravens, J.G. Luhmann, R.L. McNutt, W.-H. Ip, D. Gell, V. De La Haye, I. Müller-Wordag, B. Magee, N. Borggren, S. Ledvina, G. Fletcher, E. Walter, R. Miller, S. Scherer, R. Thorpe, J. Xu, B. Block, K. Arnett, Ion Neutral Mass Spectrometer results from the first flyby of Titan. Science 80(308), 982–986 (2005). https://doi.org/10.1126/science.1110652

    ADS  Article  Google Scholar 

  • C.R. Webster, S.P. Sander, R. Beer, R.D. May, R.G. Knollenberg, D.M. Hunten, J. Ballard, Tunable diode laser IR spectrometer for in situ measurements of the gas phase composition and particle size distribution of Titan’s atmosphere. Appl. Opt. 29, 907 (1990). https://doi.org/10.1364/ao.29.000907

    ADS  Article  Google Scholar 

  • C.R. Webster, P.R. Mahaffy, G.J. Flesch, P.B. Niles, J.H. Jones, L.A. Leshin, S.K. Atreya, J.C. Stern, L.E. Christensen, T. Owen, H. Franz, R.O. Pepin, A. Steele, Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 80(341), 260–263 (2013). https://doi.org/10.1126/science.1237961

    ADS  Article  Google Scholar 

  • C.R. Webster, L.E. Christensen, G.J. Flesch, S. Forouhar, R. Briggs, D. Keymeulen, J. Blacksberg, P.R. Mahaffy, Tunable laser spectrometers for space science, in Proceedings of the International Workshop on Instrumentation for Planetary Missions, IPM-2014 (2014)

    Google Scholar 

  • C.R. Webster, J. Blacksberg, L.E. Christensen, G.J. Flesch, S. Forouhar, R. Briggs, D. Keymeulen, P.R. Mahaffy, P.R.G. Mahaffy@nasa, Digital Tunable Laser Spectrometer for Venus atmospheric isotope ratios, in LPICo, vol. 1838, (2015), p. 4012. https://doi.org/10.1088/2041-8205/713/1/L59.[5

    Chapter  Google Scholar 

  • M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.B. Niemann, T.C. Owen, Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171, 153–170 (2004). https://doi.org/10.1016/j.icarus.2004.04.010

    ADS  Article  Google Scholar 

  • M.H. Wong, S.K. Atreya, P.N. Mahaffy, H.B. Franz, C. Malespin, M.G. Trainer, J.C. Stern, P.G. Conrad, H.L.K. Manning, R.O. Pepin, R.H. Becker, C.P. McKay, T.C. Owen, R. Navarro-González, J.H. Jones, B.M. Jakosky, A. Steele, Isotopes of nitrogen on Mars: atmospheric measurements by Curiosity’s mass spectrometer. Geophys. Res. Lett. 40, 6033–6037 (2013). https://doi.org/10.1002/2013GL057840

    ADS  Article  Google Scholar 

  • B. Yang, D. Hutsemékers, Y. Shinnaka, C. Opitom, J. Manfroid, E. Jehin, K.J. Meech, O.R. Hainaut, J.V. Keane, M. Gillon, Isotopic ratios in outbursting comet C/2015 ER61. Astron. Astrophys. 609, 1–4 (2018). https://doi.org/10.1051/0004-6361/201732100

    ADS  Article  Google Scholar 

  • R.V. Yelle, J.L. Elliot, Atmospheric Structure and Composition: Pluto and Charon, in Pluto Charon, ed. by S.A. Stern, D.J. Tholen, A.S. Rus, M.L. Guerr, M.S. Matthews (University of Arizona Press, Tucson, 1997), p. 347. 1997plch.book..347Y

    Google Scholar 

  • S. Yokota, Isotope mass spectrometry in the solar system exploration. J. Mass Spectrom. 7, S0076–S0076 (2018). https://doi.org/10.5702/massspectrometry.s0076

    Article  Google Scholar 

  • L.A. Young, J.L. Elliot, A. Tokunaga, C. de Bergh, T. Owen, Detection of gaseous methane on Pluto. Icarus 127, 258–262 (1997). https://doi.org/10.1006/icar.1997.5709

    ADS  Article  Google Scholar 

  • L.A. Young, J.A. Kammer, A.J. Steffl, G.R. Gladstone, M.E. Summers, D.F. Strobel, D.P. Hinson, S.A. Stern, H.A. Weaver, C.B. Olkin, K. Ennico, D.J. McComas, A.F. Cheng, P. Gao, P. Lavvas, I.R. Linscott, M.L. Wong, Y.L. Yung, N. Cunningham, M. Davis, J.W. Parker, E. Schindhelm, O.H.W. Siegmund, J. Stone, K. Retherford, M. Versteeg, Structure and composition of Pluto’s atmosphere from the New Horizons solar ultraviolet occultation. Icarus 300, 174–199 (2018). https://doi.org/10.1016/j.icarus.2017.09.006

    ADS  Article  Google Scholar 

  • Y.L. Yung, J.R. Lyons, Triton: topside ionosphere and nitrogen escape. Geophys. Res. Lett. 17, 1717–1720 (1990). https://doi.org/10.1029/GL017i010p01717

    ADS  Article  Google Scholar 

  • Y.L. Yung, M. Allen, J.P. Pinto, Photochemistry of the atmosphere of Titan—comparison between model and observations. Astrophys. J. Suppl. Ser. 55, 465 (1984). https://doi.org/10.1086/190963

    ADS  Article  Google Scholar 

  • X. Zhu, D.F. Strobel, J.T. Erwin, The density and thermal structure of Pluto’s atmosphere and associated escape processes and rates. Icarus 228, 301–314 (2014). https://doi.org/10.1016/j.icarus.2013.10.011

    ADS  Article  Google Scholar 

  • L.M. Ziurys, C. Savage, M.A. Brewster, A.J. Apponi, T.C. Pesch, S. Wyckoff, Cyanide chemistry in Comet Hale-Bopp (C/1995 O1). Astrophys. J. 527, L67–L71 (1999). https://doi.org/10.1086/312388

    ADS  Article  Google Scholar 

Download references

Acknowledgements

MS acknowledges the support of Europlanet 2020 RI. Europlanet 2020 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654208. NVE and HL acknowledge the FWF NFN Project S11607-N27. NVE acknowledges RFBR grant No 18-05-00195-a. KM acknowledges NASA grants 80NSSC18K1233 and 80NSSC19K1306. BM acknowledges the European Research Council grant 695618. We finally thank an anonymous referee who helped to significantly enhance the value of our review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Scherf.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reading Terrestrial Planet Evolution in Isotopes and Element Measurements

Edited by Helmut Lammer, Bernard Marty, Aubrey L. Zerkle, Michel Blanc, Hugh O’Neill and Thorsten Kleine

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scherf, M., Lammer, H., Erkaev, N.V. et al. Nitrogen Atmospheres of the Icy Bodies in the Solar System. Space Sci Rev 216, 123 (2020). https://doi.org/10.1007/s11214-020-00752-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00752-0

Keywords

  • Titan
  • Nitrogen atmospheres
  • Isotopes
  • Icy satellites
  • Atmospheric evolution
  • Isotope measurement techniques