M.H. Acuña, C.J. Pellerin, A miniature two-axis fluxgate magnetometer. IEEE Trans. Geosci. Electron. 7(4), 252–260 (1969). https://doi.org/10.1109/TGE.1969.271360
ADS
Article
Google Scholar
M.H. Acuña, C.S. Scearce, J. Seek, J. Scheifele, The MAGSAT vector magnetometer: a precision fluxgate magnetometer for the measurement of the geomagnetic field. National Aeronautics and Space Administration (1978)
B.J. Anderson, K. Takahashi, B.A. Toth, Sensing global Birkeland currents with Iridium engineering magnetometer data. Geophys. Res. Lett. 27(24), 4045–4048 (2000)
ADS
Article
Google Scholar
P.C. Anderson, F.J. Rich, S. Borisov, Mapping the South Atlantic Anomaly continuously over 27 years. J. Atmos. Sol.-Terr. Phys. 177, 237–246 (2018). https://doi.org/10.1016/j.jastp.2018.03.015
ADS
Article
Google Scholar
V. Angelopoulos, D. Sibeck, C.W. Carlson, J.P. McFadden, D. Larson, R.P. Lin, J.W. Bonnell, F.S. Mozer, R. Ergun, C. Cully et al., First results from the THEMIS mission, in The THEMIS Mission (Springer, Berlin, 2009), pp. 453–476 [online]. Available from: http://link.springer.com/chapter/10.1007/978-0-387-89820-9_19 (accessed 16 September 2016)
Chapter
Google Scholar
G. Balasis, I.A. Daglis, I.R. Mann, Waves, Particles, and Storms in Geospace: A Complex Interplay (Oxford University Press, London, 2016)
Book
Google Scholar
T.A. Bekkeng, K.S. Jacobsen, J.K. Bekkeng, A. Pedersen, T. Lindem, J.P. Lebreton, J.I. Moen, Design of a multi-needle Langmuir probe system. Meas. Sci. Technol. 21(8), 085903 (2010)
ADS
Article
Google Scholar
T.A. Bekkeng, E.S. Helgeby, A. Pedersen, E. Trondsen, T. Lindem, J.I. Moen, Multi-needle Langmuir probe system for electron density measurements and active spacecraft potential control on CubeSats. IEEE Trans. Aerosp. Electron. Syst. 55(6), 2951–2964 (2019). https://doi.org/10.1109/TAES.2019.2900132
ADS
Article
Google Scholar
D. Boscher, S. Bourdarie, P. O’Brien, T. Guild, IRBEM library V4. 3, 2004–2008, ONERA-DESP Toulouse Fr. Aerosp. Corp. Wash. DC, 2010
P. Brown, T. Beek, C. Carr, H. O’Brien, E. Cupido, T. Oddy, T.S. Horbury, Magnetoresistive magnetometer for space science applications. Meas. Sci. Technol. 23(2), 025902 (2012)
ADS
Article
Google Scholar
P. Brown, B.J. Whiteside, T.J. Beek, P. Fox, T.S. Horbury, T.M. Oddy, M.O. Archer, J.P. Eastwood, D. Sanz-Hernández, J.G. Sample et al., Space magnetometer based on an anisotropic magnetoresistive hybrid sensor. Rev. Sci. Instrum. 85(12), 125117 (2014)
ADS
Article
Google Scholar
S. Buchert, F. Zangerl, M. Sust, M. André, A. Eriksson, J.-E. Wahlund, H. Opgenoorth, SWARM observations of equatorial electron densities and topside GPS track losses. Geophys. Res. Lett. 42(7), 2088–2092 (2015). https://doi.org/10.1002/2015GL063121
ADS
Article
Google Scholar
J.L. Burch, T.E. Moore, R.B. Torbert, B.L. Giles, Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199(1–4), 5–21 (2016)
ADS
Article
Google Scholar
S. Damkjar, C. Cupido, C.D.A. Nokes, I.R. Mann, D.G. Elliot, Design and Verification of a Robust Release Mechanism for CubeSat Deployables (2019)
J. Domingos, D. Jault, M.A. Pais, M. Mandea, The South Atlantic Anomaly throughout the solar cycle. Earth Planet. Sci. Lett. 473, 154–163 (2017). https://doi.org/10.1016/j.epsl.2017.06.004
ADS
Article
Google Scholar
E. Doornbos, H. Klinkrad, Modelling of space weather effects on satellite drag. Adv. Space Res. 37(6), 1229–1239 (2006)
ADS
Article
Google Scholar
C.P. Escoubet, M. Fehringer, M. Goldstein, Introduction the Cluster mission. Ann. Geophys. 19, 1197–1200 (2001) [online]. Available from: https://hal.archives-ouvertes.fr/hal-00316909/ (accessed 16 September 2016)
ADS
Article
Google Scholar
R.E. Ferrari, A.J. Hansen, S. Damkjar, C.D.A. Nokes, C. Cupido, C.F. Lange, D.G. Elliott, I.R. Mann, Making CubeSats and Space Science More Accessible Through Educational Outreach (2015)
R.E. Ferrari, A.J. Hansen, S. Damkjar, C. Lissinna, A. Kale, D. Elliott, I.R. Mann, D.M. Miles, Elementary school education and outreach through the Ex-Alta 1 CubeSat mission. Phys. Can. Educ. 74(3–4), 131–135 (2019)
Google Scholar
C. Forsyth, I.J. Rae, I.R. Mann, I.P. Pakhotin, Identifying intervals of temporally invariant field-aligned currents from Swarm: assessing the validity of single-spacecraft methods. J. Geophys. Res. Space Phys. 122(3), 3411–3419 (2017). https://doi.org/10.1002/2016JA023708
ADS
Article
Google Scholar
E. Friis-Christensen, H. Lühr, D. Knudsen, R. Haagmans, Swarm–an Earth observation mission investigating geospace. Adv. Space Res. 41(1), 210–216 (2008)
ADS
Article
Google Scholar
O.H. Gerlach, Attitude stabilisation and control of Earth satellites. Space Sci. Rev. 4, 541–582 (1965)
ADS
Article
Google Scholar
K.-H. Glassmeier, J. Vogt, A. Stadelmann, S. Buchert, Concerning long-term geomagnetic variations and space climatology. Ann. Geophys. 22, 3669–3677 (2004)
ADS
Article
Google Scholar
L.V. Goodwin, B. Iserhienrhien, D.M. Miles, S. Patra, C. van der Meeren, S.C. Buchert, J.K. Burchill, L.B.N. Clausen, D.J. Knudsen, K.A. McWilliams, J. Moen, Swarm in situ observations of F region polar cap patches created by cusp precipitation. Geophys. Res. Lett. 42(4), 996–1003 (2015). https://doi.org/10.1002/2014GL062610
ADS
Article
Google Scholar
H. Hoang, K. Røed, T.A. Bekkeng, J.I. Moen, L.B.N. Clausen, E. Trondsen, B. Lybekk, H. Strøm, D.M. Bang-Hauge, A. Pedersen, C.D.A. Nokes, C. Cupido, I.R. Mann, M. Ariel, D. Portnoy, E. Sagi, The Multi-needle Langmuir Probe Instrument for QB50 Mission: Case Studies of Ex-Alta 1 and Hoopoe Satellites. Space Sci. Rev. 215(2), 21 (2019). https://doi.org/10.1007/s11214-019-0586-x
J.D. Huba, G. Joyce, Global modeling of equatorial plasma bubbles. Geophys. Res. Lett. 37(17), 17104 (2010). https://doi.org/10.1029/2010GL044281
ADS
Article
Google Scholar
T. Iijima, T.A. Potemra, The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res. 81(13), 2165–2174 (1976). https://doi.org/10.1029/JA081i013p02165
ADS
Article
Google Scholar
K.S. Jacobsen, A. Pedersen, J.I. Moen, T.A. Bekkeng, A new Langmuir probe concept for rapid sampling of space plasma electron density. Meas. Sci. Technol. 21(8), 085902 (2010)
ADS
Article
Google Scholar
T.S. Kelso, CelesTrak, Public Domain Satell. Track. Data (2010)
L. Kepko, C. Clagett, L. Santos, B. Azimi, D. Berry, T. Bonalsky, D. Chai, M. Colvin, A. Cudmore, A. Evans, Dellingr: NASA Goddard Space Flight Center’s First 6U Spacecraft, in 31st Annu. AIAA/USU Conf. Small Satell. (2017)
Google Scholar
L. Kepko, L. Santos, C. Clagett, B. Azimi, D. Chai, A. Cudmore, S. Starin, J. Marshall, J. Lucas, Dellingr: reliability lessons learned from on-orbit, in 32nd Annu. AIAA/USU Conf. Small Satell. (2018)
Google Scholar
X. Li, Q. Schiller, L. Blum, S. Califf, H. Zhao, W. Tu, D.L. Turner, D. Gerhardt, S. Palo, S. Kanekal, First results from CSSWE CubeSat: characteristics of relativistic electrons in the near-Earth environment during the October 2012 magnetic storms. J. Geophys. Res. Space Phys. 118(10), 6489–6499 (2013)
ADS
Article
Google Scholar
G. López Rosson, V. Pierrard, Analysis of proton and electron spectra observed by EPT/PROBA-V in the South Atlantic Anomaly. Adv. Space Res. 60(4), 796–805 (2017). https://doi.org/10.1016/j.asr.2017.03.022
ADS
Article
Google Scholar
I.R. Mann, D.K. Milling, I.J. Rae, L.G. Ozeke, A. Kale, Z.C. Kale, K.R. Murphy, A. Parent, M. Usanova, D.M. Pahud, E.-A. Lee, V. Amalraj, D.D. Wallis, V. Angelopoulos, K.-H. Glassmeier, C.T. Russell, H.-U. Auster, H.J. Singer, The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci. Rev. 141(1–4), 413–451 (2008). https://doi.org/10.1007/s11214-008-9457-6
ADS
Article
Google Scholar
D. Masutti, R. Wicks, Science Operation (2016) [online]. Available from: https://upload.vki.ac.be/public_download?shareId=5e92ba4dde7fe0efce723a7eaed5ddc6 (accessed 18 October 2016)
J.E. Mazur, W.R. Crain, M.D. Looper, D.J. Mabry, J.B. Blake, A.W. Case, M.J. Golightly, J.C. Kasper, H.E. Spence, New measurements of total ionizing dose in the lunar environment. Space Weather 9(7) (2011) [online]. Available from: http://onlinelibrary.wiley.com/doi/10.1029/2010SW000641/full (accessed 16 September 2016)
M.D. Michelena, Commercial off-the-shelf GMR based sensor on board optos picosatellite, in Giant Magnetoresistance (GMR) Sensors (Springer, Berlin, 2013), pp. 181–210 [online]. Available from: http://link.springer.com/chapter/10.1007/978-3-642-37172-1_8 (accessed 16 September 2016)
Chapter
Google Scholar
D.M. Miles, J.R. Bennest, I.R. Mann, D.K. Millling, A radiation hardened digital fluxgate magnetometer for space applications. Geosci. Instrum. Method. Data Syst. 2(2), 213–224 (2013)
ADS
Article
Google Scholar
D.M. Miles, I.R. Mann, M. Ciurzynsky, D. Barona, B.B. Narod, J.R. Bennest, I.P. Pakhotin, A. Kale, B. Bruner, C.D.A. Nokes, C. Cupido, T. Haluza-DeLay, D.G. Elliott, D.K. Milling, A miniature, low-power scientific fluxgate magnetometer: a stepping-stone to cube-satellite constellation missions. J. Geophys. Res. Space Phys. 121(12), 11,839–11,860 (2016). https://doi.org/10.1002/2016JA023147
Article
Google Scholar
D.M. Miles, I.R. Mann, I.P. Pakhotin, J.K. Burchill, A.D. Howarth, D.J. Knudsen, R.L. Lysak, D.D. Wallis, L. Cogger, A.W. Yau, Alfvénic dynamics and fine structuring of discrete auroral arcs: Swarm and e-POP observations. Geophys. Res. Lett. 45(2), 545–555 (2018). https://doi.org/10.1002/2017GL076051
ADS
Article
Google Scholar
H.M. Mott-Smith, I. Langmuir, The theory of collectors in gaseous discharges. Phys. Rev. 28(4), 727–763 (1926). https://doi.org/10.1103/PhysRev.28.727
ADS
Article
Google Scholar
K.R. Murphy, I.R. Mann, I.J. Rae, C.L. Waters, B.J. Anderson, D.K. Milling, H.J. Singer, H. Korth, Reduction in field-aligned currents preceding and local to auroral substorm onset. Geophys. Res. Lett. 39(15), L15106 (2012). https://doi.org/10.1029/2012GL052798
ADS
Article
Google Scholar
J. Muylaert, Call for CubeSat Proposals for QB50, Von Karman Inst. Fluid Dyn. Bruss. (2012)
J. Muylaert, R. Reinhard, C. Asma, J. Buchlin, P. Rambaud, M. Vetrano, QB50: an international network of 50 cubesats for multi-point, in-situ measurements in the lower thermosphere and for re-entry research, in ESA Atmospheric Science Conference, Barcelona, Spain (2009), pp. 7–11
Google Scholar
B.B. Narod, J.R. Bennest, Ring-core fluxgate magnetometers for use as observatory variometers. Phys. Earth Planet. Inter. 59(1–2), 23–28 (1990)
ADS
Article
Google Scholar
W.P. Olson, K.A. Pfitzer, Magnetospheric magnetic field modeling. Annual Scientific Report, AFOSR Contract No, F44620-75-C-0033 (1977)
D. Oltrogge, K. Leveque, An evaluation of cubesat orbital decay (2011)
I.P. Pakhotin, I.R. Mann, R.L. Lysak, D.J. Knudsen, J.W. Gjerloev, I.J. Rae, C. Forsyth, K.R. Murphy, D.M. Miles, L.G. Ozeke, Diagnosing the role of Alfvén waves in magnetosphere-ionosphere coupling: Swarm observations of large amplitude nonstationary magnetic perturbations during an interval of northward IMF. J. Geophys. Res. Space Phys. 123(1), 326–340 (2018)
ADS
Article
Google Scholar
J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 107(A12), SIA–15 (2002)
Article
Google Scholar
F. Primdahl, The fluxgate magnetometer. J. Phys. E 12(4), 241 (1979)
ADS
Article
Google Scholar
Pumpkin Inc., CubeSat Kit PCB Specification, Pumpkin Inc. (2007) [online]. Available from: http://www.cubesatkit.com/docs/CSK_PCB_Spec-A5.pdf
A.D. Richmond, G. Lu, Upper-atmospheric effects of magnetic storms: a brief tutorial. J. Atmos. Sol.-Terr. Phys. 62(12), 1115–1127 (2000). https://doi.org/10.1016/S1364-6826(00)00094-8
ADS
Article
Google Scholar
P. Ripka, Advances in fluxgate sensors. Sens. Actuators A, Phys. 106(1), 8–14 (2003)
Article
Google Scholar
P. Ripka, M. Tondra, J. Stokes, R. Beech, AC-driven AMR and GMR magnetoresistors. Sens. Actuators A, Phys. 76(1), 225–230 (1999)
Article
Google Scholar
P. Ritter, H. Lühr, J. Rauberg, Determining field-aligned currents with the Swarm constellation mission. Earth Planets Space 65(11), 9 (2013). https://doi.org/10.5047/eps.2013.09.006
Article
Google Scholar
C. Robson, The Design and Validation of a Spacecraft Orbit and Attitude Simulation Environment in MATLAB/Simulink (2018)
J. Rodríguez-Zuluaga, C. Stolle, J. Park, On the direction of the Poynting flux associated with equatorial plasma depletions as derived from Swarm. Geophys. Res. Lett. 44(12), 5884–5891 (2017). https://doi.org/10.1002/2017GL073385
ADS
Article
Google Scholar
A. Roy, R.E. Ferrari, S. Damkjar, S. Sarai, L. Fairgrieve-Park, C. Lissina, I.R. Mann, D.G. Elliot, Making CubeSats and Space Science More Accessible Through Educational Outreach, vol. IAC-18,E1,1,9,x47473 (2018)
A. Spicher, T. Cameron, E.M. Grono, K.N. Yakymenko, S.C. Buchert, L.B.N. Clausen, D.J. Knudsen, K.A. McWilliams, J.I. Moen, Observation of polar cap patches and calculation of gradient drift instability growth times: a Swarm case study. Geophys. Res. Lett. 42(2), 201–206 (2015)
ADS
Article
Google Scholar
C. Stolle, H. Lühr, M. Rother, G. Balasis, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J. Geophys. Res. Space Phys. 111(A2), A02304 (2006). https://doi.org/10.1029/2005JA011184
ADS
Article
Google Scholar
K.F. Strauss, T. Daud, Overview of radiation tolerant unlimited write cycle non-volatile memory, in 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484), vol. 5 (2000), pp. 399–408
Chapter
Google Scholar
E. Thébault, C.C. Finlay, C.D. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand, T. Bondar, A. Boness, L. Brocco, E. Canet, A. Chambodut, A. Chulliat, P. Coïsson, F. Civet, A. Du, A. Fournier, I. Fratter, N. Gillet, B. Hamilton, M. Hamoudi, G. Hulot, T. Jager, M. Korte, W. Kuang, X. Lalanne, B. Langlais, J.-M. Léger, V. Lesur, F.J. Lowes, S. Macmillan, M. Mandea, C. Manoj, S. Maus, N. Olsen, V. Petrov, V. Ridley, M. Rother, T.J. Sabaka, D. Saturnino, R. Schachtschneider, O. Sirol, A. Tangborn, A. Thomson, L. Tøffner-Clausen, P. Vigneron, I. Wardinski, T. Zvereva, International geomagnetic reference field: the 12th generation. Earth Planets Space 67(1), 79 (2015). https://doi.org/10.1186/s40623-015-0228-9
ADS
Article
Google Scholar
W.T. Thomson, Introduction to Space Dynamics (Wiley, New York, 1961)
Google Scholar
R.T. Tsunoda, Upwelling: a unit of disturbance in equatorial spread F. Prog. Earth Planet. Sci. 2(1), 9 (2015). https://doi.org/10.1186/s40645-015-0038-5
ADS
Article
Google Scholar
D.A. Vallado, D. Finkleman, A critical assessment of satellite drag and atmospheric density modeling. Acta Astronaut. 95, 141–165 (2014). https://doi.org/10.1016/j.actaastro.2013.10.005
ADS
Article
Google Scholar
D.D. Wallis, D.M. Miles, B.B. Narod, J.R. Bennest, K.R. Murphy, I.R. Mann, A.W. Yau, The CASSIOPE/e-POP Magnetic Field Instrument (MGF). Space Sci. Rev. 189(1–4), 27–39 (2015). https://doi.org/10.1007/s11214-014-0105-z
ADS
Article
Google Scholar
X. Wan, C. Xiong, J. Rodriguez-Zuluaga, G.N. Kervalishvili, C. Stolle, H. Wang, Climatology of the occurrence rate and amplitudes of local time distinguished equatorial plasma depletions observed by Swarm satellite. J. Geophys. Res. Space Phys. 123(4), 3014–3026 (2018). https://doi.org/10.1002/2017JA025072
ADS
Article
Google Scholar
R.T. Wicks, D.M. Miles, Editorial: topical collection on multi-point measurements of the thermosphere with the QB50 mission. Space Sci. Rev. 215(1), 15 (2019). https://doi.org/10.1007/s11214-019-0588-8
ADS
Article
Google Scholar
C. Xiong, C. Stolle, H. Lühr, The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather 14(8), 563–577 (2016). https://doi.org/10.1002/2016SW001439
ADS
Article
Google Scholar
A.W. Yau, H.G. James, CASSIOPE enhanced Polar Outflow Probe (e-POP) mission overview. Space Sci. Rev. 189(1–4), 3–14 (2015). https://doi.org/10.1007/s11214-015-0135-1
ADS
Article
Google Scholar
Y. Ye, H. Zou, Q. Zong, H. Chen, Y. Wang, X. Yu, W. Shi, The secular variation of the center of geomagnetic South Atlantic anomaly and its effect on the distribution of inner radiation belt particles. Space Weather 15(11), 1548–1558 (2017). https://doi.org/10.1002/2017SW001687
ADS
Article
Google Scholar