Skip to main content

The Experimental Albertan Satellite #1 (Ex-Alta 1) Cube-Satellite Mission

Abstract

The Experimental Albertan satellite #1 (Ex-Alta 1) was a three-unit cube satellite (CubeSat) developed at the University of Alberta (UAlberta). As the first ‘made in Alberta’ spacecraft, the Ex-Alta 1 CubeSat was the Canadian contribution to the international QB50 CubeSat constellation mission (www.qb50.eu). Ex-Alta 1’s mission incorporated four science objectives, two technical objectives, and one educational outreach objective. These are reviewed in the context of the Ex-Alta 1 mission design, as well as future CubeSat constellation missions that may follow demonstration missions such as Ex-Alta 1 and the experiences of the QB50 project. In support of its objectives, Ex-Alta 1 flew the multi-needle Langmuir probe (m-NLP) QB50 standardized payload, a UAlberta developed miniaturized digital fluxgate magnetometer (DFGM) mounted on a two-element articulated deployable boom, a radiation dosimeter from Teledyne, and an open source onboard computer (OBC) developed at UAlberta. Ex-Alta 1 was released by a NanoRacks deployer from the International Space Station on May 26, 2017, and commanded and controlled from a ground-station developed and operated at UAlberta. Ex-Alta 1 operated continuously throughout its mission until it burned up in the atmosphere on November 14, 2018. The last two-way contact occurred on that day at 07:49:29 UTC, when the spacecraft reported an onboard temperature of 47 °C in eclipse at an altitude of 152 km and which marked the effective end of the mission. This paper provides an overview of the Ex-Alta 1 mission, its development, the spacecraft and mission design, and reports preliminary results from the payload focusing on the DFGM instrument. We also report briefly on related education and outreach activities, including the development and delivery of curriculum-targeted and CubeSat focused classroom sessions inspired by the Ex-Alta 1 mission to school pupils in Alberta.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  • M.H. Acuña, C.J. Pellerin, A miniature two-axis fluxgate magnetometer. IEEE Trans. Geosci. Electron. 7(4), 252–260 (1969). https://doi.org/10.1109/TGE.1969.271360

    ADS  Article  Google Scholar 

  • M.H. Acuña, C.S. Scearce, J. Seek, J. Scheifele, The MAGSAT vector magnetometer: a precision fluxgate magnetometer for the measurement of the geomagnetic field. National Aeronautics and Space Administration (1978)

  • B.J. Anderson, K. Takahashi, B.A. Toth, Sensing global Birkeland currents with Iridium engineering magnetometer data. Geophys. Res. Lett. 27(24), 4045–4048 (2000)

    ADS  Article  Google Scholar 

  • P.C. Anderson, F.J. Rich, S. Borisov, Mapping the South Atlantic Anomaly continuously over 27 years. J. Atmos. Sol.-Terr. Phys. 177, 237–246 (2018). https://doi.org/10.1016/j.jastp.2018.03.015

    ADS  Article  Google Scholar 

  • V. Angelopoulos, D. Sibeck, C.W. Carlson, J.P. McFadden, D. Larson, R.P. Lin, J.W. Bonnell, F.S. Mozer, R. Ergun, C. Cully et al., First results from the THEMIS mission, in The THEMIS Mission (Springer, Berlin, 2009), pp. 453–476 [online]. Available from: http://link.springer.com/chapter/10.1007/978-0-387-89820-9_19 (accessed 16 September 2016)

    Chapter  Google Scholar 

  • G. Balasis, I.A. Daglis, I.R. Mann, Waves, Particles, and Storms in Geospace: A Complex Interplay (Oxford University Press, London, 2016)

    Book  Google Scholar 

  • T.A. Bekkeng, K.S. Jacobsen, J.K. Bekkeng, A. Pedersen, T. Lindem, J.P. Lebreton, J.I. Moen, Design of a multi-needle Langmuir probe system. Meas. Sci. Technol. 21(8), 085903 (2010)

    ADS  Article  Google Scholar 

  • T.A. Bekkeng, E.S. Helgeby, A. Pedersen, E. Trondsen, T. Lindem, J.I. Moen, Multi-needle Langmuir probe system for electron density measurements and active spacecraft potential control on CubeSats. IEEE Trans. Aerosp. Electron. Syst. 55(6), 2951–2964 (2019). https://doi.org/10.1109/TAES.2019.2900132

    ADS  Article  Google Scholar 

  • D. Boscher, S. Bourdarie, P. O’Brien, T. Guild, IRBEM library V4. 3, 2004–2008, ONERA-DESP Toulouse Fr. Aerosp. Corp. Wash. DC, 2010

  • P. Brown, T. Beek, C. Carr, H. O’Brien, E. Cupido, T. Oddy, T.S. Horbury, Magnetoresistive magnetometer for space science applications. Meas. Sci. Technol. 23(2), 025902 (2012)

    ADS  Article  Google Scholar 

  • P. Brown, B.J. Whiteside, T.J. Beek, P. Fox, T.S. Horbury, T.M. Oddy, M.O. Archer, J.P. Eastwood, D. Sanz-Hernández, J.G. Sample et al., Space magnetometer based on an anisotropic magnetoresistive hybrid sensor. Rev. Sci. Instrum. 85(12), 125117 (2014)

    ADS  Article  Google Scholar 

  • S. Buchert, F. Zangerl, M. Sust, M. André, A. Eriksson, J.-E. Wahlund, H. Opgenoorth, SWARM observations of equatorial electron densities and topside GPS track losses. Geophys. Res. Lett. 42(7), 2088–2092 (2015). https://doi.org/10.1002/2015GL063121

    ADS  Article  Google Scholar 

  • J.L. Burch, T.E. Moore, R.B. Torbert, B.L. Giles, Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199(1–4), 5–21 (2016)

    ADS  Article  Google Scholar 

  • S. Damkjar, C. Cupido, C.D.A. Nokes, I.R. Mann, D.G. Elliot, Design and Verification of a Robust Release Mechanism for CubeSat Deployables (2019)

  • J. Domingos, D. Jault, M.A. Pais, M. Mandea, The South Atlantic Anomaly throughout the solar cycle. Earth Planet. Sci. Lett. 473, 154–163 (2017). https://doi.org/10.1016/j.epsl.2017.06.004

    ADS  Article  Google Scholar 

  • E. Doornbos, H. Klinkrad, Modelling of space weather effects on satellite drag. Adv. Space Res. 37(6), 1229–1239 (2006)

    ADS  Article  Google Scholar 

  • C.P. Escoubet, M. Fehringer, M. Goldstein, Introduction the Cluster mission. Ann. Geophys. 19, 1197–1200 (2001) [online]. Available from: https://hal.archives-ouvertes.fr/hal-00316909/ (accessed 16 September 2016)

    ADS  Article  Google Scholar 

  • R.E. Ferrari, A.J. Hansen, S. Damkjar, C.D.A. Nokes, C. Cupido, C.F. Lange, D.G. Elliott, I.R. Mann, Making CubeSats and Space Science More Accessible Through Educational Outreach (2015)

  • R.E. Ferrari, A.J. Hansen, S. Damkjar, C. Lissinna, A. Kale, D. Elliott, I.R. Mann, D.M. Miles, Elementary school education and outreach through the Ex-Alta 1 CubeSat mission. Phys. Can. Educ. 74(3–4), 131–135 (2019)

    Google Scholar 

  • C. Forsyth, I.J. Rae, I.R. Mann, I.P. Pakhotin, Identifying intervals of temporally invariant field-aligned currents from Swarm: assessing the validity of single-spacecraft methods. J. Geophys. Res. Space Phys. 122(3), 3411–3419 (2017). https://doi.org/10.1002/2016JA023708

    ADS  Article  Google Scholar 

  • E. Friis-Christensen, H. Lühr, D. Knudsen, R. Haagmans, Swarm–an Earth observation mission investigating geospace. Adv. Space Res. 41(1), 210–216 (2008)

    ADS  Article  Google Scholar 

  • O.H. Gerlach, Attitude stabilisation and control of Earth satellites. Space Sci. Rev. 4, 541–582 (1965)

    ADS  Article  Google Scholar 

  • K.-H. Glassmeier, J. Vogt, A. Stadelmann, S. Buchert, Concerning long-term geomagnetic variations and space climatology. Ann. Geophys. 22, 3669–3677 (2004)

    ADS  Article  Google Scholar 

  • L.V. Goodwin, B. Iserhienrhien, D.M. Miles, S. Patra, C. van der Meeren, S.C. Buchert, J.K. Burchill, L.B.N. Clausen, D.J. Knudsen, K.A. McWilliams, J. Moen, Swarm in situ observations of F region polar cap patches created by cusp precipitation. Geophys. Res. Lett. 42(4), 996–1003 (2015). https://doi.org/10.1002/2014GL062610

    ADS  Article  Google Scholar 

  • H. Hoang, K. Røed, T.A. Bekkeng, J.I. Moen, L.B.N. Clausen, E. Trondsen, B. Lybekk, H. Strøm, D.M. Bang-Hauge, A. Pedersen, C.D.A. Nokes, C. Cupido, I.R. Mann, M. Ariel, D. Portnoy, E. Sagi, The Multi-needle Langmuir Probe Instrument for QB50 Mission: Case Studies of Ex-Alta 1 and Hoopoe Satellites. Space Sci. Rev. 215(2), 21 (2019). https://doi.org/10.1007/s11214-019-0586-x

  • J.D. Huba, G. Joyce, Global modeling of equatorial plasma bubbles. Geophys. Res. Lett. 37(17), 17104 (2010). https://doi.org/10.1029/2010GL044281

    ADS  Article  Google Scholar 

  • T. Iijima, T.A. Potemra, The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res. 81(13), 2165–2174 (1976). https://doi.org/10.1029/JA081i013p02165

    ADS  Article  Google Scholar 

  • K.S. Jacobsen, A. Pedersen, J.I. Moen, T.A. Bekkeng, A new Langmuir probe concept for rapid sampling of space plasma electron density. Meas. Sci. Technol. 21(8), 085902 (2010)

    ADS  Article  Google Scholar 

  • T.S. Kelso, CelesTrak, Public Domain Satell. Track. Data (2010)

  • L. Kepko, C. Clagett, L. Santos, B. Azimi, D. Berry, T. Bonalsky, D. Chai, M. Colvin, A. Cudmore, A. Evans, Dellingr: NASA Goddard Space Flight Center’s First 6U Spacecraft, in 31st Annu. AIAA/USU Conf. Small Satell. (2017)

    Google Scholar 

  • L. Kepko, L. Santos, C. Clagett, B. Azimi, D. Chai, A. Cudmore, S. Starin, J. Marshall, J. Lucas, Dellingr: reliability lessons learned from on-orbit, in 32nd Annu. AIAA/USU Conf. Small Satell. (2018)

    Google Scholar 

  • X. Li, Q. Schiller, L. Blum, S. Califf, H. Zhao, W. Tu, D.L. Turner, D. Gerhardt, S. Palo, S. Kanekal, First results from CSSWE CubeSat: characteristics of relativistic electrons in the near-Earth environment during the October 2012 magnetic storms. J. Geophys. Res. Space Phys. 118(10), 6489–6499 (2013)

    ADS  Article  Google Scholar 

  • G. López Rosson, V. Pierrard, Analysis of proton and electron spectra observed by EPT/PROBA-V in the South Atlantic Anomaly. Adv. Space Res. 60(4), 796–805 (2017). https://doi.org/10.1016/j.asr.2017.03.022

    ADS  Article  Google Scholar 

  • I.R. Mann, D.K. Milling, I.J. Rae, L.G. Ozeke, A. Kale, Z.C. Kale, K.R. Murphy, A. Parent, M. Usanova, D.M. Pahud, E.-A. Lee, V. Amalraj, D.D. Wallis, V. Angelopoulos, K.-H. Glassmeier, C.T. Russell, H.-U. Auster, H.J. Singer, The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci. Rev. 141(1–4), 413–451 (2008). https://doi.org/10.1007/s11214-008-9457-6

    ADS  Article  Google Scholar 

  • D. Masutti, R. Wicks, Science Operation (2016) [online]. Available from: https://upload.vki.ac.be/public_download?shareId=5e92ba4dde7fe0efce723a7eaed5ddc6 (accessed 18 October 2016)

  • J.E. Mazur, W.R. Crain, M.D. Looper, D.J. Mabry, J.B. Blake, A.W. Case, M.J. Golightly, J.C. Kasper, H.E. Spence, New measurements of total ionizing dose in the lunar environment. Space Weather 9(7) (2011) [online]. Available from: http://onlinelibrary.wiley.com/doi/10.1029/2010SW000641/full (accessed 16 September 2016)

  • M.D. Michelena, Commercial off-the-shelf GMR based sensor on board optos picosatellite, in Giant Magnetoresistance (GMR) Sensors (Springer, Berlin, 2013), pp. 181–210 [online]. Available from: http://link.springer.com/chapter/10.1007/978-3-642-37172-1_8 (accessed 16 September 2016)

    Chapter  Google Scholar 

  • D.M. Miles, J.R. Bennest, I.R. Mann, D.K. Millling, A radiation hardened digital fluxgate magnetometer for space applications. Geosci. Instrum. Method. Data Syst. 2(2), 213–224 (2013)

    ADS  Article  Google Scholar 

  • D.M. Miles, I.R. Mann, M. Ciurzynsky, D. Barona, B.B. Narod, J.R. Bennest, I.P. Pakhotin, A. Kale, B. Bruner, C.D.A. Nokes, C. Cupido, T. Haluza-DeLay, D.G. Elliott, D.K. Milling, A miniature, low-power scientific fluxgate magnetometer: a stepping-stone to cube-satellite constellation missions. J. Geophys. Res. Space Phys. 121(12), 11,839–11,860 (2016). https://doi.org/10.1002/2016JA023147

    Article  Google Scholar 

  • D.M. Miles, I.R. Mann, I.P. Pakhotin, J.K. Burchill, A.D. Howarth, D.J. Knudsen, R.L. Lysak, D.D. Wallis, L. Cogger, A.W. Yau, Alfvénic dynamics and fine structuring of discrete auroral arcs: Swarm and e-POP observations. Geophys. Res. Lett. 45(2), 545–555 (2018). https://doi.org/10.1002/2017GL076051

    ADS  Article  Google Scholar 

  • H.M. Mott-Smith, I. Langmuir, The theory of collectors in gaseous discharges. Phys. Rev. 28(4), 727–763 (1926). https://doi.org/10.1103/PhysRev.28.727

    ADS  Article  Google Scholar 

  • K.R. Murphy, I.R. Mann, I.J. Rae, C.L. Waters, B.J. Anderson, D.K. Milling, H.J. Singer, H. Korth, Reduction in field-aligned currents preceding and local to auroral substorm onset. Geophys. Res. Lett. 39(15), L15106 (2012). https://doi.org/10.1029/2012GL052798

    ADS  Article  Google Scholar 

  • J. Muylaert, Call for CubeSat Proposals for QB50, Von Karman Inst. Fluid Dyn. Bruss. (2012)

  • J. Muylaert, R. Reinhard, C. Asma, J. Buchlin, P. Rambaud, M. Vetrano, QB50: an international network of 50 cubesats for multi-point, in-situ measurements in the lower thermosphere and for re-entry research, in ESA Atmospheric Science Conference, Barcelona, Spain (2009), pp. 7–11

    Google Scholar 

  • B.B. Narod, J.R. Bennest, Ring-core fluxgate magnetometers for use as observatory variometers. Phys. Earth Planet. Inter. 59(1–2), 23–28 (1990)

    ADS  Article  Google Scholar 

  • W.P. Olson, K.A. Pfitzer, Magnetospheric magnetic field modeling. Annual Scientific Report, AFOSR Contract No, F44620-75-C-0033 (1977)

  • D. Oltrogge, K. Leveque, An evaluation of cubesat orbital decay (2011)

  • I.P. Pakhotin, I.R. Mann, R.L. Lysak, D.J. Knudsen, J.W. Gjerloev, I.J. Rae, C. Forsyth, K.R. Murphy, D.M. Miles, L.G. Ozeke, Diagnosing the role of Alfvén waves in magnetosphere-ionosphere coupling: Swarm observations of large amplitude nonstationary magnetic perturbations during an interval of northward IMF. J. Geophys. Res. Space Phys. 123(1), 326–340 (2018)

    ADS  Article  Google Scholar 

  • J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 107(A12), SIA–15 (2002)

    Article  Google Scholar 

  • F. Primdahl, The fluxgate magnetometer. J. Phys. E 12(4), 241 (1979)

    ADS  Article  Google Scholar 

  • Pumpkin Inc., CubeSat Kit PCB Specification, Pumpkin Inc. (2007) [online]. Available from: http://www.cubesatkit.com/docs/CSK_PCB_Spec-A5.pdf

  • A.D. Richmond, G. Lu, Upper-atmospheric effects of magnetic storms: a brief tutorial. J. Atmos. Sol.-Terr. Phys. 62(12), 1115–1127 (2000). https://doi.org/10.1016/S1364-6826(00)00094-8

    ADS  Article  Google Scholar 

  • P. Ripka, Advances in fluxgate sensors. Sens. Actuators A, Phys. 106(1), 8–14 (2003)

    Article  Google Scholar 

  • P. Ripka, M. Tondra, J. Stokes, R. Beech, AC-driven AMR and GMR magnetoresistors. Sens. Actuators A, Phys. 76(1), 225–230 (1999)

    Article  Google Scholar 

  • P. Ritter, H. Lühr, J. Rauberg, Determining field-aligned currents with the Swarm constellation mission. Earth Planets Space 65(11), 9 (2013). https://doi.org/10.5047/eps.2013.09.006

    Article  Google Scholar 

  • C. Robson, The Design and Validation of a Spacecraft Orbit and Attitude Simulation Environment in MATLAB/Simulink (2018)

  • J. Rodríguez-Zuluaga, C. Stolle, J. Park, On the direction of the Poynting flux associated with equatorial plasma depletions as derived from Swarm. Geophys. Res. Lett. 44(12), 5884–5891 (2017). https://doi.org/10.1002/2017GL073385

    ADS  Article  Google Scholar 

  • A. Roy, R.E. Ferrari, S. Damkjar, S. Sarai, L. Fairgrieve-Park, C. Lissina, I.R. Mann, D.G. Elliot, Making CubeSats and Space Science More Accessible Through Educational Outreach, vol. IAC-18,E1,1,9,x47473 (2018)

  • A. Spicher, T. Cameron, E.M. Grono, K.N. Yakymenko, S.C. Buchert, L.B.N. Clausen, D.J. Knudsen, K.A. McWilliams, J.I. Moen, Observation of polar cap patches and calculation of gradient drift instability growth times: a Swarm case study. Geophys. Res. Lett. 42(2), 201–206 (2015)

    ADS  Article  Google Scholar 

  • C. Stolle, H. Lühr, M. Rother, G. Balasis, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J. Geophys. Res. Space Phys. 111(A2), A02304 (2006). https://doi.org/10.1029/2005JA011184

    ADS  Article  Google Scholar 

  • K.F. Strauss, T. Daud, Overview of radiation tolerant unlimited write cycle non-volatile memory, in 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484), vol. 5 (2000), pp. 399–408

    Chapter  Google Scholar 

  • E. Thébault, C.C. Finlay, C.D. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand, T. Bondar, A. Boness, L. Brocco, E. Canet, A. Chambodut, A. Chulliat, P. Coïsson, F. Civet, A. Du, A. Fournier, I. Fratter, N. Gillet, B. Hamilton, M. Hamoudi, G. Hulot, T. Jager, M. Korte, W. Kuang, X. Lalanne, B. Langlais, J.-M. Léger, V. Lesur, F.J. Lowes, S. Macmillan, M. Mandea, C. Manoj, S. Maus, N. Olsen, V. Petrov, V. Ridley, M. Rother, T.J. Sabaka, D. Saturnino, R. Schachtschneider, O. Sirol, A. Tangborn, A. Thomson, L. Tøffner-Clausen, P. Vigneron, I. Wardinski, T. Zvereva, International geomagnetic reference field: the 12th generation. Earth Planets Space 67(1), 79 (2015). https://doi.org/10.1186/s40623-015-0228-9

    ADS  Article  Google Scholar 

  • W.T. Thomson, Introduction to Space Dynamics (Wiley, New York, 1961)

    Google Scholar 

  • R.T. Tsunoda, Upwelling: a unit of disturbance in equatorial spread F. Prog. Earth Planet. Sci. 2(1), 9 (2015). https://doi.org/10.1186/s40645-015-0038-5

    ADS  Article  Google Scholar 

  • D.A. Vallado, D. Finkleman, A critical assessment of satellite drag and atmospheric density modeling. Acta Astronaut. 95, 141–165 (2014). https://doi.org/10.1016/j.actaastro.2013.10.005

    ADS  Article  Google Scholar 

  • D.D. Wallis, D.M. Miles, B.B. Narod, J.R. Bennest, K.R. Murphy, I.R. Mann, A.W. Yau, The CASSIOPE/e-POP Magnetic Field Instrument (MGF). Space Sci. Rev. 189(1–4), 27–39 (2015). https://doi.org/10.1007/s11214-014-0105-z

    ADS  Article  Google Scholar 

  • X. Wan, C. Xiong, J. Rodriguez-Zuluaga, G.N. Kervalishvili, C. Stolle, H. Wang, Climatology of the occurrence rate and amplitudes of local time distinguished equatorial plasma depletions observed by Swarm satellite. J. Geophys. Res. Space Phys. 123(4), 3014–3026 (2018). https://doi.org/10.1002/2017JA025072

    ADS  Article  Google Scholar 

  • R.T. Wicks, D.M. Miles, Editorial: topical collection on multi-point measurements of the thermosphere with the QB50 mission. Space Sci. Rev. 215(1), 15 (2019). https://doi.org/10.1007/s11214-019-0588-8

    ADS  Article  Google Scholar 

  • C. Xiong, C. Stolle, H. Lühr, The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather 14(8), 563–577 (2016). https://doi.org/10.1002/2016SW001439

    ADS  Article  Google Scholar 

  • A.W. Yau, H.G. James, CASSIOPE enhanced Polar Outflow Probe (e-POP) mission overview. Space Sci. Rev. 189(1–4), 3–14 (2015). https://doi.org/10.1007/s11214-015-0135-1

    ADS  Article  Google Scholar 

  • Y. Ye, H. Zou, Q. Zong, H. Chen, Y. Wang, X. Yu, W. Shi, The secular variation of the center of geomagnetic South Atlantic anomaly and its effect on the distribution of inner radiation belt particles. Space Weather 15(11), 1548–1558 (2017). https://doi.org/10.1002/2017SW001687

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The Canadian Space Agency supported work on the project through grants 13STFAAB17 and 14SSTQB50. D. M. Miles was supported by an NSERC PGSD graduate scholarship, the Canadian Space Agency, and subsequently new faculty start-up funding from the University of Iowa. Discovery Grants from Canadian NSERC supported I. R. Mann and D. G. Elliott. Ex-Alta 1 was made possible by financial support from the University of Alberta Faculties of Science and Engineering, CMC Microsystems, the Canadian Foundation for Innovation, and crowd-funding via (https://ualberta.useed.net). The project also acknowledges the generous donation of the GPS receiver to the Ex-Alta 1 mission by Novatel. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 284427. The authors thank VKI and other members of the QB50 team for support, J. T. (Mitch) Mitchell for advice concerning the ground station, and Northern Alberta Radio Club for generous financial support. Many, many hours of student volunteer time and a series of undergraduate Capstone projects at UAlberta also contributed to the successful implementation of the Ex-Alta 1 mission.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Multi-Point Measurements of the Thermosphere with the QB50 Mission

Edited by David Miles, Robert Wicks and James Burch

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mann, I.R., Nokes, C.D.A., Cupido, C. et al. The Experimental Albertan Satellite #1 (Ex-Alta 1) Cube-Satellite Mission. Space Sci Rev 216, 96 (2020). https://doi.org/10.1007/s11214-020-00720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00720-8

Keywords

  • Cube satellites
  • CubeSat
  • Space weather
  • Magnetometry
  • Nanosatellites