Skip to main content
Log in

Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in Light of the Juno and Cassini Gravity Measurements

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The nature and structure of the observed east-west flows on Jupiter and Saturn have been a long-standing mystery in planetary science. This mystery has been recently unraveled by the accurate gravity measurements provided by the Juno mission to Jupiter and the Grand Finale of the Cassini mission to Saturn. These two experiments, which coincidentally happened around the same time, allowed the determination of the overall vertical and meridional profiles of the zonal flows on both planets. This paper reviews the topic of zonal jets on the gas giants in light of the new data from these two experiments. The gravity measurements not only allow the depth of the jets to be constrained, yielding the inference that the jets extend to roughly 3000 and 9000 km below the observed clouds on Jupiter and Saturn, respectively, but also provide insights into the mechanisms controlling these zonal flows. Specifically, for both planets this depth corresponds to the depth where electrical conductivity is within an order of magnitude of 1 S m−1, implying that the magnetic field likely plays a key role in damping the zonal flows. An intrinsic characteristic of any gravity inversion, as discussed here, is that the solutions might not be unique. We analyze the robustness of the solutions and present several independent lines of evidence supporting the results presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that \(2\boldsymbol{\Omega }\cdot \nabla =2\boldsymbol{\Omega } \frac{\partial }{\partial z}\), where \(z\) is the direction parallel to the spin vector \(\left (\boldsymbol{\Omega }\right )\).

  2. Note that the barotropic limit is not simply when the rhs of Eq. (3) vanishes, but rather when the lhs changes as well, resulting in \(2\boldsymbol{\Omega }\cdot \nabla \mathbf{u}-2\boldsymbol{\Omega }\nabla \cdot \mathbf{u}=0\). See full derivation in Kaspi et al. (2016).

References

  • J.D. Anderson, G. Schubert, Saturn’s gravitational field, internal rotation, and interior structure. Science 317, 1384–1387 (2007)

    ADS  Google Scholar 

  • D.H. Atkinson, J.B. Pollack, A. Seiff, Galileo Doppler measurements of the deep zonal winds at Jupiter. Science 272, 842–843 (1996)

    ADS  Google Scholar 

  • J.M. Aurnou, P.L. Olson, Strong zonal winds from thermal convectionin a rotating spherical shell. Geophys. Res. Lett. 28(13), 2557–2559 (2001)

    ADS  Google Scholar 

  • J. Aurnou, M. Heimpel, L. Allen, E. King, J. Wicht, Convective heat transfer and the pattern of thermal emission on the gas giants. Geophys. J. Int. 173, 793–801 (2008)

    ADS  Google Scholar 

  • S.J. Bolton, Juno Final Concept Study Report. Technical Report AO-03-OSS-03 New Frontiers, NASA (2005)

  • S.J. Bolton, A. Adriani, V. Adumitroaie, M. Allison, J. Anderson, S. Atreya, J. Bloxham, S. Brown, J.E.P. Connerney, E. DeJong, W. Folkner, D. Gautier, D. Grassi, S. Gulkis, T. Guillot, C. Hansen, W.B. Hubbard, L. Iess, A. Ingersoll, M. Janssen, J. Jorgensen, Y. Kaspi, S.M. Levin, C. Li, J. Lunine, Y. Miguel, A. Mura, G. Orton, T. Owen, M. Ravine, E. Smith, P. Steffes, E. Stone, D. Stevenson, R. Thorne, J. Waite, D. Durante, R.W. Ebert, T.K. Greathouse, V. Hue, M. Parisi, J.R. Szalay, R. Wilson, Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft. Science 356, 821–825 (2017)

    ADS  Google Scholar 

  • F.H. Busse, Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441–460 (1970)

    MATH  ADS  Google Scholar 

  • F.H. Busse, A simple model of convection in the Jovian atmosphere. Icarus 29, 255–260 (1976)

    ADS  Google Scholar 

  • F.H. Busse, Convection driven zonal flows and vortices in the major planets. Chaos 4(2), 123–134 (1994)

    ADS  Google Scholar 

  • J.K. Campbell, J.D. Anderson, Gravity field of the Saturnian system from Pioneer and Voyager tracking data. Astrophys. J. 97, 1485 (1989)

    ADS  Google Scholar 

  • J.K. Campbell, S.P. Synnott, Gravity field of the Jovian system from pioneer and Voyager tracking data. Astrophys. J. 90, 364–372 (1985)

    ADS  Google Scholar 

  • H. Cao, D.J. Stevenson, Gravity and zonal flows of giant planets: from the Euler equation to the thermal wind equation. J. Geophys. Res., Planets 122, 686–700 (2017a)

    ADS  Google Scholar 

  • H. Cao, D.J. Stevenson, Zonal flow magnetic field interaction in the semi-conducting region of giant planets. Icarus 296, 59–72 (2017b)

    ADS  Google Scholar 

  • G. Chabrier, S. Mazevet, F. Soubiran, A new equation of state for dense hydrogen-helium mixtures. Astrophys. J. 872, 51 (2019)

    ADS  Google Scholar 

  • Y. Chachan, D.J. Stevenson, A linear approximation for the effect of cylindrical differential rotation on gravitational moments: application to the non-unique interpretation of Saturn’s gravity. Icarus 323, 87–98 (2019)

    ADS  Google Scholar 

  • R. Chemke, Y. Kaspi, The latitudinal dependence of atmospheric jet scales and macroturbulent energy cascades. J. Atmos. Sci. 72, 3891–3907 (2015)

    ADS  Google Scholar 

  • J. Cho, L.M. Polvani, The formation of jets and vortices from freely-evolving shallow water turbulence on the surface of a sphere. Phys. Fluids 8, 1531–1552 (1996)

    MATH  ADS  Google Scholar 

  • D.S. Choi, A.P. Showman, R.H. Brown, Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini/VIMS. J. Geophys. Res., Planets 114(E4), 04007 (2009)

    ADS  Google Scholar 

  • U.R. Christensen, Zonal flow driven by deep convection in the major planets. Geophys. Res. Lett. 28, 2553–2556 (2001)

    ADS  Google Scholar 

  • U.R. Christensen, J. Wicht, W. Dietrich, Mechanisms for limiting the depth of zonal winds in the gas giant planets. Astrophys. J. 890(1), 61 (2020)

    ADS  Google Scholar 

  • J.E.P. Connerney, S. Kotsiaros, R.J. Oliversen, J.R. Espley, J.L. Joergensen, P.S. Joergensen, J.M.G. Merayo, M. Herceg, J. Bloxham, K.M. Moore, A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophys. Res. Lett. 45(6), 2590–2596 (2018)

    ADS  Google Scholar 

  • F. Debras, G. Chabrier, New models of Jupiter in the context of Juno and Galileo. Astrophys. J. 872, 100 (2019)

    ADS  Google Scholar 

  • A.D. Del Genio, J.M. Barbara, J. Ferrier, A.P. Ingersoll, R.A. West, A.R. Vasavada, J. Spitale, C.C. Porco, Saturn eddy momentum fluxes and convection: first estimates from Cassini images. Icarus 189(2), 479–492 (2007)

    ADS  Google Scholar 

  • K. Duer, E. Galanti, Y. Kaspi, Analysis of Jupiter’s deep jets combining Juno gravity and time-varying magnetic field measurements. Astrophys. J. Lett. 879(2), 22 (2019)

    ADS  Google Scholar 

  • K. Duer, E. Galanti, Y. Kaspi, The range of Jupiter’s flow structures fitting the Juno asymmetric gravity measurements. J. Geophys. Res., Planets (2020, in press). https://doi.org/10.1029/2019JE006292

    Article  Google Scholar 

  • D. Durante, T. Guillot, L. Iess, The effect of Jupiter oscillations on Juno gravity measurements. Icarus 282, 174–182 (2017)

    ADS  Google Scholar 

  • D. Durante, M. Parisi, D. Serra, M. Zannoni, V. Notaro, P. Racioppa, D.R. Buccino, G. Lari, L. Gomez Casajus, L. Iess, W.M. Folkner, G. Tommei, P. Tortora, S.J. Bolton, Jupiter’s gravity field halfway through the Juno mission. Geophys. Res. Lett. 47(4), e2019GL086572 (2020)

    ADS  Google Scholar 

  • S.G. Edgington, L.J. Spilker, Cassini’s grand finale. Nat. Geosci. 9, 472–473 (2016)

    ADS  Google Scholar 

  • L.N. Fletcher, P.G.J. Irwin, N.A. Teanby, G.S. Orton, P.D. Parrish, R. de Kok, C. Howett, S.B. Calcutt, N. Bowles, F.W. Taylor, Characterising Saturn’s vertical temperature structure from Cassini/CIRS. Icarus 189(2), 457–478 (2007)

    ADS  Google Scholar 

  • L.N. Fletcher, Y. Kaspi, T. Guillot, A.P. Showman, How well do we understand the belt/zone circulation of giant planet atmospheres? Space Sci. Rev. 216(2), 30 (2020a)

    ADS  Google Scholar 

  • L.N. Fletcher, N. André, D. Andrews, M. Bannister, E. Bunce, T. Cavalié, S. Charnoz, F. Ferri, J. Fortney, D. Grassi, L. Griton, P. Hartogh, R. Helled, R. Hueso, G. Jones, Y. Kaspi, L. Lamy, A. Masters, H. Melin, J. Moses, O. Mousis, N. Nettleman, C. Plainaki, E. Roussos, J. Schmidt, A. Simon, G. Tobie, P. Tortora, F. Tosi, D. Turrini, Ice giant systems: the scientific potential of missions to Uranus and Neptune. Planet. Space Sci. (2020b, in press)

  • W. Folkner, L. Iess, P. Tortora more, Jupiter gravity field from first two orbits by Juno. Geophys. Res. Lett. 44, 4694–4700 (2017)

    ADS  Google Scholar 

  • M. French, A. Becker, W. Lorenzen, N. Nettelmann, M. Bethkenhagen, J. Wicht, R. Redmer, Ab initio simulations for material properties along the Jupiter adiabat. Astrophys. J. Suppl. 202(1), 5 (2012)

    ADS  Google Scholar 

  • E. Galanti, Y. Kaspi, An adjoint based method for the inversion of the Juno and Cassini gravity measurements into wind fields. Astrophys. J. 820, 91 (2016)

    ADS  Google Scholar 

  • E. Galanti, Y. Kaspi, Prediction for the flow-induced gravity field of Saturn: implications for Cassini’s Grande Finale. Astrophys. J. Lett. 843, 25 (2017)

    ADS  Google Scholar 

  • E. Galanti, Y. Kaspi, E. Tziperman, A full, self-consistent, treatment of thermal wind balance on fluid planets. J. Fluid Mech. 810, 175–195 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  • E. Galanti, Y. Kaspi, Y. Miguel, T. Guillot, D. Durante, P. Racioppa, L. Iess, Saturn’s deep atmospheric flows revealed by the Cassini grand finale gravity measurements. Geophys. Res. Lett. 46(2), 616–624 (2019)

    ADS  Google Scholar 

  • E. García-Melendo, S. Pérez-Hoyos, A. Sánchez-Lavega, R. Hueso, Saturn’s zonal wind profile in 2004-2009 from Cassini ISS images and its long-term variability. Icarus 215(1), 62–74 (2011)

    ADS  Google Scholar 

  • T. Gastine, J. Wicht, J.M. Aurnou, Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225, 156–172 (2013)

    ADS  Google Scholar 

  • T. Guillot, Y. Miguel, B. Militzer, W.B. Hubbard, Y. Kaspi, E. Galanti, H. Cao, R. Helled, S.M. Wahl, L. Iess, W.M. Folkner, D.J. Stevenson, J.I. Lunine, D.R. Reese, A. Biekman, M. Parisi, D. Durante, J.E.P. Connerney, S.M. Levin, S.J. Bolton, A suppression of differential rotation in Jupiter’s deep interior. Nature 555, 227–230 (2018)

    ADS  Google Scholar 

  • M. Heimpel, J. Aurnou, J. Wicht, Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193–196 (2005)

    ADS  Google Scholar 

  • M. Heimpel, T. Gastine, J. Wicht, Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat. Geosci. 9, 19–23 (2016)

    ADS  Google Scholar 

  • I.M. Held, V.D. Larichev, A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci. 53(7), 946–952 (1996)

    ADS  Google Scholar 

  • R. Helled, J.D. Anderson, G. Schubert, Uranus and Neptune: shape and rotation. Icarus 210, 446–454 (2010)

    ADS  Google Scholar 

  • R. Helled, J.D. Anderson, M. Podolak, G. Schubert, Interior models of Uranus and Neptune. Astrophys. J. 726, 15 (2011)

    ADS  Google Scholar 

  • R. Helled, E. Galanti, Y. Kaspi, Saturn’s fast spin determined from its gravitational field and oblateness. Nature 520, 202–204 (2015)

    ADS  Google Scholar 

  • H.P. Huang, W.A. Robinson, Two-dimentional turbulence and persistent jets in a global barotropic model. J. Atmos. Sci. 55, 611–632 (1998)

    ADS  Google Scholar 

  • W.B. Hubbard, Gravitational field of a rotating planet with a polytropic index of unity. Sov. Astron. 18, 621–624 (1975)

    ADS  Google Scholar 

  • W.B. Hubbard, Planetary Interiors (Van Nostrand-Reinhold, New York, 1984), p. 343

    Google Scholar 

  • W.B. Hubbard, Note: gravitational signature of Jupiter’s deep zonal flows. Icarus 137, 357–359 (1999)

    ADS  Google Scholar 

  • W.B. Hubbard, High-precision Maclaurin-based models of rotating liquid planets. Astrophys. J. Lett. 756, 15 (2012)

    ADS  Google Scholar 

  • W.B. Hubbard, M.S. Marley, Optimized Jupiter, Saturn, and Uranus interior models. Icarus 78, 102–118 (1989)

    ADS  Google Scholar 

  • W.B. Hubbard, B. Militzer, A preliminary Jupiter model. Astrophys. J. 820, 80 (2016)

    ADS  Google Scholar 

  • W.B. Hubbard, W.J. Nellis, A.C. Mitchell, N.C. Holmes, P.C. McCandless, S.S. Limaye, Interior structure of Neptune - comparison with Uranus. Science 253, 648–651 (1991)

    ADS  Google Scholar 

  • L. Iess, W.M. Folkner, D. Durante, M. Parisi, Y. Kaspi, E. Galanti, T. Guillot, W.B. Hubbard, D.J. Stevenson, J.D. Anderson, D.R. Buccino, L.G. Casajus, A. Milani, R. Park, P. Racioppa, D. Serra, P. Tortora, M. Zannoni, H. Cao, R. Helled, J.I. Lunine, Y. Miguel, B. Militzer, S. Wahl, J.E.P. Connerney, S.M. Levin, S.J. Bolton, Measurement of Jupiter’s asymmetric gravity field. Nature 555, 220–222 (2018)

    ADS  Google Scholar 

  • L. Iess, B. Militzer, Y. Kaspi, P. Nicholson, D. Durante, P. Racioppa, A. Anabtawi, E. Galanti, W.B. Hubbard, M.J. Mariani, P. Tortora, S. Wahl, M. Zannoni, Measurement and implications of Saturn’s gravity field and ring mass. Science 364, 1052 (2019)

    Google Scholar 

  • R.A. Jacobson, JUP230 orbit solutions (2003). http://ssd.jpl.nasa.gov/

  • R.A. Jacobson, The gravity field of the Uranian system and the orbits of the Uranian satellites and rings, in AAS/Division for Planetary Sciences Meeting Abstracts #39. Bull. Am. Astro. Soc., vol. 38 (2007), p. 453

    Google Scholar 

  • R.A. Jacobson, The orbits of the Neptunian satellites and the orientation of the pole of Neptune. Astrophys. J. 137, 4322–4329 (2009)

    ADS  Google Scholar 

  • R.A. Jacobson, P.G. Antreasian, J.J. Bordi, K.E. Criddle, R. Ionasescu, J.B. Jones, R.A. Mackenzie, M.C. Meek, D. Parcher, F.J. Pelletier, W.M. Owen Jr., D.C. Roth, I.M. Roundhill, J.R. Stauch, The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astrophys. J. 132, 2520–2526 (2006)

    ADS  Google Scholar 

  • C.A. Jones, K.M. Kuzanyan, Compressible convection in the deep atmospheres of giant planets. Icarus 204, 227–238 (2009)

    ADS  Google Scholar 

  • Y. Kaspi, Turbulent Convection in Rotating Anelastic Spheres: a Model for the Circulation on the Giant Planets. PhD thesis, Massachusetts Institute of Technology (2008)

  • Y. Kaspi, Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophys. Res. Lett. 40, 676–680 (2013)

    ADS  Google Scholar 

  • Y. Kaspi, G.R. Flierl, Formation of jets by baroclinic instability on gas planet atmospheres. J. Atmos. Sci. 64, 3177–3194 (2007)

    ADS  Google Scholar 

  • Y. Kaspi, G.R. Flierl, A.P. Showman, The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus 202, 525–542 (2009)

    ADS  Google Scholar 

  • Y. Kaspi, W.B. Hubbard, A.P. Showman, G.R. Flierl, Gravitational signature of Jupiter’s internal dynamics. Geophys. Res. Lett. 37, 01204 (2010)

    ADS  Google Scholar 

  • Y. Kaspi, A.P. Showman, W.B. Hubbard, O. Aharonson, R. Helled, Atmospheric confinement of jet-streams on Uranus and Neptune. Nature 497, 344–347 (2013)

    ADS  Google Scholar 

  • Y. Kaspi, J.E. Davighi, E. Galanti, W.B. Hubbard, The gravitational signature of internal flows in giant planets: comparing the thermal wind approach with barotropic potential-surface methods. Icarus 276, 170–181 (2016)

    ADS  Google Scholar 

  • Y. Kaspi, E. Galanti, R. Helled, Y. Miguel, W.B. Hubbard, B. Militzer, S. Wahl, S. Levin, J. Connerney, S. Bolton, The effect of differential rotation on Jupiter’s low-degree even gravity moments. Geophys. Res. Lett. 44, 5960–5968 (2017)

    ADS  Google Scholar 

  • Y. Kaspi, E. Galanti, W.B. Hubbard, D.J. Stevenson, S.J. Bolton, L. Iess, T. Guillot, J. Bloxham, J.E.P. Connerney, H. Cao, D. Durante, W.M. Folkner, R. Helled, A.P. Ingersoll, S.M. Levin, J.I. Lunine, Y. Miguel, B. Militzer, M. Parisi, S.M. Wahl, Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature 555, 223–226 (2018)

    ADS  Google Scholar 

  • D. Kong, K. Zhang, G. Schubert, A fully self-consistent multi-layered model of Jupiter. Astrophys. J. 826, 127 (2016a)

    ADS  Google Scholar 

  • D. Kong, K. Zhang, G. Schubert, Odd gravitational harmonics of Jupiter: effects of spherical versus nonspherical geometry and mathematical smoothing of the equatorially antisymmetric zonal winds across the equatorial plane. Icarus 277, 416–423 (2016b)

    ADS  Google Scholar 

  • D. Kong, K. Zhang, G. Schubert, J.D. Anderson, Origin of Jupiter’s cloud-level zonal winds remains a puzzle even after Juno. Proc. Natl. Acad. Sci. USA 115(34), 8499–8504 (2018)

    MathSciNet  MATH  Google Scholar 

  • L. Kulowski, H. Cao, J. Bloxham, Contributions to Jupiter’s gravity field from dynamics in the dynamo region. J. Geophys. Res., Planets 125, 2019–006165 (2020)

    Google Scholar 

  • S. Lee, Baroclinic multiple jets on a sphere. J. Atmos. Sci. 62, 2484–2498 (2004)

    MathSciNet  ADS  Google Scholar 

  • C. Li, A. Ingersoll, S. Bolton, S. Levin, M. Janssen, S. Atreya, J. Lunine, P. Steffes, S. Brown, T. Guillot, M. Allison, J. Arballo, A. Bellotti, V. Adumitroaie, S. Gulkis, A. Hodges, L. Li, S. Misra, G. Orton, F. Oyafuso, D. Santos-Costa, H. Waite, Z. Zhang, The water abundance in Jupiter’s equatorial zone. Nat. Astron. 4, 609–616 (2020)

    ADS  Google Scholar 

  • Y. Lian, A.P. Showman, Deep jets on gas-giant planets. Icarus 194, 597–615 (2008)

    ADS  Google Scholar 

  • Y. Lian, A.P. Showman, Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus 207, 373–393 (2010)

    ADS  Google Scholar 

  • J. Liu, Interaction of magnetic field and flow in the outer shells of giant planets. PhD thesis, California Institute of Technology (2006)

  • J. Liu, T. Schneider, Mechanisms of jet formation on the giant planets. J. Atmos. Sci. 67, 3652–3672 (2010)

    ADS  Google Scholar 

  • J. Liu, P.M. Goldreich, D.J. Stevenson, Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196, 653–664 (2008)

    ADS  Google Scholar 

  • J. Liu, T. Schneider, Y. Kaspi, Predictions of thermal and gravitational signals of Jupiter’s deep zonal winds. Icarus 224, 114–125 (2013)

    ADS  Google Scholar 

  • J. Liu, T. Schneider, L.N. Fletcher, Constraining the depth of Saturn’s zonal winds by measuring thermal and gravitational signals. Icarus 239, 260–272 (2014)

    ADS  Google Scholar 

  • C. Mankovich, M.S. Marley, J.J. Fortney, N. Movshovitz, Cassini ring seismology as a probe of Saturn’s interior. I. rigid rotation. Astrophys. J. 871, 1 (2019)

    ADS  Google Scholar 

  • J. May, T.D. Carr, M.D. Desch, Decametric radio measurement of Jupiter’s rotation period. Icarus 40, 87–93 (1979)

    ADS  Google Scholar 

  • Y. Miguel, T. Guillot, L. Fayon, Jupiter internal structure: the effect of different equations of state. Astron. Astrophys. 596, 114 (2016)

    ADS  Google Scholar 

  • B. Militzer, W.B. Hubbard, Ab initio equation of state for hydrogen-helium mixtures with recalibration of the giant-planet mass-radius relation. Astrophys. J. 774, 148 (2013)

    ADS  Google Scholar 

  • B. Militzer, S. Wahl, W.B. Hubbard, Models of Saturn’s interior constructed with accelerated concentric Maclaurin spheroid method. Astrophys. J. 879, 78 (2019)

    ADS  Google Scholar 

  • K. Moore, R. Yadav, L. Kulowski, H. Cao, J. Bloxham, J.E.P. Connerney, S. Kotsiaros, J. Jorgensen, J. Merayo, D. Stevenson, S.J. Bolton, S.M. Levin, A complex Jovian dynamo from the hemispheric dichotomy of Jupiter’s field. Nature 561, 76–78 (2018)

    ADS  Google Scholar 

  • K.M. Moore, H. Cao, J. Bloxham, D.J. Stevenson, J.E.P. Connerney, S.J. Bolton, Time variation of Jupiter’s internal magnetic field consistent with zonal wind advection. Nat. Astron. 3, 730–735 (2019)

    ADS  Google Scholar 

  • W.J. Nellis, A.C. Mitchell, P.C. McCandless, D.J. Erskine, S.T. Weir, Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures. Phys. Rev. Lett. 68(19), 2937–2940 (1992)

    ADS  Google Scholar 

  • N. Nettelmann, A. Becker, B. Holst, R. Redmer, Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2). Astrophys. J. 750, 52 (2012)

    ADS  Google Scholar 

  • N. Nettelmann, R. Helled, J.J. Fortney, R. Redmer, New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Planet. Space Sci. 77, 143–151 (2013)

    ADS  Google Scholar 

  • R.L. Panetta, Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 50(14), 2073–2106 (1993)

    ADS  Google Scholar 

  • J.C. Pearl, B.J. Conrath, The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data. J. Geophys. Res. 96(15), 18921–18930 (1991)

    ADS  Google Scholar 

  • J.C. Pearl, B.J. Conrath, R.A. Hanel, J.A. Pirraglia, The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager iris data. Icarus 84, 12–28 (1990)

    ADS  Google Scholar 

  • J. Pedlosky, Geophysical Fluid Dynamics (Springer, Berlin, 1987), p. 710

    MATH  Google Scholar 

  • P.L. Read, T.E. Dowling, G. Schubert, Saturn’s rotation period from its atmospheric planetary-wave configuration. Nature 460, 608–610 (2009)

    ADS  Google Scholar 

  • P.B. Rhines, Waves and turbulence on a beta plane. J. Fluid Mech. 69, 417–443 (1975)

    MATH  ADS  Google Scholar 

  • A.C. Riddle, J.W. Warwick, Redefinition of System III longitude. Icarus 27, 457–459 (1976)

    ADS  Google Scholar 

  • C. Salyk, A.P. Ingersoll, J. Lorre, A. Vasavada, A.D. Del Genio, Interaction between eddies and mean flow in Jupiter’s atmosphere: analysis of Cassini imaging data. Icarus 185, 430–442 (2006)

    ADS  Google Scholar 

  • A. Sánchez-Lavega, T. del Río-Gaztelurrutia, R. Hueso, J.M. Gómez-Forrellad, J.F. Sanz-Requena, J. Legarreta, E. García-Melendo, F. Colas, J. Lecacheux, L.N. Fletcher, D. Barrado y Navascués, D. Parker, T. Akutsu, T. Barry, J. Beltran, S. Buda, B. Combs, F. Carvalho, P. Casquinha, M. Delcroix, S. Ghomizadeh, C. Go, J. Hotershall, T. Ikemura, G. Jolly, A. Kazemoto, T. Kumamori, M. Lecompte, P. Maxson, F.J. Melillo, D.P. Milika, E. Morales, D. Peach, J. Phillips, J.J. Poupeau, J. Sussenbach, G. Walker, S. Walker, T. Tranter, A. Wesley, T. Wilson, K. Yunoki (International Outer Planet Watch Team), Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature 475(7354), 71–74 (2011)

    ADS  Google Scholar 

  • A. Sánchez-Lavega, L.A. Sromovsky, A.P. Showman, A.D. Del Genio, R.M. Young, R. Hueso, E. Garcia-Melenso, Y. Kaspi, G.S. Orton, N. Barrado-Izagirre, D.S. Choi, J.M. Barbara, in Zonal Jets: Phenomenology, Genesis, and Physics, 1st edn., ed. by G. Galperin P. Read (Cambridge University Press, Cambridge, 2019), pp. 72–103. Chap. 4

    Google Scholar 

  • K.M. Sayanagi, A.P. Showman, T.E. Dowling, The emergence of multiple robust zonal jets from freely evolving, three-dimensional stratified geostrophic turbulence with applications to Jupiter. J. Atmos. Sci. 65, 3947 (2008)

    ADS  Google Scholar 

  • T. Schneider, J. Liu, Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci. 66, 579–601 (2009)

    ADS  Google Scholar 

  • R.K. Scott, L.M. Polvani, Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64, 3158–3176 (2007)

    ADS  Google Scholar 

  • R.K. Scott, L.M. Polvani, Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett. 35, 24202 (2008)

    ADS  Google Scholar 

  • A.P. Showman, Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci. 64, 3132–3157 (2007)

    ADS  Google Scholar 

  • A.P. Showman, P.J. Gierasch, Y. Lian, Deep zonal winds can result from shallow driving in a giant-planet atmosphere. Icarus 182, 513–526 (2006)

    ADS  Google Scholar 

  • A.P. Showman, R. Achterberg, A.P. Ingersoll, Y. Kaspi, Saturn in the 21st century, in The Global Atmospheric Circulation of Saturn, ed. by K. Baines, M. Flasar (Cambridge University Press, Cambridge, 2018)

    Google Scholar 

  • A.P. Showman, X. Tan, X. Zhang, Atmospheric circulation of brown dwarfs and Jupiter- and Saturn-like planets: zonal jets, long-term variability, and QBO-type oscillations. Astrophys. J. 883(1), 4 (2019)

    ADS  Google Scholar 

  • A.A. Simon-Miller, B.J. Conrath, P.J. Gierasch, G.S. Orton, R.K. Achterberg, F.M. Flasar, B.M. Fisher, Jupiter’s atmospheric temperatures: from Voyager IRIS to Cassini CIRS. Icarus 180(1), 98–112 (2006)

    ADS  Google Scholar 

  • K.S. Smith, A local model for planetary atmospheres forced by small-scale convection. J. Atmos. Sci. 61, 1420–1433 (2004)

    MathSciNet  ADS  Google Scholar 

  • B.A. Smith, L.A. Soderblom, R. Beebe, D. Bliss, R.H. Brown, S.A. Collins, J.M. Boyce, G.A. Briggs, A. Brahic, J.N. Cuzzi, D. Morrison, Voyager 2 in the Uranian system - imaging science results. Science 233, 43–64 (1986)

    ADS  Google Scholar 

  • B.A. Smith, L.A. Soderblom, D. Banfield, C. Barnet, R.F. Beebe, A.T. Bazilevskii, K. Bollinger, J.M. Boyce, G.A. Briggs, A. Brahic, Voyager 2 at Neptune - imaging science results. Science 246, 1422–1449 (1989)

    ADS  Google Scholar 

  • A. Spiga, S. Guerlet, E. Millour, M. Indurain, Y. Meurdesoif, S. Cabanes, T. Dubos, J. Leconte, A. Boissinot, S. Lebonnois, M. Sylvestre, T. Fouchet, Global climate modeling of Saturn’s atmosphere. Part II: Multi-annual high-resolution dynamical simulations. Icarus 335, 113377 (2020)

    Google Scholar 

  • D.J. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208(1–2), 1–11 (2003)

    ADS  Google Scholar 

  • D.J. Stevenson, Jupiter’s interior as revealed by Juno. Annu. Rev. Earth Planet. Sci. 48, 465–489 (2020)

    ADS  Google Scholar 

  • D.J. Stevenson, E.E. Salpeter, The phase diagram and transport properties for hydrogen-helium fluid planets. Astrophys. J. Suppl. 35, 221–237 (1977)

    ADS  Google Scholar 

  • A. Studwell, L. Li, X. Jiang, K.H. Baines, P.M. Fry, T.W. Momary, U.A. Dyudina, Saturn’s global zonal winds explored by Cassini/VIMS 5-μm images. Geophys. Res. Lett. 45, 6823–6831 (2018)

    ADS  Google Scholar 

  • Z.-P. Sun, G. Schubert, G.A. Glatzmaier, Banded surface flow maintained by convection in a model of the rapidly rotating giant planets. Science 260, 661–664 (1993)

    ADS  Google Scholar 

  • J. Tollefson, M.H. Wong, I. de Pater, A.A. Simon, G.S. Orton, J.H. Rogers, S.K. Atreya, R.G. Cosentino, W. Januszewski, R. Morales-Juberías, P.S. Marcusi, Changes in Jupiter’s zonal wind profile preceding and during the Juno mission. Icarus 296, 163–178 (2017)

    ADS  Google Scholar 

  • G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd edn. (Cambridge University Press, Cambridge, 2017), p. 946

    MATH  Google Scholar 

  • G.K. Vallis, M.E. Maltrud, Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23, 1346–1362 (1993)

    ADS  Google Scholar 

  • A.R. Vasavada, A.P. Showman, Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935–1996 (2005)

    MathSciNet  ADS  Google Scholar 

  • S. Wahl, W.B. Hubbard, B. Militzer, N.M.Y. Movshovitz, Y. Kaspi, R. Helled, D. Reese, E. Galanti, S. Levin, J. Connerney, S. Bolton, Comparing Jupiter interior structure models to Juno gravity measurements and the role of an expanded core. Geophys. Res. Lett. 44, 4649–4659 (2017)

    ADS  Google Scholar 

  • E.S. Warneford, P.J. Dellar, Thermal shallow water models of geostrophic turbulence in Jovian atmospheres. Phys. Fluids 26(1), 016603 (2014)

    MATH  ADS  Google Scholar 

  • J. Wicht, C.A. Jones, K. Zhang, Instability of zonal flows in rotating spherical shells: an application to Jupiter. Icarus 155, 425–435 (2002)

    ADS  Google Scholar 

  • J. Wicht, T. Gastine, L.D.V. Duarte, Dynamo action in the steeply decaying conductivity region of Jupiter-like dynamo models. J. Geophys. Res., Planets 124(3), 837–863 (2019)

    ADS  Google Scholar 

  • J. Wicht, W. Dietrich, P. Wulff, U.R. Christensen, Linking zonal winds and gravity: the relative importance of dynamic self gravity. Mon. Not. R. Astron. Soc. 492, 3364–3374 (2020)

    ADS  Google Scholar 

  • G.P. Williams, Planetary circulations: Part I: Barotropic representation of the Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 1399–1426 (1978)

    ADS  Google Scholar 

  • G.P. Williams, Planetary circulations. Part II: The Jovian quasi-geostrophic regime. J. Atmos. Sci. 36, 932–968 (1979)

    ADS  Google Scholar 

  • R.M.B. Young, P.L. Read, Y. Wang, Simulating Jupiter’s weather layer. Part I: Jet spin-up in a dry atmosphere. Icarus 326, 225–252 (2019)

    ADS  Google Scholar 

  • K. Zhang, D. Kong, G. Schubert, Thermal-gravitational wind equation for the wind-induced gravitational signature of giant gaseous planets: mathematical derivation, numerical method and illustrative solutions. Astrophys. J. 806, 270–279 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

Kaspi and Galanti acknowledge support by the Israeli Space Agency and the Helen Kimmel Center for Planetary Science at the Weizmann Institute of Science. All authors acknowledge support by the Juno project. We are extremely grateful to Kunio Sayanagi and an anonymous reviewer for their helpful comments. We acknowledge support from the Understanding the Diversity of Planetary Atmospheres workshop at the International Space Science Institute (ISSI) in November 2018 for inspiring this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohai Kaspi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Understanding the Diversity of Planetary Atmospheres

Edited by François Forget, Oleg Korablev, Julia Venturini, Takeshi Imamura, Helmut Lammer and Michel Blanc

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 186 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaspi, Y., Galanti, E., Showman, A.P. et al. Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in Light of the Juno and Cassini Gravity Measurements. Space Sci Rev 216, 84 (2020). https://doi.org/10.1007/s11214-020-00705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00705-7

Keywords

Navigation