Skip to main content
Log in

The Origin of the Stellar Mass Distribution and Multiplicity

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In this chapter, we review some historical understanding and recent advances on the Initial Mass Function (IMF) and the Core Mass Function (CMF), both in terms of observations and theories. We focus mostly on star formation in clustered environment since this is suggested by observations to be the dominant mode of star formation. The statistical properties and the fragmentation behaviour of turbulent gas is discussed, and we also discuss the formation of binaries and small multiple systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. See Sect. 5.2.1.

References

  • F.C. Adams, M. Fatuzzo, A theory of the initial mass function for star formation in molecular clouds. Astrophys. J. 464, 256 (1996)

    ADS  Google Scholar 

  • J.F. Alves, C.J. Lada, E.A. Lada, Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight. Nature 409(6817), 159–161 (2001)

    ADS  Google Scholar 

  • J. Alves, M. Lombardi, C.J. Lada, The mass function of dense molecular cores and the origin of the IMF. Astron. Astrophys. 462(1), L17–L21 (2007)

    ADS  Google Scholar 

  • F.O. Alves, P. Caselli, J.M. Girart et al., Gas flow and accretion via spiral streamers and circumstellar disks in a young binary protostar. Science 366(6461), 90–93 (2019)

    ADS  Google Scholar 

  • M. Andersen, H. Zinnecker, A. Moneti et al., The low-mass initial mass function in the 30 Doradus starburst cluster. Astrophys. J. 707(2), 1347–1360 (2009)

    ADS  Google Scholar 

  • M. Andersen, M. Gennaro, W. Brandner et al., Very low-mass stellar content of the young supermassive Galactic star cluster Westerlund 1. Astron. Astrophys. 602, A22 (2017)

    Google Scholar 

  • P. André, D. Ward-Thompson, M. Barsony, Submillimeter continuum observations of rho Ophiuchi A: the candidate protostar VLA 1623 and prestellar clumps. Astrophys. J. 406, 122 (1993)

    ADS  Google Scholar 

  • P. André, A. Belloche, F. Motte et al., The initial conditions of star formation in the Ophiuchus main cloud: kinematics of the protocluster condensations. Astron. Astrophys. 472(2), 519–535 (2007)

    ADS  Google Scholar 

  • P. André, A. Men’shchikov, S. Bontemps et al., From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the Herschel Gould Belt survey. Astron. Astrophys. 518, L102 (2010)

    ADS  Google Scholar 

  • P. André, D. Ward-Thompson, J. Greaves, Interferometric identification of a pre-brown dwarf. Science 337(6090), 69 (2012)

    ADS  Google Scholar 

  • P. André, J. Di Francesco, D. Ward-Thompson et al., From filamentary networks to dense cores in molecular clouds: toward a new paradigm for star formation, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 27

    Google Scholar 

  • P. André, D. Arzoumanian, V. Könyves et al., The role of molecular filaments in the origin of the prestellar core mass function and stellar initial mass function. Astron. Astrophys. 629, L4 (2019)

    ADS  Google Scholar 

  • D. Arzoumanian, P. André, P. Didelon et al., Characterizing interstellar filaments with Herschel in IC 5146. Astron. Astrophys. 529, L6 (2011)

    ADS  Google Scholar 

  • D. Arzoumanian, P. André, V. Könyves et al., Characterizing the properties of nearby molecular filaments observed with Herschel. Astron. Astrophys. 621, A42 (2019)

    Google Scholar 

  • J. Ascenso, J. Alves, Y. Beletsky et al., Near-IR imaging of Galactic massive clusters: Westerlund 2. Astron. Astrophys. 466(1), 137–149 (2007)

    ADS  Google Scholar 

  • J. Ballesteros-Paredes, R.S. Klessen, E. Vázquez-Semadeni, Dynamic cores in hydrostatic disguise. Astrophys. J. 592(1), 188–202 (2003)

    ADS  Google Scholar 

  • J. Ballesteros-Paredes, A. Gazol, J. Kim et al., The mass spectra of cores in turbulent molecular clouds and implications for the initial mass function. Astrophys. J. 637(1), 384–391 (2006a)

    ADS  Google Scholar 

  • J. Ballesteros-Paredes, A. Gazol, J. Kim et al., The mass spectra of cores in turbulent molecular clouds and implications for the initial mass function. Astrophys. J. 637(1), 384–391 (2006b)

    ADS  Google Scholar 

  • J. Ballesteros-Paredes, L.W. Hartmann, N. Pérez-Goytia et al., Bondi-Hoyle-Littleton accretion and the upper-mass stellar initial mass function. Mon. Not. R. Astron. Soc. 452(1), 566–574 (2015)

    ADS  Google Scholar 

  • N. Bastian, Young massive clusters: their population properties, formation and evolution, and their relation to the ancient globular clusters. EAS Publ. Ser. 80–81, 5–37 (2016)

    Google Scholar 

  • N. Bastian, K.R. Covey, M.R. Meyer, A universal stellar initial mass function? A critical look at variations. Annu. Rev. Astron. Astrophys. 48, 339–389 (2010)

    ADS  Google Scholar 

  • S. Basu, C.E. Jones, On the power-law tail in the mass function of protostellar condensations and stars. Mon. Not. R. Astron. Soc. 347(3), L47–L51 (2004)

    ADS  Google Scholar 

  • M.R. Bate, The dependence of the initial mass function on metallicity and the opacity limit for fragmentation. Mon. Not. R. Astron. Soc. 363, 363–378 (2005)

    ADS  Google Scholar 

  • M.R. Bate, Stellar, brown dwarf and multiple star properties from hydrodynamical simulations of star cluster formation. Mon. Not. R. Astron. Soc. 392, 590–616 (2009a)

    ADS  Google Scholar 

  • M.R. Bate, The dependence of star formation on initial conditions and molecular cloud structure. Mon. Not. R. Astron. Soc. 397, 232–248 (2009b)

    ADS  Google Scholar 

  • M.R. Bate, The importance of radiative feedback for the stellar initial mass function. Mon. Not. R. Astron. Soc. 392, 1363–1380 (2009c)

    ADS  Google Scholar 

  • M.R. Bate, Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. Mon. Not. R. Astron. Soc. 419, 3115–3146 (2012)

    ADS  Google Scholar 

  • M.R. Bate, The statistical properties of stars and their dependence on metallicity: the effects of opacity. Mon. Not. R. Astron. Soc. 442(1), 285–313 (2014)

    ADS  Google Scholar 

  • M.R. Bate, I.A. Bonnell, The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds. Mon. Not. R. Astron. Soc. 356, 1201–1221 (2005)

    ADS  Google Scholar 

  • M.R. Bate, I.A. Bonnell, N.M. Price, Modelling accretion in protobinary systems. Mon. Not. R. Astron. Soc. 277(2), 362–376 (1995)

    ADS  Google Scholar 

  • M.R. Bate, I.A. Bonnell, V. Bromm, The formation mechanism of brown dwarfs. Mon. Not. R. Astron. Soc. 332, L65–L68 (2002)

    ADS  Google Scholar 

  • M.R. Bate, I.A. Bonnell, V. Bromm, The formation of a star cluster: predicting the properties of stars and brown dwarfs. Mon. Not. R. Astron. Soc. 339, 577–599 (2003)

    ADS  Google Scholar 

  • C.A. Beichman, P.C. Myers, J.P. Emerson et al., Candidate solar-type protostars in nearby molecular cloud cores. Astrophys. J. 307, 337 (1986)

    ADS  Google Scholar 

  • M. Benedettini, S. Pezzuto, E. Schisano et al., A catalogue of dense cores and young stellar objects in the Lupus complex based on Herschel. Gould Belt survey observations. Astron. Astrophys. 619, A52 (2018)

    Google Scholar 

  • P.J. Benson, P.C. Myers, A survey for dense cores in dark clouds. Astrophys. J. Suppl. Ser. 71, 89 (1989)

    ADS  Google Scholar 

  • W. Benz, 3D models of rotating magnetic gas clouds. I - Time evolution, mass spectrum and angular momentum. Astron. Astrophys. 139(2), 378–388 (1984)

    ADS  Google Scholar 

  • C. Bergfors, W. Brandner, M. Janson et al., Lucky imaging survey for southern M dwarf binaries. Astron. Astrophys. 520, A54 (2010)

    Google Scholar 

  • E.A. Bergin, M. Tafalla, Cold dark clouds: the initial conditions for star formation. Annu. Rev. Astron. Astrophys. 45(1), 339–396 (2007)

    ADS  Google Scholar 

  • C. Bertelli Motta, P.C. Clark, S.C.O. Glover et al., The IMF as a function of supersonic turbulence. Mon. Not. R. Astron. Soc. 462(4), 4171–4182 (2016)

    ADS  Google Scholar 

  • A. Bhandare, R. Kuiper, T. Henning et al., First core properties: from low- to high-mass star formation. Astron. Astrophys. 618, A95 (2018)

    Google Scholar 

  • B. Biller, K. Allers, M. Liu et al., A Keck LGS AO search for brown dwarf and planetary mass companions to upper Scorpius brown dwarfs. Astrophys. J. 730(1), 39 (2011)

    ADS  Google Scholar 

  • A. Bleuler, R. Teyssier, Towards a more realistic sink particle algorithm for the RAMSES CODE. Mon. Not. R. Astron. Soc. 445, 4015–4036 (2014)

    ADS  Google Scholar 

  • L. Blitz, Giant molecular clouds, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (1993), p. 125

    Google Scholar 

  • J.J. Bochanski, S.L. Hawley, K.R. Covey et al., The luminosity and mass functions of low-mass stars in the galactic disk. II. The field. Astron. J. 139(6), 2679–2699 (2010)

    ADS  Google Scholar 

  • B.J. Bok, E.F. Reilly, Small dark nebulae. Astrophys. J. 105, 255 (1947)

    ADS  Google Scholar 

  • C. Bonatto, J.J.F.C. Santos, E. Bica, Mass functions and structure of the young open cluster NGC 6611. Astron. Astrophys. 445(2), 567–577 (2006)

    ADS  Google Scholar 

  • J.R. Bond, S. Cole, G. Efstathiou et al., Excursion set mass functions for Hierarchical Gaussian fluctuations. Astrophys. J. 379, 440 (1991)

    ADS  Google Scholar 

  • I.A. Bonnell, A new binary formation mechanism. Mon. Not. R. Astron. Soc. 269, 837–848 (1994)

    ADS  Google Scholar 

  • I. Bonnell, P. Bastien, A binary origin for FU Orionis stars. Astrophys. J. Lett. 401, L31 (1992)

    ADS  Google Scholar 

  • I.A. Bonnell, M.R. Bate, C.J. Clarke et al., Competitive accretion in embedded stellar clusters. Mon. Not. R. Astron. Soc. 323(4), 785–794 (2001)

    ADS  Google Scholar 

  • I.A. Bonnell, M.R. Bate, S.G. Vine, The hierarchical formation of a stellar cluster. Mon. Not. R. Astron. Soc. 343, 413–418 (2003)

    ADS  Google Scholar 

  • I.A. Bonnell, S.G. Vine, M.R. Bate, Massive star formation: nurture, not nature. Mon. Not. R. Astron. Soc. 349, 735–741 (2004)

    ADS  Google Scholar 

  • I.A. Bonnell, P. Clark, M.R. Bate, Gravitational fragmentation and the formation of brown dwarfs in stellar clusters. Mon. Not. R. Astron. Soc. 389, 1556–1562 (2008)

    ADS  Google Scholar 

  • I.A. Bonnell, R.J. Smith, P.C. Clark et al., The efficiency of star formation in clustered and distributed regions. Mon. Not. R. Astron. Soc. 410(4), 2339–2346 (2011)

    ADS  Google Scholar 

  • A.P. Boss, R.T. Fisher, R.I. Klein et al., The jeans condition and collapsing molecular cloud cores: filaments or binaries? Astrophys. J. 528, 325–335 (2000)

    ADS  Google Scholar 

  • J. Bouvier, P. Corporon, Herbig Ae/Be visual binaries, in The Formation of Binary Stars, IAU Symposium, vol. 200, ed. by H. Zinnecker, R. Mathieu (2001), p. 155

    Google Scholar 

  • A. Bracco, P. Palmeirim, P. André et al., Probing changes of dust properties along a chain of solar-type prestellar and protostellar cores in Taurus with NIKA. Astron. Astrophys. 604, A52 (2017)

    Google Scholar 

  • W. Brandner, J.M. Alcala, M. Kunkel et al., Multiplicity among T Tauri stars in OB and T associations. Implications for binary star formation. Astron. Astrophys. 307, 121 (1996)

    ADS  Google Scholar 

  • W. Brandner, J.S. Clark, A. Stolte et al., Intermediate to low-mass stellar content of Westerlund 1. Astron. Astrophys. 478(1), 137–149 (2008)

    ADS  Google Scholar 

  • D. Bresnahan, D. Ward-Thompson, J.M. Kirk et al., The dense cores and filamentary structure of the molecular cloud in Corona Australis: Herschel SPIRE and PACS observations from the Herschel Gould Belt survey. Astron. Astrophys. 615, A125 (2018)

    Google Scholar 

  • V. Bromm, P.S. Coppi, R.B. Larson, Forming the first stars in the universe: the fragmentation of primordial gas. Astrophys. J. Lett. 527(1), L5–L8 (1999)

    ADS  Google Scholar 

  • A. Burkert, P. Bodenheimer, Turbulent molecular cloud cores: rotational properties. Astrophys. J. 543, 822–830 (2000)

    ADS  Google Scholar 

  • A. Calamida, K.C. Sahu, S. Casertano et al., New insights on the galactic bulge initial mass function. Astrophys. J. 810(1), 8 (2015)

    ADS  Google Scholar 

  • M. Cappellari, R.M. McDermid, K. Alatalo et al., Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484, 485–488 (2012)

    ADS  Google Scholar 

  • P. Caselli, P.J. Benson, P.C. Myers et al., Dense cores in dark clouds. XIV. N2H+ (1-0) maps of dense cloud cores. Astrophys. J. 572(1), 238–263 (2002)

    ADS  Google Scholar 

  • S.H. Cha, S. Nayakshin, A numerical simulation of a ‘Super-Earth’ core delivery from 100 to 8 au. Mon. Not. R. Astron. Soc. 415(4), 3319–3334 (2011)

    ADS  Google Scholar 

  • G. Chabrier, Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003)

    ADS  Google Scholar 

  • G. Chabrier, The initial mass function: from Salpeter 1955 to 2005, in The Initial Mass Function 50 Years Later, ed. by E. Corbelli, F. Palla, H. Zinnecker. Astrophys. Space Sci. Library, vol. 327 (2005), p. 41

    Google Scholar 

  • G. Chabrier, P. Hennebelle, S. Charlot, Variations of the stellar initial mass function in the progenitors of massive early-type galaxies and in extreme starburst environments. Astrophys. J. 796, 75 (2014)

    ADS  Google Scholar 

  • A. Chelli, H. Zinnecker, L. Carrasco et al., Infrared companions to T Tauri stars. Astron. Astrophys. 207, 46–54 (1988)

    ADS  Google Scholar 

  • C.Y. Chen, E.C. Ostriker, Formation of magnetized prestellar cores with ambipolar diffusion and turbulence. Astrophys. J. 785, 69 (2014)

    ADS  Google Scholar 

  • X. Chen, H.G. Arce, Q. Zhang et al., SMA observations of Class 0 protostars: a high angular resolution survey of protostellar binary systems. Astrophys. J. 768(2), 110 (2013)

    ADS  Google Scholar 

  • H.H.H. Chen, J.E. Pineda, A.A. Goodman et al., Droplets. I. Pressure-dominated coherent structures in L1688 and B18. Astrophys. J. 877(2), 93 (2019)

    ADS  Google Scholar 

  • P.C. Clark, R.S. Klessen, I.A. Bonnell, Clump lifetimes and the initial mass function. Mon. Not. R. Astron. Soc. 379(1), 57–62 (2007)

    ADS  Google Scholar 

  • P.C. Clark, I.A. Bonnell, R.S. Klessen, The star formation efficiency and its relation to variations in the initial mass function. Mon. Not. R. Astron. Soc. 386(1), 3–10 (2008)

    ADS  Google Scholar 

  • P.C. Clark, S.C.O. Glover, R.S. Klessen et al., Gravitational fragmentation in turbulent primordial gas and the initial mass function of population III stars. Astrophys. J. 727(2), 110 (2011)

    ADS  Google Scholar 

  • C.J. Clarke, J.E. Pringle, Star-disc interactions and binary star formation. Mon. Not. R. Astron. Soc. 249, 584–587 (1991)

    ADS  Google Scholar 

  • S.D. Clarke, A.P. Whitworth, D.A. Hubber, Perturbation growth in accreting filaments. Mon. Not. R. Astron. Soc. 458, 319–324 (2016)

    ADS  Google Scholar 

  • S.D. Clarke, A.P. Whitworth, A. Duarte-Cabral et al., Filamentary fragmentation in a turbulent medium. Mon. Not. R. Astron. Soc. 468, 2489–2505 (2017)

    ADS  Google Scholar 

  • T. Colman, R. Teyssier, On the origin of the peak of the stellar initial mass function: exploring the tidal screening theory. Mon. Not. R. Astron. Soc. 492(4), 4727–4751 (2020). https://doi.org/10.1093/mnras/staa075

    Article  ADS  Google Scholar 

  • B. Commerçon, R. Launhardt, C. Dullemond et al., Synthetic observations of first hydrostatic cores in collapsing low-mass dense cores. I. Spectral energy distributions and evolutionary sequence. Astron. Astrophys. 545, A98 (2012)

    ADS  Google Scholar 

  • M.S. Connelley, B. Reipurth, A.T. Tokunaga, The evolution of the multiplicity of embedded protostars. I. Sample properties and binary detections. Astron. J. 135(6), 2496–2525 (2008)

    ADS  Google Scholar 

  • M.S. Connelley, B. Reipurth, A.T. Tokunaga, An adaptive optics survey for close protostellar binaries. Astron. J. 138(5), 1193–1202 (2009)

    ADS  Google Scholar 

  • S. Correia, H. Zinnecker, T. Ratzka et al., A VLT/NACO survey for triple and quadruple systems among visual pre-main sequence binaries. Astron. Astrophys. 459(3), 909–926 (2006)

    ADS  Google Scholar 

  • K.R. Covey, S.L. Hawley, J.J. Bochanski et al., The luminosity and mass functions of low-mass stars in the galactic disk. I. The calibration region. Astron. J. 136(5), 1778–1798 (2008)

    ADS  Google Scholar 

  • A.J. Cunningham, M.R. Krumholz, C.F. McKee et al., The effects of magnetic fields and protostellar feedback on low-mass cluster formation. Mon. Not. R. Astron. Soc. 476(1), 771–792 (2018)

    ADS  Google Scholar 

  • M.A. Czekaj, A.C. Robin, F. Figueras et al., The Besançon Galaxy model renewed. I. Constraints on the local star formation history from Tycho data. Astron. Astrophys. 564, A102 (2014)

    ADS  Google Scholar 

  • M. De Furio, M. Reiter, M.R. Meyer et al., A search for intermediate-separation low-mass binaries in the Orion nebula cluster. Astrophys. J. 886(2), 95 (2019)

    ADS  Google Scholar 

  • P.T. de Zeeuw, R. Hoogerwerf, J.H.J. de Bruijne et al., A HIPPARCOS census of the nearby OB associations. Astron. J. 117(1), 354–399 (1999)

    ADS  Google Scholar 

  • J. Di Francesco, J. Keown, C. Fallscheer, B. Ladjelate, S. Stephens-Whale, A. Men’shchikov, Q. Nguyen-Luong, P. Martin, S. Sadavoy, P. André, V. Könyves, S. Pezzuto, E. Fiorellino, M. Benedettini, N. Schneider, S. Bontemps, D. Arzoumanian, P. Palmeirim, J.M. Kirk, D. Ward-Thompson, Herschel Gould Belt Survey observations of dense cores in the Cepheus flare clouds. Astrophys. J. (2020, submitted)

  • E. Dorfi, 3D models for self-gravitating, rotating magnetic interstellar clouds. Astron. Astrophys. 114(1), 151–164 (1982)

    ADS  Google Scholar 

  • J.J. Downes, C. Briceño, C. Mateu et al., The low-mass star and sub-stellar populations of the 25 Orionis group. Mon. Not. R. Astron. Soc. 444(2), 1793–1811 (2014)

    ADS  Google Scholar 

  • H. Drass, M. Haas, R. Chini et al., The bimodal initial mass function in the Orion nebula cloud. Mon. Not. R. Astron. Soc. 461(2), 1734–1744 (2016)

    ADS  Google Scholar 

  • G. Duchêne, Herbig AeBe stars: multiplicity and consequences. Astrophys. Space Sci. 355(2), 291–301 (2015)

    ADS  Google Scholar 

  • G. Duchêne, A. Kraus, Stellar multiplicity. Annu. Rev. Astron. Astrophys. 51(1), 269–310 (2013)

    ADS  Google Scholar 

  • G. Duchêne, J. Bouvier, T. Simon, Low-mass binaries in the young cluster IC 348: implications for binary formation and evolution. Astron. Astrophys. 343, 831–840 (1999)

    ADS  Google Scholar 

  • G. Duchêne, S. Lacour, E. Moraux et al., Is stellar multiplicity universal? Tight stellar binaries in the Orion nebula cluster. Mon. Not. R. Astron. Soc. 478(2), 1825–1836 (2018)

    ADS  Google Scholar 

  • M.M. Dunham, A. Crapsi, N.J Evans II et al., Identifying the low-luminosity population of embedded protostars in the c2d observations of clouds and cores. Astrophys. J. Suppl. Ser. 179(1), 249–282 (2008)

    ADS  Google Scholar 

  • M.M. Dunham, A.M. Stutz, L.E. Allen et al., The evolution of protostars: insights from ten years of infrared surveys with Spitzer and Herschel, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 195

    Google Scholar 

  • M.M. Dunham, S.S.R. Offner, J.E. Pineda et al., An ALMA search for substructure, fragmentation, and hidden protostars in starless cores in Chamaeleon I. Astrophys. J. 823(2), 160 (2016)

    ADS  Google Scholar 

  • A. Duquennoy, M. Mayor, Multiplicity among solar-type stars in the solar neighbourhood. II - Distribution of the orbital elements in an unbiased sample. Astron. Astrophys. 500, 337–376 (1991)

    ADS  Google Scholar 

  • R. Edgar, A review of Bondi-Hoyle-Lyttleton accretion. New Astron. Rev. 48(10), 843–859 (2004)

    ADS  Google Scholar 

  • Y.N. Efremov, B.G. Elmegreen, Hierarchical star formation from the time-space distribution of star clusters in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 299, 588–594 (1998)

    ADS  Google Scholar 

  • K. El-Badry, D.R. Weisz, E. Quataert, The statistical challenge of constraining the low-mass IMF in Local Group dwarf galaxies. Mon. Not. R. Astron. Soc. 468(1), 319–332 (2017)

    ADS  Google Scholar 

  • P. Elliott, A. Bayo, The crucial role of higher order multiplicity in wide binary formation: a case study using the \(\beta \)-Pictoris moving group. Mon. Not. R. Astron. Soc. 459(4), 4499–4507 (2016)

    ADS  Google Scholar 

  • P. Elliott, N. Huélamo, H. Bouy et al., Search for associations containing young stars (SACY). VI. Is multiplicity universal? Stellar multiplicity in the range 3-1000 au from adaptive-optics observations. Astron. Astrophys. 580, A88 (2015)

    Google Scholar 

  • B.G. Elmegreen, The globular cluster mass function as a remnant of violent birth. Astrophys. J. Lett. 712, L184–L188 (2010)

    ADS  Google Scholar 

  • B.G. Elmegreen, R.S. Klessen, C.D. Wilson, On the constancy of the characteristic mass of young stars. Astrophys. J. 681(1), 365–374 (2008)

    ADS  Google Scholar 

  • M.L. Enoch, N.J Evans II, A.I. Sargent et al., The mass distribution and lifetime of prestellar cores in Perseus, Serpens, and Ophiuchus. Astrophys. J. 684(2), 1240–1259 (2008)

    ADS  Google Scholar 

  • P. Espinoza, F.J. Selman, J. Melnick, The massive star initial mass function of the Arches cluster. Astron. Astrophys. 501(2), 563–583 (2009)

    ADS  Google Scholar 

  • C. Essex, S. Basu, J. Prehl et al., A multiple power-law distribution for initial mass functions. Mon. Not. R. Astron. Soc. 494(2), 1579–1586 (2020)

    ADS  Google Scholar 

  • C. Federrath, S. Banerjee, The density structure and star formation rate of non-isothermal polytropic turbulence. Mon. Not. R. Astron. Soc. 448, 3297–3313 (2015)

    ADS  Google Scholar 

  • C. Federrath, R.S. Klessen, On the star formation efficiency of turbulent magnetized clouds. Astrophys. J. 763(1), 51 (2013)

    ADS  Google Scholar 

  • D.A. Fischer, G.W. Marcy, Multiplicity among M dwarfs. Astrophys. J. 396, 178 (1992)

    ADS  Google Scholar 

  • J. Fischera, P.G. Martin, Physical properties of interstellar filaments. Astron. Astrophys. 542, A77 (2012)

    ADS  Google Scholar 

  • R.T. Fisher, A turbulent interstellar medium origin of the binary period distribution. Astrophys. J. 600, 769–780 (2004)

    ADS  Google Scholar 

  • C. Fontanive, B. Biller, M. Bonavita et al., Constraining the multiplicity statistics of the coolest brown dwarfs: binary fraction continues to decrease with spectral type. Mon. Not. R. Astron. Soc. 479(2), 2702–2727 (2018)

    ADS  Google Scholar 

  • R.K. Friesen, J.E. Pineda co-PIs et al., The Green Bank Ammonia Survey: first results of NH3 mapping of the Gould Belt. Astrophys. J. 843(1), 63 (2017)

    ADS  Google Scholar 

  • S. Fromang, P. Hennebelle, R. Teyssier, A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics. Astron. Astrophys. 457(2), 371–384 (2006)

    ADS  Google Scholar 

  • D. Galli, S. Lizano, F.H. Shu et al., Gravitational collapse of magnetized clouds. I. Ideal magnetohydrodynamic accretion flow. Astrophys. J. 647(1), 374–381 (2006)

    ADS  Google Scholar 

  • E.V. Garcia, T.J. Dupuy, K.N. Allers et al., On the binary frequency of the lowest mass members of the pleiades with Hubble Space Telescope Wide Field Camera 3. Astrophys. J. 804(1), 65 (2015)

    ADS  Google Scholar 

  • M. Gennaro, W. Brandner, A. Stolte et al., Mass segregation and elongation of the starburst cluster Westerlund 1. Mon. Not. R. Astron. Soc. 412(4), 2469–2488 (2011)

    ADS  Google Scholar 

  • M. Gennaro, K. Tchernyshyov, T.M. Brown et al., Evidence of a non-universal stellar initial mass function. Insights from HST optical imaging of six ultra-faint dwarf Milky Way satellites. Astrophys. J. 855(1), 20 (2018)

    ADS  Google Scholar 

  • A.M. Ghez, G. Neugebauer, K. Matthews, The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: a 2.2 micron speckle imaging survey. Astron. J. 106, 2005 (1993)

    ADS  Google Scholar 

  • P. Girichidis, C. Federrath, R. Banerjee et al., Importance of the initial conditions for star formation - I. Cloud evolution and morphology. Mon. Not. R. Astron. Soc. 413, 2741–2759 (2011)

    ADS  Google Scholar 

  • K. Glatt, E.K. Grebel, K. Jordi et al., Present-day mass function of six small Magellanic cloud intermediate-age and old star clusters. Astron. J. 142(2), 36 (2011)

    ADS  Google Scholar 

  • H. Gong, E.C. Ostriker, Protostar formation in supersonic flows: growth and collapse of spherical cores. Astrophys. J. 699(1), 230–244 (2009)

    ADS  Google Scholar 

  • M. Gong, E.C. Ostriker, Prestellar core formation, evolution, and accretion from gravitational fragmentation in turbulent converging flows. Astrophys. J. 806, 31 (2015)

    ADS  Google Scholar 

  • A.A. Goodman, J.A. Barranco, D.J. Wilner et al., Coherence in dense cores. II. The transition to coherence. Astrophys. J. 504(1), 223–246 (1998)

    ADS  Google Scholar 

  • S.P. Goodwin, Binary mass ratios: system mass not primary mass. Mon. Not. R. Astron. Soc. 430, L6–L9 (2013)

    ADS  Google Scholar 

  • S.P. Goodwin, P. Kroupa, Limits on the primordial stellar multiplicity. Astron. Astrophys. 439, 565–569 (2005)

    ADS  Google Scholar 

  • S.P. Goodwin, A.P. Whitworth, D. Ward-Thompson, Simulating star formation in molecular cloud cores. I. The influence of low levels of turbulence on fragmentation and multiplicity. Astron. Astrophys. 414, 633–650 (2004)

    ADS  Google Scholar 

  • A. Gould, J.N. Bahcall, C. Flynn, M dwarfs from Hubble Space Telescope Star Counts. III. The groth strip. Astrophys. J. 482(2), 913–918 (1997)

    ADS  Google Scholar 

  • D. Gouliermis, W. Brandner, T. Henning, The low-mass initial mass function of the field population in the large Magellanic cloud with Hubble Space Telescope WFPC2 observations. Astrophys. J. 641(2), 838–851 (2006)

    ADS  Google Scholar 

  • T.H. Greif, V. Springel, S.D.M. White et al., Simulations on a moving mesh: the clustered formation of population III protostars. Astrophys. J. 737(2), 75 (2011)

    ADS  Google Scholar 

  • D. Guszejnov, P.F. Hopkins, Mapping the core mass function to the initial mass function. Mon. Not. R. Astron. Soc. 450(4), 4137–4149 (2015)

    ADS  Google Scholar 

  • D. Guszejnov, M.R. Krumholz, P.F. Hopkins, The necessity of feedback physics in setting the peak of the initial mass function. Mon. Not. R. Astron. Soc. 458(1), 673–680 (2016)

    ADS  Google Scholar 

  • D. Guszejnov, P.F. Hopkins, M.Y. Grudić et al., Isothermal fragmentation: is there a low-mass cut-off? Mon. Not. R. Astron. Soc. 480(1), 182–191 (2018)

    ADS  Google Scholar 

  • M. Habibi, A. Stolte, W. Brandner et al., The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function. Astron. Astrophys. 556, A26 (2013)

    ADS  Google Scholar 

  • A. Hacar, M. Tafalla, J. Kauffmann et al., Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region. Astron. Astrophys. 554, A55 (2013)

    ADS  Google Scholar 

  • Y. Harayama, F. Eisenhauer, F. Martins, The initial mass function of the massive star-forming region NGC 3603 from near-infrared adaptive optics observations. Astrophys. J. 675(2), 1319–1342 (2008)

    ADS  Google Scholar 

  • J. Hartmann, Investigations on the spectrum and orbit of delta Orionis. Astrophys. J. 19, 268–286 (1904)

    ADS  Google Scholar 

  • C.C. He, M. Ricotti, S. Geen, Simulating star clusters across cosmic time - I. Initial mass function, star formation rates, and efficiencies. Mon. Not. R. Astron. Soc. 489(2), 1880–1898 (2019)

    ADS  Google Scholar 

  • P. Hennebelle, Formation of proto-clusters and star formation within clusters: apparent universality of the initial mass function? Astron. Astrophys. 545, A147 (2012)

    ADS  Google Scholar 

  • P. Hennebelle, The FRIGG project: from intermediate galactic scales to self-gravitating cores. Astron. Astrophys. 611, A24 (2018)

    ADS  Google Scholar 

  • P. Hennebelle, G. Chabrier, Analytical theory for the initial mass function: CO clumps and prestellar cores. Astrophys. J. 684, 395–410 (2008)

    ADS  Google Scholar 

  • P. Hennebelle, G. Chabrier, Analytical theory for the initial mass function. II. Properties of the flow. Astrophys. J. 702, 1428–1442 (2009)

    ADS  Google Scholar 

  • P. Hennebelle, G. Chabrier, Analytical theory for the initial mass function. III. Time dependence and star formation rate. Astrophys. J. 770, 150 (2013)

    ADS  Google Scholar 

  • P. Hennebelle, A. Ciardi, Disk formation during collapse of magnetized protostellar cores. Astron. Astrophys. 506(2), L29–L32 (2009)

    ADS  Google Scholar 

  • P. Hennebelle, E. Falgarone, Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012)

    ADS  Google Scholar 

  • P. Hennebelle, Y.N. Lee, G. Chabrier, How first hydrostatic cores, tidal forces, and gravoturbulent fluctuations set the characteristic mass of stars. Astrophys. J. 883(2), 140 (2019)

    ADS  Google Scholar 

  • M. Hennemann, F. Motte, N. Schneider et al., The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X. Astron. Astrophys. 543, L3 (2012)

    ADS  Google Scholar 

  • M. Heyer, C. Krawczyk, J. Duval et al., Re-examining Larson’s scaling relationships in galactic molecular clouds. Astrophys. J. 699(2), 1092–1103 (2009)

    ADS  Google Scholar 

  • S. Hirano, V. Bromm, Formation and survival of Population III stellar systems. Mon. Not. R. Astron. Soc. 470(1), 898–914 (2017)

    ADS  Google Scholar 

  • K.H. Hoffmann, C. Essex, S. Basu et al., A dual power-law distribution for the stellar initial mass function. Mon. Not. R. Astron. Soc. 478(2), 2113–2118 (2018)

    ADS  Google Scholar 

  • J.A. Holtzman, A.M. Watson, W.A. Baum et al., The luminosity function and initial mass function in the galactic bulge. Astron. J. 115(5), 1946–1957 (1998)

    ADS  Google Scholar 

  • P.F. Hopkins, The stellar initial mass function, core mass function and the last-crossing distribution. Mon. Not. R. Astron. Soc. 423(3), 2037–2044 (2012)

    ADS  Google Scholar 

  • P.F. Hopkins, A general theory of turbulent fragmentation. Mon. Not. R. Astron. Soc. 430(3), 1653–1693 (2013a)

    ADS  Google Scholar 

  • P.F. Hopkins, A model for (non-lognormal) density distributions in isothermal turbulence. Mon. Not. R. Astron. Soc. 430, 1880–1891 (2013b)

    ADS  Google Scholar 

  • J. Hosek, W. Matthew, J.R. Lu, J. Anderson et al., The unusual initial mass function of the Arches cluster. Astrophys. J. 870(1), 44 (2019)

    ADS  Google Scholar 

  • J.G. Hosking, A.P. Whitworth, Fragmentation of magnetized cloud cores. Mon. Not. R. Astron. Soc. 347(3), 1001–1010 (2004)

    ADS  Google Scholar 

  • F. Hoyle, On the fragmentation of gas clouds into galaxies and stars. Astrophys. J. 118, 513–+ (1953)

    ADS  Google Scholar 

  • H. Hur, H. Sung, M.S. Bessell, Distance and the initial mass function of young open clusters in the \(\eta \) Carina nebula: tr 14 and tr 16. Astron. J. 143(2), 41 (2012)

    ADS  Google Scholar 

  • B. Hußmann, A. Stolte, W. Brandner et al., The present-day mass function of the Quintuplet cluster based on proper motion membership. Astron. Astrophys. 540, A57 (2012)

    Google Scholar 

  • Si. Inutsuka, The mass function of molecular cloud cores. Astrophys. J. Lett. 559, L149–L152 (2001)

    ADS  Google Scholar 

  • S.I. Inutsuka, S.M. Miyama, Self-similar solutions and the stability of collapsing isothermal filaments. Astrophys. J. 388, 392–399 (1992)

    ADS  Google Scholar 

  • S.I. Inutsuka, S.M. Miyama, A production mechanism for clusters of dense cores. Astrophys. J. 480, 681 (1997)

    ADS  Google Scholar 

  • Si. Inutsuka, M.N. Machida, T. Matsumoto, Emergence of protoplanetary disks and successive formation of gaseous planets by gravitational instability. Astrophys. J. Lett. 718(2), L58–L62 (2010)

    ADS  Google Scholar 

  • Si. Inutsuka, T. Inoue, K. Iwasaki et al., The formation and destruction of molecular clouds and galactic star formation. An origin for the cloud mass function and star formation efficiency. Astron. Astrophys. 580, A49 (2015)

    Google Scholar 

  • M. Janson, F. Hormuth, C. Bergfors et al., The AstraLux large M-dwarf multiplicity survey. Astrophys. J. 754(1), 44 (2012)

    ADS  Google Scholar 

  • M. Janson, D. Lafrenière, R. Jayawardhana et al., A multiplicity census of intermediate-mass stars in Scorpius-Centaurus. Astrophys. J. 773(2), 170 (2013)

    ADS  Google Scholar 

  • M. Janson, C. Bergfors, W. Brandner et al., The AstraLux multiplicity survey: extension to late M-dwarfs. Astrophys. J. 789(2), 102 (2014)

    ADS  Google Scholar 

  • W.C. Jao, B.D. Mason, W.I. Hartkopf et al., Cool subdwarf investigations. II. Multiplicity. Astron. J. 137(4), 3800–3808 (2009)

    ADS  Google Scholar 

  • A.K. Jappsen, R.S. Klessen, R.B. Larson et al., The stellar mass spectrum from non-isothermal gravoturbulent fragmentation. Astron. Astrophys. 435, 611–623 (2005)

    ADS  Google Scholar 

  • D. Johnstone, C.D. Wilson, G. Moriarty-Schieven et al., Large-area mapping at 850 microns. II. Analysis of the clump distribution in the \(\rho \) Ophiuchus molecular cloud. Astrophys. J. 545(1), 327–339 (2000)

    ADS  Google Scholar 

  • D. Johnstone, M. Fich, G.F. Mitchell et al., Large area mapping at 850 microns. III. Analysis of the clump distribution in the Orion B molecular cloud. Astrophys. J. 559(1), 307–317 (2001)

    ADS  Google Scholar 

  • I. Joncour, G. Duchêne, E. Moraux, Multiplicity and clustering in Taurus star-forming region. I. Unexpected ultra-wide pairs of high-order multiplicity in Taurus. Astron. Astrophys. 599, A14 (2017)

    ADS  Google Scholar 

  • M. Joos, P. Hennebelle, A. Ciardi, Protostellar disk formation and transport of angular momentum during magnetized core collapse. Astron. Astrophys. 543, A128 (2012)

    ADS  Google Scholar 

  • J. Jose, G.J. Herczeg, M.R. Samal et al., The low-mass population in the young cluster stock 8: stellar properties and initial mass function. Astrophys. J. 836(1), 98 (2017)

    ADS  Google Scholar 

  • P.H. Jumper, R.T. Fisher, Shaping the brown dwarf desert: predicting the primordial brown dwarf binary distributions from turbulent fragmentation. Astrophys. J. 769, 9 (2013)

    ADS  Google Scholar 

  • J. Kainulainen, S.E. Ragan, T. Henning et al., High-fidelity view of the structure and fragmentation of the high-mass, filamentary IRDC G11.11-0.12. Astron. Astrophys. 557, A120 (2013)

    ADS  Google Scholar 

  • J. Kainulainen, A.M. Stutz, T. Stanke et al., Resolving the fragmentation of high line-mass filaments with ALMA: the integral shaped filament in Orion A. Astron. Astrophys. 600, A141 (2017)

    Google Scholar 

  • J. Kim, D. Ryu, Density power spectrum of compressible hydrodynamic turbulent flows. Astrophys. J. Lett. 630(1), L45–L48 (2005)

    ADS  Google Scholar 

  • S.S. Kim, D.F. Figer, R.P. Kudritzki et al., The Arches cluster mass function. Astrophys. J. Lett. 653(2), L113–L116 (2006)

    ADS  Google Scholar 

  • R.R. King, S.P. Goodwin, R.J. Parker et al., Testing the universality of star formation - II. Comparing separation distributions of nearby star-forming regions and the field. Mon. Not. R. Astron. Soc. 427(3), 2636–2646 (2012)

    ADS  Google Scholar 

  • J.M. Kirk, D. Ward-Thompson, P. André, The initial conditions of isolated star formation - VI. SCUBA mappingof pre-stellar cores. Mon. Not. R. Astron. Soc. 360(4), 1506–1526 (2005)

    ADS  Google Scholar 

  • J.M. Kirk, D. Ward-Thompson, P. Palmeirim et al., First results from the Herschel Gould Belt survey in Taurus. Mon. Not. R. Astron. Soc. 432(2), 1424–1433 (2013)

    ADS  Google Scholar 

  • H. Kirk, J. Di Francesco, D. Johnstone et al., The JCMT Gould Belt survey: a first look at dense cores in Orion B. Astrophys. J. 817(2), 167 (2016)

    ADS  Google Scholar 

  • H. Kirk, M.M. Dunham, J. Di Francesco et al., ALMA observations of starless core substructure in Ophiuchus. Astrophys. J. 838(2), 114 (2017)

    ADS  Google Scholar 

  • R.S. Klessen, A. Burkert, The formation of stellar clusters: Gaussian cloud conditions. I. Astrophys. J. Suppl. Ser. 128(1), 287–319 (2000)

    ADS  Google Scholar 

  • R. Köhler, M.G. Petr-Gotzens, M.J. McCaughrean et al., Binary stars in the Orion nebula cluster. Astron. Astrophys. 458(2), 461–476 (2006)

    ADS  Google Scholar 

  • R. Köhler, R. Neuhäuser, S. Krämer et al., Multiplicity of young stars in and around R Coronae Australis. Astron. Astrophys. 488(3), 997–1006 (2008)

    ADS  Google Scholar 

  • V. Könyves, P. André, A. Men’shchikov et al., A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey. Astron. Astrophys. 584, A91 (2015)

    Google Scholar 

  • V. Könyves, P. André, D. Arzoumanian et al., Properties of the dense core population in Orion B as seen by the Herschel Gould Belt survey. Astron. Astrophys. 635, A34 (2020)

    Google Scholar 

  • M.B.N. Kouwenhoven, A.G.A. Brown, H. Zinnecker et al., The primordial binary population. I. A near-infrared adaptive optics search for close visual companions to a star members of Scorpius OB2. Astron. Astrophys. 430, 137–154 (2005)

    ADS  Google Scholar 

  • M.B.N. Kouwenhoven, A.G.A. Brown, S.F. Portegies Zwart et al., The primordial binary population. II. Recovering the binary population for intermediate mass stars in Scorpius OB2. Astron. Astrophys. 474(1), 77–104 (2007)

    ADS  Google Scholar 

  • M.B.N. Kouwenhoven, S.P. Goodwin, R.J. Parker et al., The formation of very wide binaries during the star cluster dissolution phase. Mon. Not. R. Astron. Soc. 404(4), 1835–1848 (2010)

    ADS  Google Scholar 

  • C. Kramer, J. Stutzki, R. Rohrig et al., Clump mass spectra of molecular clouds. Astron. Astrophys. 329, 249–264 (1998)

    ADS  Google Scholar 

  • K. Kratter, G. Lodato, Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016)

    ADS  Google Scholar 

  • K.M. Kratter, C.D. Matzner, Fragmentation of massive protostellar discs. Mon. Not. R. Astron. Soc. 373, 1563–1576 (2006)

    ADS  Google Scholar 

  • K.M. Kratter, C.D. Matzner, M.R. Krumholz et al., On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion. Astrophys. J. 708, 1585–1597 (2010a)

    ADS  Google Scholar 

  • K.M. Kratter, R.A. Murray-Clay, A.N. Youdin, The runts of the litter: why planets formed through gravitational instability can only be failed binary stars. Astrophys. J. 710, 1375–1386 (2010b)

    ADS  Google Scholar 

  • A.L. Kraus, L.A. Hillenbrand, Multiple star formation to the bottom of the initial mass function. Astrophys. J. 757(2), 141 (2012)

    ADS  Google Scholar 

  • A.L. Kraus, M.J. Ireland, F. Martinache et al., Mapping the shores of the brown dwarf desert. II. Multiple star formation in Taurus-Auriga. Astrophys. J. 731(1), 8 (2011)

    ADS  Google Scholar 

  • A.G. Kritsuk, M.L. Norman, P. Padoan et al., The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416–431 (2007)

    ADS  Google Scholar 

  • A.G. Kritsuk, M.L. Norman, R. Wagner, On the density distribution in star-forming interstellar clouds. Astrophys. J. Lett. 727(1), L20 (2011)

    ADS  Google Scholar 

  • P. Kroupa, The initial mass function of stars: evidence for uniformity in variable systems. Science 295(5552), 82–91 (2002)

    ADS  Google Scholar 

  • P. Kroupa, T. Jerabkova, The impact of binaries on the stellar initial mass function, arXiv e-prints (2018). arXiv:1806.10605

  • J.M.D. Kruijssen, The evolution of the stellar mass function in star clusters. Astron. Astrophys. 507(3), 1409–1423 (2009)

    ADS  MATH  Google Scholar 

  • J.M.D. Kruijssen, On the fraction of star formation occurring in bound stellar clusters. Mon. Not. R. Astron. Soc. 426(4), 3008–3040 (2012)

    ADS  Google Scholar 

  • J.M.D. Kruijssen, Globular cluster formation in the context of galaxy formation and evolution. Class. Quantum Gravity 31(24), 244006 (2014)

    ADS  MATH  Google Scholar 

  • J.M.D. Kruijssen, Globular clusters as the relics of regular star formation in ‘normal’ high-redshift galaxies. Mon. Not. R. Astron. Soc. 454, 1658–1686 (2015)

    ADS  Google Scholar 

  • J.M.D. Kruijssen, J.L. Pfeffer, R.A. Crain et al., The E-MOSAICS project: tracing galaxy formation and assembly with the age-metallicity distribution of globular clusters. Mon. Not. R. Astron. Soc. 486, 3134 (2019)

    ADS  Google Scholar 

  • M.R. Krumholz, R.I. Klein, C.F. McKee, Radiation-hydrodynamic simulations of collapse and fragmentation in massive protostellar cores. Astrophys. J. 656, 959–979 (2007)

    ADS  Google Scholar 

  • M.R. Krumholz, R.I. Klein, C.F. McKee et al., The formation of massive star systems by accretion. Science 323(5915), 754 (2009)

    ADS  Google Scholar 

  • M.R. Krumholz, R.I. Klein, C.F. McKee, Radiation-hydrodynamic simulations of the formation of orion-like star clusters. I. Implications for the origin of the initial mass function. Astrophys. J. 740(2), 74 (2011)

    ADS  Google Scholar 

  • M.R. Krumholz, R.I. Klein, C.F. McKee, Radiation-hydrodynamic simulations of the formation of Orion-like star clusters. II. The initial mass function from winds, turbulence, and radiation. Astrophys. J. 754(1), 71 (2012)

    ADS  Google Scholar 

  • M.R. Krumholz, R.M. Crutcher, C.L.H. Hull, Protostellar disk formation enabled by weak, misaligned magnetic fields. Astrophys. J. 767(1), L11 (2013)

    ADS  Google Scholar 

  • M.R. Krumholz, C.F. McKee, J. Bland-Hawthorn, Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019)

    ADS  Google Scholar 

  • M. Kuffmeier, H. Calcutt, L.E. Kristensen, The bridge: a transient phenomenon of forming stellar multiples, arXiv e-prints (2019). arXiv:1907.02083

  • A. Kuznetsova, L. Hartmann, A. Burkert, Gravitational focusing and the star cluster initial mass function. Astrophys. J. 836(2), 190 (2017)

    ADS  Google Scholar 

  • A. Kuznetsova, L. Hartmann, F. Heitsch et al., The role of gravity in producing power-law mass functions. Astrophys. J. 868(1), 50 (2018)

    ADS  Google Scholar 

  • C.J. Lada, E.A. Lada, Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003)

    ADS  Google Scholar 

  • B. Ladjelate, P. André, V. Könyves et al., The Herschel view of the dense core population in the Ophiuchus molecular cloud. Astron. Astrophys. (2020). https://doi.org/10.1051/0004-6361/201936442. arXiv:2001.11036

    Article  Google Scholar 

  • R.B. Larson, Numerical calculations of the dynamics of collapsing proto-star. Mon. Not. R. Astron. Soc. 145, 271 (1969)

    ADS  Google Scholar 

  • R.B. Larson, The collapse of a rotating cloud. Mon. Not. R. Astron. Soc. 156, 437–+ (1972)

    ADS  Google Scholar 

  • R.B. Larson, Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981)

    ADS  Google Scholar 

  • R.B. Larson, Cloud fragmentation and stellar masses. Mon. Not. R. Astron. Soc. 214, 379–398 (1985)

    ADS  Google Scholar 

  • Y.N. Lee, P. Hennebelle, Formation of a protocluster: a virialized structure from gravoturbulent collapse. II. A two-dimensional analytical model for a rotating and accreting system. Astron. Astrophys. 591, A31 (2016)

    Google Scholar 

  • Y.N. Lee, P. Hennebelle, Stellar mass spectrum within massive collapsing clumps. I. Influence of the initial conditions. Astron. Astrophys. 611, A88 (2018a)

    Google Scholar 

  • Y.N. Lee, P. Hennebelle, Stellar mass spectrum within massive collapsing clumps. II. Thermodynamics and tidal forces of the first Larson core. A robust mechanism for the peak of the IMF. Astron. Astrophys. 611, A89 (2018b)

    Google Scholar 

  • K.I. Lee, M.M. Dunham, P.C. Myers et al., Mass assembly of stellar systems and their evolution with the SMA (MASSES). Multiplicity and the physical environment in L1448N. Astrophys. J. 814(2), 114 (2015)

    ADS  Google Scholar 

  • K.I. Lee, M.M. Dunham, P.C. Myers et al., Misalignment of outflow axes in the proto-multiple systems in Perseus. Astrophys. J. Lett. 820(1), L2 (2016)

    ADS  Google Scholar 

  • Y.N. Lee, P. Hennebelle, G. Chabrier, Analytical core mass function (CMF) from filaments: under which circumstances can filament fragmentation reproduce the CMF? Astrophys. J. 847, 114 (2017a)

    ADS  Google Scholar 

  • J.E. Lee, S. Lee, M.M. Dunham et al., Formation of wide binaries by turbulent fragmentation. Nat. Astron. 1, 0172 (2017b)

    ADS  Google Scholar 

  • A.T. Lee, S.S.R. Offner, K.M. Kratter et al., The formation and evolution of wide-orbit stellar multiples in magnetized clouds. Astrophys. J. 887(2), 232 (2019)

    ADS  Google Scholar 

  • C. Leinert, H. Zinnecker, N. Weitzel et al., A systematic search for young binaries in Taurus. Astron. Astrophys. 278, 129–149 (1993)

    ADS  Google Scholar 

  • H. Li, O.Y. Gnedin, Star cluster formation in cosmological simulations - III. Dynamical and chemical evolution. Mon. Not. R. Astron. Soc. 486(3), 4030–4043 (2019)

    ADS  Google Scholar 

  • B. Lim, M.Y. Chun, H. Sung et al., The starburst cluster Westerlund 1: the initial mass function and mass segregation. Astron. J. 145(2), 46 (2013)

    ADS  Google Scholar 

  • S.N. Longmore, J.M.D. Kruijssen, N. Bastian et al., The formation and early evolution of young massive clusters, in Protostars and Planets VI (2014), pp. 291–314

    Google Scholar 

  • J.R. Lu, T. Do, A.M. Ghez et al., Stellar populations in the central 0.5 pc of the galaxy. II. The initial mass function. Astrophys. J. 764(2), 155 (2013)

    ADS  Google Scholar 

  • M.N. Machida, T. Matsumoto, Impact of protostellar outflow on star formation: effects of the initial cloud mass. Mon. Not. R. Astron. Soc. 421, 588–607 (2012)

    ADS  Google Scholar 

  • M.N. Machida, K. Tomisaka, T. Matsumoto, First MHD simulation of collapse and fragmentation of magnetized molecular cloud cores. Mon. Not. R. Astron. Soc. 348, L1–L5 (2004)

    ADS  Google Scholar 

  • M.N. Machida, K. Tomisaka, T. Matsumoto et al., Formation scenario for wide and close binary systems. Astrophys. J. 677(1), 327–347 (2008)

    ADS  Google Scholar 

  • M.N. Machida, Si. Inutsuka, T. Matsumoto, The circumbinary outflow: a protostellar outflow driven by a circumbinary disk. Astrophys. J. Lett. 704(1), L10–L14 (2009)

    ADS  Google Scholar 

  • S. Mairs, D. Johnstone, S.S.R. Offner et al., Synthetic observations of the evolution of starless cores in a molecular cloud simulation: comparisons with JCMT data and predictions for ALMA. Astrophys. J. 783(1), 60 (2014)

    ADS  Google Scholar 

  • M. Marks, P. Kroupa, J. Dabringhausen et al., Evidence for top-heavy stellar initial mass functions with increasing density and decreasing metallicity. Mon. Not. R. Astron. Soc. 422(3), 2246–2254 (2012)

    ADS  Google Scholar 

  • M. Marks, M. Janson, P. Kroupa et al., M-dwarf binaries as tracers of star and brown dwarf formation. Mon. Not. R. Astron. Soc. 452(1), 1014–1025 (2015)

    ADS  Google Scholar 

  • K.A. Marsh, J.M. Kirk, P. André et al., A census of dense cores in the Taurus L1495 cloud from the Herschel. Mon. Not. R. Astron. Soc. 459, 342–356 (2016)

    ADS  Google Scholar 

  • T. Maschberger, I.A. Bonnell, C.J. Clarke et al., The relation between accretion rates and the initial mass function in hydrodynamical simulations of star formation. Mon. Not. R. Astron. Soc. 439(1), 234–246 (2014)

    ADS  Google Scholar 

  • B.D. Mason, H.A. McAlister, W.I. Hartkopf, Binary star orbits from speckle interferometry. IX. The nearby solar-type speckle-spectroscopic binary fin 347 AA. Astron. J. 112, 276 (1996)

    ADS  Google Scholar 

  • H. Masunaga, Si. Inutsuka, Does “\(\tau \sim 1\)” terminate the isothermal evolution of collapsing clouds? Astrophys. J. 510(2), 822–827 (1999)

    ADS  Google Scholar 

  • T. Matsumoto, T. Hanawa, Fragmentation of a molecular cloud core versus fragmentation of the massive protoplanetary disk in the main accretion phase. Astrophys. J. 595, 913–934 (2003)

    ADS  Google Scholar 

  • Y. Matsushita, M.N. Machida, Y. Sakurai et al., Massive outflows driven by magnetic effects in star-forming clouds with high mass accretion rates. Mon. Not. R. Astron. Soc. 470(1), 1026–1049 (2017)

    ADS  Google Scholar 

  • C.D. Matzner, C.F. McKee, Efficiencies of low-mass star and star cluster formation. Astrophys. J. 545, 364–378 (2000)

    ADS  Google Scholar 

  • A.J. Maury, P. André, P. Hennebelle et al., Toward understanding the formation of multiple systems. A pilot IRAM-PdBI survey of Class 0 objects. Astron. Astrophys. 512, A40 (2010)

    Google Scholar 

  • A.J. Maury, P. André, L. Testi et al., Characterizing young protostellar disks with the CALYPSO IRAM-PdBI survey: large Class 0 disks are rare. Astron. Astrophys. 621, A76 (2019)

    Google Scholar 

  • S.T. Megeath, M. Kounkel, S. Offner et al., Low mass stars as tracers of star formation in diverse environments, arXiv e-prints (2019). arXiv:1903.08116

  • C.H.F. Melo, The short period multiplicity among T Tauri stars. Astron. Astrophys. 410, 269–282 (2003)

    ADS  Google Scholar 

  • A. Men’shchikov, P. André, P. Didelon et al., A multi-scale, multi-wavelength source extraction method: getsources. Astron. Astrophys. 542, A81 (2012)

    Google Scholar 

  • L. Mestel, R.B. Paris, Magnetic braking during star formation - III. Mon. Not. R. Astron. Soc. 187, 337–356 (1979)

    ADS  Google Scholar 

  • G.E. Miller, J.M. Scalo, On the birthplaces of stars. Publ. Astron. Soc. Pac. 90, 506–513 (1978)

    ADS  Google Scholar 

  • N. Moeckel, J. Bally, Binary capture rates for massive protostars. Astrophys. J. Lett. 661, L183–L186 (2007)

    ADS  Google Scholar 

  • N. Moeckel, M.R. Bate, On the evolution of a star cluster and its multiple stellar systems following gas dispersal. Mon. Not. R. Astron. Soc. 404, 274 (2010)

    Google Scholar 

  • N. Moeckel, C.J. Clarke, The formation of permanent soft binaries in dispersing clusters. Mon. Not. R. Astron. Soc. 415, 1179–1187 (2011)

    ADS  Google Scholar 

  • S. Molinari, E. Schisano, F. Faustini et al., Source extraction and photometry for the far-infrared and sub-millimeter continuum in the presence of complex backgrounds. Astron. Astrophys. 530, A133 (2011)

    Google Scholar 

  • R. Mor, A.C. Robin, F. Figueras et al., Constraining the thin disc initial mass function using Galactic classical Cepheids. Astron. Astrophys. 599, A17 (2017)

    ADS  Google Scholar 

  • F. Motte, P. Andre, R. Neri, The initial conditions of star formation in the rho Ophiuchi main cloud: wide-field millimeter continuum mapping. Astron. Astrophys. 336, 150–172 (1998)

    ADS  Google Scholar 

  • F. Motte, P. André, D. Ward-Thompson et al., A SCUBA survey of the NGC 2068/2071 protoclusters. Astron. Astrophys. 372, L41–L44 (2001)

    ADS  Google Scholar 

  • F. Motte, T. Nony, F. Louvet et al., The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst. Nat. Astron. 2, 478–482 (2018)

    ADS  Google Scholar 

  • T.C. Mouschovias, Nonhomologous contraction and equilibria of self-gravitating, magnetic interstellar clouds embedded in an intercloud medium: star formation. II - Results. Astrophys. J. 207, 141 (1976)

    ADS  Google Scholar 

  • T.C. Mouschovias, A connection between the rate of rotation of interstellar clouds, magnetic fields, ambipolar diffusion, and the periods of binary stars. Astrophys. J. 211, 147–151 (1977)

    ADS  Google Scholar 

  • T.C. Mouschovias, J.L. Spitzer, Note on the collapse of magnetic interstellar clouds. Astrophys. J. 210, 326 (1976)

    ADS  Google Scholar 

  • K. Mužić, A. Scholz, V.C. Geers et al., Substellar objects in nearby young clusters (SONYC) IX: the planetary-mass domain of Chamaeleon-I and updated mass function in Lupus-3. Astrophys. J. 810(2), 159 (2015)

    ADS  Google Scholar 

  • K. Mužić, A. Scholz, K. Peña Ramírez et al., Looking deep into the rosette nebula’s heart: the (sub)stellar content of the massive young cluster NGC 2244. Astrophys. J. 881(1), 79 (2019)

    ADS  Google Scholar 

  • P.C. Myers, Dense cores in dark clouds. III. Subsonic turbulence. Astrophys. J. 270, 105–118 (1983)

    ADS  Google Scholar 

  • P.C. Myers, On the distribution of protostar masses. Astrophys. J. 706(2), 1341–1352 (2009)

    ADS  Google Scholar 

  • P.C. Myers, P.J. Benson, Dense cores in dark clouds. II. NH3 observations and star formation. Astrophys. J. 266, 309–320 (1983)

    ADS  Google Scholar 

  • F. Nakamura, Z.Y. Li, Magnetically regulated star formation in three dimensions: the case of the Taurus molecular cloud complex. Astrophys. J. 687, 354–375 (2008)

    ADS  Google Scholar 

  • F. Nakamura, Z.Y. Li, Clustered star formation in magnetic clouds: properties of dense cores formed in outflow-driven turbulence. Astrophys. J. 740, 36 (2011)

    ADS  Google Scholar 

  • F. Nakamura, M. Umemura, On the mass of population III stars. Astrophys. J. 515(1), 239–248 (1999)

    ADS  Google Scholar 

  • Å. Nordlund, J.P. Ramsey, A. Popovas et al., DISPATCH: a numerical simulation framework for the exa-scale era - I. Fundamentals. Mon. Not. R. Astron. Soc. 477(1), 624–638 (2018)

    ADS  Google Scholar 

  • E. Ntormousi, P. Hennebelle, Core and stellar mass functions in massive collapsing filaments. Astron. Astrophys. 625, A82 (2019)

    ADS  Google Scholar 

  • D. Nutter, D. Ward-Thompson, A SCUBA survey of Orion - the low-mass end of the core mass function. Mon. Not. R. Astron. Soc. 374(4), 1413–1420 (2007)

    ADS  Google Scholar 

  • S.S.R. Offner, J. Chaban, Impact of protostellar outflows on turbulence and star formation efficiency in magnetized dense cores. Astrophys. J. 847, 104 (2017)

    ADS  Google Scholar 

  • S.S.R. Offner, R.I. Klein, C.F. McKee, Driven and decaying turbulence simulations of low-mass star formation: from clumps to cores to protostars. Astrophys. J. 686, 1174–1194 (2008)

    ADS  Google Scholar 

  • S.S.R. Offner, R.I. Klein, C.F. McKee et al., The effects of radiative transfer on low-mass star formation. Astrophys. J. 703, 131–149 (2009)

    ADS  Google Scholar 

  • S.S.R. Offner, K.M. Kratter, C.D. Matzner et al., The formation of low-mass binary star systems via turbulent fragmentation. Astrophys. J. 725, 1485–1494 (2010)

    ADS  Google Scholar 

  • S.S.R. Offner, J. Capodilupo, S. Schnee et al., Observing turbulent fragmentation in simulations: predictions for CARMA and ALMA. Mon. Not. R. Astron. Soc. 420(1), L53–L57 (2012)

    ADS  Google Scholar 

  • S.S.R. Offner, P.C. Clark, P. Hennebelle et al., The origin and universality of the stellar initial mass function, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 53

    Google Scholar 

  • S.S.R. Offner, M.M. Dunham, K.I. Lee et al., The turbulent origin of outflow and spin misalignment in multiple star systems. Astrophys. J. 827(1), L11 (2016)

    ADS  Google Scholar 

  • K. Omukai, R. Nishi, Photodissociative regulation of star formation in metal-free pregalactic clouds. Astrophys. J. 518(1), 64–68 (1999)

    ADS  Google Scholar 

  • J. Ostriker, The equilibrium of polytropic and isothermal cylinders. Astrophys. J. 140, 1056 (1964)

    ADS  MathSciNet  Google Scholar 

  • P. Padoan, Å. Nordlund, The stellar initial mass function from turbulent fragmentation. Astrophys. J. 576(2), 870–879 (2002)

    ADS  Google Scholar 

  • P. Padoan, A. Nordlund, B.J.T. Jones, The universality of the stellar initial mass function. Mon. Not. R. Astron. Soc. 288, 145–152 (1997)

    ADS  Google Scholar 

  • P. Palmeirim, P. André, J. Kirk et al., Herschel view of the Taurus B211/3 filament and striations: evidence of filamentary growth? Astron. Astrophys. 550, A38 (2013)

    Google Scholar 

  • X. Pang, E.K. Grebel, R.J. Allison et al., On the origin of mass segregation in NGC 3603. Astrophys. J. 764(1), 73 (2013)

    ADS  Google Scholar 

  • R.J. Parker, S.P. Goodwin, The dynamical evolution of very low mass binaries in open clusters. Mon. Not. R. Astron. Soc. 411(2), 891–900 (2011)

    ADS  Google Scholar 

  • A. Parravano, D. Hollenbach, C.F. McKee, The high-mass slope of the IMF. Mon. Not. R. Astron. Soc. 480(2), 2449–2465 (2018)

    ADS  Google Scholar 

  • N.E.Q. Paust, I.N. Reid, G. Piotto et al., The ACS survey of galactic globular clusters. VIII. Effects of environment on globular cluster global mass functions. Astron. J. 139(2), 476–491 (2010)

    ADS  Google Scholar 

  • M.G. Petr, V. Coudé du Foresto, S.V.W. Beckwith et al., Binary stars in the Orion trapezium cluster core. Astrophys. J. 500(2), 825–837 (1998)

    ADS  Google Scholar 

  • S. Pezzuto, D. Elia, E. Schisano et al., Herschel observations of B1-bS and B1-bN: two first hydrostatic core candidates in the Perseus star-forming cloud. Astron. Astrophys. 547, A54 (2012)

    Google Scholar 

  • S. Pezzuto, M. Benedettini, J. Di Francesco, P. Palmeirim, S. Sadavoy, E. Schisano, G. Li Causi, P. André, D. Arzoumanian, J.-P. Bernard, S. Bontemps, D. Elia, E. Fiorellino, J.M. Kirk, V. Könyves, B. Ladjelate, A. Men’shchikov, F. Motte, L. Piccotti, N. Schneider, L. Spinoglio, D. Ward-Thompson, C.D. Wilson, Physical properties of the diffuse medium and of dense cores in the Perseus star-forming region derived from the Herschel Gould Belt Survey observations. Astron. Astrophys. (2020, submitted)

  • J. Pfeffer, J.M.D. Kruijssen, R.A. Crain et al., The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations. Mon. Not. R. Astron. Soc. 475, 4309–4346 (2018)

    ADS  Google Scholar 

  • G.L. Pilbratt, J.R. Riedinger, T. Passvogel et al., Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 518, L1 (2010)

    ADS  Google Scholar 

  • J.E. Pineda, A.A. Goodman, H.G. Arce et al., Direct observation of a sharp transition to coherence in dense cores. Astrophys. J. Lett. 712(1), L116–L121 (2010)

    ADS  Google Scholar 

  • J.E. Pineda, S.S.R. Offner, R.J. Parker et al., The formation of a quadruple star system with wide separation. Nature 518(7538), 213–215 (2015)

    ADS  Google Scholar 

  • R. Pokhrel, P.C. Myers, M.M. Dunham et al., Hierarchical fragmentation in the Perseus molecular cloud: from the cloud scale to protostellar objects. Astrophys. J. 853(1), 5 (2018)

    ADS  Google Scholar 

  • S.F. Portegies Zwart, S.L.W. McMillan, M. Gieles, Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010)

    ADS  Google Scholar 

  • W.H. Press, P. Schechter, Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974)

    ADS  Google Scholar 

  • D.J. Price, M.R. Bate, The impact of magnetic fields on single and binary star formation. Mon. Not. R. Astron. Soc. 377, 77–90 (2007)

    ADS  Google Scholar 

  • C.F. Prosser, J.R. Stauffer, L. Hartmann et al., HST photometry of the trapezium cluster. Astrophys. J. 421, 517 (1994)

    ADS  Google Scholar 

  • D. Raghavan, H.A. McAlister, T.J. Henry et al., A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 190(1), 1–42 (2010)

    ADS  Google Scholar 

  • T. Ratzka, R. Köhler, C. Leinert, A multiplicity survey of the \(\rho \) Ophiuchi molecular clouds. Astron. Astrophys. 437(2), 611–626 (2005)

    ADS  Google Scholar 

  • I.N. Reid, J.E. Gizis, Low-mass binaries and the stellar luminosity function. Astron. J. 113, 2246 (1997)

    ADS  Google Scholar 

  • I.N. Reid, J.E. Gizis, S.L. Hawley, The Palomar/MSU nearby star spectroscopic survey. IV. The luminosity function in the solar neighborhood and M dwarf kinematics. Astron. J. 124(5), 2721–2738 (2002)

    ADS  Google Scholar 

  • B. Reipurth, C. Clarke, The formation of brown dwarfs as ejected stellar embryos. Astron. J. 122, 432–439 (2001)

    ADS  Google Scholar 

  • B. Reipurth, S. Mikkola, Formation of the widest binary stars from dynamical unfolding of triple systems. Nature 492, 221–224 (2012)

    ADS  Google Scholar 

  • B. Reipurth, H. Zinnecker, Visual binaries among pre-main sequence stars. Astron. Astrophys. 278, 81–108 (1993)

    ADS  Google Scholar 

  • B. Reipurth, C.J. Clarke, A.P. Boss et al., Multiplicity in early stellar evolution, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 267

    Google Scholar 

  • A.L. Rosen, M.R. Krumholz, C.F. McKee et al., An unstable truth: how massive stars get their mass. Mon. Not. R. Astron. Soc. 463(3), 2553–2573 (2016)

    ADS  Google Scholar 

  • A. Roy, P. André, P. Palmeirim et al., Reconstructing the density and temperature structure of prestellar cores from Herschel data: a case study for B68 and L1689B. Astron. Astrophys. 562, A138 (2014)

    Google Scholar 

  • A. Roy, P. André, D. Arzoumanian et al., Possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function. Astron. Astrophys. 584, A111 (2015)

    Google Scholar 

  • S.I. Sadavoy, S.W. Stahler, Embedded binaries and their dense cores. Mon. Not. R. Astron. Soc. 469(4), 3881–3900 (2017)

    ADS  Google Scholar 

  • K. Saigo, K. Tomisaka, Spectrum energy distribution and submillimeter image of a rotating first core. Astrophys. J. 728(2), 78 (2011)

    ADS  Google Scholar 

  • E.E. Salpeter, The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955)

    ADS  Google Scholar 

  • H. Sana, S.E. de Mink, A. de Koter et al., Binary interaction dominates the evolution of massive stars. Science 337(6093), 444 (2012)

    ADS  Google Scholar 

  • H. Sana, The multiplicity of massive stars: a 2016 view, in The Lives and Death-Throes of Massive Stars, IAU Symposium, vol. 329, ed. by J.J. Eldridge, J.C. Bray, L.A.S. McClelland et al. (2017), pp. 110–117

    Google Scholar 

  • J.M. Scalo, The stellar initial mass function. Fundam. Cosm. Phys. 11, 1–278 (1986)

    ADS  Google Scholar 

  • H.Y. Schive, J.A. ZuHone, N.J. Goldbaum et al., GAMER-2: a GPU-accelerated adaptive mesh refinement code - accuracy, performance, and scalability. Mon. Not. R. Astron. Soc. 481(4), 4815–4840 (2018)

    ADS  Google Scholar 

  • S. Schnee, M. Enoch, D. Johnstone et al., An observed lack of substructure in starless cores. Astrophys. J. 718(1), 306–313 (2010)

    ADS  Google Scholar 

  • N. Shatsky, A. Tokovinin, The mass ratio distribution of B-type visual binaries in the Sco OB2 association. Astron. Astrophys. 382, 92–103 (2002)

    ADS  Google Scholar 

  • Y. Shimajiri, P. André, E. Ntormousi et al., Probing fragmentation and velocity sub-structure in the massive NGC 6334 filament with ALMA. Astron. Astrophys. 632, A83 (2019)

    Google Scholar 

  • F.H. Shu, Self-similar collapse of isothermal spheres and star formation. Astrophys. J. 214, 488–497 (1977)

    ADS  Google Scholar 

  • C.L. Slesnick, L.A. Hillenbrand, P. Massey, The star formation history and mass function of the double cluster h and \(\chi \) Persei. Astrophys. J. 576(2), 880–893 (2002)

    ADS  Google Scholar 

  • R.J. Smith, P.C. Clark, I.A. Bonnell, Fragmentation in molecular clouds and its connection to the IMF. Mon. Not. R. Astron. Soc. 396(2), 830–841 (2009)

    ADS  Google Scholar 

  • A.D. Sokol, R.A. Gutermuth, R. Pokhrel et al., Early science with the Large Millimetre Telescope: an LMT/AzTEC 1.1 mm survey of dense cores in the Monoceros R2 giant molecular cloud. Mon. Not. R. Astron. Soc. 483(1), 407–424 (2019)

    ADS  Google Scholar 

  • A. Sollima, F.R. Ferraro, M. Bellazzini, The mass function of \(\omega \) Centauri down to 0.15 M\(_{solar}\). Mon. Not. R. Astron. Soc. 381(4), 1575–1582 (2007)

    ADS  Google Scholar 

  • S.W. Stahler, The orbital decay of embedded binary stars. Mon. Not. R. Astron. Soc. 402(3), 1758–1766 (2010)

    ADS  Google Scholar 

  • D. Stamatellos, A.P. Whitworth, D.A. Hubber, The importance of episodic accretion for low-mass star formation. Astrophys. J. 730, 32–+ (2011)

    ADS  Google Scholar 

  • T. Stanke, M.D. Smith, R. Gredel et al., An unbiased search for the signatures of protostars in the \(\rho \) Ophiuchi molecular cloud. II. Millimetre continuum observations. Astron. Astrophys. 447(2), 609–622 (2006)

    ADS  Google Scholar 

  • A. Stolte, E.K. Grebel, W. Brandner et al., The mass function of the Arches cluster from Gemini adaptive optics data. Astron. Astrophys. 394, 459–478 (2002)

    ADS  Google Scholar 

  • A. Stolte, W. Brandner, E.K. Grebel et al., The Arches cluster: evidence for a truncated mass function? Astrophys. J. Lett. 628(2), L113–L117 (2005)

    ADS  Google Scholar 

  • A. Stolte, W. Brandner, B. Brandl et al., The secrets of the nearest starburst cluster. II. The present-day mass function in NGC 3603. Astron. J. 132(1), 253–270 (2006)

    ADS  Google Scholar 

  • G. Suárez, J.J. Downes, C. Román-Zúñiga et al., System initial mass function of the 25 Ori group from planetary-mass objects to intermediate/high-mass stars. Mon. Not. R. Astron. Soc. 486(2), 1718–1740 (2019)

    ADS  Google Scholar 

  • H. Sung, M.S. Bessell, The initial mass function and stellar content of NGC 3603. Astron. J. 127(2), 1014–1028 (2004)

    ADS  Google Scholar 

  • H. Sung, M.S. Bessell, The initial mass function and young brown dwarf candidates in NGC 2264. IV. The initial mass function and star formation history. Astron. J. 140(6), 2070–2085 (2010)

    ADS  Google Scholar 

  • H. Sung, H. Sana, M.S. Bessell, The initial mass function and the surface density profile of NGC 6231. Astron. J. 145(2), 37 (2013)

    ADS  Google Scholar 

  • M. Tafalla, A. Hacar, Chains of dense cores in the Taurus L1495/B213 complex. Astron. Astrophys. 574, A104 (2015)

    ADS  Google Scholar 

  • M. Tafalla, P.C. Myers, P. Caselli et al., On the internal structure of starless cores. I. Physical conditions and the distribution of CO, CS, N2H+, and NH3 in L1498 and L1517B. Astron. Astrophys. 416, 191–212 (2004)

    ADS  Google Scholar 

  • S. Takahashi, P.T.P. Ho, P.S. Teixeira et al., Hierarchical fragmentation of the Orion molecular filaments. Astrophys. J. 763, 57 (2013)

    ADS  Google Scholar 

  • S.Z. Takahashi, Y. Tsukamoto, S. Inutsuka, A revised condition for self-gravitational fragmentation of protoplanetary discs. Mon. Not. R. Astron. Soc. 458(4), 3597–3612 (2016)

    ADS  Google Scholar 

  • P.S. Teixeira, S. Takahashi, L.A. Zapata et al., Two-level hierarchical fragmentation in the northern filament of the Orion Molecular Cloud 1. Astron. Astrophys. 587, A47 (2016)

    ADS  Google Scholar 

  • L. Testi, A.I. Sargent, Star formation in clusters: a survey of compact millimeter-wave sources in the Serpens Core. Astrophys. J. Lett. 508(1), L91–L94 (1998)

    ADS  Google Scholar 

  • I. Thies, P. Kroupa, A discontinuity in the low-mass initial mass function. Astrophys. J. 671(1), 767–780 (2007)

    ADS  Google Scholar 

  • D.A. Tilley, R.E. Pudritz, The formation of star clusters - II. 3D simulations of magnetohydrodynamic turbulence in molecular clouds. Mon. Not. R. Astron. Soc. 382, 73–94 (2007)

    ADS  Google Scholar 

  • J.J. Tobin, K.M. Kratter, M.V. Persson et al., A triple protostar system formed via fragmentation of a gravitationally unstable disk. Nature 538(7626), 483–486 (2016)

    ADS  Google Scholar 

  • J.J. Tobin, L.W. Looney, Z.Y. Li et al., The VLA/ALMA nascent disk and multiplicity (VANDAM) survey of Perseus protostars. VI. Characterizing the formation mechanism for close multiple systems. Astrophys. J. 867(1), 43 (2018a)

    ADS  Google Scholar 

  • J.J. Tobin, P. Sheehan, D. Johnstone, New frontiers in protostellar multiplicity with the ngVLA. Astron. Soc. Pac. Conf. Ser. 517, p 333 (2018b)

    ADS  Google Scholar 

  • K.O. Todorov, K.L. Luhman, Q.M. Konopacky et al., A search for companions to brown dwarfs in the Taurus and Chamaeleon star-forming regions. Astrophys. J. 788(1), 40 (2014)

    ADS  Google Scholar 

  • A. Tokovinin, C. Briceño, Binary stars in Upper Scorpius. Astron. J. 159(1), 15 (2020)

    ADS  Google Scholar 

  • A. Toomre, On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964)

    ADS  Google Scholar 

  • Y. Tsukamoto, M.N. Machida, Si. Inutsuka, Formation, orbital and thermal evolution, and survival of planetary-mass clumps in the early phase of circumstellar disc evolution. Mon. Not. R. Astron. Soc. 436(2), 1667–1673 (2013)

    ADS  Google Scholar 

  • Y. Tsukamoto, K. Iwasaki, S. Okuzumi et al., Bimodality of circumstellar disk evolution induced by the Hall current. Astrophys. J. Lett. 810(2), L26 (2015a)

    ADS  Google Scholar 

  • Y. Tsukamoto, K. Iwasaki, S. Okuzumi et al., Effects of Ohmic and ambipolar diffusion on formation and evolution of first cores, protostars, and circumstellar discs. Mon. Not. R. Astron. Soc. 452(1), 278–288 (2015b)

    ADS  Google Scholar 

  • Y. Tsukamoto, S.Z. Takahashi, M.N. Machida et al., Effects of radiative transfer on the structure of self-gravitating discs, their fragmentation and the evolution of the fragments. Mon. Not. R. Astron. Soc. 446(2), 1175–1190 (2015c)

    ADS  Google Scholar 

  • Y. Tsukamoto, S. Okuzumi, K. Iwasaki et al., The impact of the Hall effect during cloud core collapse: implications for circumstellar disk evolution. Publ. Astron. Soc. Jpn. 69(6), 95 (2017)

    ADS  Google Scholar 

  • Y. Tsukamoto, S. Okuzumi, K. Iwasaki et al., Does misalignment between magnetic field and angular momentum enhance or suppress circumstellar disk formation? Astrophys. J. 868(1), 22 (2018)

    ADS  Google Scholar 

  • T. Tsuribe, S.I. Inutsuka, Criteria for fragmentation of rotating isothermal clouds. I. Semianalytic approach. Astrophys. J. 526, 307–313 (1999a)

    ADS  Google Scholar 

  • T. Tsuribe, S.I. Inutsuka, Criteria for fragmentation of rotating isothermal clouds revisited. Astrophys. J. Lett. 523, L155–L158 (1999b)

    ADS  Google Scholar 

  • H. Umeda, K. Nomoto, Nucleosynthesis of zinc and iron peak elements in population III type II supernovae: comparison with abundances of very metal poor halo stars. Astrophys. J. 565(1), 385–404 (2002)

    ADS  Google Scholar 

  • A. Urban, H. Martel, N.J. Evans II, Fragmentation and evolution of molecular clouds. II. The effect of dust heating. Astrophys. J. 710(2), 1343–1364 (2010)

    ADS  Google Scholar 

  • P.G. van Dokkum, C. Conroy, A substantial population of low-mass stars in luminous elliptical galaxies. Nature 468(7326), 940–942 (2010)

    ADS  Google Scholar 

  • P.G. van Dokkum, C. Conroy, The stellar initial mass function in early-type galaxies from absorption line spectroscopy. I. Data and empirical trends. Astrophys. J. 760(1), 70 (2012)

    ADS  Google Scholar 

  • A. van Elteren, J. Bédorf, S. Portegies Zwart, Multi-scale high-performance computing in astrophysics: simulating clusters with stars, binaries and planets. Philos. Trans. R. Soc. Lond. Ser. A 377(2142), 20180153 (2019)

    Google Scholar 

  • N. Vaytet, T. Haugbølle, A grid of one-dimensional low-mass star formation collapse models. Astron. Astrophys. 598, A116 (2017)

    ADS  Google Scholar 

  • E. Vazquez-Semadeni, Hierarchical structure in nearly pressureless flows as a consequence of self-similar statistics. Astrophys. J. 423, 681 (1994)

    ADS  Google Scholar 

  • E. Vázquez-Semadeni, A. González-Samaniego, P. Colín, Hierarchical star cluster assembly in globally collapsing molecular clouds. Mon. Not. R. Astron. Soc. 467(2), 1313–1328 (2017)

    ADS  Google Scholar 

  • E. Vázquez-Semadeni, A. Palau, J. Ballesteros-Paredes et al., Global hierarchical collapse in molecular clouds. Towards a comprehensive scenario. Mon. Not. R. Astron. Soc. 490(3), 3061–3097 (2019)

    ADS  Google Scholar 

  • E.I. Vorobyov, S. Basu, The origin of episodic accretion bursts in the early stages of star formation. Astrophys. J. Lett. 633, L137–L140 (2005)

    ADS  Google Scholar 

  • E.I. Vorobyov, S. Basu, Formation and survivability of giant planets on wide orbits. Astrophys. J. 714(1), L133–L137 (2010)

    ADS  Google Scholar 

  • J.L. Ward, J.M.D. Kruijssen, Not all stars form in clusters - measuring the kinematics of OB associations with Gaia. Mon. Not. R. Astron. Soc. 475(4), 5659–5676 (2018)

    ADS  Google Scholar 

  • K. Ward-Duong, J. Patience, R.J. De Rosa et al., The M-dwarfs in multiples (MINMS) survey - I. Stellar multiplicity among low-mass stars within 15 pc. Mon. Not. R. Astron. Soc. 449(3), 2618–2637 (2015)

    ADS  Google Scholar 

  • D. Ward-Thompson, P.F. Scott, R.E. Hills et al., A submillimetre continuum survey of pre protostellar cores. Mon. Not. R. Astron. Soc. 268, 276 (1994)

    ADS  Google Scholar 

  • D. Ward-Thompson, P. André, R. Crutcher et al., An observational perspective of low-mass dense cores ii: evolution toward the initial mass function, in Protostars and Planets V (2007), pp. 33–46

    Google Scholar 

  • D.R. Weisz, L.C. Johnson, D. Foreman-Mackey et al., The high-mass stellar initial mass function in M31 clusters. Astrophys. J. 806(2), 198 (2015)

    ADS  Google Scholar 

  • A. Whitworth, D. Summers, Self-similar condensation of spherically symmetric self-gravitating isothermal gas clouds. Mon. Not. R. Astron. Soc. 214, 1–25 (1985)

    ADS  MATH  Google Scholar 

  • B.A. Wilking, T.P. Greene, C.J. Lada et al., IRAS observations of young stellar objects in the Corona Australis Dark Cloud. Astrophys. J. 397, 520 (1992)

    ADS  Google Scholar 

  • J.P. Williams, E.J. de Geus, L. Blitz, Determining structure in molecular clouds. Astrophys. J. 428, 693 (1994)

    ADS  Google Scholar 

  • J.P. Williams, L. Blitz, C.F. McKee, The structure and evolution of molecular clouds: from clumps to cores to the IMF, in Protostars and Planets IV, ed. by V. Mannings, A.P. Boss, S.S. Russell (2000), p. 97

    Google Scholar 

  • J.G. Winters, T.J. Henry, W.C. Jao et al., The solar neighborhood. XLV. The stellar multiplicity rate of M dwarfs within 25 pc. Astron. J. 157(6), 216 (2019)

    ADS  Google Scholar 

  • P. Zeidler, A. Nota, E.K. Grebel et al., A high-resolution multiband survey of Westerlund 2 with the Hubble Space Telescope. III. The present-day stellar mass function. Astron. J. 153(3), 122 (2017)

    ADS  Google Scholar 

  • Z.H. Zhang, D.J. Pinfield, B. Burningham et al., A spectroscopic and proper motion search of Sloan Digital Sky survey: red subdwarfs in binary systems. Mon. Not. R. Astron. Soc. 434(2), 1005–1027 (2013)

    ADS  Google Scholar 

  • Z.Y. Zhang, D. Romano, R.J. Ivison et al., Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time. Nature 558, 260–263 (2018)

    ADS  Google Scholar 

  • B. Zhao, K. Tomida, P. Hennebelle et al., Formation and evolution of disks around young stellar objects. Space Sci. Rev. 216(3), 43 (2020)

    ADS  Google Scholar 

  • C. Ziegler, N.M. Law, C. Baranec et al., Multiplicity of the galactic senior citizens: a high-resolution search for cool subdwarf companions. Astrophys. J. 804(1), 30 (2015)

    ADS  Google Scholar 

  • H. Zinnecker, Prediction of the protostellar mass spectrum in the Orion near-infrared cluster. Ann. N.Y. Acad. Sci. 395, 226–235 (1982)

    ADS  Google Scholar 

  • H. Zinnecker, Star formation from hierarchical cloud fragmentation - a statistical theory of the log-normal initial mass function. Mon. Not. R. Astron. Soc. 210, 43–56 (1984)

    ADS  Google Scholar 

  • H. Zinnecker, Binary stars: historical milestones, in The Formation of Binary Stars, IAU Symposium, vol. 200, ed. by H. Zinnecker, R. Mathieu (2001), pp. 1–12

    Google Scholar 

  • H. Zinnecker, T. Preibisch, X-ray emission from Herbig Ae/Be stars: a ROSAT survey. Astron. Astrophys. 292, 152–164 (1994)

    ADS  Google Scholar 

  • H. Zinnecker, H.W. Yorke, Toward understanding massive star formation. Annu. Rev. Astron. Astrophys. 45(1), 481–563 (2007)

    ADS  Google Scholar 

  • H. Zinnecker, A. Chelli, L. Carrasco et al., GSS, 31 - another T-Tauri star with an infrared companion, in Circumstellar Matter, IAU Symposium, vol. 122, ed. by I. Appenzeller, C. Jordan (1987), p. 117

    Google Scholar 

  • M. Zoccali, S. Cassisi, J.A. Frogel et al., The initial mass function of the galactic bulge down to ∼0.15 M\(_{solar}\). Astrophys. J. 530(1), 418–428 (2000)

    ADS  Google Scholar 

Download references

Acknowledgement

We thank the International Space Science Institute (ISSI) for generously providing such stimulating environment for collaboration. Y.N. Lee acknowledges funding from the Ministry of Science and Technology, Taiwan (grant number MOST 108-2636-M-003-001), the grant for Yushan Young Scholar from the Ministry of Education, Taiwan, and the UnivEarthS Labex program at Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). S.S.R.O. acknowledges funding from NSF Career grant AST-1650486. J.M.D.K. gratefully acknowledges funding from the German Research Foundation (DFG) in the form of an Emmy Noether Research Group (grant number KR4801/1-1) and a DFG Sachbeihilfe Grant (grant number KR4801/2-1), from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907), and from Sonderforschungsbereich SFB 881 “The Milky Way System” (subproject B2) of the DFG. JBP acknowledges UNAM-DGAPA-PAPIIT support through grant number IN-111-219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueh-Ning Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Star Formation

Edited by Andrei Bykov, Corinne Charbonnel, Patrick Hennebelle, Alexandre Marcowith, Georges Meynet, Maurizio Falanga and Rudolf von Steiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YN., Offner, S.S.R., Hennebelle, P. et al. The Origin of the Stellar Mass Distribution and Multiplicity. Space Sci Rev 216, 70 (2020). https://doi.org/10.1007/s11214-020-00699-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00699-2

Keywords

Navigation