Abstract
In this chapter, we review some historical understanding and recent advances on the Initial Mass Function (IMF) and the Core Mass Function (CMF), both in terms of observations and theories. We focus mostly on star formation in clustered environment since this is suggested by observations to be the dominant mode of star formation. The statistical properties and the fragmentation behaviour of turbulent gas is discussed, and we also discuss the formation of binaries and small multiple systems.
Similar content being viewed by others
Notes
See Sect. 5.2.1.
References
F.C. Adams, M. Fatuzzo, A theory of the initial mass function for star formation in molecular clouds. Astrophys. J. 464, 256 (1996)
J.F. Alves, C.J. Lada, E.A. Lada, Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight. Nature 409(6817), 159–161 (2001)
J. Alves, M. Lombardi, C.J. Lada, The mass function of dense molecular cores and the origin of the IMF. Astron. Astrophys. 462(1), L17–L21 (2007)
F.O. Alves, P. Caselli, J.M. Girart et al., Gas flow and accretion via spiral streamers and circumstellar disks in a young binary protostar. Science 366(6461), 90–93 (2019)
M. Andersen, H. Zinnecker, A. Moneti et al., The low-mass initial mass function in the 30 Doradus starburst cluster. Astrophys. J. 707(2), 1347–1360 (2009)
M. Andersen, M. Gennaro, W. Brandner et al., Very low-mass stellar content of the young supermassive Galactic star cluster Westerlund 1. Astron. Astrophys. 602, A22 (2017)
P. André, D. Ward-Thompson, M. Barsony, Submillimeter continuum observations of rho Ophiuchi A: the candidate protostar VLA 1623 and prestellar clumps. Astrophys. J. 406, 122 (1993)
P. André, A. Belloche, F. Motte et al., The initial conditions of star formation in the Ophiuchus main cloud: kinematics of the protocluster condensations. Astron. Astrophys. 472(2), 519–535 (2007)
P. André, A. Men’shchikov, S. Bontemps et al., From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the Herschel Gould Belt survey. Astron. Astrophys. 518, L102 (2010)
P. André, D. Ward-Thompson, J. Greaves, Interferometric identification of a pre-brown dwarf. Science 337(6090), 69 (2012)
P. André, J. Di Francesco, D. Ward-Thompson et al., From filamentary networks to dense cores in molecular clouds: toward a new paradigm for star formation, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 27
P. André, D. Arzoumanian, V. Könyves et al., The role of molecular filaments in the origin of the prestellar core mass function and stellar initial mass function. Astron. Astrophys. 629, L4 (2019)
D. Arzoumanian, P. André, P. Didelon et al., Characterizing interstellar filaments with Herschel in IC 5146. Astron. Astrophys. 529, L6 (2011)
D. Arzoumanian, P. André, V. Könyves et al., Characterizing the properties of nearby molecular filaments observed with Herschel. Astron. Astrophys. 621, A42 (2019)
J. Ascenso, J. Alves, Y. Beletsky et al., Near-IR imaging of Galactic massive clusters: Westerlund 2. Astron. Astrophys. 466(1), 137–149 (2007)
J. Ballesteros-Paredes, R.S. Klessen, E. Vázquez-Semadeni, Dynamic cores in hydrostatic disguise. Astrophys. J. 592(1), 188–202 (2003)
J. Ballesteros-Paredes, A. Gazol, J. Kim et al., The mass spectra of cores in turbulent molecular clouds and implications for the initial mass function. Astrophys. J. 637(1), 384–391 (2006a)
J. Ballesteros-Paredes, A. Gazol, J. Kim et al., The mass spectra of cores in turbulent molecular clouds and implications for the initial mass function. Astrophys. J. 637(1), 384–391 (2006b)
J. Ballesteros-Paredes, L.W. Hartmann, N. Pérez-Goytia et al., Bondi-Hoyle-Littleton accretion and the upper-mass stellar initial mass function. Mon. Not. R. Astron. Soc. 452(1), 566–574 (2015)
N. Bastian, Young massive clusters: their population properties, formation and evolution, and their relation to the ancient globular clusters. EAS Publ. Ser. 80–81, 5–37 (2016)
N. Bastian, K.R. Covey, M.R. Meyer, A universal stellar initial mass function? A critical look at variations. Annu. Rev. Astron. Astrophys. 48, 339–389 (2010)
S. Basu, C.E. Jones, On the power-law tail in the mass function of protostellar condensations and stars. Mon. Not. R. Astron. Soc. 347(3), L47–L51 (2004)
M.R. Bate, The dependence of the initial mass function on metallicity and the opacity limit for fragmentation. Mon. Not. R. Astron. Soc. 363, 363–378 (2005)
M.R. Bate, Stellar, brown dwarf and multiple star properties from hydrodynamical simulations of star cluster formation. Mon. Not. R. Astron. Soc. 392, 590–616 (2009a)
M.R. Bate, The dependence of star formation on initial conditions and molecular cloud structure. Mon. Not. R. Astron. Soc. 397, 232–248 (2009b)
M.R. Bate, The importance of radiative feedback for the stellar initial mass function. Mon. Not. R. Astron. Soc. 392, 1363–1380 (2009c)
M.R. Bate, Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. Mon. Not. R. Astron. Soc. 419, 3115–3146 (2012)
M.R. Bate, The statistical properties of stars and their dependence on metallicity: the effects of opacity. Mon. Not. R. Astron. Soc. 442(1), 285–313 (2014)
M.R. Bate, I.A. Bonnell, The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds. Mon. Not. R. Astron. Soc. 356, 1201–1221 (2005)
M.R. Bate, I.A. Bonnell, N.M. Price, Modelling accretion in protobinary systems. Mon. Not. R. Astron. Soc. 277(2), 362–376 (1995)
M.R. Bate, I.A. Bonnell, V. Bromm, The formation mechanism of brown dwarfs. Mon. Not. R. Astron. Soc. 332, L65–L68 (2002)
M.R. Bate, I.A. Bonnell, V. Bromm, The formation of a star cluster: predicting the properties of stars and brown dwarfs. Mon. Not. R. Astron. Soc. 339, 577–599 (2003)
C.A. Beichman, P.C. Myers, J.P. Emerson et al., Candidate solar-type protostars in nearby molecular cloud cores. Astrophys. J. 307, 337 (1986)
M. Benedettini, S. Pezzuto, E. Schisano et al., A catalogue of dense cores and young stellar objects in the Lupus complex based on Herschel. Gould Belt survey observations. Astron. Astrophys. 619, A52 (2018)
P.J. Benson, P.C. Myers, A survey for dense cores in dark clouds. Astrophys. J. Suppl. Ser. 71, 89 (1989)
W. Benz, 3D models of rotating magnetic gas clouds. I - Time evolution, mass spectrum and angular momentum. Astron. Astrophys. 139(2), 378–388 (1984)
C. Bergfors, W. Brandner, M. Janson et al., Lucky imaging survey for southern M dwarf binaries. Astron. Astrophys. 520, A54 (2010)
E.A. Bergin, M. Tafalla, Cold dark clouds: the initial conditions for star formation. Annu. Rev. Astron. Astrophys. 45(1), 339–396 (2007)
C. Bertelli Motta, P.C. Clark, S.C.O. Glover et al., The IMF as a function of supersonic turbulence. Mon. Not. R. Astron. Soc. 462(4), 4171–4182 (2016)
A. Bhandare, R. Kuiper, T. Henning et al., First core properties: from low- to high-mass star formation. Astron. Astrophys. 618, A95 (2018)
B. Biller, K. Allers, M. Liu et al., A Keck LGS AO search for brown dwarf and planetary mass companions to upper Scorpius brown dwarfs. Astrophys. J. 730(1), 39 (2011)
A. Bleuler, R. Teyssier, Towards a more realistic sink particle algorithm for the RAMSES CODE. Mon. Not. R. Astron. Soc. 445, 4015–4036 (2014)
L. Blitz, Giant molecular clouds, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (1993), p. 125
J.J. Bochanski, S.L. Hawley, K.R. Covey et al., The luminosity and mass functions of low-mass stars in the galactic disk. II. The field. Astron. J. 139(6), 2679–2699 (2010)
B.J. Bok, E.F. Reilly, Small dark nebulae. Astrophys. J. 105, 255 (1947)
C. Bonatto, J.J.F.C. Santos, E. Bica, Mass functions and structure of the young open cluster NGC 6611. Astron. Astrophys. 445(2), 567–577 (2006)
J.R. Bond, S. Cole, G. Efstathiou et al., Excursion set mass functions for Hierarchical Gaussian fluctuations. Astrophys. J. 379, 440 (1991)
I.A. Bonnell, A new binary formation mechanism. Mon. Not. R. Astron. Soc. 269, 837–848 (1994)
I. Bonnell, P. Bastien, A binary origin for FU Orionis stars. Astrophys. J. Lett. 401, L31 (1992)
I.A. Bonnell, M.R. Bate, C.J. Clarke et al., Competitive accretion in embedded stellar clusters. Mon. Not. R. Astron. Soc. 323(4), 785–794 (2001)
I.A. Bonnell, M.R. Bate, S.G. Vine, The hierarchical formation of a stellar cluster. Mon. Not. R. Astron. Soc. 343, 413–418 (2003)
I.A. Bonnell, S.G. Vine, M.R. Bate, Massive star formation: nurture, not nature. Mon. Not. R. Astron. Soc. 349, 735–741 (2004)
I.A. Bonnell, P. Clark, M.R. Bate, Gravitational fragmentation and the formation of brown dwarfs in stellar clusters. Mon. Not. R. Astron. Soc. 389, 1556–1562 (2008)
I.A. Bonnell, R.J. Smith, P.C. Clark et al., The efficiency of star formation in clustered and distributed regions. Mon. Not. R. Astron. Soc. 410(4), 2339–2346 (2011)
A.P. Boss, R.T. Fisher, R.I. Klein et al., The jeans condition and collapsing molecular cloud cores: filaments or binaries? Astrophys. J. 528, 325–335 (2000)
J. Bouvier, P. Corporon, Herbig Ae/Be visual binaries, in The Formation of Binary Stars, IAU Symposium, vol. 200, ed. by H. Zinnecker, R. Mathieu (2001), p. 155
A. Bracco, P. Palmeirim, P. André et al., Probing changes of dust properties along a chain of solar-type prestellar and protostellar cores in Taurus with NIKA. Astron. Astrophys. 604, A52 (2017)
W. Brandner, J.M. Alcala, M. Kunkel et al., Multiplicity among T Tauri stars in OB and T associations. Implications for binary star formation. Astron. Astrophys. 307, 121 (1996)
W. Brandner, J.S. Clark, A. Stolte et al., Intermediate to low-mass stellar content of Westerlund 1. Astron. Astrophys. 478(1), 137–149 (2008)
D. Bresnahan, D. Ward-Thompson, J.M. Kirk et al., The dense cores and filamentary structure of the molecular cloud in Corona Australis: Herschel SPIRE and PACS observations from the Herschel Gould Belt survey. Astron. Astrophys. 615, A125 (2018)
V. Bromm, P.S. Coppi, R.B. Larson, Forming the first stars in the universe: the fragmentation of primordial gas. Astrophys. J. Lett. 527(1), L5–L8 (1999)
A. Burkert, P. Bodenheimer, Turbulent molecular cloud cores: rotational properties. Astrophys. J. 543, 822–830 (2000)
A. Calamida, K.C. Sahu, S. Casertano et al., New insights on the galactic bulge initial mass function. Astrophys. J. 810(1), 8 (2015)
M. Cappellari, R.M. McDermid, K. Alatalo et al., Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484, 485–488 (2012)
P. Caselli, P.J. Benson, P.C. Myers et al., Dense cores in dark clouds. XIV. N2H+ (1-0) maps of dense cloud cores. Astrophys. J. 572(1), 238–263 (2002)
S.H. Cha, S. Nayakshin, A numerical simulation of a ‘Super-Earth’ core delivery from 100 to 8 au. Mon. Not. R. Astron. Soc. 415(4), 3319–3334 (2011)
G. Chabrier, Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003)
G. Chabrier, The initial mass function: from Salpeter 1955 to 2005, in The Initial Mass Function 50 Years Later, ed. by E. Corbelli, F. Palla, H. Zinnecker. Astrophys. Space Sci. Library, vol. 327 (2005), p. 41
G. Chabrier, P. Hennebelle, S. Charlot, Variations of the stellar initial mass function in the progenitors of massive early-type galaxies and in extreme starburst environments. Astrophys. J. 796, 75 (2014)
A. Chelli, H. Zinnecker, L. Carrasco et al., Infrared companions to T Tauri stars. Astron. Astrophys. 207, 46–54 (1988)
C.Y. Chen, E.C. Ostriker, Formation of magnetized prestellar cores with ambipolar diffusion and turbulence. Astrophys. J. 785, 69 (2014)
X. Chen, H.G. Arce, Q. Zhang et al., SMA observations of Class 0 protostars: a high angular resolution survey of protostellar binary systems. Astrophys. J. 768(2), 110 (2013)
H.H.H. Chen, J.E. Pineda, A.A. Goodman et al., Droplets. I. Pressure-dominated coherent structures in L1688 and B18. Astrophys. J. 877(2), 93 (2019)
P.C. Clark, R.S. Klessen, I.A. Bonnell, Clump lifetimes and the initial mass function. Mon. Not. R. Astron. Soc. 379(1), 57–62 (2007)
P.C. Clark, I.A. Bonnell, R.S. Klessen, The star formation efficiency and its relation to variations in the initial mass function. Mon. Not. R. Astron. Soc. 386(1), 3–10 (2008)
P.C. Clark, S.C.O. Glover, R.S. Klessen et al., Gravitational fragmentation in turbulent primordial gas and the initial mass function of population III stars. Astrophys. J. 727(2), 110 (2011)
C.J. Clarke, J.E. Pringle, Star-disc interactions and binary star formation. Mon. Not. R. Astron. Soc. 249, 584–587 (1991)
S.D. Clarke, A.P. Whitworth, D.A. Hubber, Perturbation growth in accreting filaments. Mon. Not. R. Astron. Soc. 458, 319–324 (2016)
S.D. Clarke, A.P. Whitworth, A. Duarte-Cabral et al., Filamentary fragmentation in a turbulent medium. Mon. Not. R. Astron. Soc. 468, 2489–2505 (2017)
T. Colman, R. Teyssier, On the origin of the peak of the stellar initial mass function: exploring the tidal screening theory. Mon. Not. R. Astron. Soc. 492(4), 4727–4751 (2020). https://doi.org/10.1093/mnras/staa075
B. Commerçon, R. Launhardt, C. Dullemond et al., Synthetic observations of first hydrostatic cores in collapsing low-mass dense cores. I. Spectral energy distributions and evolutionary sequence. Astron. Astrophys. 545, A98 (2012)
M.S. Connelley, B. Reipurth, A.T. Tokunaga, The evolution of the multiplicity of embedded protostars. I. Sample properties and binary detections. Astron. J. 135(6), 2496–2525 (2008)
M.S. Connelley, B. Reipurth, A.T. Tokunaga, An adaptive optics survey for close protostellar binaries. Astron. J. 138(5), 1193–1202 (2009)
S. Correia, H. Zinnecker, T. Ratzka et al., A VLT/NACO survey for triple and quadruple systems among visual pre-main sequence binaries. Astron. Astrophys. 459(3), 909–926 (2006)
K.R. Covey, S.L. Hawley, J.J. Bochanski et al., The luminosity and mass functions of low-mass stars in the galactic disk. I. The calibration region. Astron. J. 136(5), 1778–1798 (2008)
A.J. Cunningham, M.R. Krumholz, C.F. McKee et al., The effects of magnetic fields and protostellar feedback on low-mass cluster formation. Mon. Not. R. Astron. Soc. 476(1), 771–792 (2018)
M.A. Czekaj, A.C. Robin, F. Figueras et al., The Besançon Galaxy model renewed. I. Constraints on the local star formation history from Tycho data. Astron. Astrophys. 564, A102 (2014)
M. De Furio, M. Reiter, M.R. Meyer et al., A search for intermediate-separation low-mass binaries in the Orion nebula cluster. Astrophys. J. 886(2), 95 (2019)
P.T. de Zeeuw, R. Hoogerwerf, J.H.J. de Bruijne et al., A HIPPARCOS census of the nearby OB associations. Astron. J. 117(1), 354–399 (1999)
J. Di Francesco, J. Keown, C. Fallscheer, B. Ladjelate, S. Stephens-Whale, A. Men’shchikov, Q. Nguyen-Luong, P. Martin, S. Sadavoy, P. André, V. Könyves, S. Pezzuto, E. Fiorellino, M. Benedettini, N. Schneider, S. Bontemps, D. Arzoumanian, P. Palmeirim, J.M. Kirk, D. Ward-Thompson, Herschel Gould Belt Survey observations of dense cores in the Cepheus flare clouds. Astrophys. J. (2020, submitted)
E. Dorfi, 3D models for self-gravitating, rotating magnetic interstellar clouds. Astron. Astrophys. 114(1), 151–164 (1982)
J.J. Downes, C. Briceño, C. Mateu et al., The low-mass star and sub-stellar populations of the 25 Orionis group. Mon. Not. R. Astron. Soc. 444(2), 1793–1811 (2014)
H. Drass, M. Haas, R. Chini et al., The bimodal initial mass function in the Orion nebula cloud. Mon. Not. R. Astron. Soc. 461(2), 1734–1744 (2016)
G. Duchêne, Herbig AeBe stars: multiplicity and consequences. Astrophys. Space Sci. 355(2), 291–301 (2015)
G. Duchêne, A. Kraus, Stellar multiplicity. Annu. Rev. Astron. Astrophys. 51(1), 269–310 (2013)
G. Duchêne, J. Bouvier, T. Simon, Low-mass binaries in the young cluster IC 348: implications for binary formation and evolution. Astron. Astrophys. 343, 831–840 (1999)
G. Duchêne, S. Lacour, E. Moraux et al., Is stellar multiplicity universal? Tight stellar binaries in the Orion nebula cluster. Mon. Not. R. Astron. Soc. 478(2), 1825–1836 (2018)
M.M. Dunham, A. Crapsi, N.J Evans II et al., Identifying the low-luminosity population of embedded protostars in the c2d observations of clouds and cores. Astrophys. J. Suppl. Ser. 179(1), 249–282 (2008)
M.M. Dunham, A.M. Stutz, L.E. Allen et al., The evolution of protostars: insights from ten years of infrared surveys with Spitzer and Herschel, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 195
M.M. Dunham, S.S.R. Offner, J.E. Pineda et al., An ALMA search for substructure, fragmentation, and hidden protostars in starless cores in Chamaeleon I. Astrophys. J. 823(2), 160 (2016)
A. Duquennoy, M. Mayor, Multiplicity among solar-type stars in the solar neighbourhood. II - Distribution of the orbital elements in an unbiased sample. Astron. Astrophys. 500, 337–376 (1991)
R. Edgar, A review of Bondi-Hoyle-Lyttleton accretion. New Astron. Rev. 48(10), 843–859 (2004)
Y.N. Efremov, B.G. Elmegreen, Hierarchical star formation from the time-space distribution of star clusters in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 299, 588–594 (1998)
K. El-Badry, D.R. Weisz, E. Quataert, The statistical challenge of constraining the low-mass IMF in Local Group dwarf galaxies. Mon. Not. R. Astron. Soc. 468(1), 319–332 (2017)
P. Elliott, A. Bayo, The crucial role of higher order multiplicity in wide binary formation: a case study using the \(\beta \)-Pictoris moving group. Mon. Not. R. Astron. Soc. 459(4), 4499–4507 (2016)
P. Elliott, N. Huélamo, H. Bouy et al., Search for associations containing young stars (SACY). VI. Is multiplicity universal? Stellar multiplicity in the range 3-1000 au from adaptive-optics observations. Astron. Astrophys. 580, A88 (2015)
B.G. Elmegreen, The globular cluster mass function as a remnant of violent birth. Astrophys. J. Lett. 712, L184–L188 (2010)
B.G. Elmegreen, R.S. Klessen, C.D. Wilson, On the constancy of the characteristic mass of young stars. Astrophys. J. 681(1), 365–374 (2008)
M.L. Enoch, N.J Evans II, A.I. Sargent et al., The mass distribution and lifetime of prestellar cores in Perseus, Serpens, and Ophiuchus. Astrophys. J. 684(2), 1240–1259 (2008)
P. Espinoza, F.J. Selman, J. Melnick, The massive star initial mass function of the Arches cluster. Astron. Astrophys. 501(2), 563–583 (2009)
C. Essex, S. Basu, J. Prehl et al., A multiple power-law distribution for initial mass functions. Mon. Not. R. Astron. Soc. 494(2), 1579–1586 (2020)
C. Federrath, S. Banerjee, The density structure and star formation rate of non-isothermal polytropic turbulence. Mon. Not. R. Astron. Soc. 448, 3297–3313 (2015)
C. Federrath, R.S. Klessen, On the star formation efficiency of turbulent magnetized clouds. Astrophys. J. 763(1), 51 (2013)
D.A. Fischer, G.W. Marcy, Multiplicity among M dwarfs. Astrophys. J. 396, 178 (1992)
J. Fischera, P.G. Martin, Physical properties of interstellar filaments. Astron. Astrophys. 542, A77 (2012)
R.T. Fisher, A turbulent interstellar medium origin of the binary period distribution. Astrophys. J. 600, 769–780 (2004)
C. Fontanive, B. Biller, M. Bonavita et al., Constraining the multiplicity statistics of the coolest brown dwarfs: binary fraction continues to decrease with spectral type. Mon. Not. R. Astron. Soc. 479(2), 2702–2727 (2018)
R.K. Friesen, J.E. Pineda co-PIs et al., The Green Bank Ammonia Survey: first results of NH3 mapping of the Gould Belt. Astrophys. J. 843(1), 63 (2017)
S. Fromang, P. Hennebelle, R. Teyssier, A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics. Astron. Astrophys. 457(2), 371–384 (2006)
D. Galli, S. Lizano, F.H. Shu et al., Gravitational collapse of magnetized clouds. I. Ideal magnetohydrodynamic accretion flow. Astrophys. J. 647(1), 374–381 (2006)
E.V. Garcia, T.J. Dupuy, K.N. Allers et al., On the binary frequency of the lowest mass members of the pleiades with Hubble Space Telescope Wide Field Camera 3. Astrophys. J. 804(1), 65 (2015)
M. Gennaro, W. Brandner, A. Stolte et al., Mass segregation and elongation of the starburst cluster Westerlund 1. Mon. Not. R. Astron. Soc. 412(4), 2469–2488 (2011)
M. Gennaro, K. Tchernyshyov, T.M. Brown et al., Evidence of a non-universal stellar initial mass function. Insights from HST optical imaging of six ultra-faint dwarf Milky Way satellites. Astrophys. J. 855(1), 20 (2018)
A.M. Ghez, G. Neugebauer, K. Matthews, The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: a 2.2 micron speckle imaging survey. Astron. J. 106, 2005 (1993)
P. Girichidis, C. Federrath, R. Banerjee et al., Importance of the initial conditions for star formation - I. Cloud evolution and morphology. Mon. Not. R. Astron. Soc. 413, 2741–2759 (2011)
K. Glatt, E.K. Grebel, K. Jordi et al., Present-day mass function of six small Magellanic cloud intermediate-age and old star clusters. Astron. J. 142(2), 36 (2011)
H. Gong, E.C. Ostriker, Protostar formation in supersonic flows: growth and collapse of spherical cores. Astrophys. J. 699(1), 230–244 (2009)
M. Gong, E.C. Ostriker, Prestellar core formation, evolution, and accretion from gravitational fragmentation in turbulent converging flows. Astrophys. J. 806, 31 (2015)
A.A. Goodman, J.A. Barranco, D.J. Wilner et al., Coherence in dense cores. II. The transition to coherence. Astrophys. J. 504(1), 223–246 (1998)
S.P. Goodwin, Binary mass ratios: system mass not primary mass. Mon. Not. R. Astron. Soc. 430, L6–L9 (2013)
S.P. Goodwin, P. Kroupa, Limits on the primordial stellar multiplicity. Astron. Astrophys. 439, 565–569 (2005)
S.P. Goodwin, A.P. Whitworth, D. Ward-Thompson, Simulating star formation in molecular cloud cores. I. The influence of low levels of turbulence on fragmentation and multiplicity. Astron. Astrophys. 414, 633–650 (2004)
A. Gould, J.N. Bahcall, C. Flynn, M dwarfs from Hubble Space Telescope Star Counts. III. The groth strip. Astrophys. J. 482(2), 913–918 (1997)
D. Gouliermis, W. Brandner, T. Henning, The low-mass initial mass function of the field population in the large Magellanic cloud with Hubble Space Telescope WFPC2 observations. Astrophys. J. 641(2), 838–851 (2006)
T.H. Greif, V. Springel, S.D.M. White et al., Simulations on a moving mesh: the clustered formation of population III protostars. Astrophys. J. 737(2), 75 (2011)
D. Guszejnov, P.F. Hopkins, Mapping the core mass function to the initial mass function. Mon. Not. R. Astron. Soc. 450(4), 4137–4149 (2015)
D. Guszejnov, M.R. Krumholz, P.F. Hopkins, The necessity of feedback physics in setting the peak of the initial mass function. Mon. Not. R. Astron. Soc. 458(1), 673–680 (2016)
D. Guszejnov, P.F. Hopkins, M.Y. Grudić et al., Isothermal fragmentation: is there a low-mass cut-off? Mon. Not. R. Astron. Soc. 480(1), 182–191 (2018)
M. Habibi, A. Stolte, W. Brandner et al., The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function. Astron. Astrophys. 556, A26 (2013)
A. Hacar, M. Tafalla, J. Kauffmann et al., Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region. Astron. Astrophys. 554, A55 (2013)
Y. Harayama, F. Eisenhauer, F. Martins, The initial mass function of the massive star-forming region NGC 3603 from near-infrared adaptive optics observations. Astrophys. J. 675(2), 1319–1342 (2008)
J. Hartmann, Investigations on the spectrum and orbit of delta Orionis. Astrophys. J. 19, 268–286 (1904)
C.C. He, M. Ricotti, S. Geen, Simulating star clusters across cosmic time - I. Initial mass function, star formation rates, and efficiencies. Mon. Not. R. Astron. Soc. 489(2), 1880–1898 (2019)
P. Hennebelle, Formation of proto-clusters and star formation within clusters: apparent universality of the initial mass function? Astron. Astrophys. 545, A147 (2012)
P. Hennebelle, The FRIGG project: from intermediate galactic scales to self-gravitating cores. Astron. Astrophys. 611, A24 (2018)
P. Hennebelle, G. Chabrier, Analytical theory for the initial mass function: CO clumps and prestellar cores. Astrophys. J. 684, 395–410 (2008)
P. Hennebelle, G. Chabrier, Analytical theory for the initial mass function. II. Properties of the flow. Astrophys. J. 702, 1428–1442 (2009)
P. Hennebelle, G. Chabrier, Analytical theory for the initial mass function. III. Time dependence and star formation rate. Astrophys. J. 770, 150 (2013)
P. Hennebelle, A. Ciardi, Disk formation during collapse of magnetized protostellar cores. Astron. Astrophys. 506(2), L29–L32 (2009)
P. Hennebelle, E. Falgarone, Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012)
P. Hennebelle, Y.N. Lee, G. Chabrier, How first hydrostatic cores, tidal forces, and gravoturbulent fluctuations set the characteristic mass of stars. Astrophys. J. 883(2), 140 (2019)
M. Hennemann, F. Motte, N. Schneider et al., The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X. Astron. Astrophys. 543, L3 (2012)
M. Heyer, C. Krawczyk, J. Duval et al., Re-examining Larson’s scaling relationships in galactic molecular clouds. Astrophys. J. 699(2), 1092–1103 (2009)
S. Hirano, V. Bromm, Formation and survival of Population III stellar systems. Mon. Not. R. Astron. Soc. 470(1), 898–914 (2017)
K.H. Hoffmann, C. Essex, S. Basu et al., A dual power-law distribution for the stellar initial mass function. Mon. Not. R. Astron. Soc. 478(2), 2113–2118 (2018)
J.A. Holtzman, A.M. Watson, W.A. Baum et al., The luminosity function and initial mass function in the galactic bulge. Astron. J. 115(5), 1946–1957 (1998)
P.F. Hopkins, The stellar initial mass function, core mass function and the last-crossing distribution. Mon. Not. R. Astron. Soc. 423(3), 2037–2044 (2012)
P.F. Hopkins, A general theory of turbulent fragmentation. Mon. Not. R. Astron. Soc. 430(3), 1653–1693 (2013a)
P.F. Hopkins, A model for (non-lognormal) density distributions in isothermal turbulence. Mon. Not. R. Astron. Soc. 430, 1880–1891 (2013b)
J. Hosek, W. Matthew, J.R. Lu, J. Anderson et al., The unusual initial mass function of the Arches cluster. Astrophys. J. 870(1), 44 (2019)
J.G. Hosking, A.P. Whitworth, Fragmentation of magnetized cloud cores. Mon. Not. R. Astron. Soc. 347(3), 1001–1010 (2004)
F. Hoyle, On the fragmentation of gas clouds into galaxies and stars. Astrophys. J. 118, 513–+ (1953)
H. Hur, H. Sung, M.S. Bessell, Distance and the initial mass function of young open clusters in the \(\eta \) Carina nebula: tr 14 and tr 16. Astron. J. 143(2), 41 (2012)
B. Hußmann, A. Stolte, W. Brandner et al., The present-day mass function of the Quintuplet cluster based on proper motion membership. Astron. Astrophys. 540, A57 (2012)
Si. Inutsuka, The mass function of molecular cloud cores. Astrophys. J. Lett. 559, L149–L152 (2001)
S.I. Inutsuka, S.M. Miyama, Self-similar solutions and the stability of collapsing isothermal filaments. Astrophys. J. 388, 392–399 (1992)
S.I. Inutsuka, S.M. Miyama, A production mechanism for clusters of dense cores. Astrophys. J. 480, 681 (1997)
Si. Inutsuka, M.N. Machida, T. Matsumoto, Emergence of protoplanetary disks and successive formation of gaseous planets by gravitational instability. Astrophys. J. Lett. 718(2), L58–L62 (2010)
Si. Inutsuka, T. Inoue, K. Iwasaki et al., The formation and destruction of molecular clouds and galactic star formation. An origin for the cloud mass function and star formation efficiency. Astron. Astrophys. 580, A49 (2015)
M. Janson, F. Hormuth, C. Bergfors et al., The AstraLux large M-dwarf multiplicity survey. Astrophys. J. 754(1), 44 (2012)
M. Janson, D. Lafrenière, R. Jayawardhana et al., A multiplicity census of intermediate-mass stars in Scorpius-Centaurus. Astrophys. J. 773(2), 170 (2013)
M. Janson, C. Bergfors, W. Brandner et al., The AstraLux multiplicity survey: extension to late M-dwarfs. Astrophys. J. 789(2), 102 (2014)
W.C. Jao, B.D. Mason, W.I. Hartkopf et al., Cool subdwarf investigations. II. Multiplicity. Astron. J. 137(4), 3800–3808 (2009)
A.K. Jappsen, R.S. Klessen, R.B. Larson et al., The stellar mass spectrum from non-isothermal gravoturbulent fragmentation. Astron. Astrophys. 435, 611–623 (2005)
D. Johnstone, C.D. Wilson, G. Moriarty-Schieven et al., Large-area mapping at 850 microns. II. Analysis of the clump distribution in the \(\rho \) Ophiuchus molecular cloud. Astrophys. J. 545(1), 327–339 (2000)
D. Johnstone, M. Fich, G.F. Mitchell et al., Large area mapping at 850 microns. III. Analysis of the clump distribution in the Orion B molecular cloud. Astrophys. J. 559(1), 307–317 (2001)
I. Joncour, G. Duchêne, E. Moraux, Multiplicity and clustering in Taurus star-forming region. I. Unexpected ultra-wide pairs of high-order multiplicity in Taurus. Astron. Astrophys. 599, A14 (2017)
M. Joos, P. Hennebelle, A. Ciardi, Protostellar disk formation and transport of angular momentum during magnetized core collapse. Astron. Astrophys. 543, A128 (2012)
J. Jose, G.J. Herczeg, M.R. Samal et al., The low-mass population in the young cluster stock 8: stellar properties and initial mass function. Astrophys. J. 836(1), 98 (2017)
P.H. Jumper, R.T. Fisher, Shaping the brown dwarf desert: predicting the primordial brown dwarf binary distributions from turbulent fragmentation. Astrophys. J. 769, 9 (2013)
J. Kainulainen, S.E. Ragan, T. Henning et al., High-fidelity view of the structure and fragmentation of the high-mass, filamentary IRDC G11.11-0.12. Astron. Astrophys. 557, A120 (2013)
J. Kainulainen, A.M. Stutz, T. Stanke et al., Resolving the fragmentation of high line-mass filaments with ALMA: the integral shaped filament in Orion A. Astron. Astrophys. 600, A141 (2017)
J. Kim, D. Ryu, Density power spectrum of compressible hydrodynamic turbulent flows. Astrophys. J. Lett. 630(1), L45–L48 (2005)
S.S. Kim, D.F. Figer, R.P. Kudritzki et al., The Arches cluster mass function. Astrophys. J. Lett. 653(2), L113–L116 (2006)
R.R. King, S.P. Goodwin, R.J. Parker et al., Testing the universality of star formation - II. Comparing separation distributions of nearby star-forming regions and the field. Mon. Not. R. Astron. Soc. 427(3), 2636–2646 (2012)
J.M. Kirk, D. Ward-Thompson, P. André, The initial conditions of isolated star formation - VI. SCUBA mappingof pre-stellar cores. Mon. Not. R. Astron. Soc. 360(4), 1506–1526 (2005)
J.M. Kirk, D. Ward-Thompson, P. Palmeirim et al., First results from the Herschel Gould Belt survey in Taurus. Mon. Not. R. Astron. Soc. 432(2), 1424–1433 (2013)
H. Kirk, J. Di Francesco, D. Johnstone et al., The JCMT Gould Belt survey: a first look at dense cores in Orion B. Astrophys. J. 817(2), 167 (2016)
H. Kirk, M.M. Dunham, J. Di Francesco et al., ALMA observations of starless core substructure in Ophiuchus. Astrophys. J. 838(2), 114 (2017)
R.S. Klessen, A. Burkert, The formation of stellar clusters: Gaussian cloud conditions. I. Astrophys. J. Suppl. Ser. 128(1), 287–319 (2000)
R. Köhler, M.G. Petr-Gotzens, M.J. McCaughrean et al., Binary stars in the Orion nebula cluster. Astron. Astrophys. 458(2), 461–476 (2006)
R. Köhler, R. Neuhäuser, S. Krämer et al., Multiplicity of young stars in and around R Coronae Australis. Astron. Astrophys. 488(3), 997–1006 (2008)
V. Könyves, P. André, A. Men’shchikov et al., A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey. Astron. Astrophys. 584, A91 (2015)
V. Könyves, P. André, D. Arzoumanian et al., Properties of the dense core population in Orion B as seen by the Herschel Gould Belt survey. Astron. Astrophys. 635, A34 (2020)
M.B.N. Kouwenhoven, A.G.A. Brown, H. Zinnecker et al., The primordial binary population. I. A near-infrared adaptive optics search for close visual companions to a star members of Scorpius OB2. Astron. Astrophys. 430, 137–154 (2005)
M.B.N. Kouwenhoven, A.G.A. Brown, S.F. Portegies Zwart et al., The primordial binary population. II. Recovering the binary population for intermediate mass stars in Scorpius OB2. Astron. Astrophys. 474(1), 77–104 (2007)
M.B.N. Kouwenhoven, S.P. Goodwin, R.J. Parker et al., The formation of very wide binaries during the star cluster dissolution phase. Mon. Not. R. Astron. Soc. 404(4), 1835–1848 (2010)
C. Kramer, J. Stutzki, R. Rohrig et al., Clump mass spectra of molecular clouds. Astron. Astrophys. 329, 249–264 (1998)
K. Kratter, G. Lodato, Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016)
K.M. Kratter, C.D. Matzner, Fragmentation of massive protostellar discs. Mon. Not. R. Astron. Soc. 373, 1563–1576 (2006)
K.M. Kratter, C.D. Matzner, M.R. Krumholz et al., On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion. Astrophys. J. 708, 1585–1597 (2010a)
K.M. Kratter, R.A. Murray-Clay, A.N. Youdin, The runts of the litter: why planets formed through gravitational instability can only be failed binary stars. Astrophys. J. 710, 1375–1386 (2010b)
A.L. Kraus, L.A. Hillenbrand, Multiple star formation to the bottom of the initial mass function. Astrophys. J. 757(2), 141 (2012)
A.L. Kraus, M.J. Ireland, F. Martinache et al., Mapping the shores of the brown dwarf desert. II. Multiple star formation in Taurus-Auriga. Astrophys. J. 731(1), 8 (2011)
A.G. Kritsuk, M.L. Norman, P. Padoan et al., The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416–431 (2007)
A.G. Kritsuk, M.L. Norman, R. Wagner, On the density distribution in star-forming interstellar clouds. Astrophys. J. Lett. 727(1), L20 (2011)
P. Kroupa, The initial mass function of stars: evidence for uniformity in variable systems. Science 295(5552), 82–91 (2002)
P. Kroupa, T. Jerabkova, The impact of binaries on the stellar initial mass function, arXiv e-prints (2018). arXiv:1806.10605
J.M.D. Kruijssen, The evolution of the stellar mass function in star clusters. Astron. Astrophys. 507(3), 1409–1423 (2009)
J.M.D. Kruijssen, On the fraction of star formation occurring in bound stellar clusters. Mon. Not. R. Astron. Soc. 426(4), 3008–3040 (2012)
J.M.D. Kruijssen, Globular cluster formation in the context of galaxy formation and evolution. Class. Quantum Gravity 31(24), 244006 (2014)
J.M.D. Kruijssen, Globular clusters as the relics of regular star formation in ‘normal’ high-redshift galaxies. Mon. Not. R. Astron. Soc. 454, 1658–1686 (2015)
J.M.D. Kruijssen, J.L. Pfeffer, R.A. Crain et al., The E-MOSAICS project: tracing galaxy formation and assembly with the age-metallicity distribution of globular clusters. Mon. Not. R. Astron. Soc. 486, 3134 (2019)
M.R. Krumholz, R.I. Klein, C.F. McKee, Radiation-hydrodynamic simulations of collapse and fragmentation in massive protostellar cores. Astrophys. J. 656, 959–979 (2007)
M.R. Krumholz, R.I. Klein, C.F. McKee et al., The formation of massive star systems by accretion. Science 323(5915), 754 (2009)
M.R. Krumholz, R.I. Klein, C.F. McKee, Radiation-hydrodynamic simulations of the formation of orion-like star clusters. I. Implications for the origin of the initial mass function. Astrophys. J. 740(2), 74 (2011)
M.R. Krumholz, R.I. Klein, C.F. McKee, Radiation-hydrodynamic simulations of the formation of Orion-like star clusters. II. The initial mass function from winds, turbulence, and radiation. Astrophys. J. 754(1), 71 (2012)
M.R. Krumholz, R.M. Crutcher, C.L.H. Hull, Protostellar disk formation enabled by weak, misaligned magnetic fields. Astrophys. J. 767(1), L11 (2013)
M.R. Krumholz, C.F. McKee, J. Bland-Hawthorn, Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019)
M. Kuffmeier, H. Calcutt, L.E. Kristensen, The bridge: a transient phenomenon of forming stellar multiples, arXiv e-prints (2019). arXiv:1907.02083
A. Kuznetsova, L. Hartmann, A. Burkert, Gravitational focusing and the star cluster initial mass function. Astrophys. J. 836(2), 190 (2017)
A. Kuznetsova, L. Hartmann, F. Heitsch et al., The role of gravity in producing power-law mass functions. Astrophys. J. 868(1), 50 (2018)
C.J. Lada, E.A. Lada, Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003)
B. Ladjelate, P. André, V. Könyves et al., The Herschel view of the dense core population in the Ophiuchus molecular cloud. Astron. Astrophys. (2020). https://doi.org/10.1051/0004-6361/201936442. arXiv:2001.11036
R.B. Larson, Numerical calculations of the dynamics of collapsing proto-star. Mon. Not. R. Astron. Soc. 145, 271 (1969)
R.B. Larson, The collapse of a rotating cloud. Mon. Not. R. Astron. Soc. 156, 437–+ (1972)
R.B. Larson, Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981)
R.B. Larson, Cloud fragmentation and stellar masses. Mon. Not. R. Astron. Soc. 214, 379–398 (1985)
Y.N. Lee, P. Hennebelle, Formation of a protocluster: a virialized structure from gravoturbulent collapse. II. A two-dimensional analytical model for a rotating and accreting system. Astron. Astrophys. 591, A31 (2016)
Y.N. Lee, P. Hennebelle, Stellar mass spectrum within massive collapsing clumps. I. Influence of the initial conditions. Astron. Astrophys. 611, A88 (2018a)
Y.N. Lee, P. Hennebelle, Stellar mass spectrum within massive collapsing clumps. II. Thermodynamics and tidal forces of the first Larson core. A robust mechanism for the peak of the IMF. Astron. Astrophys. 611, A89 (2018b)
K.I. Lee, M.M. Dunham, P.C. Myers et al., Mass assembly of stellar systems and their evolution with the SMA (MASSES). Multiplicity and the physical environment in L1448N. Astrophys. J. 814(2), 114 (2015)
K.I. Lee, M.M. Dunham, P.C. Myers et al., Misalignment of outflow axes in the proto-multiple systems in Perseus. Astrophys. J. Lett. 820(1), L2 (2016)
Y.N. Lee, P. Hennebelle, G. Chabrier, Analytical core mass function (CMF) from filaments: under which circumstances can filament fragmentation reproduce the CMF? Astrophys. J. 847, 114 (2017a)
J.E. Lee, S. Lee, M.M. Dunham et al., Formation of wide binaries by turbulent fragmentation. Nat. Astron. 1, 0172 (2017b)
A.T. Lee, S.S.R. Offner, K.M. Kratter et al., The formation and evolution of wide-orbit stellar multiples in magnetized clouds. Astrophys. J. 887(2), 232 (2019)
C. Leinert, H. Zinnecker, N. Weitzel et al., A systematic search for young binaries in Taurus. Astron. Astrophys. 278, 129–149 (1993)
H. Li, O.Y. Gnedin, Star cluster formation in cosmological simulations - III. Dynamical and chemical evolution. Mon. Not. R. Astron. Soc. 486(3), 4030–4043 (2019)
B. Lim, M.Y. Chun, H. Sung et al., The starburst cluster Westerlund 1: the initial mass function and mass segregation. Astron. J. 145(2), 46 (2013)
S.N. Longmore, J.M.D. Kruijssen, N. Bastian et al., The formation and early evolution of young massive clusters, in Protostars and Planets VI (2014), pp. 291–314
J.R. Lu, T. Do, A.M. Ghez et al., Stellar populations in the central 0.5 pc of the galaxy. II. The initial mass function. Astrophys. J. 764(2), 155 (2013)
M.N. Machida, T. Matsumoto, Impact of protostellar outflow on star formation: effects of the initial cloud mass. Mon. Not. R. Astron. Soc. 421, 588–607 (2012)
M.N. Machida, K. Tomisaka, T. Matsumoto, First MHD simulation of collapse and fragmentation of magnetized molecular cloud cores. Mon. Not. R. Astron. Soc. 348, L1–L5 (2004)
M.N. Machida, K. Tomisaka, T. Matsumoto et al., Formation scenario for wide and close binary systems. Astrophys. J. 677(1), 327–347 (2008)
M.N. Machida, Si. Inutsuka, T. Matsumoto, The circumbinary outflow: a protostellar outflow driven by a circumbinary disk. Astrophys. J. Lett. 704(1), L10–L14 (2009)
S. Mairs, D. Johnstone, S.S.R. Offner et al., Synthetic observations of the evolution of starless cores in a molecular cloud simulation: comparisons with JCMT data and predictions for ALMA. Astrophys. J. 783(1), 60 (2014)
M. Marks, P. Kroupa, J. Dabringhausen et al., Evidence for top-heavy stellar initial mass functions with increasing density and decreasing metallicity. Mon. Not. R. Astron. Soc. 422(3), 2246–2254 (2012)
M. Marks, M. Janson, P. Kroupa et al., M-dwarf binaries as tracers of star and brown dwarf formation. Mon. Not. R. Astron. Soc. 452(1), 1014–1025 (2015)
K.A. Marsh, J.M. Kirk, P. André et al., A census of dense cores in the Taurus L1495 cloud from the Herschel. Mon. Not. R. Astron. Soc. 459, 342–356 (2016)
T. Maschberger, I.A. Bonnell, C.J. Clarke et al., The relation between accretion rates and the initial mass function in hydrodynamical simulations of star formation. Mon. Not. R. Astron. Soc. 439(1), 234–246 (2014)
B.D. Mason, H.A. McAlister, W.I. Hartkopf, Binary star orbits from speckle interferometry. IX. The nearby solar-type speckle-spectroscopic binary fin 347 AA. Astron. J. 112, 276 (1996)
H. Masunaga, Si. Inutsuka, Does “\(\tau \sim 1\)” terminate the isothermal evolution of collapsing clouds? Astrophys. J. 510(2), 822–827 (1999)
T. Matsumoto, T. Hanawa, Fragmentation of a molecular cloud core versus fragmentation of the massive protoplanetary disk in the main accretion phase. Astrophys. J. 595, 913–934 (2003)
Y. Matsushita, M.N. Machida, Y. Sakurai et al., Massive outflows driven by magnetic effects in star-forming clouds with high mass accretion rates. Mon. Not. R. Astron. Soc. 470(1), 1026–1049 (2017)
C.D. Matzner, C.F. McKee, Efficiencies of low-mass star and star cluster formation. Astrophys. J. 545, 364–378 (2000)
A.J. Maury, P. André, P. Hennebelle et al., Toward understanding the formation of multiple systems. A pilot IRAM-PdBI survey of Class 0 objects. Astron. Astrophys. 512, A40 (2010)
A.J. Maury, P. André, L. Testi et al., Characterizing young protostellar disks with the CALYPSO IRAM-PdBI survey: large Class 0 disks are rare. Astron. Astrophys. 621, A76 (2019)
S.T. Megeath, M. Kounkel, S. Offner et al., Low mass stars as tracers of star formation in diverse environments, arXiv e-prints (2019). arXiv:1903.08116
C.H.F. Melo, The short period multiplicity among T Tauri stars. Astron. Astrophys. 410, 269–282 (2003)
A. Men’shchikov, P. André, P. Didelon et al., A multi-scale, multi-wavelength source extraction method: getsources. Astron. Astrophys. 542, A81 (2012)
L. Mestel, R.B. Paris, Magnetic braking during star formation - III. Mon. Not. R. Astron. Soc. 187, 337–356 (1979)
G.E. Miller, J.M. Scalo, On the birthplaces of stars. Publ. Astron. Soc. Pac. 90, 506–513 (1978)
N. Moeckel, J. Bally, Binary capture rates for massive protostars. Astrophys. J. Lett. 661, L183–L186 (2007)
N. Moeckel, M.R. Bate, On the evolution of a star cluster and its multiple stellar systems following gas dispersal. Mon. Not. R. Astron. Soc. 404, 274 (2010)
N. Moeckel, C.J. Clarke, The formation of permanent soft binaries in dispersing clusters. Mon. Not. R. Astron. Soc. 415, 1179–1187 (2011)
S. Molinari, E. Schisano, F. Faustini et al., Source extraction and photometry for the far-infrared and sub-millimeter continuum in the presence of complex backgrounds. Astron. Astrophys. 530, A133 (2011)
R. Mor, A.C. Robin, F. Figueras et al., Constraining the thin disc initial mass function using Galactic classical Cepheids. Astron. Astrophys. 599, A17 (2017)
F. Motte, P. Andre, R. Neri, The initial conditions of star formation in the rho Ophiuchi main cloud: wide-field millimeter continuum mapping. Astron. Astrophys. 336, 150–172 (1998)
F. Motte, P. André, D. Ward-Thompson et al., A SCUBA survey of the NGC 2068/2071 protoclusters. Astron. Astrophys. 372, L41–L44 (2001)
F. Motte, T. Nony, F. Louvet et al., The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst. Nat. Astron. 2, 478–482 (2018)
T.C. Mouschovias, Nonhomologous contraction and equilibria of self-gravitating, magnetic interstellar clouds embedded in an intercloud medium: star formation. II - Results. Astrophys. J. 207, 141 (1976)
T.C. Mouschovias, A connection between the rate of rotation of interstellar clouds, magnetic fields, ambipolar diffusion, and the periods of binary stars. Astrophys. J. 211, 147–151 (1977)
T.C. Mouschovias, J.L. Spitzer, Note on the collapse of magnetic interstellar clouds. Astrophys. J. 210, 326 (1976)
K. Mužić, A. Scholz, V.C. Geers et al., Substellar objects in nearby young clusters (SONYC) IX: the planetary-mass domain of Chamaeleon-I and updated mass function in Lupus-3. Astrophys. J. 810(2), 159 (2015)
K. Mužić, A. Scholz, K. Peña Ramírez et al., Looking deep into the rosette nebula’s heart: the (sub)stellar content of the massive young cluster NGC 2244. Astrophys. J. 881(1), 79 (2019)
P.C. Myers, Dense cores in dark clouds. III. Subsonic turbulence. Astrophys. J. 270, 105–118 (1983)
P.C. Myers, On the distribution of protostar masses. Astrophys. J. 706(2), 1341–1352 (2009)
P.C. Myers, P.J. Benson, Dense cores in dark clouds. II. NH3 observations and star formation. Astrophys. J. 266, 309–320 (1983)
F. Nakamura, Z.Y. Li, Magnetically regulated star formation in three dimensions: the case of the Taurus molecular cloud complex. Astrophys. J. 687, 354–375 (2008)
F. Nakamura, Z.Y. Li, Clustered star formation in magnetic clouds: properties of dense cores formed in outflow-driven turbulence. Astrophys. J. 740, 36 (2011)
F. Nakamura, M. Umemura, On the mass of population III stars. Astrophys. J. 515(1), 239–248 (1999)
Å. Nordlund, J.P. Ramsey, A. Popovas et al., DISPATCH: a numerical simulation framework for the exa-scale era - I. Fundamentals. Mon. Not. R. Astron. Soc. 477(1), 624–638 (2018)
E. Ntormousi, P. Hennebelle, Core and stellar mass functions in massive collapsing filaments. Astron. Astrophys. 625, A82 (2019)
D. Nutter, D. Ward-Thompson, A SCUBA survey of Orion - the low-mass end of the core mass function. Mon. Not. R. Astron. Soc. 374(4), 1413–1420 (2007)
S.S.R. Offner, J. Chaban, Impact of protostellar outflows on turbulence and star formation efficiency in magnetized dense cores. Astrophys. J. 847, 104 (2017)
S.S.R. Offner, R.I. Klein, C.F. McKee, Driven and decaying turbulence simulations of low-mass star formation: from clumps to cores to protostars. Astrophys. J. 686, 1174–1194 (2008)
S.S.R. Offner, R.I. Klein, C.F. McKee et al., The effects of radiative transfer on low-mass star formation. Astrophys. J. 703, 131–149 (2009)
S.S.R. Offner, K.M. Kratter, C.D. Matzner et al., The formation of low-mass binary star systems via turbulent fragmentation. Astrophys. J. 725, 1485–1494 (2010)
S.S.R. Offner, J. Capodilupo, S. Schnee et al., Observing turbulent fragmentation in simulations: predictions for CARMA and ALMA. Mon. Not. R. Astron. Soc. 420(1), L53–L57 (2012)
S.S.R. Offner, P.C. Clark, P. Hennebelle et al., The origin and universality of the stellar initial mass function, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 53
S.S.R. Offner, M.M. Dunham, K.I. Lee et al., The turbulent origin of outflow and spin misalignment in multiple star systems. Astrophys. J. 827(1), L11 (2016)
K. Omukai, R. Nishi, Photodissociative regulation of star formation in metal-free pregalactic clouds. Astrophys. J. 518(1), 64–68 (1999)
J. Ostriker, The equilibrium of polytropic and isothermal cylinders. Astrophys. J. 140, 1056 (1964)
P. Padoan, Å. Nordlund, The stellar initial mass function from turbulent fragmentation. Astrophys. J. 576(2), 870–879 (2002)
P. Padoan, A. Nordlund, B.J.T. Jones, The universality of the stellar initial mass function. Mon. Not. R. Astron. Soc. 288, 145–152 (1997)
P. Palmeirim, P. André, J. Kirk et al., Herschel view of the Taurus B211/3 filament and striations: evidence of filamentary growth? Astron. Astrophys. 550, A38 (2013)
X. Pang, E.K. Grebel, R.J. Allison et al., On the origin of mass segregation in NGC 3603. Astrophys. J. 764(1), 73 (2013)
R.J. Parker, S.P. Goodwin, The dynamical evolution of very low mass binaries in open clusters. Mon. Not. R. Astron. Soc. 411(2), 891–900 (2011)
A. Parravano, D. Hollenbach, C.F. McKee, The high-mass slope of the IMF. Mon. Not. R. Astron. Soc. 480(2), 2449–2465 (2018)
N.E.Q. Paust, I.N. Reid, G. Piotto et al., The ACS survey of galactic globular clusters. VIII. Effects of environment on globular cluster global mass functions. Astron. J. 139(2), 476–491 (2010)
M.G. Petr, V. Coudé du Foresto, S.V.W. Beckwith et al., Binary stars in the Orion trapezium cluster core. Astrophys. J. 500(2), 825–837 (1998)
S. Pezzuto, D. Elia, E. Schisano et al., Herschel observations of B1-bS and B1-bN: two first hydrostatic core candidates in the Perseus star-forming cloud. Astron. Astrophys. 547, A54 (2012)
S. Pezzuto, M. Benedettini, J. Di Francesco, P. Palmeirim, S. Sadavoy, E. Schisano, G. Li Causi, P. André, D. Arzoumanian, J.-P. Bernard, S. Bontemps, D. Elia, E. Fiorellino, J.M. Kirk, V. Könyves, B. Ladjelate, A. Men’shchikov, F. Motte, L. Piccotti, N. Schneider, L. Spinoglio, D. Ward-Thompson, C.D. Wilson, Physical properties of the diffuse medium and of dense cores in the Perseus star-forming region derived from the Herschel Gould Belt Survey observations. Astron. Astrophys. (2020, submitted)
J. Pfeffer, J.M.D. Kruijssen, R.A. Crain et al., The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations. Mon. Not. R. Astron. Soc. 475, 4309–4346 (2018)
G.L. Pilbratt, J.R. Riedinger, T. Passvogel et al., Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 518, L1 (2010)
J.E. Pineda, A.A. Goodman, H.G. Arce et al., Direct observation of a sharp transition to coherence in dense cores. Astrophys. J. Lett. 712(1), L116–L121 (2010)
J.E. Pineda, S.S.R. Offner, R.J. Parker et al., The formation of a quadruple star system with wide separation. Nature 518(7538), 213–215 (2015)
R. Pokhrel, P.C. Myers, M.M. Dunham et al., Hierarchical fragmentation in the Perseus molecular cloud: from the cloud scale to protostellar objects. Astrophys. J. 853(1), 5 (2018)
S.F. Portegies Zwart, S.L.W. McMillan, M. Gieles, Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010)
W.H. Press, P. Schechter, Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974)
D.J. Price, M.R. Bate, The impact of magnetic fields on single and binary star formation. Mon. Not. R. Astron. Soc. 377, 77–90 (2007)
C.F. Prosser, J.R. Stauffer, L. Hartmann et al., HST photometry of the trapezium cluster. Astrophys. J. 421, 517 (1994)
D. Raghavan, H.A. McAlister, T.J. Henry et al., A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 190(1), 1–42 (2010)
T. Ratzka, R. Köhler, C. Leinert, A multiplicity survey of the \(\rho \) Ophiuchi molecular clouds. Astron. Astrophys. 437(2), 611–626 (2005)
I.N. Reid, J.E. Gizis, Low-mass binaries and the stellar luminosity function. Astron. J. 113, 2246 (1997)
I.N. Reid, J.E. Gizis, S.L. Hawley, The Palomar/MSU nearby star spectroscopic survey. IV. The luminosity function in the solar neighborhood and M dwarf kinematics. Astron. J. 124(5), 2721–2738 (2002)
B. Reipurth, C. Clarke, The formation of brown dwarfs as ejected stellar embryos. Astron. J. 122, 432–439 (2001)
B. Reipurth, S. Mikkola, Formation of the widest binary stars from dynamical unfolding of triple systems. Nature 492, 221–224 (2012)
B. Reipurth, H. Zinnecker, Visual binaries among pre-main sequence stars. Astron. Astrophys. 278, 81–108 (1993)
B. Reipurth, C.J. Clarke, A.P. Boss et al., Multiplicity in early stellar evolution, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond et al. (2014), p. 267
A.L. Rosen, M.R. Krumholz, C.F. McKee et al., An unstable truth: how massive stars get their mass. Mon. Not. R. Astron. Soc. 463(3), 2553–2573 (2016)
A. Roy, P. André, P. Palmeirim et al., Reconstructing the density and temperature structure of prestellar cores from Herschel data: a case study for B68 and L1689B. Astron. Astrophys. 562, A138 (2014)
A. Roy, P. André, D. Arzoumanian et al., Possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function. Astron. Astrophys. 584, A111 (2015)
S.I. Sadavoy, S.W. Stahler, Embedded binaries and their dense cores. Mon. Not. R. Astron. Soc. 469(4), 3881–3900 (2017)
K. Saigo, K. Tomisaka, Spectrum energy distribution and submillimeter image of a rotating first core. Astrophys. J. 728(2), 78 (2011)
E.E. Salpeter, The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955)
H. Sana, S.E. de Mink, A. de Koter et al., Binary interaction dominates the evolution of massive stars. Science 337(6093), 444 (2012)
H. Sana, The multiplicity of massive stars: a 2016 view, in The Lives and Death-Throes of Massive Stars, IAU Symposium, vol. 329, ed. by J.J. Eldridge, J.C. Bray, L.A.S. McClelland et al. (2017), pp. 110–117
J.M. Scalo, The stellar initial mass function. Fundam. Cosm. Phys. 11, 1–278 (1986)
H.Y. Schive, J.A. ZuHone, N.J. Goldbaum et al., GAMER-2: a GPU-accelerated adaptive mesh refinement code - accuracy, performance, and scalability. Mon. Not. R. Astron. Soc. 481(4), 4815–4840 (2018)
S. Schnee, M. Enoch, D. Johnstone et al., An observed lack of substructure in starless cores. Astrophys. J. 718(1), 306–313 (2010)
N. Shatsky, A. Tokovinin, The mass ratio distribution of B-type visual binaries in the Sco OB2 association. Astron. Astrophys. 382, 92–103 (2002)
Y. Shimajiri, P. André, E. Ntormousi et al., Probing fragmentation and velocity sub-structure in the massive NGC 6334 filament with ALMA. Astron. Astrophys. 632, A83 (2019)
F.H. Shu, Self-similar collapse of isothermal spheres and star formation. Astrophys. J. 214, 488–497 (1977)
C.L. Slesnick, L.A. Hillenbrand, P. Massey, The star formation history and mass function of the double cluster h and \(\chi \) Persei. Astrophys. J. 576(2), 880–893 (2002)
R.J. Smith, P.C. Clark, I.A. Bonnell, Fragmentation in molecular clouds and its connection to the IMF. Mon. Not. R. Astron. Soc. 396(2), 830–841 (2009)
A.D. Sokol, R.A. Gutermuth, R. Pokhrel et al., Early science with the Large Millimetre Telescope: an LMT/AzTEC 1.1 mm survey of dense cores in the Monoceros R2 giant molecular cloud. Mon. Not. R. Astron. Soc. 483(1), 407–424 (2019)
A. Sollima, F.R. Ferraro, M. Bellazzini, The mass function of \(\omega \) Centauri down to 0.15 M\(_{solar}\). Mon. Not. R. Astron. Soc. 381(4), 1575–1582 (2007)
S.W. Stahler, The orbital decay of embedded binary stars. Mon. Not. R. Astron. Soc. 402(3), 1758–1766 (2010)
D. Stamatellos, A.P. Whitworth, D.A. Hubber, The importance of episodic accretion for low-mass star formation. Astrophys. J. 730, 32–+ (2011)
T. Stanke, M.D. Smith, R. Gredel et al., An unbiased search for the signatures of protostars in the \(\rho \) Ophiuchi molecular cloud. II. Millimetre continuum observations. Astron. Astrophys. 447(2), 609–622 (2006)
A. Stolte, E.K. Grebel, W. Brandner et al., The mass function of the Arches cluster from Gemini adaptive optics data. Astron. Astrophys. 394, 459–478 (2002)
A. Stolte, W. Brandner, E.K. Grebel et al., The Arches cluster: evidence for a truncated mass function? Astrophys. J. Lett. 628(2), L113–L117 (2005)
A. Stolte, W. Brandner, B. Brandl et al., The secrets of the nearest starburst cluster. II. The present-day mass function in NGC 3603. Astron. J. 132(1), 253–270 (2006)
G. Suárez, J.J. Downes, C. Román-Zúñiga et al., System initial mass function of the 25 Ori group from planetary-mass objects to intermediate/high-mass stars. Mon. Not. R. Astron. Soc. 486(2), 1718–1740 (2019)
H. Sung, M.S. Bessell, The initial mass function and stellar content of NGC 3603. Astron. J. 127(2), 1014–1028 (2004)
H. Sung, M.S. Bessell, The initial mass function and young brown dwarf candidates in NGC 2264. IV. The initial mass function and star formation history. Astron. J. 140(6), 2070–2085 (2010)
H. Sung, H. Sana, M.S. Bessell, The initial mass function and the surface density profile of NGC 6231. Astron. J. 145(2), 37 (2013)
M. Tafalla, A. Hacar, Chains of dense cores in the Taurus L1495/B213 complex. Astron. Astrophys. 574, A104 (2015)
M. Tafalla, P.C. Myers, P. Caselli et al., On the internal structure of starless cores. I. Physical conditions and the distribution of CO, CS, N2H+, and NH3 in L1498 and L1517B. Astron. Astrophys. 416, 191–212 (2004)
S. Takahashi, P.T.P. Ho, P.S. Teixeira et al., Hierarchical fragmentation of the Orion molecular filaments. Astrophys. J. 763, 57 (2013)
S.Z. Takahashi, Y. Tsukamoto, S. Inutsuka, A revised condition for self-gravitational fragmentation of protoplanetary discs. Mon. Not. R. Astron. Soc. 458(4), 3597–3612 (2016)
P.S. Teixeira, S. Takahashi, L.A. Zapata et al., Two-level hierarchical fragmentation in the northern filament of the Orion Molecular Cloud 1. Astron. Astrophys. 587, A47 (2016)
L. Testi, A.I. Sargent, Star formation in clusters: a survey of compact millimeter-wave sources in the Serpens Core. Astrophys. J. Lett. 508(1), L91–L94 (1998)
I. Thies, P. Kroupa, A discontinuity in the low-mass initial mass function. Astrophys. J. 671(1), 767–780 (2007)
D.A. Tilley, R.E. Pudritz, The formation of star clusters - II. 3D simulations of magnetohydrodynamic turbulence in molecular clouds. Mon. Not. R. Astron. Soc. 382, 73–94 (2007)
J.J. Tobin, K.M. Kratter, M.V. Persson et al., A triple protostar system formed via fragmentation of a gravitationally unstable disk. Nature 538(7626), 483–486 (2016)
J.J. Tobin, L.W. Looney, Z.Y. Li et al., The VLA/ALMA nascent disk and multiplicity (VANDAM) survey of Perseus protostars. VI. Characterizing the formation mechanism for close multiple systems. Astrophys. J. 867(1), 43 (2018a)
J.J. Tobin, P. Sheehan, D. Johnstone, New frontiers in protostellar multiplicity with the ngVLA. Astron. Soc. Pac. Conf. Ser. 517, p 333 (2018b)
K.O. Todorov, K.L. Luhman, Q.M. Konopacky et al., A search for companions to brown dwarfs in the Taurus and Chamaeleon star-forming regions. Astrophys. J. 788(1), 40 (2014)
A. Tokovinin, C. Briceño, Binary stars in Upper Scorpius. Astron. J. 159(1), 15 (2020)
A. Toomre, On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964)
Y. Tsukamoto, M.N. Machida, Si. Inutsuka, Formation, orbital and thermal evolution, and survival of planetary-mass clumps in the early phase of circumstellar disc evolution. Mon. Not. R. Astron. Soc. 436(2), 1667–1673 (2013)
Y. Tsukamoto, K. Iwasaki, S. Okuzumi et al., Bimodality of circumstellar disk evolution induced by the Hall current. Astrophys. J. Lett. 810(2), L26 (2015a)
Y. Tsukamoto, K. Iwasaki, S. Okuzumi et al., Effects of Ohmic and ambipolar diffusion on formation and evolution of first cores, protostars, and circumstellar discs. Mon. Not. R. Astron. Soc. 452(1), 278–288 (2015b)
Y. Tsukamoto, S.Z. Takahashi, M.N. Machida et al., Effects of radiative transfer on the structure of self-gravitating discs, their fragmentation and the evolution of the fragments. Mon. Not. R. Astron. Soc. 446(2), 1175–1190 (2015c)
Y. Tsukamoto, S. Okuzumi, K. Iwasaki et al., The impact of the Hall effect during cloud core collapse: implications for circumstellar disk evolution. Publ. Astron. Soc. Jpn. 69(6), 95 (2017)
Y. Tsukamoto, S. Okuzumi, K. Iwasaki et al., Does misalignment between magnetic field and angular momentum enhance or suppress circumstellar disk formation? Astrophys. J. 868(1), 22 (2018)
T. Tsuribe, S.I. Inutsuka, Criteria for fragmentation of rotating isothermal clouds. I. Semianalytic approach. Astrophys. J. 526, 307–313 (1999a)
T. Tsuribe, S.I. Inutsuka, Criteria for fragmentation of rotating isothermal clouds revisited. Astrophys. J. Lett. 523, L155–L158 (1999b)
H. Umeda, K. Nomoto, Nucleosynthesis of zinc and iron peak elements in population III type II supernovae: comparison with abundances of very metal poor halo stars. Astrophys. J. 565(1), 385–404 (2002)
A. Urban, H. Martel, N.J. Evans II, Fragmentation and evolution of molecular clouds. II. The effect of dust heating. Astrophys. J. 710(2), 1343–1364 (2010)
P.G. van Dokkum, C. Conroy, A substantial population of low-mass stars in luminous elliptical galaxies. Nature 468(7326), 940–942 (2010)
P.G. van Dokkum, C. Conroy, The stellar initial mass function in early-type galaxies from absorption line spectroscopy. I. Data and empirical trends. Astrophys. J. 760(1), 70 (2012)
A. van Elteren, J. Bédorf, S. Portegies Zwart, Multi-scale high-performance computing in astrophysics: simulating clusters with stars, binaries and planets. Philos. Trans. R. Soc. Lond. Ser. A 377(2142), 20180153 (2019)
N. Vaytet, T. Haugbølle, A grid of one-dimensional low-mass star formation collapse models. Astron. Astrophys. 598, A116 (2017)
E. Vazquez-Semadeni, Hierarchical structure in nearly pressureless flows as a consequence of self-similar statistics. Astrophys. J. 423, 681 (1994)
E. Vázquez-Semadeni, A. González-Samaniego, P. Colín, Hierarchical star cluster assembly in globally collapsing molecular clouds. Mon. Not. R. Astron. Soc. 467(2), 1313–1328 (2017)
E. Vázquez-Semadeni, A. Palau, J. Ballesteros-Paredes et al., Global hierarchical collapse in molecular clouds. Towards a comprehensive scenario. Mon. Not. R. Astron. Soc. 490(3), 3061–3097 (2019)
E.I. Vorobyov, S. Basu, The origin of episodic accretion bursts in the early stages of star formation. Astrophys. J. Lett. 633, L137–L140 (2005)
E.I. Vorobyov, S. Basu, Formation and survivability of giant planets on wide orbits. Astrophys. J. 714(1), L133–L137 (2010)
J.L. Ward, J.M.D. Kruijssen, Not all stars form in clusters - measuring the kinematics of OB associations with Gaia. Mon. Not. R. Astron. Soc. 475(4), 5659–5676 (2018)
K. Ward-Duong, J. Patience, R.J. De Rosa et al., The M-dwarfs in multiples (MINMS) survey - I. Stellar multiplicity among low-mass stars within 15 pc. Mon. Not. R. Astron. Soc. 449(3), 2618–2637 (2015)
D. Ward-Thompson, P.F. Scott, R.E. Hills et al., A submillimetre continuum survey of pre protostellar cores. Mon. Not. R. Astron. Soc. 268, 276 (1994)
D. Ward-Thompson, P. André, R. Crutcher et al., An observational perspective of low-mass dense cores ii: evolution toward the initial mass function, in Protostars and Planets V (2007), pp. 33–46
D.R. Weisz, L.C. Johnson, D. Foreman-Mackey et al., The high-mass stellar initial mass function in M31 clusters. Astrophys. J. 806(2), 198 (2015)
A. Whitworth, D. Summers, Self-similar condensation of spherically symmetric self-gravitating isothermal gas clouds. Mon. Not. R. Astron. Soc. 214, 1–25 (1985)
B.A. Wilking, T.P. Greene, C.J. Lada et al., IRAS observations of young stellar objects in the Corona Australis Dark Cloud. Astrophys. J. 397, 520 (1992)
J.P. Williams, E.J. de Geus, L. Blitz, Determining structure in molecular clouds. Astrophys. J. 428, 693 (1994)
J.P. Williams, L. Blitz, C.F. McKee, The structure and evolution of molecular clouds: from clumps to cores to the IMF, in Protostars and Planets IV, ed. by V. Mannings, A.P. Boss, S.S. Russell (2000), p. 97
J.G. Winters, T.J. Henry, W.C. Jao et al., The solar neighborhood. XLV. The stellar multiplicity rate of M dwarfs within 25 pc. Astron. J. 157(6), 216 (2019)
P. Zeidler, A. Nota, E.K. Grebel et al., A high-resolution multiband survey of Westerlund 2 with the Hubble Space Telescope. III. The present-day stellar mass function. Astron. J. 153(3), 122 (2017)
Z.H. Zhang, D.J. Pinfield, B. Burningham et al., A spectroscopic and proper motion search of Sloan Digital Sky survey: red subdwarfs in binary systems. Mon. Not. R. Astron. Soc. 434(2), 1005–1027 (2013)
Z.Y. Zhang, D. Romano, R.J. Ivison et al., Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time. Nature 558, 260–263 (2018)
B. Zhao, K. Tomida, P. Hennebelle et al., Formation and evolution of disks around young stellar objects. Space Sci. Rev. 216(3), 43 (2020)
C. Ziegler, N.M. Law, C. Baranec et al., Multiplicity of the galactic senior citizens: a high-resolution search for cool subdwarf companions. Astrophys. J. 804(1), 30 (2015)
H. Zinnecker, Prediction of the protostellar mass spectrum in the Orion near-infrared cluster. Ann. N.Y. Acad. Sci. 395, 226–235 (1982)
H. Zinnecker, Star formation from hierarchical cloud fragmentation - a statistical theory of the log-normal initial mass function. Mon. Not. R. Astron. Soc. 210, 43–56 (1984)
H. Zinnecker, Binary stars: historical milestones, in The Formation of Binary Stars, IAU Symposium, vol. 200, ed. by H. Zinnecker, R. Mathieu (2001), pp. 1–12
H. Zinnecker, T. Preibisch, X-ray emission from Herbig Ae/Be stars: a ROSAT survey. Astron. Astrophys. 292, 152–164 (1994)
H. Zinnecker, H.W. Yorke, Toward understanding massive star formation. Annu. Rev. Astron. Astrophys. 45(1), 481–563 (2007)
H. Zinnecker, A. Chelli, L. Carrasco et al., GSS, 31 - another T-Tauri star with an infrared companion, in Circumstellar Matter, IAU Symposium, vol. 122, ed. by I. Appenzeller, C. Jordan (1987), p. 117
M. Zoccali, S. Cassisi, J.A. Frogel et al., The initial mass function of the galactic bulge down to ∼0.15 M\(_{solar}\). Astrophys. J. 530(1), 418–428 (2000)
Acknowledgement
We thank the International Space Science Institute (ISSI) for generously providing such stimulating environment for collaboration. Y.N. Lee acknowledges funding from the Ministry of Science and Technology, Taiwan (grant number MOST 108-2636-M-003-001), the grant for Yushan Young Scholar from the Ministry of Education, Taiwan, and the UnivEarthS Labex program at Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). S.S.R.O. acknowledges funding from NSF Career grant AST-1650486. J.M.D.K. gratefully acknowledges funding from the German Research Foundation (DFG) in the form of an Emmy Noether Research Group (grant number KR4801/1-1) and a DFG Sachbeihilfe Grant (grant number KR4801/2-1), from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907), and from Sonderforschungsbereich SFB 881 “The Milky Way System” (subproject B2) of the DFG. JBP acknowledges UNAM-DGAPA-PAPIIT support through grant number IN-111-219.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Star Formation
Edited by Andrei Bykov, Corinne Charbonnel, Patrick Hennebelle, Alexandre Marcowith, Georges Meynet, Maurizio Falanga and Rudolf von Steiger
Rights and permissions
About this article
Cite this article
Lee, YN., Offner, S.S.R., Hennebelle, P. et al. The Origin of the Stellar Mass Distribution and Multiplicity. Space Sci Rev 216, 70 (2020). https://doi.org/10.1007/s11214-020-00699-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11214-020-00699-2