Abstract
We present the outcome of a mission concept study that designed a small atmospheric entry probe and examined the feasibility and benefit of a future multi-probe mission to Uranus. We call our design the Small Next-generation Atmospheric Probe (SNAP). The primary scientific objective of a multi-probe mission is to reveal spatial variability of atmospheric conditions. This article first highlights that not all measurements must be repeated by multiple probes; some quantities, notably the noble gas abundances and elemental isotopic ratios, are not expected to be variable, and thus need to be performed only by a single large Primary Probe. Our study demonstrates that, by focusing its measurements on spatially variable quantities including atmospheric vapor concentrations, thermal stratification and wind speed, a viable atmospheric probe design is realized with an entry system with 50-cm heatshield diameter and 30-kg atmospheric entry mass.
As a case study, we present a detailed analysis of adding SNAP to a notional Uranus Orbiter with Probe mission, which launches in 2031 and arrives at Uranus in 2043, designed by the NASA-funded Science Definition Team study in 2017. We demonstrate that, with minimal changes to the notional carrier mission, a large Primary Probe and SNAP can be delivered to the winter and summer hemispheres to examine seasonal atmospheric variabilities, and transmit data to the Orbiter, which in turn relays the data to Earth. The additional maneuvers needed to deliver SNAP totals a Delta-V of 84 m/s, and consumes 43 kg of propellant. The addition of SNAP is expected to cost $79.5 million in FY2018 dollars; thus, our study demonstrates that a multi-probe mission can be implemented with a 4% cost increase relative to the $2.0 billion cost estimate of the notional mission designed by NASA’s Ice Giant Flagship Science Definition Team study reported in 2017.
The SNAP design incorporates several technologies that are currently under development at various Technology Readiness Levels (TRL) between TRL = 4 and TRL = 6. In particular, our study recommends targeted technology development in Thermal Protection System materials, advanced batteries, and miniaturized instruments to enable and enhance future small atmospheric probes like SNAP.
This is a preview of subscription content, access via your institution.















References
D.H. Atkinson, The Galileo Jupiter Probe Doppler Wind Experiment. Sol. Syst. Res. 35, 354–375 (2001)
S.K. Atreya, A.-S. Wong, Coupled clouds and chemistry of the giant planets — a case for multiprobes. Space Sci. Rev. 116, 121–136 (2005)
K.H. Baines, M.E. Mickelson, L.E. Larson, D.W. Ferguson, The abundances of methane and ortho/para hydrogen on Uranus and Neptune: implications of New Laboratory 4-0 H2 quadrupole line parameters. Icarus 114, 328–340 (1995)
D. Banfield, P. Gierasch, R. Dissly, Planetary descent probes: polarization nephelometer and hydrogen ortho/para instruments, in IEEE Aerospace Conference (IEEE Press, New York, 2005). https://ieeexplore.ieee.org/document/1559359
B.W. Boehm, Software Engineering Economics (Prentice Hall, New York, 1981). https://www.amazon.com/Software-Engineering-Economics-Barry-Boehm/dp/0138221227/
G.L. Brauer, D.E. Comick, D.W. Olson, F.M. Petersen, R. Stevenson, Program to Optimize Simulated Trajectories (POST), Volume I, Formulation Manual (Martin Marietta Corporation, 1990)
L. Colin, D.M. Hunten, 11. Pioneer venus experiment descriptions. Space Sci. Rev. 20(4), 451–525 (1977)
I. de Pater, P.N. Romani, S.K. Atreya, Possible microwave absorption by H2S gas in Uranus’ and Neptune’s atmospheres. Icarus 91, 220–233 (1991)
J.A. Dec, R.D. Braun, Three-dimensional finite element ablative thermal response and design of thermal protection systems. J. Spacecr. Rockets 50, 725–734 (2013)
H.M. Fahad, H. Shiraki, M. Amani, C. Zhang, V.S. Hebbar, W. Gao, H. Ota, M. Hettick, D. Kiriya, Y.-Z. Chen, Y.-L. Chueh, A. Javey, Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. Sci. Adv. 3(3), e1602557 (2017). http://advances.sciencemag.org/content/3/3/e1602557
J. Friedson, A.P. Ingersoll, Seasonal meridional energy balance and thermal structure of the atmosphere of Uranus - a radiative-convective-dynamical model. Icarus 69, 135–156 (1987)
M. Fulchignoni, F. Angrilli, G. Bianchini, A. Bar-Nun, M.A. Barucci, W. Borucki, M. Coradini, A. Coustenis, F. Ferri, R.J. Grard, M. Hemelin, A.M. Harri, G.W. Leppelmeier, J.J. Lopez-Moreno, J.A.M. McDonnell, C. McKay, F.M. Neubauer, A. Pedersen, G. Picardi, V. Pirronello, R. Pirjola, R. Rodrigo, C. Schwingenschuh, A. Seiff, H. Svedhem, V. Vanzani, G. Visconti, J. Zarnecki, E. Thrane, The Huygens atmospheric structure instrument, in Huygens: Science, Payload and Mission, ed. by A. Wilson. ESA Special Publication, vol. 1177 (1997), p. 163
P. Gage, M. Mahzari, K. Peterson, D. Ellerby, E. Venkatapathy, Technology readiness assessment for heeet tps, in International Planetary Probe Workshop: IPPW-16 (2019)
A. Hannon, Y. Lu, H. Hong, J. Li, M. Meyyappan, Functionalized-carbon nanotube sensor for room temperature ammonia detection. Sens. Lett. 12(10), 1469–1476 (2014a)
A. Hannon, Y. Lu, J. Li, M. Meyyappan, Room temperature carbon nanotube based sensor for carbon monoxide detection. J. Sens. Sens. Syst. (2014b). https://doi.org/10.5194/jsss-3-349-2014
A. Hannon, Y. Lu, J. Li, M. Meyyappan, A sensor array for the detection and discrimination of methane and other environmental pollutant gases. Sensors 16(8), 1163 (2016). http://www.mdpi.com/1424-8220/16/8/1163
J.H. Hoffman, R.R. Hodges, W.W. Wright, V.A. Blevins, K.D. Duerksen, L.D. Brooks, Pioneer venus sounder probe neutral gas mass spectrometer. IEEE Trans. Geosci. Remote Sens. GE–18(1), 80–84 (1980)
M. Hofstadter, A. Simon, Ice giants pre-decadal survey mission study report. National Aeronautics and Space Administration JPL D-100520
P.G.J. Irwin, D. Toledo, R. Garland, N.A. Teanby, L.N. Fletcher, G.A. Orton, B. Bézard, Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2, 420–427 (2018)
M.A. Janssen, A.P. Ingersoll, M.D. Allison, S. Gulkis, A.L. Laraia, K.H. Baines, S.G. Edgington, Y.Z. Anderson, K. Kelleher, F.A. Oyafuso, Saturn’s thermal emission at 2.2-cm wavelength as imaged by the Cassini RADAR radiometer. Icarus 226, 522–535 (2013)
S. Johnson, M. Gasch, D. Leiser, D. Stewart, M. Stackpool, J. Thornton, C. Espinoza, Development of new TPS at NASA ames research center, in 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (AIAA, Washington, 2008)
E. Karkoschka, M. Tomasko, The haze and methane distributions on Uranus from HST-STIS spectroscopy. Icarus 202, 287–309 (2009)
T.W. Knacke, Parachute Recovery Systems Design Manual, 1st edn. (Para Pub., 1992)
F.C. Krause, J.-P. Jones, S.C. Jones, J. Pasalic, K.J. Billings, W.C. West, M.C. Smart, R.V. Bugga, E.J. Brandon, M. Destephen, High specific energy lithium primary batteries as power sources for deep space exploration. J. Electrochem. Soc. 165, A2312–A2320 (2018). http://jes.ecsdl.org/content/165/10/A2312.full
J. Li, Y. Lu, Carbon nanotube based chemical sensors for space and terrestrial applications. ECS Trans. 19, 7–15 (2009). http://ecst.ecsdl.org/content/19/6/7.abstract
J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929–933 (2003)
C. Li, A. Ingersoll, M. Janssen, S. Levin, S. Bolton, V. Adumitroaie, M. Allison, J. Arballo, A. Bellotti, S. Brown, S. Ewald, L. Jewell, S. Misra, G. Orton, F. Oyafuso, P. Steffes, R. Williamson, The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophys. Res. Lett. 44, 5317–5325 (2017)
G.F. Lindal, J.R. Lyons, D.N. Sweetnam, V.R. Eshleman, D.P. Hinson, The atmosphere of Uranus - results of radio occultation measurements with Voyager 2. Geophys. Res. Lett. 92, 14987–15001 (1987)
R.D. Lorenz, Speed of sound in outer planet atmospheres. Planet. Space Sci. 47, 67–77 (1998)
Y. Lu, J. Li, J. Han, H.-T. Ng, C. Binder, C. Partridge, M. Meyyappan, Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391, 344–348 (2004)
F.S. Milos, Y.-K. Chen, M. Mahzari, Arcjet tests and thermal response analysis for dual-layer woven carbon phenolic. J. Spacecr. Rockets 55, 712–722 (2018)
R.A. Mitcheltree, R.D. Braun, F.M. Cheatwood, F.A. Greene, J.N. Moss, Aerodynamics of the Mars microprobe entry vehicles. J. Spacecr. Rockets 36, 392–398 (1999)
O. Mousis, L.N. Fletcher, J.-P. Lebreton, P. Wurz, T. Cavalié, A. Coustenis, R. Courtin, D. Gautier, R. Helled, P.G.J. Irwin, A.D. Morse, N. Nettelmann, B. Marty, P. Rousselot, O. Venot, D.H. Atkinson, J.H. Waite, K.R. Reh, A.A. Simon, S. Atreya, N. André, M. Blanc, I.A. Daglis, G. Fischer, W.D. Geppert, T. Guillot, M.M. Hedman, R. Hueso, E. Lellouch, J.I. Lunine, C.D. Murray, J. O’Donoghue, M. Rengel, A. Sánchez-Lavega, F.-X. Schmider, A. Spiga, T. Spilker, J.-M. Petit, M.S. Tiscareno, M. Ali-Dib, K. Altwegg, S.J. Bolton, A. Bouquet, C. Briois, T. Fouchet, S. Guerlet, T. Kostiuk, D. Lebleu, R. Moreno, G.S. Orton, J. Poncy, Scientific rationale for Saturn’s in situ exploration. Planet. Space Sci. 104, 29–47 (2014)
O. Mousis, D.H. Atkinson, T. Cavalié, L.N. Fletcher, M.J. Amato, S. Aslam, F. Ferri, J.B. Renard, T. Spilker, E. Venkatapathy, P. Wurz, K. Aplin, A. Coustenis, M. Deleuil, M. Dobrijevic, T. Fouchet, T. Guillot, P. Hartogh, T. Hewagama, M.D. Hofstadter, V. Hue, R. Hueso, J.P. Lebreton, E. Lellouch, J. Moses, G.S. Orton, J.C. Pearl, A. Sánchez-Lavega, A. Simon, O. Venot, J.H. Waite, R.K. Achterberg, S. Atreya, F. Billebaud, M. Blanc, F. Borget, B. Brugger, S. Charnoz, T. Chiavassa, V. Cottini, L. d’Hendecourt, G. Danger, T. Encrenaz, N.J.P. Gorius, L. Jorda, B. Marty, R. Moreno, A. Morse, C. Nixon, K. Reh, T. Ronnet, F.X. Schmider, S. Sheridan, C. Sotin, P. Vernazza, G.L. Villanueva, Scientific rationale for Uranus and Neptune in situ explorations. Planet. Space Sci. 155, 12–40 (2018)
NASA, NASA general safety program requirements (updated w/change 1) npr 8715.3d (2017)
National Research Council, New Frontiers in the Solar System: An Integrated Exploration Strategy (National Academies Press, Washington, 2003)
National Research Council, Vision and Voyages for Planetary Science in the Decade 2013-2022 (The National Academies Press, Washington, 2011). http://www.nap.edu/catalog/13117/vision-and-voyages-for-planetary-science-in-the-decade-2013-2022
H.B. Niemann, D.N. Harpold, S.K. Atreya, G.R. Carignan, D.M. Hunten, T.C. Owen, Galileo Probe Mass Spectrometer experiment. Space Sci. Rev. 60, 111–142 (1992)
G.J. Nothwang, Pioneer venus spacecraft design and operation. IEEE Trans. Geosci. Remote Sens. GE–18(1), 5–10 (1980)
G.S. Orton, J.I. Moses, L.N. Fletcher, A.K. Mainzer, D. Hines, H.B. Hammel, J. Martin-Torres, M. Burgdorf, C. Merlet, M.R. Line, Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. Icarus 243, 471–493 (2014)
V.I. Oyama, G.C. Carle, F. Woeller, S. Rocklin, J. Vogrin, W. Potter, G. Rosiak, C. Reichwein, Pioneer venus sounder probe gas chromatograph. IEEE Trans. Geosci. Remote Sens. GE–18(1), 85–93 (1980)
B. Ragent, T. Wong, J.E. Blamont, A.J. Eskovitz, L.N. Harnett, A. Pallai, Pioneer venus sounder and small probes nephelometer instrument. IEEE Trans. Geosci. Remote Sens. GE–18(1), 111–117 (1980)
B. Ragent, C.A. Privette, P. Avrin, J.G. Waring, C.E. Carlston, T.C.D. Knight, J.P. Martin, Galileo probe nephelometer experiment. Space Sci. Rev. 60, 179–201 (1992)
K.M. Sayanagi, L.A. Sromovsky, P. Fry, I. De Pater, H. Hammel, K. Rages, C. Baranec, M. Delcroix, A. Wesley, R. Hueso, A. Sanchez-Lavega, A. Simon, HST and ground-based observations of bright storms on Uranus during 2014-2015, in AGU Fall Meeting Abstracts (2015), P41B–2055
A. Seiff, D.W. Juergens, J.E. Lepetich, Atmosphere structure instruments on the four pioneer venus entry probes. IEEE Trans. Geosci. Remote Sens. GE–18(1), 105–111 (1980)
A.P. Showman, A.P. Ingersoll, Interpretation of Galileo Probe Data and implications for Jupiter’s dry downdrafts. Icarus 132, 205–220 (1998)
J.R. Smith, R. Ramos, Data acquisition for measuring the wind on venus from pioneer venus. IEEE Trans. Geosci. Remote Sens. GE–18(1), 126–130 (1980)
T.R. Spilker, NH3, H2S, and the radio brightness temperature spectra of the giant planets. Earth Moon Planets 67, 89–94 (1994)
L.A. Sromovsky, H.E. Revercomb, V.E. Suomi, Pioneer Venus small probes net flux radiometer experiment. IEEE Trans. Geosci. Remote Sens. 18, 117–122 (1980)
L.A. Sromovsky, F.A. Best, H.E. Revercomb, J. Hayden, Galileo net flux radiometer experiment. Space Sci. Rev. 60, 233–262 (1992)
L.A. Sromovsky, P.M. Fry, J.H. Kim, Methane on Uranus: the case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy. Icarus 215, 292–312 (2011)
L.A. Sromovsky, E. Karkoschka, P.M. Fry, H.B. Hammel, I. de Pater, K. Rages, Methane depletion in both polar regions of Uranus inferred from HST/STIS and Keck/NIRC2 observations. Icarus 238, 137–155 (2014)
S.A. Striepe, R.W. Powell, P.N. Desai, E.M. Queen, G.L. Brauer, D.E. Cornick, D.W. Olson, F.M. Petersen, R. Stevenson, M.C. Engel, S.M. Marsh, A.M. Gromoko, Program to Optimize Simulated Trajectories (POST II): Volume 2, Utilization Manual, (Martin Marietta Corporation, 2004)
S.A. Striepe, R.W. Powell, P.N. Desai, E.M. Queen, G.L. Brauer, D.E. Cornick, D.W. Olson, F.M. Petersen, R. Stevenson, M.C. Engel, S.M. Marsh, A.M. Gromoko, Program to Optimize Simulated Trajectories (POST2), Vol. 2: Utilization Manual, Ver 3.0 (NESC, NASA Langley Research Center, 2014)
R. Surampudi, J. Blosiu, R. Bugga, R. Brandon, M. Smart, J. Elliott, J. Castillo, T. Yi, L. Lee, M. Piszczor, T. Miller, C. Reid, C. Taylor, S. Liu, E. Plichta, C. Iannello, Energy storage technologies for future planetary science missions, jpl d-101146 (2017)
M.G. Tomasko, L.R. Doose, J.M. Palmer, A. Holmes, W.L. Wolfe, A.G. Debell, L.G. Brod, R.R. Sholes, Pioneer venus sounder probe solar flux radiometer. IEEE Trans. Geosci. Remote Sens. GE–18(1), 93–97 (1980)
U. von Zahn, D.M. Hunten, The Jupiter Helium Interferometer experiment on the Galileo entry probe. Space Sci. Rev. 60, 263–281 (1992)
C.R. Webster, P.R. Mahaffy, Determining the local abundance of Martian methane and its 13C/12C and D/H isotopic ratios for comparison with related gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission. Planet. Space Sci. 59, 271–283 (2011)
S.J. Weidenschilling, J.S. Lewis, Atmospheric and cloud structures of the jovian planets. Icarus 20, 465–476 (1973)
Acknowledgements
The SNAP mission concept study was supported by Planetary Science Deep Space SmallSat Studies (PSDS3) Program Grant NNX17AK31G to Hampton University (PI: K. M. Sayanagi). The SNAP Mission Concept Design was performed at NASA Langley Research Center’s Engineering Design Studio.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
In Situ Exploration of the Ice Giants: Science and Technology
Edited by Olivier J. Mousis and David H. Atkinson
Rights and permissions
About this article
Cite this article
Sayanagi, K.M., Dillman, R.A., Atkinson, D.H. et al. Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus. Space Sci Rev 216, 72 (2020). https://doi.org/10.1007/s11214-020-00686-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11214-020-00686-7
Keywords
- Saturn
- Uranus
- Neptune
- Atmosphere
- Probe
- Mission concept study