Concepts of the Small Body Sample Return Missions - the 1st 10 Million Year Evolution of the Solar System

Abstract

Each type of asteroids and comets are important, serving as the unique puzzle pieces of the solar system. The countless number of small bodies spread vastly from the near-Earth orbits to the main belt and beyond Jupiter. Thus, in order to complete the whole puzzle, and hence requires a well-designed roadmap of sample return (SR) missions and international coordination. The main consideration is the accreting locations of various types of asteroids, which may be referred through their redox status and abundances of water and volatile components. C-complex asteroids are water and volatile-rich, likely accreted in the outer solar system. Two C-complex asteroids are being explored by Hayabusa-2 and OSIRIS-REx missions, respectively. In contrast, enstatite chondrite-like asteroids formed under extremely reducing conditions in the inner solar system. The samples returned from enstatite chondrite-like asteroids will clarify the nebular processes in the zone closest to the Sun, and reveal fractionation of the solar nebula along the radial direction, via comparing with those of the C-complex asteroids. The exploration will also shed light on the bulk compositions of the Earth and terrestrial planets accreted in the same region of the inner solar system.

The SR missions will focus on the first 10 Ma history of the solar system, including the initial condition, the nebular processes, and the accretion of planetesimals. Because the secondary processes that took place in planetesimals, such as thermal metamorphism, aqueous alteration, melting and differentiation, could largely erase the records of the nebular events, it is critically important to choose the primordial asteroid targets. Although C-complex asteroids accreted at low temperature in the outer solar nebula, they, especially those hydrated, could have suffered severe aqueous alteration as observed in CM chondrites. Other preferred targets are L-type asteroids, which probably contain abundant Ca-, Al-rich inclusions, the first solid assemblages of the solar system. Based on the roadmap of SR missions, we propose to return samples first from enstatite chondrite-like or L-type Near-Earth asteroids.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. M. Abe, Y. Takagi, K. Kitazato, S. Abe, T. Hiroi, F. Vilas, B.E. Clark, P.A. Abell, S.M. Lederer, K.S. Jarvis et al., Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science 312, 1334–1338 (2006)

    ADS  Google Scholar 

  2. J. Aléon, A.N. Krot, K.D. McKeegan, Calcium-aluminum-rich inclusions and amoeboid olivine aggregates from the CR carbonaceous chondrites. Meteorit. Planet. Sci. 37, 1729–1755 (2002)

    ADS  Google Scholar 

  3. C.M.O.D. Alexander, G.D. Cody, M. Fogel, H. Yabuta, Organics in meteorites-Solar or interstellar? in Proceedings of the International Astronomical Union, vol. 251 (2008), p. 293

    Google Scholar 

  4. C.M.O.D. Alexander, S.D. Newsome, M.L. Fogel, L.R. Nittler, H. Busemann, G.D. Cody, Deuterium enrichments in chondritic macromolecular material–Implications for the origin and evolution of organics, water and asteroids. Geochim. Cosmochim. Acta 74, 4417–4437 (2010)

    ADS  Google Scholar 

  5. C.M.O.D. Alexander, G.D. Cody, B.T. De Gregorio, L.R. Nittler, R.M. Stroud, The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Geochemistry 77, 227–256 (2017)

    Google Scholar 

  6. Y. Amelin, A.N. Krot, I.D. Hutcheon, A.A. Ulyanov, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002)

    ADS  Google Scholar 

  7. M.A. Barucci, D. Perna, M. Popescu, S. Fornasier, A. Doressoundiram, C. Lantz, F. Merlin, M. Fulchignoni, E. Dotto, S. Kanuchova, Small D-type asteroids in the NEO population: new targets for space missions. Mon. Not. R. Astron. Soc. 476, 4481–4487 (2018)

    ADS  Google Scholar 

  8. G.K. Benedix, L.A. Leshin, J. Farquhar, T. Jackson, M.H. Thiemens, Carbonates in CM2 chondrites: constraints on alteration conditions from oxygen isotopic compositions and petrographic observations. Geochim. Cosmochim. Acta 67, 1577–1588 (2003)

    ADS  Google Scholar 

  9. K.R. Bermingham, K. Mezger, E.E. Scherer, M.F. Horan, R.W. Carlson, D. Upadhyay, T. Magna, A. Pack, Barium isotope abundances in meteorites and their implications for early Solar System evolution. Geochim. Cosmochim. Acta 175, 282–298 (2016)

    ADS  Google Scholar 

  10. A. Besmehn, S. Mostefaoui, P. Hoppe, Presolar minerals in the enstatite chondrite Sahara 97166. Meteorit. Planet. Sci. 36, A20 (2001)

    Google Scholar 

  11. A. Bieler, K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser et al., Abundant molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko. Nature 526, 678 (2015)

    ADS  Google Scholar 

  12. R.P. Binzel, A.W. Harris, S.J. Bus, T.H. Burbine, Spectral properties of near-Earth objects: Palomar and IRTF results for 48 objects including spacecraft targets (9969) Braille and (10302) 1989 ML. Icarus 151, 139–149 (2001)

    ADS  Google Scholar 

  13. R.P. Binzel, M. Birlan, S.J. Bus, A.W. Harris, A.S. Rivkin, S. Fornasier, Spectral observations for near-Earth objects including potential target 4660 Nereus: results from Meudon remote observations at the NASA Infrared Telescope Facility (IRTF). Planet. Space Sci. 52, 291–296 (2004a)

    ADS  Google Scholar 

  14. R.P. Binzel, E. Perozzi, A.S. Rivkin, A. Rossi, A.W. Harris, S.J. Bus, G.B. Valsecchi, S.M. Slivan, Dynamical and compositional assessment of near-Earth object mission targets. Meteorit. Planet. Sci. 39, 351–366 (2004b)

    ADS  Google Scholar 

  15. R.P. Binzel, A.S. Rivkin, J.S. Stuart, A.W. Harris, S.J. Bus, T.H. Burbine, Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes. Icarus 170, 259–294 (2004c)

    ADS  Google Scholar 

  16. R.P. Binzel, F.E. DeMeo, E.V. Turtelboom, S.J. Bus, A. Tokunaga, T.H. Burbine, C. Lantz, D. Polishook, B. Carry, A. Morbidelli et al., Compositional distributions and evolutionary processes for the near-Earth object population: results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus 324, 41–76 (2019)

    ADS  Google Scholar 

  17. A. Bischoff, M. Horstmann, A. Pack, M. Laubenstein, S. Haberer, Asteroid 2008 TC3- Almahata Sitta: a spectacular breccia containing many different ureilitic and chondritic lithologies. Meteorit. Planet. Sci. 45, 1638–1656 (2010)

    ADS  Google Scholar 

  18. M. Bizzarro, J.A. Baker, H. Haack, Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature 431, 275–278 (2004)

    ADS  Google Scholar 

  19. A.P. Boss, S.A. Keiser, Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. IV. Effects of rotational axis orientation. Astrophys. J. 809, 1 (2015)

    Google Scholar 

  20. A. Bouvier, M. Wadhwa, The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010)

    ADS  Google Scholar 

  21. P.G. Brown, A.R. Hildebrand, M.E. Zolensky, M. Grady, R.N. Clayton, T.K. Mayeda, E. Tagliaferri, R. Spalding, N.D. MacRae, E.L. Hoffman et al., The fall, recovery, orbit, and composition of the Tagish lake meteorite: a new type of carbonaceous chondrite. Science 290, 320–325 (2000)

    ADS  Google Scholar 

  22. M. Brozovic, S.J. Ostro, L.A.M. Benner, J.D. Giorgini, R.F. Jurgens, R. Rose, M.C. Nolan, A.A. Hine, C. Magri, D.J. Scheeres et al., Radar observations and a physical model of asteroid 4660 Nereus, a prime space mission target. Icarus 201, 153–166 (2009)

    ADS  Google Scholar 

  23. G. Budde, C. Burkhardt, G.A. Brennecka, M. Fischer-Gödde, T.S. Kruijer, T. Kleine, Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett. 454, 293–303 (2016)

    ADS  Google Scholar 

  24. S.J. Bus, R.P. Binzel, Phase II of the small main-belt asteroid spectroscopic survey: a feature-based taxonomy. Icarus 158, 106–145 (2002)

    ADS  Google Scholar 

  25. H. Busemann, A.F. Young, C.M.O.D. Alexander, P. Hoppe, S. Mukhopadhyay, L.R. Nittler, Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312, 727–730 (2006)

    ADS  Google Scholar 

  26. H. Busemann, A.N. Nguyen, G.D. Cody, P. Hoppe, A.L.D. Kilcoyne, R.M. Stroud, T.J. Zega, L.R. Nittler, Ultra-primitive interplanetary dust particles from the comet 26P/Grigg–Skjellerup dust stream collection. Earth Planet. Sci. Lett. 288, 44–57 (2009)

    ADS  Google Scholar 

  27. F. Capaccioni, A. Coradini, G. Filacchione, S. Erard, G. Arnold, P. Drossart, M.C. De Sanctis, D. Bockelee-Morvan, M.T. Capria, F. Tosi, The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science 347, aaa0628 (2015)

    Google Scholar 

  28. J.E. Chambers, Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004)

    ADS  Google Scholar 

  29. B.G. Choi, G.R. Huss, G.J. Wasserburg, R. Gallino, Presolar corundum and spinel in ordinary chondrites: origins from AGB stars and a supernova. Science 282, 1284–1289 (1998)

    ADS  Google Scholar 

  30. F.J. Ciesla, S.B. Charnley, The physics and chemistry of nebular evolution, in Meteorites and the Early Solar System II (2006), pp. 209–230

    Google Scholar 

  31. R.N. Clayton, L. Grossman, T.K. Mayeda, A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488 (1973)

    ADS  Google Scholar 

  32. G.D. Cody, E. Heying, C.M.O. Alexander, L.R. Nittler, A.L.D. Kilcoyne, S.A. Sandford, R.M. Stroud, Establishing a molecular relationship between chondritic and cometary organic solids. Proc. Natl. Acad. Sci. 108, 19171–19176 (2011)

    ADS  Google Scholar 

  33. H.C. Connolly Jr., S.J. Desch, R.D. Ash, R.H. Jones, Transient heating events in the protoplanetary nebula, in Meteorites and the Early Solar System II (2006), pp. 383–397

    Google Scholar 

  34. G. Cooper, N. Kimmich, W. Belisle, J. Sarinana, K. Brabham, L. Garrel, Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414, 879–883 (2001)

    ADS  Google Scholar 

  35. A. Coradini, D. Turrini, C. Federico, G. Magni, Vesta and Ceres: crossing the history of the solar system. Space Sci. Rev. 163, 25–40 (2011)

    ADS  Google Scholar 

  36. F.E. DeMeo, B. Carry, Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629 (2014)

    ADS  Google Scholar 

  37. F.E. Demeo, R.P. Binzel, S.M. Slivan, S.J. Bus, An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009)

    ADS  Google Scholar 

  38. S.J. Desch, M.A. Morris, H.C. Connolly, A.P. Boss, A critical examination of the X-wind model for chondrule and calcium-rich, aluminum-rich inclusion formation and radionuclide production. Astrophys. J. 725, 692–711 (2010)

    ADS  Google Scholar 

  39. A. El Goresy, H. Yabuki, K. Ehlers, D. Woolum, E. Pernicka, Qingzhen and Yamato-691: a tentative alphabet for the EH chondrites. Proc. NIPR Symp. Antarct. Meteor. 1, 65–101 (1988)

    Google Scholar 

  40. A. El Goresy, Y. Lin, M. Miyahara, A. Gannoun, M. Boyet, E. Ohtani, P. Gillet, M. Trieloff, A. Simionovici, L. Feng et al., Origin of EL3 chondrites: evidence for variable C/O ratios during their course of formation-A state of the art scrutiny. Meteorit. Planet. Sci. 52, 1–26 (2017)

    Google Scholar 

  41. M.H. Engel, S.A. Macko, Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389, 265–268 (1997)

    ADS  Google Scholar 

  42. C. Floss, P. Haenecour, Presolar silicate grains: abundances, isotopic and elemental compositions, and the effects of secondary processing. Geochem. J. 50, 3–25 (2016)

    ADS  Google Scholar 

  43. C. Floss, F. Stadermann, Auger nanoprobe analysis of presolar ferromagnesian silicate grains from primitive CR. Geochim. Cosmochim. Acta 73, 2415–2440 (2009). chondrites QUE 99177 and MET 00426

    ADS  Google Scholar 

  44. A. Fujiwara, T. Mukai, J. Kawaguchi, K.T. Uesugi, Sample return mission to NEA: MUSES-C. Adv. Space Res. 25, 231–238 (2000)

    ADS  Google Scholar 

  45. W. Fujiya, P. Hoppe, T. Ushikubo, K. Fukuda, P. Lindgren, M.R. Lee, M. Koike, K. Shirai, Y. Sano, Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites. Nat. Astron. 3, 910–915 (2019)

    ADS  Google Scholar 

  46. E. Furi, B. Marty, Nitrogen isotope variations in the Solar System. Nat. Geosci. 8, 515–522 (2015)

    ADS  Google Scholar 

  47. E. Galimov, Phobos sample return mission: scientific substantiation. Sol. Syst. Res. 44, 5–14 (2010)

    ADS  Google Scholar 

  48. F. Goesmann, H. Rosenbauer, J.H. Bredehöft, M. Cabane, P. Ehrenfreund, T. Gautier, C. Giri, H. Krüger, L. Le Roy, A.J. MacDermott, Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349, aab0689 (2015)

    Google Scholar 

  49. T. Grav, A.K. Mainzer, J. Bauer, J. Masiero, T. Spahr, R.S. McMillan, R. Walker, R. Cutri, E. Wright, P.R. Eisenhardt et al., WISE/NEOWISE observations of the Hilda population: preliminary results. Astrophys. J. 744, 197 (2011)

    ADS  Google Scholar 

  50. L. Grossman, Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972)

    ADS  Google Scholar 

  51. L. Grossman, Vapor-condensed phase processes in the early solar system. Meteorit. Planet. Sci. 45, 7–20 (2010)

    ADS  Google Scholar 

  52. L. Grossman, J.R. Beckett, A.V. Fedkin, S.B. Simon, F.J. Ciesla, Redox conditions in the solar nebula: observational, experimental, and theoretical constraints. Rev. Mineral. Geochem. 68, 93–140 (2008)

    Google Scholar 

  53. Y. Guan, G.R. Huss, G.J. MacPherson, G.J. Wasserburg, Calcium-aluminum-rich inclusions from enstatite chondrites: indigenous or foreign? Science 289, 1330–1333 (2000)

    ADS  Google Scholar 

  54. P. Haenecour, C. Floss, T.J. Zega, T.K. Croat, A. Wang, B.L. Jolliff, P. Carpenter, Presolar silicates in the matrix and fine-grained rims around chondrules in primitive CO3.0 chondrites: evidence for pre-accretionary aqueous alteration of the rims in the solar nebula. Geochim. Cosmochim. Acta 221, 379–405 (2018)

    ADS  Google Scholar 

  55. K. Hashizume, M. Chaussidon, A non-terrestrial 16O-rich isotopic composition for the protosolar nebula. Nature 434, 619–622 (2005)

    ADS  Google Scholar 

  56. C.D.K. Herd, A. Blinova, D.N. Simkus, Y. Huang, R. Tarozo, C.M.O. Alexander, F. Gyngard, L.R. Nittler, G.D. Cody, M.L. Fogel et al., Origin and evolution of prebiotic organic matter as inferred from the Tagish lake meteorite. Science 332, 1304–1307 (2011)

    ADS  Google Scholar 

  57. T. Hiroi, M.E. Zolensky, C.M. Pieters, The Tagish lake meteorite: a possible sample from a D-type asteroid. Science 293, 2234–2236 (2001)

    ADS  Google Scholar 

  58. P. Hoppe, J. Leitner, J. Kodolányi, The stardust abundance in the local interstellar cloud at the birth of the Solar System. Nat. Astron. 1, 617–620 (2017)

    ADS  Google Scholar 

  59. J.C. Huang, J.H. Ji, P.J. Ye, X.L. Wang, J. Yan, L.Z. Meng, S. Wang, C.L. Li, Y. Li, D. Qiao et al., The ginger-shaped asteroid 4179 Toutatis: new observations from a successful flyby of Chang’e-2. Sci. Rep. 3, 3411 (2013)

    Google Scholar 

  60. G. Huss, R.S. Lewis, Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59, 115–160 (1995)

    ADS  Google Scholar 

  61. M.R.M. Izawa, D.M. Applin, P. Mann, M.A. Craig, E.A. Cloutis, J. Helbert, A. Maturilli, Reflectance spectroscopy (200–2500 nm) of highly-reduced phases under oxygen- and water-free conditions. Icarus 226, 1612–1617 (2013)

    ADS  Google Scholar 

  62. P. Jenniskens, M.D. Fries, Q.-Z. Yin, M. Zolensky, A.N. Krot, S.A. Sandford, D. Sears, R. Beauford, D.S. Ebel, J.M. Friedrich et al., Radar-enabled recovery of the Sutter’s Mill meteorite, a carbonaceous chondrite regolith breccia. Science 338, 1583–1587 (2012)

    ADS  Google Scholar 

  63. C.E. Jilly-Rehak, G.R. Huss, K. Nagashima, D.L. Schrader, Low-temperature aqueous alteration on the CR chondrite parent body: implications from in situ oxygen-isotope analyses. Geochim. Cosmochim. Acta 222, 230–252 (2018)

    ADS  Google Scholar 

  64. K. Keil, Enstatite meteorites and their parent bodies. Meteoritics 24, 195–208 (1989)

    ADS  Google Scholar 

  65. N.T. Kita, G.R. Huss, S. Tachibana, Y. Amelin, L.E. Nyquist, I.D. Hutcheon, Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides, in Chondrites and the Protoplanetary Disk, vol. 341, ed. by A.N. Krot, E.R.D. Scott, B. Reipurth (Astronomical Society of the Pacific, San Francisco, 2005), pp. 558–587

    Google Scholar 

  66. K. Kitazato, R.E. Milliken, T. Iwata, M. Abe, M. Ohtake, S. Matsuura, T. Arai, Y. Nakauchi, T. Nakamura, M. Matsuoka et al., The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science 364, eaav7432 (2019)

    Google Scholar 

  67. M. Komatsu, A.N. Krot, M.I. Petaev, A.A. Ulyanov, K. Keil, M. Miyamoto, Mineralogy and petrography of amoeboid olivine aggregates from the reduced CV3 chondrites Efremovka, Leoville and Vigarano: products of nebular condensation, accretion and annealing. Meteorit. Planet. Sci. 36, 629–641 (2001)

    ADS  Google Scholar 

  68. A.N. Krot, Refractory inclusions in carbonaceous chondrites: records of early solar system processes. Meteorit. Planet. Sci. 54, 1647–1691 (2019)

    ADS  Google Scholar 

  69. A.N. Krot, M.I. Petaev, H. Yurimoto, Amoeboid olivine aggregates with low-Ca pyroxenes: a genetic link between refractory inclusions and chondrules? Geochim. Cosmochim. Acta 68, 1923–1941 (2004)

    ADS  Google Scholar 

  70. A.N. Krot, I.D. Hutcheon, A.J. Brearley, O.V. Pravdivtseva, M.I. Petaev, C.M. Hohenberg, Timescales and settings for alteration of chondritic meteorites, in Meteorites and the Early Solar System II (2006), pp. 525–553

    Google Scholar 

  71. A.N. Krot, K. Nagashima, G. Libourel, K.E. Miller, Multiple mechanisms of transient heating events in the protoplanetary disk: evidence from precursors of chondrules and igneous Ca, Al-rich inclusions, in Chondrules and the Protoplanetary Disk, ed. by S.S. Russell, H.C.J. Connolly, A.N. Krot (Cambridge University Press, Cambridge, 2018), pp. 11–56

    Google Scholar 

  72. J.W. Larimer, M. Bartholomay, The role of carbon and oxygen in cosmic gases: some applications to the chemistry and mineralogy of enstatite chondrites. Geochim. Cosmochim. Acta 43, 1455–1466 (1979)

    ADS  Google Scholar 

  73. D.S. Lauretta, D.N. DellaGiustina, C.A. Bennett, D.R. Golish, K.J. Becker, S.S. Balram-Knutson, O.S. Barnouin, T.L. Becker, W.F. Bottke, W.V. Boynton et al., The unexpected surface of asteroid (101955) Bennu. Nature 568, 55–60 (2019)

    ADS  Google Scholar 

  74. R.S. Lewis, M. Tang, J.F. Wacker, E. Anders, E. Steel, Interstellar diamonds in meteorites. Nature 326, 160–162 (1987)

    ADS  Google Scholar 

  75. Y. Lin, A. El Goresy, A comparative study of opaque phases in Qingzhen (EH3) and MAC 88136 (EL3): representative of EH and EL parent bodies. Meteorit. Planet. Sci. 37, 577–599 (2002)

    ADS  Google Scholar 

  76. Y. Lin, M. Kimura, Anorthite-spinel-rich inclusions in the Ningqiang carbonaceous chondrite: genetic links with type A and C inclusions. Meteorit. Planet. Sci. 33, 435–446 (1998)

    ADS  Google Scholar 

  77. Y. Lin, M. Kimura, Two unusual type B refractory inclusions in the Ningqiang carbonaceous chondrite: evidence for relicts, xenoliths and multi-heating. Geochim. Cosmochim. Acta 64, 4031–4047 (2000)

    ADS  Google Scholar 

  78. Y. Lin, M. Kimura, Ca-Al-rich inclusions from the Ningqiang meteorite: continuous assemblages of the nebular condensates and genetic link to type Bs. Geochim. Cosmochim. Acta 67, 2251–2267 (2003)

    ADS  Google Scholar 

  79. Y. Lin, S. Amari, O. Pravdivtseva, Presolar grains from the Qingzhen (EH3) meteorite. Astrophys. J. 575, 257–263 (2002)

    ADS  Google Scholar 

  80. Y. Lin, M. Kimura, H. Hiyagon, A. Monoi, Unusually abundant refractory inclusions from Sahara 97159 (EH3): a comparative study with other groups of chondrites. Geochim. Cosmochim. Acta 67, 4935–4948 (2003)

    ADS  Google Scholar 

  81. G.E. Lofgren, A dynamic crystallization model for chondrule melts, in Chondrules and the Protoplanetary Disk, ed. by R.H. Hewins, R.H. Jones, E.R.D. Scott (Cambridge University Press, Cambridge, 1996), pp. 187–196

    Google Scholar 

  82. G.J. MacPherson, A.M. Davis, A petrologic and ion microprobe study of a Vigarano type B refractory inclusion: evolution by multiple stages of alteration and melting. Geochim. Cosmochim. Acta 57, 231–243 (1993)

    ADS  Google Scholar 

  83. G.J. MacPherson, L. Grossman, “Fluffy” type A Ca-, Al-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 48, 29–46 (1984)

    ADS  Google Scholar 

  84. G.J. MacPherson, D.W. Mittlefehldt, M.E. Lipschutz, R.N. Clayton, E.S. Bullock, A.V. Ivanov, T.K. Mayeda, M.-S. Wang, The Kaidun chondrite breccia: petrology, oxygen isotopes, and trace element abundances. Geochim. Cosmochim. Acta 73, 5493–5511 (2009)

    ADS  Google Scholar 

  85. B. Marty, G. Avice, Y. Sano, K. Altwegg, H. Balsiger, M. Hässig, A. Morbidelli, O. Mousis, M. Rubin, Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016)

    ADS  Google Scholar 

  86. K.D. McKeegan, L.A. Leshin, S.S. Russell, G.J. MacPherson, Oxygen isotopic abundances in calcium-aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity. Science 280, 414–418 (1998)

    ADS  Google Scholar 

  87. K.D. McKeegan, J. Aleon, J. Bradley, D. Brownlee, H. Busemann, A. Butterworth, M. Chaussidon, S. Fallon, C. Floss, J. Gilmour et al., Isotopic compositions of cometary matter returned by stardust. Science 314, 1724–1728 (2006)

    ADS  Google Scholar 

  88. K.D. McKeegan, A.P.A. Kallio, V.S. Heber, G. Jarzebinski, P.H. Mao, C.D. Coath, T. Kunihiro, R.C. Wiens, J.E. Nordholt, R.W. Moses et al., The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 1528–1532 (2011)

    ADS  Google Scholar 

  89. M. Mueller, A.W. Harris, A. Fitzsimmons, Size, albedo, and taxonomic type of potential spacecraft target asteroid (10302) 1989 ML. Icarus 187, 611–615 (2007)

    ADS  Google Scholar 

  90. K. Nakamura-Messenger, S. Messenger, L.P. Keller, S.J. Clemett, M.E. Zolensky, Organic globules in the Tagish Lake Meteorite: remnants of the protosolar disk. Science 314, 1439–1442 (2006)

    ADS  Google Scholar 

  91. J.A.M. Nanne, F. Nimmo, J.N. Cuzzi, T. Kleine, Origin of the non-carbonaceous–carbonaceous meteorite dichotomy. Earth Planet. Sci. Lett. 511, 44–54 (2019)

    ADS  Google Scholar 

  92. L.R. Nittler, F. Ciesla, Astrophysics with extraterrestrial materials, in Annual Review of Astronomy and Astrophysics, vol. 54, ed. by S.M. Faber, E. VanDishoeck (Annual Reviews, Palo Alto, 2016), pp. 53–93

    Google Scholar 

  93. L.R. Nittler, C.M.O. Alexander, X. Gao, R.M. Walker, E.K. Zinner, Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature 370, 443 (1994)

    ADS  Google Scholar 

  94. L.R. Nittler, C.M.O.D. Alexander, J. Davidson, M.E.I. Riebe, R.M. Stroud, J. Wang, High abundances of presolar grains and 15N-rich organic matter in CO3.0 chondrite Dominion Range 08006. Geochim. Cosmochim. Acta 226, 107–131 (2018)

    ADS  Google Scholar 

  95. L.R. Nittler, R.M. Stroud, J.M. Trigo-Rodríguez, B.T. De Gregorio, C.M.O.D. Alexander, J. Davidson, C.E. Moyano-Cambero, S. Tanbakouei, A cometary building block in a primitive asteroidal meteorite. Nat. Astron. 3, 659–666 (2019)

    ADS  Google Scholar 

  96. M. Popescu, O. Vaduvescu, J. de León, R.M. Gherase, J. Licandro, I.L. Boacă, A.B. Şonka, R.P. Ashley, T. Močnik, D. Morate et al., Near-Earth asteroids spectroscopic survey at Isaac Newton Telescope. Astron. Astrophys. 627, A124 (2019)

    Google Scholar 

  97. L. Qin, L.R. Nittler, C.M.O. Alexander, J. Wang, F.J. Stadermann, R.W. Carlson, Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil -implication for a late supernova injection into the solar system. Geochim. Cosmochim. Acta 75, 629–644 (2011)

    ADS  Google Scholar 

  98. E.R. Rambaldi, R.S. Rajan, D. Wang, R.M. Housley, Evidence for relict grains in chondrules of Qingzhen, an E3 type enstatite chondrite. Earth Planet. Sci. Lett. 66, 11–24 (1983)

    ADS  Google Scholar 

  99. L. Remusat, J.N. Rouzaud, E. Charon, C. Le Guillou, Y. Guan, J. Eiler, D-depleted organic matter and graphite in the Abee enstatite chondrite. Geochim. Cosmochim. Acta 96, 319–335 (2012)

    ADS  Google Scholar 

  100. L. Remusat, L. Piani, S. Bernard, Thermal recalcitrance of the organic D-rich component of ordinary chondrites. Earth Planet. Sci. Lett. 435, 36–44 (2016)

    ADS  Google Scholar 

  101. N. Sakamoto, N. Kawasaki, Extreme 16O-rich refractory inclusions in the Isheyevo chondrite. Meteorit. Planet. Sci. 54, #6069 (2019)

    Google Scholar 

  102. S.A. Sandford, J. Aleon, C.M.O.D. Alexander, T. Araki, S. Bajt, G.A. Baratta, J. Borg, J.P. Bradley, D.E. Brownlee, J.R. Brucato et al., Organics captured from comet 81P/Wild 2 by the stardust spacecraft. Science 314, 1720–1724 (2006)

    ADS  Google Scholar 

  103. F.H. Shu, H. Shang, T. Lee, Toward an astrophysical theory of chondrites. Science 271, 1545–1552 (1996)

    ADS  Google Scholar 

  104. F.H. Shu, H. Shang, M. Gounelle, A.E. Glassgold, T. Lee, The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J. 548, 1029–1050 (2001)

    ADS  Google Scholar 

  105. E. Stolper, J.M. Paque, Crystallization sequences of Ca-Al-rich inclusions from Allende: the effects of cooling rate and maximum temperature. Geochim. Cosmochim. Acta 50, 1785–1806 (1986)

    ADS  Google Scholar 

  106. J.M. Sunshine, H.C. Connolly Jr., T.J. McCoy, S.J. Bus, L.M. La Croix, Ancient asteroids enriched in refractory inclusions. Science 320, 514–517 (2008)

    ADS  Google Scholar 

  107. J. Takahashi, S. Urakawa, T. Terai, H. Hanayama, A. Arai, S. Honda, Y. Takagi, Y. Itoh, T. Zenno, M. Ishiguro, Near-infrared colors of asteroid 2012DA14 at its closest approach to Earth: observations with the Nishiharima Infrared Camera (NIC). Publ. Astron. Soc. Jpn. 66, 53 (2014)

    ADS  Google Scholar 

  108. M. Tang, E. Anders, Isotopic anomalies of Ne, Xe, and C in meteorites. II. Interstellar diamond and SiC: carriers of exotic noble gases. Geochim. Cosmochim. Acta 52, 1235–1244 (1988)

    ADS  Google Scholar 

  109. P. Tanga, B. Carry, F. Colas, M. Delbo, A. Matter, J. Hanuš, V. Alí Lagoa, A.H. Andrei, M. Assafin, M. Audejean et al., The non-convex shape of (234) Barbara, the first Barbarian. Mon. Not. R. Astron. Soc. 448, 3382–3390 (2015)

    ADS  Google Scholar 

  110. A. Trinquier, T. Elliott, D. Ulfbeck, C. Coath, A.N. Krot, M. Bizzarro, Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374–376 (2009)

    ADS  Google Scholar 

  111. M.A. Tyra, J. Farquhar, Y. Guan, L.A. Leshin, An oxygen isotope dichotomy in CM2 chondritic carbonates—a SIMS approach. Geochim. Cosmochim. Acta 77, 383–395 (2012)

    ADS  Google Scholar 

  112. P. Vernazza, P. Beck, Composition of Solar System small bodies, in Planetesimals: Early Differentiation and Consequences for Planets, ed. by L.T. Elkins-Tanton, B.P. Weiss (Cambridge University Press, Cambridge, 2016)

    Google Scholar 

  113. J. Veverka, M. Robinson, P. Thomas, S. Murchie, J.F. Bell, N. Izenberg, C. Chapman, A. Harch, M. Bell, B. Carcich et al., NEAR at Eros: imaging and spectral results. Science 289, 2088–2097 (2000)

    ADS  Google Scholar 

  114. C. Vollmer, D. Kepaptsoglou, J. Leitner, H. Busemann, N.H. Spring, Q.M. Ramasse, P. Hoppe, L.R. Nittler, Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites. Proc. Natl. Acad. Sci. 111, 15338–15343 (2014)

    ADS  Google Scholar 

  115. P.H. Warren, Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011a)

    ADS  Google Scholar 

  116. P.H. Warren, Stable isotopes and the noncarbonaceous derivation of ureilites, in common with nearly all differentiated planetary materials. Geochim. Cosmochim. Acta 75, 6912–6926 (2011b)

    ADS  Google Scholar 

  117. E.A. Worsham, C. Burkhardt, G. Budde, M. Fischer-Gödde, T.S. Kruijer, T. Kleine, Distinct evolution of the carbonaceous and non-carbonaceous reservoirs: Insights from Ru, Mo, and W isotopes. Earth Planet. Sci. Lett. 521, 103–112 (2019)

    ADS  Google Scholar 

  118. S. Yoneda, L. Grossman, Condensation of CaO-MgO-Al2O3-SiO2 liquids from cosmic gases. Geochim. Cosmochim. Acta 59, 3413–3444 (1995)

    ADS  Google Scholar 

  119. H. Yurimoto, J.T. Wasson, Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very 16O-rich olivine and a 26Mg-excess. Geochim. Cosmochim. Acta 66, 4355–4363 (2002)

    ADS  Google Scholar 

  120. X. Zhao, C. Floss, Y. Lin, M. Bose, Stardust investigation into the CR chondrite Grove Mountain 021710. Astrophys. J. 769, 49 (2013)

    ADS  Google Scholar 

  121. X. Zhao, Y. Lin, Q.-Z. Yin, J. Zhang, J. Hao, M. Zolensky, P. Jenniskens, Presolar grains in the CM2 chondrite Sutter’s Mill. Meteorit. Planet. Sci. 49, 2038–2046 (2014)

    ADS  Google Scholar 

  122. E. Zinner, Leonard award address-trends in the study of presolar dust grains from primitive meteorites. Meteorit. Planet. Sci. 33, 549–564 (1998)

    ADS  Google Scholar 

  123. M. Zolensky, A. Ivanov, The Kaidun microbreccia meteorite: a harvest from the inner and outer asteroid belt. Chem. Erde, Geochem. 63, 185–246 (2003)

    ADS  Google Scholar 

  124. M.E. Zolensky, T.J. Zega, H. Yano, S. Wirick, A.J. Westphal, M.K. Weisberg, I. Weber, J.L. Warren, M.A. Velbel, A. Tsuchiyama et al., Report - mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314, 1735–1739 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to three anonymous reviewers for their constructive comments and suggestions, which significantly improved the manuscript. This study was supported by the Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (XDA15020300), and the National Natural Science Foundation of China (41673069).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yangting Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Role of Sample Return in Addressing Major Questions in Planetary Sciences

Edited by Mahesh Anand, Sara Russell, Yangting Lin, Meenakshi Wadhwa, Kuljeet Kaur Marhas and Shogo Tachibana

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhang, Y., Hu, S. et al. Concepts of the Small Body Sample Return Missions - the 1st 10 Million Year Evolution of the Solar System. Space Sci Rev 216, 45 (2020). https://doi.org/10.1007/s11214-020-00670-1

Download citation

Keywords

  • Solar system evolution
  • Protoplanetary disk
  • Asteroids
  • Comets
  • Sample return missions