Skip to main content

The Host Galaxies of Tidal Disruption Events

Abstract

Recent studies of Tidal Disruption Events (TDEs) have revealed unexpected correlations between the TDE rate and the large-scale properties of the host galaxies. In this review, we present the host galaxy properties of all TDE candidates known to date and quantify their distributions. We consider throughout the differences between observationally-identified types of TDEs and differences from spectroscopic control samples of galaxies. We focus here on the black hole and stellar masses of TDE host galaxies, their star formation histories and stellar populations, the concentration and morphology of the optical light, the presence of AGN activity, and the extra-galactic environment of the TDE hosts. We summarize the state of several possible explanations for the links between the TDE rate and host galaxy type. We present estimates of the TDE rate for different host galaxy types and quantify the degree to which rate enhancement in some types results in rate suppression in others. We discuss the possibilities for using TDE host galaxies to assist in identifying TDEs in upcoming large transient surveys and possibilities for TDE observations to be used to study their host galaxies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    See e.g. Jonker et al. (2019) for more late-time X-ray detections of UV/optical TDEs; this article was posted to the arXiv during review of this article.

  2. 2.

    We note that the sample presented by Wevers et al. (2019a) contains a smaller but not completely overlapping sample to that presented in this review, due to differences in the TDE selection and differences in available data.

  3. 3.

    This event is included in our catalogue (F01004), although its classification as a TDE is controversial. Trakhtenbrot et al. (2019) argue it may not be a true TDE, although the space for observed TDE features may be broader than expected (Leloudas et al. 2019).

  4. 4.

    See above for a more thorough discussion of the Sérsic indices of TDE hosts, accounting for trends in stellar mass and black hole mass.

  5. 5.

    ASASSN14li, RBS1032, SDSS J1342, SDSS J0748, ASASSN14ae, ASASSN18zj.

  6. 6.

    SDSS J1323, NGC 5905, SDSS J0952, PTF09ge, AT2018dyk, AT2018bsi.

  7. 7.

    Although the details of this will depend on the TDE samples and comparison samples used, see previous discussions in §2.2 and §2.3.

  8. 8.

    \(\beta \) is defined such that if all orbits are purely radial, \(\beta =1\), and if all orbits are purely tangential, \(\beta = -\infty \).

References

  1. G.O. Abell, H.G. Corwin Jr., R.P. Olowin, A catalog of rich clusters of galaxies. Astrophys. J. Suppl. Ser. 70, 1 (1989). https://doi.org/10.1086/191333

    ADS  Article  Google Scholar 

  2. R.G. Abraham, S. van den Bergh, K. Glazebrook, R.S. Ellis, B.X. Santiago, P. Surma, R.E. Griffiths, The morphologies of distant galaxies. II. Classifications from the Hubble Space Telescope medium deep survey. Astrophys. J. Suppl. Ser. 107, 1 (1996). https://doi.org/10.1086/192352

    ADS  Article  Google Scholar 

  3. K. Alatalo, S.L. Cales, J.A. Rich, P.N. Appleton, L.J. Kewley, M. Lacy, L. Lanz, A.M. Medling, K. Nyland, Shocked POststarbust galaxy survey I: candidate poststarbust galaxies with emission line ratios consistent with shocks. Astrophys. J. Suppl. Ser. 224, 38 (2016). https://doi.org/10.3847/0067-0049/224/2/38. arXiv:1601.05085

    ADS  Article  Google Scholar 

  4. I. Arcavi, A. Gal-Yam, M. Sullivan, Y.-C. Pan, S.B. Cenko, A. Horesh, E.O. Ofek, A. De Cia, L. Yan, C.-W. Yang, D.A. Howell, D. Tal, S.R. Kulkarni, S.P. Tendulkar, S. Tang, D. Xu, A. Sternberg, J.G. Cohen, J.S. Bloom, P.E. Nugent, M.M. Kasliwal, D.A. Perley, R.M. Quimby, A.A. Miller, C.A. Theissen, R.R. Laher, A continuum of H- to He-rich tidal disruption candidates with a preference for E+A galaxies. Astrophys. J. 793(1), 38 (2014). https://doi.org/10.1088/0004-637X/793/1/38

    ADS  Article  Google Scholar 

  5. I. Arcavi, J. Burke, K.D. French, A. Zabludoff, D. Hiramatsu, C. McCully, D.A. Howell, G. Hosseinzadeh, S. Valenti, FLOYDS classification of AT 2018dyk/ZTF18aajupnt as a possible tidal disruption event. Astron. Telegram 11953, 1 (2018)

    ADS  Google Scholar 

  6. K. Auchettl, J. Guillochon, E. Ramirez-Ruiz, New physical insights about tidal disruption events from a comprehensive observational inventory at X-ray wavelengths. Astrophys. J. 838(2), 149 (2017a). https://doi.org/10.3847/1538-4357/aa633b. arXiv:1611.02291

    ADS  Article  Google Scholar 

  7. K. Auchettl, E. Ramirez-Ruiz, J. Guillochon, Comparison of the X-ray emission from Tidal Disruption Events with those of Active Galactic Nuclei (2017b). arXiv:1703.06141

  8. I.K. Baldry, S.P. Driver, J. Loveday, E.N. Taylor, L.S. Kelvin, J. Liske, P. Norberg, A.S.G. Robotham, S. Brough, A.M. Hopkins, S.P. Bamford, J.A. Peacock, J. Bland-Hawthorn, C.J. Conselice, S.M. Croom, D.H. Jones, H.R. Parkinson, C.C. Popescu, M. Prescott, R.G. Sharp, R.J. Tuffs, Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06. Mon. Not. R. Astron. Soc. 421, 621–634 (2012). https://doi.org/10.1111/j.1365-2966.2012.20340.x

    ADS  Article  Google Scholar 

  9. J.A. Baldwin, M.M. Phillips, R. Terlevich, Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5 (1981). https://doi.org/10.1086/130766

    ADS  Article  Google Scholar 

  10. E.C. Bellm, S.R. Kulkarni, M.J. Graham, R. Dekany, R.M. Smith, R. Riddle, F.J. Masci, G. Helou, T.A. Prince, S.M. Adams, C. Barbarino, T. Barlow, J. Bauer, R. Beck, J. Belicki, R. Biswas, N. Blagorodnova, D. Bodewits, B. Bolin, V. Brinnel, T. Brooke, B. Bue, M. Bulla, R. Burruss, S.B. Cenko, C.-K. Chang, A. Connolly, M. Coughlin, J. Cromer, V. Cunningham, K. De, A. Delacroix, V. Desai, D.A. Duev, G. Eadie, T.L. Farnham, M. Feeney, U. Feindt, D. Flynn, A. Franckowiak, S. Frederick, C. Fremling, A. Gal-Yam, S. Gezari, M. Giomi, D.A. Goldstein, V.Z. Golkhou, A. Goobar, S. Groom, E. Hacopians, D. Hale, J. Henning, A.Y.Q. Ho, D. Hover, J. Howell, T. Hung, D. Huppenkothen, D. Imel, W.-H. Ip, Ž. Ivezić, E. Jackson, L. Jones, M. Juric, M.M. Kasliwal, S. Kaspi, S. Kaye, M.S.P. Kelley, M. Kowalski, E. Kramer, T. Kupfer, W. Landry, R.R. Laher, C.-D. Lee, H.W. Lin, Z.-Y. Lin, R. Lunnan, M. Giomi, A. Mahabal, P. Mao, A.A. Miller, S. Monkewitz, P. Murphy, C.-C. Ngeow, J. Nordin, P. Nugent, E. Ofek, M.T. Patterson, B. Penprase, M. Porter, L. Rauch, U. Rebbapragada, D. Reiley, M. Rigault, H. Rodriguez, J. van Roestel, B. Rusholme, J. van Santen, S. Schulze, D.L. Shupe, L.P. Singer, M.T. Soumagnac, R. Stein, J. Surace, J. Sollerman, P. Szkody, F. Taddia, S. Terek, A. Van Sistine, S. van Velzen, W.T. Vestrand, R. Walters, C. Ward, Q.-Z. Ye, P.-C. Yu, L. Yan, J. Zolkower, The zwicky transient facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131(995), 018002 (2019). https://doi.org/10.1088/1538-3873/aaecbe

    ADS  Article  Google Scholar 

  11. N. Blagorodnova, S. Gezari, T. Hung, S.R. Kulkarni, S.B. Cenko, D.R. Pasham, L. Yan, I. Arcavi, S. Ben-Ami, B.D. Bue, T. Cantwell, Y. Cao, A.J. Castro-Tirado, R. Fender, C. Fremling, A. Gal-Yam, A.Y.Q. Ho, A. Horesh, G. Hosseinzadeh, M.M. Kasliwal, A.K.H.H. Kong, R.R. Laher, G. Leloudas, R. Lunnan, F.J. Masci, K. Mooley, J.D. Neill, P. Nugent, M. Powell, A.F. Valeev, P.M. Vreeswijk, R. Walters, P. Wozniak, iPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. Astrophys. J. 844(46), 1 (2017). https://doi.org/10.3847/1538-4357/aa7579. arXiv:1703.00965

    Article  Google Scholar 

  12. N. Blagorodnova, S.B.C.S.R. Kulkarni, I. Arcavi, J.S. Bloom, G. Duggan, A.V. Filippenko, C. Fremling, A. Horesh, G. Hosseinzadeh, E. Karamehmetoglu, A. Levan, F.J. Masci, P.E. Nugent, D.R. Pasham, S. Veilleux, R. Walters, L. Yan, W. Zheng, The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution (2018). arXiv:1809.07446

  13. N. Blagorodnova, S.B. Cenko, S.R. Kulkarni, I. Arcavi, J.S. Bloom, G. Duggan, A.V. Filippenko, C. Fremling, A. Horesh, G. Hosseinzadeh, E. Karamehmetoglu, A. Levan, F.J. Masci, P.E. Nugent, D.R. Pasham, S. Veilleux, R. Walters, L. Yan, W. Zheng, The broad absorption line tidal disruption event iPTF15af: optical and ultraviolet evolution. Astrophys. J. 873(1), 92 (2019). https://doi.org/10.3847/1538-4357/ab04b0

    ADS  Article  Google Scholar 

  14. P.K. Blanchard, M. Nicholl, E. Berger, J. Guillochon, R. Margutti, R. Chornock, K.D. Alexander, J. Leja, M.R. Drout, PS16dtm: a tidal disruption event in a narrow-line Seyfert 1 galaxy. Astrophys. J. 843(2), 106 (2017). https://doi.org/10.3847/1538-4357/aa77f7. arXiv:1703.07816

    ADS  Article  Google Scholar 

  15. M.R. Blanton, S. Roweis, kcorrect: Calculate K-corrections between observed and desired bandpasses (2017)

  16. J. Brinchmann, S. Charlot, S.D.M. White, C. Tremonti, G. Kauffmann, T. Heckman, J. Brinkmann, The physical properties of star-forming galaxies in the low-redshift universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004). https://doi.org/10.1111/j.1365-2966.2004.07881.x

    ADS  Article  Google Scholar 

  17. J.S. Brown, T.W.-S. Holoien, K. Auchettl, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, J.L. Prieto, D. Grupe, The long term evolution of ASASSN-14li. Mon. Not. R. Astron. Soc. 446(4), 4904–4916 (2016). arXiv:1609.04403

    Google Scholar 

  18. J.S. Brown, C.S. Kochanek, T.W.-S. Holoien, K.Z. Stanek, K. Auchettl, B.J. Shappee, J.L. Prieto, N. Morrell, E. Falco, J. Strader, L. Chomiuk, R. Post, S. Villanueva, S. Mathur, S. Dong, P. Chen, S. Bose, The Ultraviolet Spectroscopic Evolution of the Low-Luminosity Tidal Disruption Event iPTF16fnl (2017). arXiv:1704.02321

  19. K. Bundy, M.A. Bershady, D.R. Law, R. Yan, N. Drory, N. MacDonald, D.A. Wake, B. Cherinka, J.R. Sánchez-Gallego, A.-M. Weijmans, D. Thomas, C. Tremonti, K. Masters, L. Coccato, A.M. Diamond-Stanic, A. Aragón-Salamanca, V. Avila-Reese, C. Badenes, J. Falcón-Barroso, F. Belfiore, D. Bizyaev, G.A. Blanc, J. Bland-Hawthorn, M.R. Blanton, J.R. Brownstein, N. Byler, M. Cappellari, C. Conroy, A.A. Dutton, E. Emsellem, J. Etherington, P.M. Frinchaboy, H. Fu, J.E. Gunn, P. Harding, E.J. Johnston, G. Kauffmann, K. Kinemuchi, M.A. Klaene, J.H. Knapen, A. Leauthaud, C. Li, L. Lin, R. Maiolino, V. Malanushenko, E. Malanushenko, S. Mao, C. Maraston, R.M. McDermid, M.R. Merrifield, R.C. Nichol, D. Oravetz, K. Pan, J.K. Parejko, S.F. Sanchez, D. Schlegel, A. Simmons, O. Steele, M. Steinmetz, K. Thanjavur, B.A. Thompson, J.L. Tinker, R.C.E. van den Bosch, K.B. Westfall, D. Wilkinson, S. Wright, T. Xiao, K. Zhang, Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at apache point observatory. Astrophys. J. 798, 7 (2015). https://doi.org/10.1088/0004-637X/798/1/7

    ADS  Article  Google Scholar 

  20. M. Cappellari, R. Bacon, M. Bureau, M.C. Damen, R.L. Davies, P.T. de Zeeuw, E. Emsellem, J. Falcón-Barroso, D. Krajnović, H. Kuntschner, R.M. McDermid, R.F. Peletier, M. Sarzi, R.C.E. van den Bosch, G. van de Ven, The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the fundamental plane of elliptical and lenticular galaxies. Mon. Not. R. Astron. Soc. 366, 1126–1150 (2006). https://doi.org/10.1111/j.1365-2966.2005.09981.x

    ADS  Article  Google Scholar 

  21. S.B. Cenko, J.S. Bloom, S.R. Kulkarni, L.E. Strubbe, A.A. Miller, N.R. Butler, R.M. Quimby, A. Gal-Yam, E.O. Ofek, E. Quataert, L. Bildsten, D. Poznanski, D.A. Perley, A.N. Morgan, A.V. Filippenko, D.A. Frail, I. Arcavi, S. Ben-Ami, A. Cucchiara, C.D. Fassnacht, Y. Green, I.M. Hook, D.A. Howell, D.J. Lagattuta, N.M. Law, M.M. Kasliwal, P.E. Nugent, J.M. Silverman, M. Sullivan, S.P. Tendulkar, O. Yaron, PTF10iya: a short-lived, luminous flare from the nuclear region of a star-forming galaxy. Mon. Not. R. Astron. Soc. 420(3), 2684–2699 (2012). https://doi.org/10.1111/j.1365-2966.2011.20240.x

    ADS  Article  Google Scholar 

  22. S.B. Cenko, A. Cucchiara, N. Roth, S. Veilleux, J.X. Prochaska, L. Yan, J. Guillochon, W.P. Maksym, I. Arcavi, N.R. Butler, A.V. Filippenko, A.S. Fruchter, S. Gezari, D. Kasen, A.J. Levan, J.M. Miller, D.R. Pasham, E. Ramirez-Ruiz, L.E. Strubbe, N.R. Tanvir, F. Tombesi, An Ultraviolet Spectrum of the Tidal Disruption Flare ASASSN-14li (2016), p. 8. arXiv:1601.03331

  23. K.C. Chambers, E.A. Magnier, N. Metcalfe, H.A. Flewelling, M.E. Huber, C.Z. Waters, L. Denneau, P.W. Draper, D. Farrow, D.P. Finkbeiner, C. Holmberg, J. Koppenhoefer, P.A. Price, R.P. Saglia, E.F. Schlafly, S.J. Smartt, W. Sweeney, R.J. Wainscoat, W.S. Burgett, T. Grav, J.N. Heasley, K.W. Hodapp, R. Jedicke, N. Kaiser, R.-P. Kudritzki, G.A. Luppino, R.H. Lupton, D.G. Monet, J.S. Morgan, P.M. Onaka, C.W. Stubbs, J.L. Tonry, E. Banados, E.F. Bell, R. Bender, E.J. Bernard, M.T. Botticella, S. Casertano, S. Chastel, W.-P. Chen, X. Chen, S. Cole, N. Deacon, C. Frenk, A. Fitzsimmons, S. Gezari, C. Goessl, T. Goggia, B. Goldman, E.K. Grebel, N.C. Hambly, G. Hasinger, A.F. Heavens, T.M. Heckman, R. Henderson, T. Henning, M. Holman, U. Hopp, W.-H. Ip, S. Isani, C.D. Keyes, A. Koekemoer, R. Kotak, K.S. Long, J.R. Lucey, M. Liu, N.F. Martin, B. McLean, E. Morganson, D.N.A. Murphy, M.A. Nieto-Santisteban, P. Norberg, J.A. Peacock, E.A. Pier, M. Postman, N. Primak, C. Rae, A. Rest, A. Riess, A. Riffeser, H.W. Rix, S. Roser, E. Schilbach, A.S.B. Schultz, D. Scolnic, A. Szalay, S. Seitz, B. Shiao, E. Small, K.W. Smith, D. Soderblom, A.N. Taylor, A.R. Thakar, J. Thiel, D. Thilker, Y. Urata, J. Valenti, F. Walter, S.P. Watters, S. Werner, R. White, W.M. Wood-Vasey, R. Wyse, The Pan-STARRS1 Surveys (2016). arXiv:1612.05560

  24. B. Cherinka, B.H. Andrews, J. Sánchez-Gallego, J. Brownstein, M. Argudo-Fernández, M. Blanton, K. Bundy, A. Jones, K. Masters, D.R. Law, K. Rowlands, A.-M. Weijmans, K. Westfall, R. Yan, Marvin: a Toolkit for Streamlined Access and Visualization of the SDSS-IV MaNGA Data Set. arXiv:e-prints (2018)

  25. R. Chornock, E. Berger, S. Gezari, B.A. Zauderer, A. Rest, L. Chomiuk, A. Kamble, A.M. Soderberg, I. Czekala, J. Dittmann, M. Drout, R.J. Foley, W. Fong, M.E. Huber, R.P. Kirshner, A. Lawrence, R. Lunnan, G.H. Marion, G. Narayan, A.G. Riess, K.C. Roth, N.E. Sanders, D. Scolnic, S.J. Smartt, K. Smith, C.W. Stubbs, J.L. Tonry, W.S. Burgett, K.C. Chambers, H. Flewelling, K.W. Hodapp, N. Kaiser, E.A. Magnier, D.C. Martin, J.D. Neill, P.A. Price, R. Wainscoat, The ultraviolet-bright, slowly declining transient PS1-11AF as a partial tidal disruption event. Astrophys. J. 780(1), 44 (2014). https://doi.org/10.1088/0004-637X/780/1/44

    ADS  Article  Google Scholar 

  26. C.J. Conselice, S.C. Chapman, R.A. Windhorst, Evidence for a major merger origin of high-redshift submillimeter galaxies. Astrophys. J. 596, 5–8 (2003). https://doi.org/10.1086/379109

    ADS  Article  Google Scholar 

  27. E.R. Coughlin, M.C. Begelman, Hyperaccretion during tidal disruption events: weakly bound debris envelopes and jets. Astrophys. J. 781(2), 82 (2014). https://doi.org/10.1088/0004-637X/781/2/82

    ADS  Article  Google Scholar 

  28. L. Dai, J.C. McKinney, M.C. Miller, Soft X-ray temperature tidal disruption events from stars on deep plunging orbits. Astrophys. J. 812(2), 39 (2015). https://doi.org/10.1088/2041-8205/812/2/L39

    ADS  Article  Google Scholar 

  29. L. Dai, J.C. McKinney, N. Roth, E. Ramirez-Ruiz, M.C. Miller, A unified model for tidal disruption events (2018). arXiv:1803.03265

  30. S. Dong, S. Bose, P. Chen, T.G. Brink, T. de Jaeger, A.V. Filippenko, W. Zheng, Spectroscopic classification of ASASSN-18zj with the Lick 3-m Shane Telescope. Astron. Telegram 12198, 1 (2018)

    ADS  Google Scholar 

  31. D. Elbaz, M. Dickinson, H.S. Hwang, T. Diaz-Santos, G. Magdis, B. Magnelli, D.L. Borgne, F. Galliano, M. Pannella, P. Chanial, L. Armus, V. Charmandaris, E. Daddi, H. Aussel, P. Popesso, J. Kartaltepe, B. Altieri, I. Valtchanov, D. Coia, H. Dannerbauer, K. Dasyra, R. Leiton, J. Mazzarella, V. Buat, D. Burgarella, R.-R. Chary, R. Gilli, R.J. Ivison, S. Juneau, E. LeFloc’h, D. Lutz, G.E. Morrison, J. Mullaney, E. Murphy, A. Pope, D. Scott, D. Alexander, M. Brodwin, D. Calzetti, C. Cesarsky, S. Charlot, H. Dole, P. Eisenhardt, H.C. Ferguson, N. Foerster-Schreiber, D. Frayer, M. Giavalisco, M. Huynh, A.M. Koekemoer, C. Papovich, N. Reddy, C. Surace, H. Teplitz, M.S. Yun, G. Wilson, GOODS-Herschel: an infrared main sequence for star-forming galaxies. Astron. Astrophys. 533, 119 (2011). arXiv:1105.2537

    Article  Google Scholar 

  32. P. Esquej, R.D. Saxton, M.J. Freyberg, A.M. Read, B. Altieri, M. Sanchez-Portal, G. Hasinger, Candidate tidal disruption events from the XMM-Newton slew survey. Astron. Astrophys. 462(3), 49–52 (2007). https://doi.org/10.1051/0004-6361:20066072

    ADS  Article  Google Scholar 

  33. L. Ferrarese, H. Ford, Supermassive black holes in galactic nuclei: past, present and future research. Space Sci. Rev. 116, 523–624 (2005). https://doi.org/10.1007/s11214-005-3947-6

    ADS  Article  Google Scholar 

  34. L. Ferrarese, D. Merritt, A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. 539, 9–12 (2000). https://doi.org/10.1086/312838

    ADS  Article  Google Scholar 

  35. S. Frederick, S. Gezari, M.J. Graham, S.B. Cenko, S. van Velzen, D. Stern, N. Blagorodnova, S.R. Kulkarni, L. Yan, K. De, U.C. Fremling, T. Hung, E. Kara, D.L. Shupe, C. Ward, E.C. Bellm, R. Dekany, D.A. Duev, U. Feindt, M. Giomi, T. Kupfer, R.R. Laher, F.J. Masci, A.A. Miller, C.-C. Ngeow, M.T. Patterson, M. Porter, B. Rusholme, J. Sollerman, R. Walters, A New Class of Changing-Look LINERs (2019). arXiv:1904.10973

  36. K.D. French, A.I. Zabludoff, Identifying tidal disruption events via prior photometric selection of their preferred hosts. Astrophys. J. 868, 99 (2018). https://doi.org/10.3847/1538-4357/aaea64

    ADS  Article  Google Scholar 

  37. K.D. French, I. Arcavi, A. Zabludoff, Tidal disruption events prefer unusual host galaxies. Astrophys. J. 818, 21 (2016). https://doi.org/10.3847/2041-8205/818/1/L21. arXiv:1601.04705

    ADS  Article  Google Scholar 

  38. K.D. French, I. Arcavi, A. Zabludoff, The post-starburst evolution of tidal disruption event host galaxies. Astrophys. J. 835, 176 (2017). https://doi.org/10.3847/1538-4357/835/2/176

    ADS  Article  Google Scholar 

  39. K.D. French, Y. Yang, A.I. Zabludoff, C.A. Tremonti, Clocking the evolution of post-starburst galaxies: methods and first results. Astrophys. J. 862, 2 (2018). https://doi.org/10.3847/1538-4357/aacb2d

    ADS  Article  Google Scholar 

  40. K. Gebhardt, R. Bender, G. Bower, A. Dressler, S.M. Faber, A.V. Filippenko, R. Green, C. Grillmair, L.C. Ho, J. Kormendy, T.R. Lauer, J. Magorrian, J. Pinkney, D. Richstone, S. Tremaine, A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. Lett. 539, 13–16 (2000). https://doi.org/10.1086/312840

    ADS  Article  Google Scholar 

  41. S. Gezari, S. Basa, D.C. Martin, G. Bazin, K. Forster, B. Milliard, J.P. Halpern, P.G. Friedman, P. Morrissey, S.G. Neff, D. Schiminovich, M. Seibert, T. Small, T.K. Wyder, UV/optical detections of candidate tidal disruption events by GALEX and CFHTLS. Astrophys. J. 676(2), 944–969 (2008). https://doi.org/10.1086/529008

    ADS  Article  Google Scholar 

  42. S. Gezari, T. Heckman, S.B. Cenko, M. Eracleous, K. Forster, T.S. Gonçalves, D.C. Martin, P. Morrissey, S.G. Neff, M. Seibert, D. Schiminovich, T.K. Wyder, LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES. Astrophys. J. 698(2), 1367–1379 (2009). https://doi.org/10.1088/0004-637X/698/2/1367

    ADS  Article  Google Scholar 

  43. S. Gezari, S.B. Cenko, I. Arcavi, X-ray Brightening and UV Fading of Tidal Disruption Event ASASSN-15oi (2017). arXiv:1712.03968

  44. S. Gezari, S. van Velzen, S.B. Cenko, M. Graham, N. Blagorodnova, T. Hung, L. Yan, S. Kulkarni, ZTF discovery of a tidal disruption event at z=0.051. Astron. Telegram 12035, 1 (2018)

    ADS  Google Scholar 

  45. O. Graur, K.D. French, H.J. Zahid, J. Guillochon, K.S. Mandel, K. Auchettl, A.I. Zabludoff, A dependence of the tidal disruption event rate on global stellar surface mass density and stellar velocity dispersion. Astrophys. J. 853, 39 (2018). https://doi.org/10.3847/1538-4357/aaa3fd

    ADS  Article  Google Scholar 

  46. J. Greiner, R. Schwarz, S. Zharikov, M. Orio, RX J1420.4+5334 - another tidal disruption event? Astron. Astrophys. 362, 25–28 (2000)

    ADS  Google Scholar 

  47. D. Grupe, H.-C. Thomas, K.M. Leighly, RX J1624.9+7554: a new X-ray transient AGN. Astron. Astrophys. 350, 31–34 (1999)

    ADS  Google Scholar 

  48. J. Guillochon, E. Ramirez-Ruiz, A dark year for tidal disruption events. Astrophys. J. 809, 166 (2015). https://doi.org/10.1088/0004-637X/809/2/166

    ADS  Article  Google Scholar 

  49. K. Gültekin, D.O. Richstone, K. Gebhardt, T.R. Lauer, S. Tremaine, M.C. Aller, R. Bender, A. Dressler, S.M. Faber, A.V. Filippenko, R. Green, L.C. Ho, J. Kormendy, J. Magorrian, J. Pinkney, C. Siopis, The M-\(\sigma\) and M-L relations in galactic bulges, and determinations of their intrinsic scatter. Astrophys. J. 698(1), 198–221 (2009). https://doi.org/10.1088/0004-637X/698/1/198

    ADS  Article  Google Scholar 

  50. J.G. Hills, Possible power source of Seyfert galaxies and QSOs. Nature 254(5498), 295–298 (1975). https://doi.org/10.1038/254295a0

    ADS  Article  Google Scholar 

  51. L.C. Ho, A.V. Filippenko, W.L. Sargent, A search for “Dwarf” Seyfert nuclei. II. An optical spectral atlas of the nuclei of nearby galaxies. Astrophys. J. Suppl. Ser. 98, 477 (1995). https://doi.org/10.1086/192170

    ADS  Article  Google Scholar 

  52. T.W.-S. Holoien, C.S. Kochanek, J.L. Prieto, D. Grupe, P. Chen, D. Godoy-Rivera, K.Z. Stanek, B.J. Shappee, S. Dong, J.S. Brown, U. Basu, J.F. Beacom, D. Bersier, J. Brimacombe, E.K. Carlson, E. Falco, E. Johnston, B.F. Madore, G. Pojmanski, M. Seibert, ASASSN-15oi: a Rapidly Evolving. Luminous Tidal Disruption Event at 216 Mpc., p. 17 (2016a). arXiv:1602.01088

  53. T.W.-S. Holoien, C.S. Kochanek, J.L. Prieto, K.Z. Stanek, S. Dong, B.J. Shappee, D. Grupe, J.S. Brown, U. Basu, J.F. Beacom, D. Bersier, J. Brimacombe, A.B. Danilet, E. Falco, Z. Guo, J. Jose, G.J. Herczeg, F. Long, G. Pojmanski, G.V. Simonian, D.M. Szczygieł, T.A. Thompson, J.R. Thorstensen, R.M. Wagner, P.R. Woźniak, Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. Mon. Not. R. Astron. Soc. 455(3), 2918–2935 (2016b). https://doi.org/10.1093/mnras/stv2486

    ADS  Article  Google Scholar 

  54. T.W.-S. Holoien, M.E. Huber, B.J. Shappee, M. Eracleous, K. Auchettl, J.S. Brown, M.A. Tucker, K.C. Chambers, C.S. Kochanek, K.Z. Stanek, A. Rest, D. Bersier, R.S. Post, G. Aldering, K.A. Ponder, J.D. Simon, E. Kankare, D. Dong, G. Hallinan, J. Bulger, T.B. Lowe, E.A. Magnier, A.S.B. Schultz, C.Z. Waters, M. Willman, D. Wright, D.R. Young, S. Dong, J.L. Prieto, T.A. Thompson, L. Denneau, H. Flewelling, A.N. Heinze, S.J. Smartt, K.W. Smith, B. Stalder, J.L. Tonry, H. Weiland, PS18kh: a New Tidal Disruption Event with a Non-Axisymmetric Accretion Disk (2018). arXiv:1808.02890

  55. S.A. Hughes, R.D. Blandford, Black hole mass and spin coevolution by mergers. Astrophys. J. 585, 101–104 (2003). https://doi.org/10.1086/375495

    ADS  Article  Google Scholar 

  56. T. Hung, S. Gezari, S.B. Cenko, S. van Velzen, N. Blagorodnova, L. Yan, S.R. Kulkarni, R. Lunnan, T. Kupfer, G. Leloudas, A.K.H. Kong, P.E. Nugent, C. Fremling, R.R. Laher, F.J. Masci, Y. Cao, R. Roy, T. Petrushevska, Sifting for sapphires: systematic selection of tidal disruption events in iPTF. Astrophys. J. Suppl. Ser. 238, 15 (2018). https://doi.org/10.3847/1538-4365/aad8b1

    ADS  Article  Google Scholar 

  57. F. Jansen, D. Lumb, B. Altieri, J. Clavel, M. Ehle, C. Erd, C. Gabriel, M. Guainazzi, P. Gondoin, R. Much, R. Munoz, M. Santos, N. Schartel, D. Texier, G. Vacanti, XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, 1–6 (2001). https://doi.org/10.1051/0004-6361:20000036

    ADS  Article  Google Scholar 

  58. E. Jones, T. Oliphant, P. Peterson, Others, SciPy: Open source scientific tools for Python (2001). http://www.scipy.org/

  59. P.G. Jonker, N.C. Stone, A. Generozov, S. van Velzen, B. Metzger, Implications from Late-Time X-ray Detections of Optically Selected Tidal Disruption Events: State Changes, Unification, and Detection Rates (2019). arXiv:1906.12236

  60. E. Kankare, R. Kotak, S. Mattila, P. Lundqvist, M.J. Ward, M. Fraser, A. Lawrence, S.J. Smartt, W.P.S. Meikle, A. Bruce, J. Harmanen, S.J. Hutton, C. Inserra, T. Kangas, A. Pastorello, T. Reynolds, C. Romero-Cañizales, K.W. Smith, S. Valenti, K.C. Chambers, K.W. Hodapp, M.E. Huber, N. Kaiser, R.-P. Kudritzki, E.A. Magnier, J.L. Tonry, R.J. Wainscoat, C. Waters, A population of highly energetic transient events in the centres of active galaxies. Nat. Astron. 1, 865–871 (2017). https://doi.org/10.1038/s41550-017-0290-2

    ADS  Article  Google Scholar 

  61. G. Kauffmann, T.M. Heckman, S.D.M. White, S. Charlot, C. Tremonti, J. Brinchmann, G. Bruzual, E.W. Peng, M. Seibert, M. Bernardi, M. Blanton, J. Brinkmann, F. Castander, I. Csábai, M. Fukugita, Z. Ivezic, J.A. Munn, R.C. Nichol, N. Padmanabhan, A.R. Thakar, D.H. Weinberg, D. York, Stellar masses and star formation histories for \(10^{5}\) galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 341, 33–53 (2003a). https://doi.org/10.1046/j.1365-8711.2003.06291.x

    ADS  Article  Google Scholar 

  62. G. Kauffmann, T.M. Heckman, C. Tremonti, J. Brinchmann, S. Charlot, S.D.M. White, S.E. Ridgway, J. Brinkmann, M. Fukugita, P.B. Hall, Ž. Ivezić, G.T. Richards, D.P. Schneider, The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346(4), 1055–1077 (2003b). https://doi.org/10.1111/j.1365-2966.2003.07154.x

    ADS  Article  Google Scholar 

  63. W.C. Keel, C.J. Lintott, W.P. Maksym, V.N. Bennert, S.D. Chojnowski, A. Moiseev, A. Smirnova, K. Schawinski, L.F. Sartori, C.M. Urry, A. Pancoast, M. Schirmer, B. Scott, C. Showley, K. Flatland, Fading AGN candidates: AGN histories and outflow signatures. Astrophys. J. 835(2), 256 (2017). https://doi.org/10.3847/1538-4357/835/2/256

    ADS  Article  Google Scholar 

  64. G.F. Kennedy, Y. Meiron, B. Shukirgaliyev, T. Panamarev, P. Berczik, A. Just, R. Spurzem, Star-disc interaction in galactic nuclei: orbits and rates of accreted stars. Mon. Not. R. Astron. Soc. 460, 240–255 (2016). https://doi.org/10.1093/mnras/stw908. arXiv:1604.05309

    ADS  Article  Google Scholar 

  65. R.C. Kennicutt, N.J. Evans, Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012). https://doi.org/10.1146/annurev-astro-081811-125610

    ADS  Article  Google Scholar 

  66. M. Kesden, Tidal-disruption rate of stars by spinning supermassive black holes. Phys. Rev. D 85(2), 024037 (2012). https://doi.org/10.1103/PhysRevD.85.024037

    ADS  MathSciNet  Article  Google Scholar 

  67. L.J. Kewley, M.A. Dopita, R.S. Sutherland, C.A. Heisler, J. Trevena, Theoretical modeling of starburst galaxies. Astrophys. J. 556(1), 121–140 (2001). https://doi.org/10.1086/321545

    ADS  Article  Google Scholar 

  68. I. Khabibullin, S. Sazonov, R. Sunyaev, SRG/eROSITA prospects for the detection of stellar tidal disruption flares. Mon. Not. R. Astron. Soc. 437(1), 327–337 (2014). https://doi.org/10.1093/mnras/stt1889

    ADS  Article  Google Scholar 

  69. C.S. Kochanek, Tidal Disruption Event (TDE) demographics. Mon. Not. R. Astron. Soc. 461, 371–384 (2016). https://doi.org/10.1093/mnras/stw1290. arXiv:1601.06787

    ADS  Article  Google Scholar 

  70. S. Komossa, J. Greiner, Discovery of a giant and luminous X-ray outburst from the optically inactive galaxy pair RX J1242.6-1119. Astron. Astrophys. 349, 45–48 (1999)

    ADS  Google Scholar 

  71. S. Komossa, D. Merritt, Tidal disruption flares from recoiling supermassive black holes. Astrophys. J. 683(1), 21–24 (2008). https://doi.org/10.1086/591420

    ADS  Article  Google Scholar 

  72. S. Komossa, H. Zhou, A. Rau, M. Dopita, A. Gal-Yam, J. Greiner, J. Zuther, M. Salvato, D. Xu, H. Lu, R. Saxton, M. Ajello, NTT, Spitzer, and Chandra Spectroscopy of SDSSJ095209.56+214313.3: the most luminous coronal-line supernova ever observed, or a stellar tidal disruption event? Astrophys. J. 701, 105–121 (2009). https://doi.org/10.1088/0004-637X/701/1/105

    ADS  Article  Google Scholar 

  73. J. Kormendy, L.C. Ho, Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51(1), 511–653 (2013). https://doi.org/10.1146/annurev-astro-082708-101811

    ADS  Article  Google Scholar 

  74. J. Kormendy, D. Richstone, Inward bound—the search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys. 33, 581 (1995). https://doi.org/10.1146/annurev.aa.33.090195.003053

    ADS  Article  Google Scholar 

  75. T.R. Lauer, K. Gebhardt, S.M. Faber, D. Richstone, S. Tremaine, J. Kormendy, M.C. Aller, R. Bender, A. Dressler, A.V. Filippenko, R. Green, L.C. Ho, The centers of early-type galaxies with Hubble Space Telescope. VI. Bimodal central surface brightness profiles. Astrophys. J. 664(1), 226–256 (2007). https://doi.org/10.1086/519229

    ADS  Article  Google Scholar 

  76. N.M. Law, S.R. Kulkarni, R.G. Dekany, E.O. Ofek, R.M. Quimby, P.E. Nugent, J. Surace, C.C. Grillmair, J.S. Bloom, M.M. Kasliwal, L. Bildsten, T. Brown, S.B. Cenko, D. Ciardi, E. Croner, S.G. Djorgovski, J. van Eyken, A.V. Filippenko, D.B. Fox, A. Gal- Yam, D. Hale, N. Hamam, G. Helou, J. Henning, D.A. Howell, J. Jacobsen, R. Laher, S. Mattingly, D. McKenna, A. Pickles, D. Poznanski, G. Rahmer, A. Rau, W. Rosing, M. Shara, R. Smith, D. Starr, M. Sullivan, V. Velur, R. Walters, J. Zolkower, The palomar transient factory: system overview, performance, and first results. Publ. Astron. Soc. Pac. 121, 1395 (2009). https://doi.org/10.1086/648598

    ADS  Article  Google Scholar 

  77. J. Law-Smith, M. MacLeod, J. Guillochon, P. Macias, E. Ramirez-Ruiz, Low-mass white dwarfs with hydrogen envelopes as a missing link in the tidal disruption menu. Astrophys. J. 841(2), 132 (2017a). https://doi.org/10.3847/1538-4357/aa6ffb

    ADS  Article  Google Scholar 

  78. J. Law-Smith, E. Ramirez-Ruiz, S.L. Ellison, R.J. Foley, Tidal disruption event host galaxies in the context of the local galaxy population. Astrophys. J. 850(1), 22 (2017b). https://doi.org/10.3847/1538-4357/aa94c7. arXiv:1707.01559

    ADS  Article  Google Scholar 

  79. G. Leloudas, M. Fraser, N.C. Stone, S. van Velzen, P.G. Jonker, I. Arcavi, C. Fremling, J.R. Maund, S.J. Smartt, T. Kruhler, J.C.A. Miller-Jones, P.M. Vreeswijk, A. Gal-Yam, P.A. Mazzali, A. De Cia, D.A. Howell, C. Inserra, F. Patat, A. d U, Postigo, O. Yaron, C. Ashall, I. Bar, H. Campbell, T.-W. Chen, M. Childress, N. Elias-Rosa, J. Harmanen, G. Hosseinzadeh, J. Johansson, T. Kangas, E. Kankare, S. Kim, H. Kuncarayakti, J. Lyman, M.R. Magee, K. Maguire, D. Malesani, S. Mattila, C.V. McCully, M. Nicholl, S. Prentice, C. Romero-Canizales, S. Schulze, K.W. Smith, J. Sollerman, M. Sullivan, B.E. Tucker, S. Valenti, J.C. Wheeler, D.R. Young, The Superluminous Transient ASASSN-15lh as a Tidal Disruption Event from a Kerr Black Hole (2016). arXiv:1609.02927

  80. G. Leloudas, L. Dai, I. Arcavi, P.M. Vreeswijk, B. Mockler, R. Roy, D.B. Malesani, S. Schulze, T. Wevers, M. Fraser, E. Ramirez-Ruiz, K. Auchettl, J. Burke, G. Cannizzaro, P. Charalampopoulos, T.-W. Chen, A. Cikota, M. Della Valle, L. Galbany, M. Gromadzki, K.E. Heintz, D. Hiramatsu, P.G. Jonker, Z. Kostrzewa-Rutkowska, K. Maguire, I. Mandel, F. Onori, N. Roth, S.J. Smartt, L. Wyrzykowski, D.R. Young, The spectral evolution of AT 2018dyb and the presence of metal lines in tidal disruption events. arXiv:e-prints (2019)

  81. A.J. Levan, N.R. Tanvir, S.B. Cenko, D.A. Perley, K. Wiersema, J.S. Bloom, A.S. Fruchter, A.D.U. Postigo, P.T. O’Brien, N. Butler, A.J. van der Horst, G. Leloudas, A.N. Morgan, K. Misra, G.C. Bower, J. Farihi, R.L. Tunnicliffe, M. Modjaz, J.M. Silverman, J. Hjorth, C. Thöne, A. Cucchiara, J.M.C. Cerón, A.J. Castro-Tirado, J.A. Arnold, M. Bremer, J.P. Brodie, T. Carroll, M.C. Cooper, P.A. Curran, R.M. Cutri, J. Ehle, D. Forbes, J. Fynbo, J. Gorosabel, J. Graham, D.I. Hoffman, S. Guziy, P. Jakobsson, A. Kamble, T. Kerr, M.M. Kasliwal, C. Kouveliotou, D. Kocevski, N.M. Law, P.E. Nugent, E.O. Ofek, D. Poznanski, R.M. Quimby, E. Rol, A.J. Romanowsky, R. Sánchez-Ramírez, S. Schulze, N. Singh, L. van Spaandonk, R.L.C. Starling, R.G. Strom, J.C. Tello, O. Vaduvescu, P.J. Wheatley, R.A.M.J. Wijers, J.M. Winters, D. Xu, An extremely luminous panchromatic outburst from the nucleus of a distant galaxy. Science 333(6039), 199–202 (2011). https://doi.org/10.1126/science.1207143

    ADS  Article  Google Scholar 

  82. D. Lin, P.W. Maksym, J.A. Irwin, S. Komossa, N.A. Webb, O. Godet, D. Barret, D. Grupe, S.D.J. Gwyn, An ultrasoft X-ray flare from 3XMM J152130.7+074916: a tidal disruption event candidate. Astrophys. J. 811(1), 43 (2015). https://doi.org/10.1088/0004-637X/811/1/43

    ADS  Article  Google Scholar 

  83. D. Lin, J. Guillochon, S. Komossa, E. Ramirez-Ruiz, J.A. Irwin, W.P. Maksym, D. Grupe, O. Godet, N.A. Webb, D. Barret, B.A. Zauderer, P.-A. Duc, E.R. Carrasco, S.D.J. Gwyn, A likely decade-long sustained tidal disruption event. Nat. Astron. 1, 0033 (2017). https://doi.org/10.1038/s41550-016-0033

    ADS  Article  Google Scholar 

  84. D. Lin, J. Strader, E.R. Carrasco, D. Page, A.J. Romanowsky, J. Homan, J.A. Irwin, R.A. Remillard, O. Godet, N.A. Webb, H. Baumgardt, R. Wijnands, D. Barret, P.-A. Duc, J.P. Brodie, S.D.J. Gwyn, A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster. Nat. Astron. 2, 656–661 (2018). https://doi.org/10.1038/s41550-018-0493-1

    ADS  Article  Google Scholar 

  85. C.J. Lintott, K. Schawinski, W. Keel, H. van Arkel, N. Bennert, E. Edmondson, D. Thomas, D.J.B. Smith, P.D. Herbert, M.J. Jarvis, S. Virani, D. Andreescu, S.P. Bamford, K. Land, P. Murray, R.C. Nichol, M.J. Raddick, A. Slosar, A. Szalay, J. Vandenberg, Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo? Mon. Not. R. Astron. Soc. 399(1), 129–140 (2009). https://doi.org/10.1111/j.1365-2966.2009.15299.x

    ADS  Article  Google Scholar 

  86. G. Lodato, A.R. King, J.E. Pringle, Stellar disruption by a supermassive black hole: is the light curve really proportional to \(\mbox{t}^{-5/3}\)? Mon. Not. R. Astron. Soc. 392, 332–340 (2009). https://doi.org/10.1111/j.1365-2966.2008.14049.x

    ADS  Article  Google Scholar 

  87. M. MacLeod, J. Guillochon, E. Ramirez-Ruiz, THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION. Astrophys. J. 757(2), 134 (2012). https://doi.org/10.1088/0004-637X/757/2/134

    ADS  Article  Google Scholar 

  88. A.-M. Madigan, A. Halle, M. Moody, M. McCourt, C. Nixon, H. Wernke, Dynamical properties of eccentric nuclear disks: stability, longevity, and implications for tidal disruption rates in post-merger galaxies. Astrophys. J. 853, 141 (2018). https://doi.org/10.3847/1538-4357/aaa714

    ADS  Article  Google Scholar 

  89. J. Magorrian, S. Tremaine, Rates of tidal disruption of stars by massive central black holes. Mon. Not. R. Astron. Soc. 309(2), 447–460 (1999). https://doi.org/10.1046/j.1365-8711.1999.02853.x

    ADS  Article  Google Scholar 

  90. J. Magorrian, S. Tremaine, D. Richstone, R. Bender, G. Bower, A. Dressler, S.M. Faber, K. Gebhardt, R. Green, C. Grillmair, J. Kormendy, T. Lauer, The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998). https://doi.org/10.1086/300353

    ADS  Article  Google Scholar 

  91. W.P. Maksym, M.P. Ulmer, M. Eracleous, A tidal disruption flare in A1689 from an archival X-ray survey of galaxy clusters. Astrophys. J. 722, 1035–1050 (2010). https://doi.org/10.1088/0004-637X/722/2/1035

    ADS  Article  Google Scholar 

  92. W.P. Maksym, M.P. Ulmer, M.C. Eracleous, L. Guennou, L.C. Ho, A tidal flare candidate in Abell 1795. Mon. Not. R. Astron. Soc. 435, 1904–1927 (2013). https://doi.org/10.1093/mnras/stt1379

    ADS  Article  Google Scholar 

  93. W.P. Maksym, D. Lin, J.A. Irwin, RBS 1032: a tidal disruption event in another dwarf galaxy? Astrophys. J. 792(2), 29 (2014). https://doi.org/10.1088/2041-8205/792/2/L29

    ADS  Article  Google Scholar 

  94. S. Mattila, M. Pérez-Torres, A. Efstathiou, P. Mimica, M. Fraser, E. Kankare, A. Alberdi, M.Á. Aloy, T. Heikkilä, P.G. Jonker, P. Lundqvist, I. Martí-Vidal, W.P.S. Meikle, C. Romero-Cañizales, S.J. Smartt, S. Tsygankov, E. Varenius, A. Alonso- Herrero, M. Bondi, C. Fransson, R. Herrero- Illana, T. Kangas, R. Kotak, N. Ramírez- Olivencia, P. Väisänen, R.J. Beswick, D.L. Clements, R. Greimel, J. Harmanen, J. Kotilainen, K. Nandra, T. Reynolds, S. Ryder, N.A. Walton, K. Wiik, G. Östlin, A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. Science 361, 482–485 (2018). https://doi.org/10.1126/science.aao4669

    ADS  Article  Google Scholar 

  95. N.J. McConnell, C.-P. Ma, Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013). https://doi.org/10.1088/0004-637X/764/2/184

    ADS  Article  Google Scholar 

  96. J.T. Mendel, L. Simard, M. Palmer, S.L. Ellison, D.R. Patton, A catalog of bulge, disk, and total stellar mass estimates for the sloan digital sky survey. Astrophys. J. Suppl. Ser. 210(1), 3 (2014). https://doi.org/10.1088/0067-0049/210/1/3

    ADS  Article  Google Scholar 

  97. D. Merritt, M.Y. Poon, Chaotic loss cones and black hole fueling. Astrophys. J. 606(2), 788–798 (2004). https://doi.org/10.1086/382497

    ADS  Article  Google Scholar 

  98. B.D. Metzger, N.C. Stone, A bright year for tidal disruptions. Mon. Not. R. Astron. Soc. 461(1), 948–966 (2016). https://doi.org/10.1093/mnras/stw1394

    ADS  Article  Google Scholar 

  99. B. Mockler, J. Guillochon, E. Ramirez-Ruiz, Weighing black holes using tidal disruption events. Astrophys. J. 872, 151 (2019). https://doi.org/10.3847/1538-4357/ab010f

    ADS  Article  Google Scholar 

  100. M.M. Pawlik, V. Wild, C.J. Walcher, P.H. Johansson, C. Villforth, K. Rowlands, J. Mendez-Abreu, T. Hewlett, Shape asymmetry: a morphological indicator for automatic detection of galaxies in the post-coalescence merger stages. Mon. Not. R. Astron. Soc. 456(3), 3032–3052 (2015). arXiv:1512.02000

    ADS  Article  Google Scholar 

  101. P.J.E. Peebles, Star distribution near a collapsed object. Astrophys. J. 178, 371–376 (1972). https://doi.org/10.1086/151797

    ADS  Article  Google Scholar 

  102. M. Pereira-Santaella, A. Alonso-Herrero, L. Colina, D. Miralles-Caballero, P.G. Pérez-González, S. Arribas, E. Bellocchi, S. Cazzoli, T. Díaz-Santos, J. Piqueras López, Star-formation histories of local luminous infrared galaxies. Astron. Astrophys. 577, 78 (2015). https://doi.org/10.1051/0004-6361/201425359

    ADS  Article  Google Scholar 

  103. F. Pérez, B.E. Granger, IPython: a system for interactive scientific computing. J. Comput. Sci. Eng. 9(3), 21–29 (2007). https://doi.org/10.1109/MCSE.2007.53. http://ipython.org

    Article  Google Scholar 

  104. H. Pfister, B. Bar-Or, M. Volonteri, Y. Dubois, P.R. Capelo, Tidal disruption event rates in galaxy merger remnants (2019). arXiv:1903.09124

  105. J.L. Prieto, T. Krühler, J.P. Anderson, L. Galbany, C.S. Kochanek, E. Aquino, J.S. Brown, S. Dong, F. Förster, T.W.-S. Holoien, H. Kuncarayakti, J.C. Maureira, F.F. Rosales-Ortega, S.F. Sánchez, B.J. Shappee, K.Z. Stanek, MUSE reveals a recent merger in the post-starburst host galaxy of the TDE ASASSN-14li. Astrophys. J. Lett. 830(2), 32 (2016). arXiv:1609.00013

    ADS  Article  Google Scholar 

  106. A.D. Quintero, D.W. Hogg, M.R. Blanton, D.J. Schlegel, D.J. Eisenstein, J.E. Gunn, J. Brinkmann, M. Fukugita, K. Glazebrook, T. Goto, Selection and photometric properties of K+A galaxies. Astrophys. J. 602(1), 190–199 (2004). https://doi.org/10.1086/380601

    ADS  Article  Google Scholar 

  107. A. Rau, S.R. Kulkarni, N.M. Law, J.S. Bloom, D. Ciardi, G.S. Djorgovski, D.B. Fox, A. Gal-Yam, C.C. Grillmair, M.M. Kasliwal, P.E. Nugent, E.O. Ofek, R.M. Quimby, W.T. Reach, M. Shara, L. Bildsten, S.B. Cenko, A.J. Drake, A.V. Filippenko, D.J. Helfand, G. Helou, D.A. Howell, D. Poznanski, M. Sullivan, Exploring the optical transient sky with the palomar transient factory. Publ. Astron. Soc. Pac. 121, 1334 (2009). https://doi.org/10.1086/605911

    ADS  Article  Google Scholar 

  108. M.J. Rees, Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333(6173), 523–528 (1988). https://doi.org/10.1038/333523a0

    ADS  Article  Google Scholar 

  109. J.A. Rich, L.J. Kewley, M.A. Dopita, Galaxy mergers drive shocks: an integral field study of GOALS galaxies. Astrophys. J. Suppl. Ser. 221, 28 (2015). https://doi.org/10.1088/0067-0049/221/2/28. arXiv:1509.08468

    ADS  Article  Google Scholar 

  110. T.P. Robitaille, E.J. Tollerud, P. Greenfield, M. Droettboom, E. Bray, T. Aldcroft, M. Davis, A. Ginsburg, A.M. Price-Whelan, W.E. Kerzendorf, A. Conley, N. Crighton, K. Barbary, D. Muna, H. Ferguson, F. Grollier, M.M. Parikh, P.H. Nair, H.M. Unther, C. Deil, J. Woillez, S. Conseil, R. Kramer, J.E.H. Turner, L. Singer, R. Fox, B.A. Weaver, V. Zabalza, Z.I. Edwards, K. Azalee Bostroem, D.J. Burke, A.R. Casey, S.M. Crawford, N. Dencheva, J. Ely, T. Jenness, K. Labrie, P.L. Lim, F. Pierfederici, A. Pontzen, A. Ptak, B. Refsdal, M. Servillat, O. Streicher (Astropy Collaboration), Astropy: a community Python package for astronomy. Astron. Astrophys. 558, 33 (2013). https://doi.org/10.1051/0004-6361/201322068

    Article  Google Scholar 

  111. N. Roth, D. Kasen, J. Guillochon, E. Ramirez-Ruiz, The X-ray through optical fluxes and line strengths of tidal disruption events. Astrophys. J. 827(1), 3 (2016). https://doi.org/10.3847/0004-637X/827/1/3

    ADS  Article  Google Scholar 

  112. R.D. Saxton, A.M. Read, P. Esquej, S. Komossa, S. Dougherty, P. Rodriguez-Pascual, D. Barrado, A tidal disruption-like X-ray flare from the quiescent galaxy SDSS J120136.02+300305.5. Astron. Astrophys. 541, 106 (2012). https://doi.org/10.1051/0004-6361/201118367

    ADS  Article  Google Scholar 

  113. R.D. Saxton, A.M. Read, S. Komossa, P. Lira, K.D. Alexander, M.H. Wieringa, XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components. Astron. Astrophys. 598, 29 (2017). https://doi.org/10.1051/0004-6361/201629015

    ADS  Article  Google Scholar 

  114. F. Schweizer, P. Seitzer, D.D. Kelson, E.V. Villanueva, G.L. Walth, The [O III] Nebula of the merger remnant NGC 7252: a likely faint ionization echo. Astrophys. J. 773(2), 148 (2013). https://doi.org/10.1088/0004-637X/773/2/148

    ADS  Article  Google Scholar 

  115. B.J. Shappee, J.L. Prieto, D. Grupe, C.S. Kochanek, K.Z. Stanek, G. De Rosa, S. Mathur, Y. Zu, B.M. Peterson, R.W. Pogge, S. Komossa, M. Im, J. Jencson, T.W.-S. Holoien, U. Basu, J.F. Beacom, D.M. Szczygieł, J. Brimacombe, S. Adams, A. Campillay, C. Choi, C. Contreras, M. Dietrich, M. Dubberley, M. Elphick, S. Foale, M. Giustini, C. Gonzalez, E. Hawkins, D.A. Howell, E.Y. Hsiao, M. Koss, K.M. Leighly, N. Morrell, D. Mudd, D. Mullins, J.M. Nugent, J. Parrent, M.M. Phillips, G. Pojmanski, W. Rosing, R. Ross, D. Sand, D.M. Terndrup, S. Valenti, Z. Walker, Y. Yoon, The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014). https://doi.org/10.1088/0004-637X/788/1/48

    ADS  Article  Google Scholar 

  116. L. Simard, C.N.A. Willmer, N.P. Vogt, V.L. Sarajedini, A.C. Phillips, B.J. Weiner, D.C. Koo, M. Im, G.D. Illingworth, S.M. Faber, The DEEP groth strip survey. II. Hubble space telescope structural parameters of galaxies in the groth strip. Astrophys. J. Suppl. Ser. 142, 1–33 (2002). https://doi.org/10.1086/341399

    ADS  Article  Google Scholar 

  117. L. Simard, J. Trevor Mendel, D.R. Patton, S.L. Ellison, A.W. McConnachie, VizieR Online Data Catalog: Bulge+disk decompositions of SDSS galaxies (Simard+, 2011). VizieR Online Data Catalog, 196–11 (2011)

  118. G.F. Snyder, T.J. Cox, C.C. Hayward, L. Hernquist, P. Jonsson, K+A galaxies as the aftermath of gas-rich mergers: simulating the evolution of galaxies as seen by spectroscopic surveys. Astrophys. J. 741(2), 77 (2011). https://doi.org/10.1088/0004-637X/741/2/77

    ADS  Article  Google Scholar 

  119. D. Stern, R.J. Assef, D.J. Benford, A. Blain, R. Cutri, A. Dey, P. Eisenhardt, R.L. Griffith, T.H. Jarrett, S. Lake, F. Masci, S. Petty, S.A. Stanford, C.-W. Tsai, E.L. Wright, L. Yan, F. Harrison, K. Madsen, Mid-infrared selection of active galactic nuclei with the wide-field infrared survey explorer. I. Characterizing WISE-selected active galactic nuclei in COSMOS. Astrophys. J. 753(1), 30 (2012). https://doi.org/10.1088/0004-637X/753/1/30

    ADS  Article  Google Scholar 

  120. N.C. Stone, B.D. Metzger, Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Mon. Not. R. Astron. Soc. 455(1), 859–883 (2016). https://doi.org/10.1093/mnras/stv2281

    ADS  Article  Google Scholar 

  121. N.C. Stone, S. van Velzen, An enhanced rate of tidal disruptions in the centrally overdense E+A galaxy NGC 3156. Astrophys. J. Lett. 825, 14 (2016). https://doi.org/10.3847/2041-8205/825/1/L14. arXiv:1604.02056

    ADS  Article  Google Scholar 

  122. N.C. Stone, M. Kesden, R.M. Cheng, S. van Velzen, Stellar Tidal Disruption Events in General Relativity (2018). arXiv:1801.10180

  123. C. Tadhunter, R. Spence, M. Rose, J. Mullaney, P. Crowther, A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237. Nat. Astron. 1, 0061 (2017). https://doi.org/10.1038/s41550-017-0061. arXiv:1702.02573

    ADS  Article  Google Scholar 

  124. E. Tempel, A. Tamm, M. Gramann, T. Tuvikene, L.J. Liivamägi, I. Suhhonenko, R. Kipper, M. Einasto, E. Saar, Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation. Astron. Astrophys. 566, 1 (2014). https://doi.org/10.1051/0004-6361/201423585

    ADS  Article  Google Scholar 

  125. B. Trakhtenbrot, I. Arcavi, C. Ricci, S. Tacchella, D. Stern, H. Netzer, P.G. Jonker, A. Horesh, J.E. Mejía-Restrepo, G. Hosseinzadeh, V. Hallefors, D.A. Howell, C. McCully, M. Baloković, M. Heida, N. Kamraj, G.B. Lansbury, Ł. Wyrzykowski, M. Gromadzki, A. Hamanowicz, S.B. Cenko, D.J. Sand, E.Y. Hsiao, M.M. Phillips, T.R. Diamond, E. Kara, K.C. Gendreau, Z. Arzoumanian, R. Remillard, A new class of flares from accreting supermassive black holes. Nat. Astron. (2019). https://doi.org/10.1038/s41550-018-0661-3

    Article  Google Scholar 

  126. E. Treister, K. Schawinski, C.M. Urry, B.D. Simmons, Major galaxy mergers only trigger the most luminous active galactic nuclei. Astrophys. J. 758, 39 (2012). https://doi.org/10.1088/2041-8205/758/2/L39

    ADS  Article  Google Scholar 

  127. S. Tremaine, K. Gebhardt, R. Bender, G. Bower, A. Dressler, S.M. Faber, A.V. Filippenko, R. Green, C. Grillmair, L.C. Ho, J. Kormendy, T.R. Lauer, J. Magorrian, J. Pinkney, D. Richstone, The slope of the black hole mass versus velocity dispersion correlation. Astrophys. J. 574, 740–753 (2002). https://doi.org/10.1086/341002

    ADS  Article  Google Scholar 

  128. C.A. Tremonti, T.M. Heckman, G. Kauffmann, J. Brinchmann, S. Charlot, S.D.M. White, M. Seibert, E.W. Peng, D.J. Schlegel, A. Uomoto, M. Fukugita, J. Brinkmann, The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the sloan digital sky survey. Astrophys. J. 613(2), 898–913 (2004). https://doi.org/10.1086/423264

    ADS  Article  Google Scholar 

  129. S. Van Der Walt, S.C. Colbert, G. Varoquaux, The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

    Article  Google Scholar 

  130. S. van Velzen, On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. Astrophys. J. 852, 72 (2018). https://doi.org/10.3847/1538-4357/aa998e

    ADS  Article  Google Scholar 

  131. S. van Velzen, G.R. Farrar, S. Gezari, N. Morrell, D. Zaritsky, L. Östman, M. Smith, J. Gelfand, A.J. Drake, Optical discovery of probable stellar tidal disruption flares. Astrophys. J. 741(2), 73 (2011). https://doi.org/10.1088/0004-637X/741/2/73

    ADS  Article  Google Scholar 

  132. M. Volonteri, P. Madau, F. Haardt, The formation of galaxy stellar cores by the hierarchical merging of supermassive black holes. Astrophys. J. 593, 661–666 (2003). https://doi.org/10.1086/376722

    ADS  Article  Google Scholar 

  133. J. Wang, D. Merritt, Revised rates of stellar disruption in galactic nuclei. Astrophys. J. 600(1), 149–161 (2004). https://doi.org/10.1086/379767

    ADS  Article  Google Scholar 

  134. T.-G. Wang, H.-Y. Zhou, S. Komossa, H.-Y. Wang, W. Yuan, C. Yang, Extreme coronal line emitters: tidal disruption of stars by massive black holes in galactic nuclei? Astrophys. J. 749(2), 115 (2012). https://doi.org/10.1088/0004-637X/749/2/115

    ADS  Article  Google Scholar 

  135. K.-Y. Watarai, K. Ohsuga, R. Takahashi, J. Fukue, Geometrical effect of supercritical accretion flows: observational implications of galactic black-hole candidates and ultraluminous X-ray sources. Publ. Astron. Soc. Jpn. 57, 513–524 (2005). https://doi.org/10.1093/pasj/57.3.513

    ADS  Article  Google Scholar 

  136. A.E. Watkins, J.C. Mihos, M. Bershady, P. Harding, Discovery of a vast ionized gas cloud in the M51 system. Astrophys. J. 858(2), 16 (2018). https://doi.org/10.3847/2041-8213/aabba1

    ADS  Article  Google Scholar 

  137. T. Wevers, S. van Velzen, P.G. Jonker, N.C. Stone, T. Hung, F. Onori, S. Gezari, N. Blagorodnova, Black hole masses of tidal disruption event host galaxies (2017). arXiv:1706.08965

  138. T. Wevers, N.C. Stone, S. van Velzen, P.G. Jonker, T. Hung, K. Auchettl, S. Gezari, F. Onori, Black hole masses of tidal disruption event host galaxies II. arXiv:e-prints (2019a)

  139. T. Wevers, D.R. Pasham, S. van Velzen, G. Leloudas, S. Schulze, J.C.A. Miller-Jones, P.G. Jonker, M. Gromadzki, E. Kankare, S.T. Hodgkin, L. Wyrzykowski, Z. Kostrzewa-Rutkowska, S. Moran, M. Berton, K. Maguire, F. Onori, S. Matilla, M. Nicholl, Evidence for rapid disk formation and reprocessing in the X-ray bright tidal disruption event AT 2018fyk. arXiv:1903.2203 (2019b)

  140. V. Wild, T. Heckman, S. Charlot, Timing the starburst-AGN connection. Mon. Not. R. Astron. Soc. 405(2), 933–947 (2010). https://doi.org/10.1111/j.1365-2966.2010.16536.x

    ADS  Article  Google Scholar 

  141. V. Wild, O. Almaini, J. Dunlop, C. Simpson, K. Rowlands, R. Bowler, D. Maltby, R. McLure, The evolution of post-starburst galaxies from z=2 to z= 0.5. Mon. Not. R. Astron. Soc. 463, 832–844 (2016). https://doi.org/10.1093/mnras/stw1996. arXiv:1608.00588

    ADS  Article  Google Scholar 

  142. R.J. Williams, R.W. Pogge, S. Mathur, Narrow-line Seyfert 1 galaxies from the sloan digital sky survey early data release. Astron. J. 124(6), 3042–3049 (2002). https://doi.org/10.1086/344765

    ADS  Article  Google Scholar 

  143. O.I. Wong, K. Schawinski, S. Kaviraj, K.L. Masters, R.C. Nichol, C. Lintott, W.C. Keel, D. Darg, S.P. Bamford, D. Andreescu, P. Murray, M.J. Raddick, A. Szalay, D. Thomas, J. VandenBerg, Galaxy Zoo: building the low-mass end of the red sequence with local post-starburst galaxies. Mon. Not. R. Astron. Soc. 420(2), 1684–1692 (2012). https://doi.org/10.1111/j.1365-2966.2011.20159.x

    ADS  Article  Google Scholar 

  144. G. Worthey, D.L. Ottaviani, \(\mbox{H}\gamma\) and \(\mbox{H}\delta\) absorption features in stars and stellar populations. Astrophys. J. Suppl. Ser. 111(2), 377–386 (1997). https://doi.org/10.1086/313021

    ADS  Article  Google Scholar 

  145. E.L. Wright, P.R.M. Eisenhardt, A.K. Mainzer, M.E. Ressler, R.M. Cutri, T. Jarrett, J.D. Kirkpatrick, D. Padgett, R.S. McMillan, M. Skrutskie, S.A. Stanford, M. Cohen, R.G. Walker, J.C. Mather, D. Leisawitz, I. Gautier, N. Thomas, I. McLean, D. Benford, C.J. Lonsdale, A. Blain, B. Mendez, W.R. Irace, V. Duval, F. Liu, D. Royer, I. Heinrichsen, J. Howard, M. Shannon, M. Kendall, A.L. Walsh, M. Larsen, J.G. Cardon, S. Schick, M. Schwalm, M. Abid, B. Fabinsky, L. Naes, C.-W. Tsai, The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140(6), 1868–1881 (2010). https://doi.org/10.1088/0004-6256/140/6/1868

    ADS  Article  Google Scholar 

  146. R. Yan, M.R. Blanton, The nature of liner-like emission in red galaxies. Astrophys. J. 747(1), 61 (2012). https://doi.org/10.1088/0004-637X/747/1/61

    ADS  Article  Google Scholar 

  147. R. Yan, J.A. Newman, S.M. Faber, A.L. Coil, M.C. Cooper, M. Davis, B.J. Weiner, B.F. Gerke, D.C. Koo, The DEEP2 Galaxy Redshift Survey: environments of post-starburst galaxies at \(z\sim 0.1\) and \({\sim}0.8\). Mon. Not. R. Astron. Soc. 398(2), 735–753 (2009). https://doi.org/10.1111/j.1365-2966.2009.15192.x

    ADS  Article  Google Scholar 

  148. Y. Yang, A.I. Zabludoff, D. Zaritsky, T.R. Lauer, J.C. Mihos, E+A galaxies and the formation of early-type galaxies at \(\mbox{z} \sim 0\). Astrophys. J. 607(1), 258–273 (2004). https://doi.org/10.1086/383259

    ADS  Article  Google Scholar 

  149. Y. Yang, A.I. Zabludoff, D. Zaritsky, J.C. Mihos, The detailed evolution of E+A galaxies into early types. Astrophys. J. 688(2), 945–971 (2008). https://doi.org/10.1086/591656

    ADS  Article  Google Scholar 

  150. C.-W. Yang, T.-G. Wang, G. Ferland, W. Yuan, H.-Y. Zhou, P. Jiang, Long-term spectral evolution of tidal disruption candidates selected by strong coronal lines. Astrophys. J. 774(1), 46 (2013). https://doi.org/10.1088/0004-637X/774/1/46

    ADS  Article  Google Scholar 

  151. D.G. York, J. Adelman, J.E. Anderson Jr., S.F. Anderson, J. Annis, N.A. Bahcall, J.A. Bakken, R. Barkhouser, S. Bastian, E. Berman, W.N. Boroski, S. Bracker, C. Briegel, J.W. Briggs, J. Brinkmann, R. Brunner, S. Burles, L. Carey, M.A. Carr, F.J. Castander, B. Chen, P.L. Colestock, A.J. Connolly, J.H. Crocker, I. Csabai, P.C. Czarapata, J.E. Davis, M. Doi, T. Dombeck, D. Eisenstein, N. Ellman, B.R. Elms, M.L. Evans, X. Fan, G.R. Federwitz, L. Fiscelli, S. Friedman, J.A. Frieman, M. Fukugita, B. Gillespie, J.E. Gunn, V.K. Gurbani, E. de Haas, M. Haldeman, F.H. Harris, J. Hayes, T.M. Heckman, G.S. Hennessy, R.B. Hindsley, S. Holm, D.J. Holmgren, C. Huang, C. Hull, D. Husby, S. Ichikawa, T. Ichikawa, Ž. Ivezić, S. Kent, R.S.J. Kim, E. Kinney, M. Klaene, A.N. Kleinman, S. Kleinman, G.R. Knapp, J. Korienek, R.G. Kron, P.Z. Kunszt, D.Q. Lamb, B. Lee, R.F. Leger, S. Limmongkol, C. Lindenmeyer, D.C. Long, C. Loomis, J. Loveday, R. Lucinio, R.H. Lupton, B. MacKinnon, E.J. Mannery, P.M. Mantsch, B. Margon, P. McGehee, T.A. McKay, A. Meiksin, A. Merelli, D.G. Monet, J.A. Munn, V.K. Narayanan, T. Nash, E. Neilsen, R. Neswold, H.J. Newberg, R.C. Nichol, T. Nicinski, M. Nonino, N. Okada, S. Okamura, J.P. Ostriker, R. Owen, A.G. Pauls, J. Peoples, R.L. Peterson, D. Petravick, J.R. Pier, A. Pope, R. Pordes, A. Prosapio, R. Rechenmacher, T.R. Quinn, G.T. Richards, M.W. Richmond, C.H. Rivetta, C.M. Rockosi, K. Ruthmansdorfer, D. Sandford, D.J. Schlegel, D.P. Schneider, M. Sekiguchi, G. Sergey, K. Shimasaku, W.A. Siegmund, S. Smee, J.A. Smith, S. Snedden, R. Stone, C. Stoughton, M.A. Strauss, C. Stubbs, M. SubbaRao, A.S. Szalay, I. Szapudi, G.P. Szokoly, A.R. Thakar, C. Tremonti, D.L. Tucker, A. Uomoto, D. Vanden Berk, M.S. Vogeley, P. Waddell, S. Wang, M. Watanabe, D.H. Weinberg, B. Yanny, N. Yasuda, The sloan digital sky survey: technical summary. Astron. J. 120, 1579–1587 (2000). https://doi.org/10.1086/301513

    ADS  Article  Google Scholar 

  152. A.I. Zabludoff, D. Zaritsky, H. Lin, D. Tucker, Y. Hashimoto, S.A. Shectman, A. Oemler, R.P. Kirshner, The environment of “E+A” galaxies. Astrophys. J. 466, 104 (1996). https://doi.org/10.1086/177495

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank the referees for their detailed feedback and helpful suggestions, which have improved this review.

The authors thank ISSI for their support and hospitality and the review organizers for their leadership in coordinating this set of reviews.

K.D.F. is supported by Hubble Fellowship grant HST-HF2-51391.001-A, provided by NASA through a grant from the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. A.I.Z. acknowledges support from NASA through STScI grant HST-GO-14717.001-A. T.W. is funded in part by European Research Council grant 320360 and by European Commission grant 730980. O.G. is supported by an NSF Astronomy and Astrophysics Fellowship under award AST-1602595.

Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration, including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, the Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.

This publication makes use of data products from the Wide-field Infrared Survey Explorer (Wright et al. 2010), which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.

This work made use of the IPython package (Pérez and Granger 2007). This research made use of SciPy (Jones et al. 2001). This research made use of Astropy, a community-developed core Python package for Astronomy (Robitaille et al. 2013). This research made use of NumPy (Van Der Walt et al. 2011).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Decker French.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Tidal Disruption of Stars by Massive Black Holes

Edited by Peter G. Jonker, Sterl Phinney, Elena Maria Rossi, Sjoert van Velzen, Iair Arcavi and Maurizio Falanga

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

French, K.D., Wevers, T., Law-Smith, J. et al. The Host Galaxies of Tidal Disruption Events. Space Sci Rev 216, 32 (2020). https://doi.org/10.1007/s11214-020-00657-y

Download citation

Keywords

  • Tidal disruption events
  • Galaxies
  • Supermassive black holes