Large Ocean Worlds with High-Pressure Ices

Abstract

Pressures in the hydrospheres of large ocean worlds extend to ranges exceeding those in Earth deepest oceans. In this regime, dense water ices and other high-pressure phases become thermodynamically stable and can influence planetary processes at a global scale. The presence of high-pressure ices sets large icy worlds apart from other smaller water-rich worlds and complicates their study. Here we provide an overview of the unique physical states, thermodynamics, dynamic regimes, and evolution scenarios specific to large ocean worlds where high-pressure ice polymorphs form. We start by (i) describing the current state of knowledge for the interior states of large icy worlds in our solar system (i.e. Ganymede, Titan and Callisto). Then we (ii) discuss the thermodynamic and physical specifics of the relevant high–pressure materials, including ices, aqueous fluids and hydrates. While doing this we (iii) describe the current state of the art in modeling and understanding the dynamic regimes of high-pressure ice mantles. Based on these considerations we (iv) explore the different evolution scenarios for large icy worlds in our solar system. We (v) conclude by discussing the implications of what we know on chemical transport from the silicate core, extrapolation to exoplanetary candidate ocean worlds, limitations to habitability, differentiation diversity, and perspectives for future space exploration missions and experimental measurements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. E.H. Abramson, O. Bollengier, J.M. Brown, Water-carbon dioxide solid phase equilibria at pressures above 4 GPa. Sci. Rep. 7(1), 821 (2017). https://doi.org/10.1038/s41598-017-00915-0

    ADS  Article  Google Scholar 

  2. E.H. Abramson, O. Bollengier, J.M. Brown, B. Journaux, W. Kaminsky, A. Pakhomova, Carbonic acid monohydrate. Am. Mineral. 103(9), 1468–1472 (2018). https://doi.org/10.2138/am-2018-6554

    ADS  Article  Google Scholar 

  3. L. Adams, Equilibrium in binary systems under pressure. I. An experimental and thermodynamic investigation of the system, NaCl-H2O, at \(25^{\circ }\). J. Am. Chem. Soc. 53, 3769–3813 (1931)

    Google Scholar 

  4. L.H. Adams, R.E. Hall, The effect of pressure on the electrical conductivity of solutions of sodium chloride and of other electrolytes. J. Phys. Chem. 35(8), 2145–2163 (1930). https://doi.org/10.1021/j150326a001

    Article  Google Scholar 

  5. A.A. Aleksandrov, E.V. Dzhuraeva, V.F. Utenkov, Thermal conductivity of sodium chloride aqueous solutions. Therm. Eng. 60(3), 190–194 (2013). https://doi.org/10.1134/S0040601513030026

    ADS  Article  Google Scholar 

  6. D.M. Amos, M.E. Donnelly, P. Teeratchanan, C.L. Bull, A. Falenty, W.F. Kuhs, A. Hermann, J.S. Loveday, A chiral gas–hydrate structure common to the carbon dioxide–water and hydrogen–water systems. J. Phys. Chem. Lett. 8(17), 4295–4299 (2017). https://doi.org/10.1021/acs.jpclett.7b01787

    Article  Google Scholar 

  7. J.D. Anderson, Shape, mean radius, gravity field, and interior structure of Callisto. Icarus 153(1), 157–161 (2001). https://doi.org/10.1006/icar.2001.6664

    ADS  Article  Google Scholar 

  8. J.D. Anderson, E.L. Lau, W.L. Sjogren, G. Schubert, W.B. Moore, Gravitational constraints on the internal structure of Ganymede. Nature 384(6609), 541–543 (1996). https://doi.org/10.1038/384541a0

    ADS  Article  Google Scholar 

  9. J.D. Anderson, G. Schubert, R. Jacobson, E. Lau, W. Moore, W. Sjogren, Distribution of rock, metals, and ices in Callisto. Science 280(5369), 1573–1576 (1998)

    ADS  Google Scholar 

  10. O. Andersson, A. Inaba, Thermal conductivity of crystalline and amorphous ices and its implications on amorphization and glassy water. PCCP, Phys. Chem. Chem. Phys. 7(7), 1441–1449 (2005)

    Google Scholar 

  11. S.K. Atreya, T.M. Donahue, W.R. Kuhn, Evolution of a nitrogen atmosphere on Titan. Science 201(4356), 611–613 (1978)

    ADS  Google Scholar 

  12. H. Backes, F.M. Neubauer, M.K. Dougherty, N. Achilleos, N. André, C.S. Arridge, C. Bertucci, G.H. Jones, K.K. Khurana, C.T. Russell et al., Titan’s magnetic field signature during the first Cassini encounter. Science 308(5724), 992–995 (2005)

    ADS  Google Scholar 

  13. A.C. Barr, R.M. Canup, Origin of the Ganymede-Callisto dichotomy by impacts during the late heavy bombardment. Nat. Geosci. 3, 164–167 (2010). https://doi.org/10.1038/ngeo746

    ADS  Article  Google Scholar 

  14. A.C. Barr, R.I. Citron, R.M. Canup, Origin of a partially differentiated Titan. Icarus 209, 858–862 (2010). https://doi.org/10.1016/j.icarus.2010.05.028

    ADS  Article  Google Scholar 

  15. C. Béghin, O. Randriamboarison, M. Hamelin, E. Karkoschka, C. Sotin, R.C. Whitten, J.J. Berthelier, R. Grard, F. Simões, Analytic theory of Titan’s Schumann resonance: constraints on ionospheric conductivity and buried water ocean. Icarus 218(2), 1028–1042 (2012)

    ADS  Google Scholar 

  16. D. Bercovici, G. Schubert, R.T. Reynolds, Phase transitions and convection in icy satellites. Geophys. Res. Lett. 13(5), 448–451 (1986). https://doi.org/10.1029/GL013i005p00448

    ADS  Article  Google Scholar 

  17. L. Bezacier, B. Journaux, J.P. Perrillat, H. Cardon, M. Hanfland, I. Daniel, Equations of state of ice VI and ice VII at high pressure and high temperature. J. Chem. Phys. 141(10), 104505 (2014a). https://doi.org/10.1063/1.4894421

    ADS  Article  Google Scholar 

  18. L. Bezacier, E. Le Menn, O. Grasset, O. Bollengier, A. Oancea, M. Mezouar, G. Tobie, Experimental investigation of methane hydrates dissociation up to 5 GPa: implications for Titan’s interior. Phys. Earth Planet. Inter. 229, 144–152 (2014b). https://doi.org/10.1016/j.pepi.2014.02.001

    ADS  Article  Google Scholar 

  19. M.T. Bland, A.P. Showman, G. Tobie, The production of Ganymede’s magnetic field. Icarus 198, 384–399 (2008). https://doi.org/10.1016/j.icarus.2008.07.011

    ADS  Article  Google Scholar 

  20. M.T. Bland, A.P. Showman, G. Tobie, The orbital–thermal evolution and global expansion of Ganymede. Icarus 200(1), 207–221 (2009). https://doi.org/10.1016/j.icarus.2008.11.016

    ADS  Article  Google Scholar 

  21. O. Bollengier, M. Choukroun, O. Grasset, E. Le Menn, G. Bellino, Y. Morizet, L. Bezacier, A. Oancea, C. Taffin, G. Tobie, Phase equilibria in the H2O–CO2 system between 250–330 K and 0–1.7 GPa: Stability of the CO2 hydrates and H2O-ice VI at CO2 saturation. Geochim. Cosmochim. Acta 119, 322–339 (2013). https://doi.org/10.1016/j.gca.2013.06.006

    ADS  Article  Google Scholar 

  22. O. Bollengier, J.M. Brown, G.H. Shaw, Thermodynamics of pure liquid water: sound speed measurements to 700 MPa down to the freezing point, and an equation of state to 2300 MPa from 240 to 500 k. J. Chem. Phys. 151(5), 054501 (2019)

    ADS  Google Scholar 

  23. E. Bove Livia, Ranieri Umbertoluca: salt- and gas-filled ices under planetary conditions. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 377(2146), 20180262 (2019). https://doi.org/10.1098/rsta.2018.0262

    ADS  Article  Google Scholar 

  24. D. Breuer, T. Rückriemen, T. Spohn, Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons. Prog. Earth Planet. Sci. 2(1), 1 (2015)

    Google Scholar 

  25. P.W. Bridgman, Water, in the liquid and five solid forms, under pressure. Proc. Am. Acad. Arts Sci. 47(13), 441–558 (1912)

    Google Scholar 

  26. P.W. Bridgman, The phase diagram of water to 45000 kg/cm2. J. Chem. Phys. 5(12), 964–966 (1937). https://doi.org/10.1063/1.1749971

    ADS  Article  Google Scholar 

  27. J.M. Brown, Local basis function representations of thermodynamic surfaces: water at high pressure and temperature as an example. Fluid Phase Equilib. 463, 18–31 (2018). https://doi.org/10.1016/j.fluid.2018.02.001

    Article  Google Scholar 

  28. A. Buono, D. Walker, The Fe-rich liquidus in the Fe-FeS system from 1 bar to 10 GPa. Geochim. Cosmochim. Acta 75(8), 2072–2087 (2011)

    ADS  Google Scholar 

  29. P.K. Byrne, P.V. Regensburger, C. Klimczak, D.R. Bohnenstiehl, S.A. Hauck II., A.J. Dombard, D.J. Hemingway, The geology of the rocky bodies inside Enceladus, Europa, Titan, and Ganymede, in 49th Lunar and Planetary Science Conference, Abstract #2905 (Lunar and Planetary Institute, Houston, 2018)

    Google Scholar 

  30. R.M. Canup, W.R. Ward, Formation of the Galilean satellites: conditions of accretion. Astron. J. 124, 3404–3423 (2002). https://doi.org/10.1086/344684

    ADS  Article  Google Scholar 

  31. R.M. Canup, W.R. Ward, Origin of Europa and the Galilean Satellites (2009), p. 59

    Google Scholar 

  32. J.C. Castillo-Rogez, J.I. Lunine, Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. 37(20), L20205 (2010)

    ADS  Google Scholar 

  33. C. Cavazzoni, Superionic and metallic states of water and ammonia at giant planet conditions. Science 283(5398), 44–46 (1999). https://doi.org/10.1126/science.283.5398.44

    ADS  Article  Google Scholar 

  34. G. Choblet, G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg, O. Souček, Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1(12), 841–847 (2017a). https://doi.org/10.1038/s41550-017-0289-8

    ADS  Article  Google Scholar 

  35. G. Choblet, G. Tobie, C. Sotin, K. Kalousová, O. Grasset, Heat transport in the high-pressure ice mantle of large icy moons. Icarus 285, 252–262 (2017b). https://doi.org/10.1016/j.icarus.2016.12.002

    ADS  Article  Google Scholar 

  36. I.M. Chou, R.R. Seal, Magnesium and calcium sulfate stabilities and the water budget of Mars. J. Geophys. Res., Planets 112(E11), E11004 (2007). https://doi.org/10.1029/2007JE002898

    ADS  Article  Google Scholar 

  37. M. Choukroun, O. Grasset, Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain. J. Chem. Phys. 127(12), 124506 (2007)

    ADS  Google Scholar 

  38. M. Choukroun, O. Grasset, Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics. J. Chem. Phys. 133(14), 144502 (2010). https://doi.org/10.1063/1.3487520

    ADS  Article  Google Scholar 

  39. M. Choukroun, S.W. Kieffer, X. Lu, G. Tobie, Clathrate hydrates: implications for exchange processes in the outer solar system, in The Science of Solar System Ices. Astrophysics and Space Science Library (Springer, New York, 2013), pp. 409–454. https://doi.org/10.1007/978-1-4614-3076-6_12

    Google Scholar 

  40. U. Christensen, Iron snow dynamo models for Ganymede. Icarus 247, 248–259 (2015)

    ADS  Google Scholar 

  41. L. Chudinovskikh, R. Boehler, Eutectic melting in the system Fe-S to 44 GPa. Earth Planet. Sci. Lett. 257(1), 97–103 (2007)

    ADS  Google Scholar 

  42. E. Dendy Sloan, C. Koh, Clathrate Hydrates of Natural Gases, 3rd edn. (CRC Press, Boca Raton, 2007). Google-Books-ID: T7LC8ldaVR4C

    Google Scholar 

  43. A.N. Dunaeva, D.V. Antsyshkin, O.L. Kuskov, Phase diagram of H2O: thermodynamic functions of the phase transitions of high-pressure ices. Sol. Syst. Res. 44(3), 202–222 (2010). https://doi.org/10.1134/S0038094610030044

    ADS  Article  Google Scholar 

  44. W. Durham, L. Stern, S. Kirby, Rheology of water ices V and VI. J. Geophys. Res. 101(B2), 2989–3001 (1996)

    ADS  Google Scholar 

  45. W. Durham, S. Kirby, L. Stern, Creep of water ices at planetary conditions: a compilation. J. Geophys. Res. 102(E7), 16293–16302 (1997)

    ADS  Google Scholar 

  46. W. Durham, S. Kirby, L. Stern, W. Zhang, The strength and rheology of methane clathrate hydrate. J. Geophys. Res., Solid Earth 108(B4), 2182 (2003). https://doi.org/10.1029/2002JB001872

    ADS  Article  Google Scholar 

  47. W. Durham, O. Prieto-Ballesteros, D. Goldsby, J. Kargel, Rheological and thermal properties of icy materials. Space Sci. Rev. 153(1), 273–298 (2010)

    ADS  Google Scholar 

  48. C. Dwyer, F. Nimmo, M. Ogihara, S. Ida, The influence of imperfect accretion and radial mixing on ice: rock ratios in the galilean satellites. Icarus 225(1), 390–402 (2013)

    ADS  Google Scholar 

  49. K. Ellsworth, G. Schubert, Saturn’s icy satellites: thermal and structural models. Icarus 54(3), 490–510 (1983)

    ADS  Google Scholar 

  50. S. Engel, J. Lunine, D. Norton, Silicate interactions with ammonia-water fluids on early Titan. J. Geophys. Res. 99, 3745–3752 (1994). https://doi.org/10.1029/93JE03433

    ADS  Article  Google Scholar 

  51. E. Engel, A. Anelli, M. Ceriotti, C.J. Pickard, R.J. Needs, Mapping uncharted territory in ice from zeolite networks to ice structures. Nat. Commun. 9(1), 2173 (2018). https://doi.org/10.1038/s41467-018-04618-6

    ADS  Article  Google Scholar 

  52. P.R. Estrada, I. Mosqueira, J.J. Lissauer, G. D’Angelo, D.P. Cruikshank, Formation of Jupiter and Conditions for Accretion of the Galilean Satellites (2009), p. 27

    Google Scholar 

  53. A. Falenty, T.C. Hansen, W.F. Kuhs, Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 516(7530), 231–233 (2014). https://doi.org/10.1038/nature14014

    ADS  Article  Google Scholar 

  54. Y. Fei, C. Prewitt, H. Mao, C. Bertka et al., Structure and density of FeS at high pressure and high temperature and the internal structure of mars. Science 268(5219), 1892 (1995)

    ADS  Google Scholar 

  55. Y. Fei, C.M. Bertka, L.W. Finger, High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe-FeS system. Science 275(5306), 1621–1623 (1997)

    Google Scholar 

  56. Y. Fei, J. Li, C. Bertka, C. Prewitt, Structure type and bulk modulus of Fe3S, a new iron-sulfur compound. Am. Mineral. 85(11–12), 1830–1833 (2000)

    ADS  Google Scholar 

  57. R. Feistel, W. Wagner, A new equation of state for H2O ice Ih. J. Phys. Chem. Ref. Data 35(2), 1021–1047 (2006). https://doi.org/10.1063/1.2183324

    ADS  Article  Google Scholar 

  58. N.H. Fletcher, The Chemical Physics of Ice (Cambridge University Press, Cambridge, 1970)

    Google Scholar 

  59. A.D. Fortes, Titan’s internal structure and the evolutionary consequences. Planet. Space Sci. 60, 10–17 (2012). https://doi.org/10.1016/j.pss.2011.04.010

    ADS  Article  Google Scholar 

  60. A.D. Fortes, M. Choukroun, Phase behaviour of ices and hydrates. Space Sci. Rev. 153, 185–218 (2010). https://doi.org/10.1007/s11214-010-9633-3

    ADS  Article  Google Scholar 

  61. A.D. Fortes, P. Grindrod, S. Trickett, L. Vocadlo, Ammonium sulfate on Titan: possible origin and role in cryovolcanism. Icarus 188(1), 139–153 (2007a). https://doi.org/10.1016/j.icarus.2006.11.002

    ADS  Article  Google Scholar 

  62. A.D. Fortes, I.G. Wood, M. Alfredsson, L. Vočadlo, K.S. Knight, W.G. Marshall, M.G. Tucker, F. Fernandez-Alonso, The high-pressure phase diagram of ammonia dihydrate. High Press. Res. 27(2), 201–212 (2007b). https://doi.org/10.1080/08957950701265029

    ADS  Article  Google Scholar 

  63. M. French, R. Redmer, Construction of a thermodynamic potential for the water ices VII and X. Phys. Rev. B 91(1), 014308 (2015). https://doi.org/10.1103/PhysRevB.91.014308

    ADS  Article  Google Scholar 

  64. A.J. Friedson, D.J. Stevenson, Viscosity of rock-ice mixtures and applications to the evolution of icy satellites. Icarus 56, 1–14 (1983). https://doi.org/10.1016/0019-1035(83)90124-0

    ADS  Article  Google Scholar 

  65. B.J. Fulton, E.A. Petigura, A.W. Howard, H. Isaacson, G.W. Marcy, P.A. Cargile, L. Hebb, L.M. Weiss, J.A. Johnson, T.D. Morton et al., The California-Kepler survey. III. A gap in the radius distribution of small planets. Astron. J. 154(3), 109 (2017)

    ADS  Google Scholar 

  66. P. Gao, D.J. Stevenson, Nonhydrostatic effects and the determination of icy satellites’ moment of inertia. Icarus 226(2), 1185–1191 (2013). https://doi.org/10.1016/j.icarus.2013.07.034

    ADS  Article  Google Scholar 

  67. N. Giovambattista, K. Amann-Winkel, T. Loerting, Amorphous ices, in Liquid Polymorphism, vol. 152 (2013), pp. 139–173

    Google Scholar 

  68. C.R. Glein, Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan. Icarus 250, 570–586 (2015). https://doi.org/10.1016/j.icarus.2015.01.001

    ADS  Article  Google Scholar 

  69. O. Grasset, C. Sotin, The cooling rate of a liquid shell in Titan’s interior. Icarus 123(1), 101–112 (1996)

    ADS  Google Scholar 

  70. O. Grasset, M. Dougherty, A. Coustenis, E. Bunce, C. Erd, D. Titov, M. Blanc, A. Coates, P. Drossart, L. Fletcher, H. Hussmann, R. Jaumann, N. Krupp, J.P. Lebreton, O. Prieto-Ballesteros, P. Tortora, F. Tosi, T.V. Hoolst, JUpiter ICy moons Explorer (JUICE): an {ESA} mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78(0), 1–21 (2013). https://doi.org/10.1016/j.pss.2012.12.002

    ADS  Article  Google Scholar 

  71. P. Grindrod, A. Fortes, F. Nimmo, D. Feltham, J. Brodholt, L. Vocadlo, The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan. Icarus 197(1), 137–151 (2008). https://doi.org/10.1016/j.icarus.2008.04.006

    ADS  Article  Google Scholar 

  72. E.L. Gromnitskaya, O.F. Yagafarov, A.G. Lyapin, V.V. Brazhkin, I.G. Wood, M.G. Tucker, A.D. Fortes, The high-pressure phase diagram of synthetic epsomite (MgSO4⋅7H2O and MgSO4⋅7D2O) from ultrasonic and neutron powder diffraction measurements. Phys. Chem. Miner. 40(3), 271–285 (2013). https://doi.org/10.1007/s00269-013-0567-7

    ADS  Article  Google Scholar 

  73. N.P. Hammond, A.C. Barr, Formation of Ganymede’s grooved terrain by convection-driven resurfacing. Icarus 227, 206–209 (2014). https://doi.org/10.1016/j.icarus.2013.08.024

    ADS  Article  Google Scholar 

  74. K.P. Hand, A.E. Murray, J.B. Garvin, W.B. Brinckerhoff, B.C. Christner, K.S. Edgett, B.L. Ehlmann, C. German, A.G. Hayes, T.M. Hoehler, S.M. Horst, J.I. Lunine, K.H. Nealson, C. Paranicas, B.E. Schmidt, D.E. Smith, A.R. Rhoden, M.J. Russell, A.S. Templeton, P.A. Willis, R.A. Yingst, C.B. Phillips, M.L. Cable, K.L. Craft, A.E. Hofmann, T.A. Nordheim, R.P. Pappalardo the Project Engineering Team: Report of the Europa Lander Science Definition Team. Tech. Rep., Jet Propulsion Laboratory, California Institute of Technology (2017)

  75. S.A. Hauck II., J.M. Aurnou, A.J. Dombard, Sulfur’s impact on core evolution and magnetic field generation on Ganymede. J. Geophys. Res. 111(E9), E09008 (2006)

    ADS  Google Scholar 

  76. D. Hemingway, F. Nimmo, H. Zebker, L. Iess, A rigid and weathered ice shell on Titan. Nature 500(7464), 550–552 (2013). https://doi.org/10.1038/nature12400

    ADS  Article  Google Scholar 

  77. J.A. Hernandez, R. Caracas, Proton dynamics and the phase diagram of dense water ice. J. Chem. Phys. 148(21), 214501 (2018). https://doi.org/10.1063/1.5028389

    ADS  Article  Google Scholar 

  78. H. Hirai, K. Komatsu, M. Honda, T. Kawamura, Y. Yamamoto, T. Yagi, Phase changes of CO2 hydrate under high pressure and low temperature. J. Chem. Phys. 133(12), 124511 (2010). https://doi.org/10.1063/1.3493452

    ADS  Article  Google Scholar 

  79. P.C. Ho, D.A. Palmer, R.E. Mesmer, Electrical conductivity measurements of aqueous sodium chloride solutions to \(600\ {}^{\circ } \mbox{C}\) and 300 MPa. J. Solution Chem. 23(9), 997–1018 (1994). https://doi.org/10.1007/BF00974100

    Article  Google Scholar 

  80. D. Hogenboom, Magnesium sulfate-water to 400 MPa using a novel piezometer: densities, phase equilibria, and planetological implications. Icarus 115(2), 258–277 (1995). https://doi.org/10.1006/icar.1995.1096

    ADS  Article  Google Scholar 

  81. V. Holten, J.V. Sengers, M.A. Anisimov, Equation of state for supercooled water at pressures up to 400 MPa. J. Phys. Chem. Ref. Data 43(4), 043101 (2014). https://doi.org/10.1063/1.4895593

    ADS  Article  Google Scholar 

  82. R.A. Horne, G.R. Frysinger, The effect of pressure on the electrical conductivity of sea water. J. Geophys. Res. 68(7), 1967–1973 (1963). https://doi.org/10.1029/JZ068i007p01967

    ADS  Article  Google Scholar 

  83. H.W. Hsu, F. Postberg, Y. Sekine, T. Shibuya, S.D. Kempf, M. Horányi, A. Juhász, N. Altobelli, K. Suzuki, Y. Masaki et al., Ongoing hydrothermal activities within Enceladus. Nature 519(7542), 207 (2015)

    ADS  Google Scholar 

  84. P.J. Hudleston, Structures and fabrics in glacial ice: a review. J. Struct. Geol. 81, 1–27 (2015). https://doi.org/10.1016/j.jsg.2015.09.003

    ADS  Article  Google Scholar 

  85. H. Hussmann, G. Choblet, V. Lainey, D.L. Matson, C. Sotin, G. Tobie, T. van Hoolst, Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites. Space Sci. Res. 153, 317–348 (2010). https://doi.org/10.1007/s11214-010-9636-0

    ADS  Article  Google Scholar 

  86. L. Iess, N.J. Rappaport, R.A. Jacobson, P. Racioppa, D.J. Stevenson, P. Tortora, J.W. Armstrong, S.W. Asmar, Gravity field, shape, and moment of inertia of Titan. Science 327(5971), 1367–1369 (2010)

    ADS  Google Scholar 

  87. L. Iess, R.A. Jacobson, M. Ducci, D.J. Stevenson, J.I. Lunine, J.W. Armstrong, S.W. Asmar, P. Racioppa, N.J. Rappaport, P. Tortora, The tides of Titan. Science 337(6093), 457–459 (2012). https://doi.org/10.1126/science.1219631

    ADS  Article  Google Scholar 

  88. C. Jaccard, Mechanism of the electrical conductivity in ice. Ann. N.Y. Acad. Sci. 125(2), 390–400 (1965). https://doi.org/10.1111/j.1749-6632.1965.tb45405.x

    ADS  Article  Google Scholar 

  89. R.A. Jacobson, P.G. Antreasian, J.J. Bordi, K.E. Criddle, R. Ionasescu, J.B. Jones, R.A. Mackenzie, M.C. Meek, D. Parcher, F.J. Pelletier et al., The gravity field of the saturnian system from satellite observations and spacecraft tracking data. Astron. J. 132(6), 2520–2526 (2006). https://doi.org/10.1086/508812

    ADS  Article  Google Scholar 

  90. B. Journaux, I. Daniel, R. Caracas, G. Montagnac, H. Cardon, Influence of NaCl on ice VI and ice VII melting curves up to 6GPa, implications for large icy moons. Icarus 226(1), 355–363 (2013). https://doi.org/10.1016/j.icarus.2013.05.039

    ADS  Article  Google Scholar 

  91. B. Journaux, R. Caracas, P. Carrez, K. Gouriet, P. Cordier, I. Daniel, Elasticity and dislocations in ice X under pressure. Phys. Earth Planet. Inter. 236, 10–15 (2014). https://doi.org/10.1016/j.pepi.2014.08.002

    ADS  Article  Google Scholar 

  92. B. Journaux, I. Daniel, S. Petitgirard, H. Cardon, J.P. Perrillat, R. Caracas, M. Mezouar, Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies. Earth Planet. Sci. Lett. 463, 36–47 (2017). https://doi.org/10.1016/j.epsl.2017.01.017

    ADS  Article  Google Scholar 

  93. B. Journaux, J. Brown, A. Pakhomova, I. Collings, S. Petitgirard, P. Espinoza, T. Boffa Ballaran, S. Vance, J. Ott, F. Cova, G. Garbarino, M. Hanfland, Holistic approach for studying planetary hydrospheres: Gibbs representation of ices thermodynamics, elasticity and the water phase diagram to 2300 MPa. J. Geophys. Res., Planets 125(1) (2020). https://doi.org/10.1029/2019JE006176

  94. K. Kalousová, C. Sotin, Melting in high-pressure ice layers of large ocean worlds—implications for volatiles transport. Geophys. Res. Lett. 45(16), 8096–8103 (2018). https://doi.org/10.1029/2018GL078889

    ADS  Article  Google Scholar 

  95. K. Kalousová, C. Sotin, G. Choblet, G. Tobie, O. Grasset, Two-phase convection in Ganymede’s high-pressure ice layer—implications for its geological evolution. Icarus 299, 133–147 (2018). https://doi.org/10.1016/j.icarus.2017.07.018

    ADS  Article  Google Scholar 

  96. L. Kaltenegger, D. Sasselov, S. Rugheimer, Water-planets in the habitable zone: atmospheric chemistry, observable features, and the case of Kepler-62e and-62f. Astrophys. J. Lett. 775(2), L47 (2013)

    ADS  Google Scholar 

  97. S. Kamata, F. Nimmo, Y. Sekine, K. Kuramoto, N. Noguchi, J. Kimura, A. Tani, Pluto’s ocean is capped and insulated by gas hydrates. Nat. Geosci. 12, 407–410 (2019). https://doi.org/10.1038/s41561-019-0369-8

    ADS  Article  Google Scholar 

  98. P.B. Kelemen, G. Hirth, Reaction-driven cracking during retrograde metamorphism: olivine hydration and carbonation. Earth Planet. Sci. Lett. 345, 81–89 (2012)

    ADS  Google Scholar 

  99. K. Khurana, M. Kivelson, C. Russell, R. Walker, D. Southwood, Absence of an internal magnetic field at Callisto. Nature 387(6630), 262 (1997)

    ADS  Google Scholar 

  100. J. Kimura, T. Nakagawa, K. Kurita, Size and compositional constraints of Ganymede’s metallic core for driving an active dynamo. Icarus 202(1), 216–224 (2009)

    ADS  Google Scholar 

  101. R. Kirk, D. Stevenson, Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69(1), 91–134 (1987)

    ADS  Google Scholar 

  102. D. Kitzmann, Y. Alibert, M. Godolt, J.L. Grenfell, K. Heng, A.B.C. Patzer, H. Rauer, B. Stracke, P. von Paris, The unstable CO2 feedback cycle on ocean planets. Mon. Not. R. Astron. Soc. 452(4), 3752–3758 (2015). https://doi.org/10.1093/mnras/stv1487. arXiv:1507.01727 [astro-ph]

    ADS  Article  Google Scholar 

  103. M. Kivelson, K. Khurana, M. Volwerk, The permanent and inductive magnetic moments of Ganymede. Icarus 157(2), 507–522 (2002)

    ADS  Google Scholar 

  104. S. Klotz, L. Bove, T. Strässle, T. Hansen, A. Saitta, The preparation and structure of salty ice VII under pressure. Nat. Mater. 8, 405–409 (2009)

    ADS  Google Scholar 

  105. S. Klotz, K. Komatsu, H. Kagi, K. Kunc, A. Sano-Furukawa, S. Machida, T. Hattori, Bulk moduli and equations of state of ice VII and ice VIII. Phys. Rev. B 95(17), 174111 (2017). https://doi.org/10.1103/PhysRevB.95.174111

    ADS  Article  Google Scholar 

  106. T.S. Kruijer, C. Burkhardt, G. Budde, T. Kleine, Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl. Acad. Sci. 114(26), 6712–6716 (2017)

    ADS  Google Scholar 

  107. K. Kuramoto, T. Matsui, Formation of a hot proto-atmosphere on the accreting giant icy satellite: implications for the origin and evolution of Titan, Ganymede, and Callisto. J. Geophys. Res., Planets 99(E10), 21183–21200 (1994)

    ADS  Google Scholar 

  108. O.L. Kuskov, V.A. Kronrod, Core sizes and internal structure of Earth’s and Jupiter’s satellites. Icarus 151, 204–227 (2001). https://doi.org/10.1006/icar.2001.6611

    ADS  Article  Google Scholar 

  109. O.L. Kuskov, V.A. Kronrod, Internal structure of Europa and Callisto. Icarus 177, 550–569 (2005). https://doi.org/10.1016/j.icarus.2005.04.014

    ADS  Article  Google Scholar 

  110. E.G. Larionov, P.A. Kryukov, The conductivity of MgSO4 aqueous-solutions in the range of temperatures 298–423 K and pressures 0.1–784.6 MPa. Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim. Nauk 5, 20–23 (1984)

    Google Scholar 

  111. A. Léger, F. Selsis, C. Sotin, T. Guillot, D. Despois, D. Mawet, M. Ollivier, A. Labèque, C. Valette, F. Brachet, A new family of planets? Icarus 169(2), 499–504 (2004)

    ADS  Google Scholar 

  112. O.R. Lehmer, D.C. Catling, Rocky worlds limited to 1.8 earth radii by atmospheric escape during a star’s extreme uv saturation. Astrophys. J. 845(2), 130 (2017)

    ADS  Google Scholar 

  113. M.A. Leitner, J.I. Lunine, Modeling early Titan’s ocean composition. Icarus 333, 61–70 (2019)

    ADS  Google Scholar 

  114. D. Lemasquerier, A. Grannan, J. Vidal, D. Cébron, B. Favier, M. Le Bars, J. Aurnou, Libration-driven flows in ellipsoidal shells. J. Geophys. Res., Planets 122(9), 1926–1950 (2017)

    ADS  Google Scholar 

  115. B. Liu, Y. Gao, Y. Han, Y. Ma, C. Gao, In situ electrical conductivity measurements of H2O under static pressure up to 28 GPa. Phys. Lett. A 380(37), 2979–2983 (2016). https://doi.org/10.1016/j.physleta.2016.07.007

    ADS  Article  Google Scholar 

  116. C. Liu, A. Mafety, J.A. Queyroux, C.W. Wilson, H. Zhang, K. Béneut, G.L. Marchand, B. Baptiste, P. Dumas, G. Garbarino, F. Finocchi, J.S. Loveday, F. Pietrucci, A.M. Saitta, F. Datchi, S. Ninet, Topologically frustrated ionisation in a water-ammonia ice mixture. Nat. Commun. 8(1), 1065 (2017). https://doi.org/10.1038/s41467-017-01132-z

    ADS  Article  Google Scholar 

  117. R. Malhotra, Tidal origin of the Laplace resonance and the resurfacing of Ganymede. Icarus 94, 399–412 (1991). https://doi.org/10.1016/0019-1035(91)90237-N

    ADS  Article  Google Scholar 

  118. D. Mantegazzi, C. Sanchez-Valle, T. Driesner, Thermodynamic properties of aqueous NaCl solutions to 1073 K and 4.5 GPa, and implications for dehydration reactions in subducting slabs. Geochim. Cosmochim. Acta 121, 263–290 (2013). https://doi.org/10.1016/j.gca.2013.07.015

    ADS  Article  Google Scholar 

  119. N. Marounina, O. Grasset, G. Tobie, S. Carpy, Role of the global water ocean on the evolution of Titan’s primitive atmosphere. Icarus 310, 127–139 (2018). https://doi.org/10.1016/j.icarus.2017.10.048

    ADS  Article  Google Scholar 

  120. B. Massani, C. Mitterdorfer, T. Loerting, Formation and decomposition of CO2-filled ice. J. Chem. Phys. 147(13), 134503 (2017). https://doi.org/10.1063/1.4996270

    ADS  Article  Google Scholar 

  121. C.P. McKay, T.W. Scattergood, J.B. Pollack, W.J. Borucki, H.T. Van Ghyseghem, High-temperature shock formation of N2 and organics on primordial Titan. Nature 332(6164), 520 (1988)

    ADS  Google Scholar 

  122. W. McKinnon, Core evolution in the icy galilean satellites, and the prospects for dynamo-generated magnetic fields. Bull. Am. Astron. Soc. 28, 1076 (1996)

    ADS  Google Scholar 

  123. W. McKinnon, On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto. Icarus 183(2), 435–450 (2006). https://doi.org/10.1016/j.icarus.2006.03.004

    ADS  Article  Google Scholar 

  124. K.E. Miller, C.R. Glein, J.H. Waite, Contributions from accreted organics to Titan’s atmosphere: new insights from cometary and chondritic data. Astrophys. J. 871(1), 59 (2019). https://doi.org/10.3847/1538-4357/aaf561

    ADS  Article  Google Scholar 

  125. M. Millot, S. Hamel, J.R. Rygg, P.M. Celliers, G.W. Collins, F. Coppari, D.E. Fratanduono, R. Jeanloz, D.C. Swift, J.H. Eggert, Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018). https://doi.org/10.1038/s41567-017-0017-4

    Article  Google Scholar 

  126. M. Millot, F. Coppari, J.R. Rygg, A.C. Barrios, S. Hamel, D.C. Swift, J.H. Eggert, Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569(7755), 251 (2019). https://doi.org/10.1038/s41586-019-1114-6

    ADS  Article  Google Scholar 

  127. G. Mitri, R. Meriggiola, A. Hayes, A. Lefevre, G. Tobie, A. Genova, J.I. Lunine, H. Zebker, Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177 (2014). https://doi.org/10.1016/j.icarus.2014.03.018

    ADS  Article  Google Scholar 

  128. J. Monteux, G. Tobie, G. Choblet, M. Le Feuvre, Can large icy moons accrete undifferentiated? Icarus 237, 377–387 (2014). https://doi.org/10.1016/j.icarus.2014.04.041

    ADS  Article  Google Scholar 

  129. G. Morard, C. Sanloup, G. Fiquet, M. Mezouar, N. Rey, R. Poloni, P. Beck, Structure of eutectic Fe–FeS melts to pressures up to 17 GPa: implications for planetary cores. Earth Planet. Sci. Lett. 263(1), 128–139 (2007)

    ADS  Google Scholar 

  130. G. Morard, D. Andrault, N. Guignot, C. Sanloup, M. Mezouar, S. Petitgirard, G. Fiquet, In situ determination of Fe–Fe3S phase diagram and liquid structural properties up to 65 GPa. Earth Planet. Sci. Lett. 272(3), 620–626 (2008)

    ADS  Google Scholar 

  131. I. Mosqueira, P.R. Estrada, Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites. Icarus 163, 198–231 (2003a). https://doi.org/10.1016/S0019-1035(03)00076-9

    ADS  Article  Google Scholar 

  132. I. Mosqueira, P.R. Estrada, Formation of the regular satellites of giant planets in an extended gaseous nebula II: satellite migration and survival. Icarus 163, 232–255 (2003b). https://doi.org/10.1016/S0019-1035(03)00077-0

    ADS  Article  Google Scholar 

  133. K. Nagel, D. Breuer, T. Spohn, A model for the interior structure, evolution, and differentiation of Callisto. Icarus 169, 402–412 (2004). https://doi.org/10.1016/j.icarus.2003.12.019

    ADS  Article  Google Scholar 

  134. R. Nakamura, E. Ohtani, The high-pressure phase relation of the MgSO4–H2O system and its implication for the internal structure of Ganymede. Icarus 211(1), 648–654 (2011). https://doi.org/10.1016/j.icarus.2010.08.029

    ADS  Article  Google Scholar 

  135. A. Néri, F. Guyot, B. Reynard, C. Sotin, A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn. Earth Planet. Sci. Lett. 530, 115920 (2019). https://doi.org/10.1016/j.epsl.2019.115920

    Article  Google Scholar 

  136. N. Nettelmann, R. Helled, J. Fortney, R. Redmer, New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Planet. Space Sci. 77, 143–151 (2013)

    ADS  Google Scholar 

  137. H.B. Niemann, S.K. Atreya, S.J. Bauer, G.R. Carignan, J.E. Demick, R.L. Frost, D. Gautier, J.A. Haberman, D.N. Harpold, D.M. Hunten, G. Israel, J.I. Lunine, W.T. Kasprzak, T.C. Owen, M. Paulkovich, F. Raulin, E. Raaen, S.H. Way, The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438(7069), 779–784 (2005)

    ADS  Google Scholar 

  138. L. Noack, D. Höning, A. Rivoldini, C. Heistracher, N. Zimov, B. Journaux, H. Lammer, T. Van Hoolst, J. Bredehöft, Water-rich planets: How habitable is a water layer deeper than on earth? Icarus 277, 215–236 (2016)

    ADS  Google Scholar 

  139. L. Noack, I. Snellen, H. Rauer, Water in extrasolar planets and implications for habitability. Space Sci. Rev. 212(1–2), 877–898 (2017). https://doi.org/10.1007/s11214-017-0413-1

    ADS  Article  Google Scholar 

  140. M. Ogihara, S. Ida, N-body simulations of satellite formation around giant planets: origin of orbital configuration of the galilean moons. Astrophys. J. 753(1), 60 (2012)

    ADS  Google Scholar 

  141. T. Okada, T. Iitaka, T. Yagi, K. Aoki, Electrical conductivity of ice VII. Sci. Rep. 4, 5778 (2014). https://doi.org/10.1038/srep05778

    ADS  Article  Google Scholar 

  142. J.G. O’Rourke, D.J. Stevenson, Stability of ice/rock mixtures with application to a partially differentiated Titan. Icarus 227, 67–77 (2014). https://doi.org/10.1016/j.icarus.2013.09.010

    ADS  Article  Google Scholar 

  143. M.E. Palumbo, The morphology of interstellar water ice. J. Phys. Conf. Ser. 6, 211 (2005)

    ADS  Google Scholar 

  144. A. Pommier, V. Laurenz, C.J. Davies, D.J. Frost, Melting phase relations in the Fe-S and Fe-SO systems at core conditions in small terrestrial bodies. Icarus 306, 150–162 (2018)

    ADS  Google Scholar 

  145. F. Postberg, N. Khawaja, B. Abel, G. Choblet, C.R. Glein, M.S. Gudipati, B.L. Henderson, H.W. Hsu, S. Kempf, F. Klenner, G. Moragas-Klostermeyer, B. Magee, L. Nölle, M. Perry, R. Reviol, J. Schmidt, R. Srama, F. Stolz, G. Tobie, M. Trieloff, J.H. Waite, Macromolecular organic compounds from the depths of Enceladus. Nature 558(7711), 564 (2018). https://doi.org/10.1038/s41586-018-0246-4

    ADS  Article  Google Scholar 

  146. V.N. Robinson, Y. Wang, Y. Ma, A. Hermann, Stabilization of ammonia-rich hydrate inside icy planets. Proc. Natl. Acad. Sci. 114(34), 9003–9008 (2017). https://doi.org/10.1073/pnas.1706244114

    ADS  Article  Google Scholar 

  147. T. Ronnet, O. Mousis, P. Vernazza, Pebble accretion at the origin of water in Europa. Astrophys. J. 845, 92 (2017). https://doi.org/10.3847/1538-4357/aa80e6

    ADS  Article  Google Scholar 

  148. L.D. Rosso, M. Celli, L. Ulivi, New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice. Nat. Commun. 7, 13394 (2016). https://doi.org/10.1038/ncomms13394

    ADS  Article  Google Scholar 

  149. T. Rückriemen, D. Breuer, T. Spohn, The Fe-snow regime in Ganymede’s core: a deep-seated dynamo below a stable snow zone. J. Geophys. Res., Planets 497, 365–380 (2015)

    Google Scholar 

  150. T. Rückriemen, D. Breuer, T. Spohn, Top-down freezing in a Fe-FeS core and Ganymede’s present-day magnetic field. Icarus 307, 172–196 (2018)

    ADS  Google Scholar 

  151. M.J. Russell, L.M. Barge, R. Bhartia, D. Bocanegra, P.J. Bracher, E. Branscomb, R. Kidd, S. McGlynn, D.H. Meier, W. Nitschke, T. Shibuya, S. Vance, L. White, I. Kanik, The drive to life on wet and icy worlds. Astrobiology 14(4), 308–343 (2014). https://doi.org/10.1089/ast.2013.1110

    ADS  Article  Google Scholar 

  152. T. Sasaki, G.R. Stewart, S. Ida, Origin of the different architectures of the Jovian and Saturnian satellite systems. Astrophys. J. 714, 1052–1064 (2010). https://doi.org/10.1088/0004-637X/714/2/1052

    ADS  Article  Google Scholar 

  153. G. Schubert, T. Spohn, R.T. Reynolds, Thermal histories, compositions and internal structures of the moons of the solar system, in IAU Colloq. 77: Some Background about Satellites (1986), pp. 224–292

    Google Scholar 

  154. G. Schubert, J. Anderson, T. Spohn, W. McKinnon, Interior composition, structure and dynamics of the Galilean satellites, in Jupiter: The Planet, Satellites and Magnetosphere (2004), pp. 281–306

    Google Scholar 

  155. H. Scott, Q. Williams, F. Ryerson, Experimental constraints on the chemical evolution of large icy satellites. Earth Planet. Sci. Lett. 203(1), 399–412 (2002)

    ADS  Google Scholar 

  156. Y. Sekine, H. Genda, S. Sugita, T. Kadono, T. Matsui, Replacement and late formation of atmospheric N2 on undifferentiated Titan by impacts. Nat. Geosci. 4(6), 359–362 (2011)

    ADS  Google Scholar 

  157. Y. Sekine, T. Shibuya, F. Postberg, H.W. Hsu, K. Suzuki, Y. Masaki, T. Kuwatani, M. Mori, P.K. Hong, M. Yoshizaki, S. Tachibana, S. Sirono, High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015). https://doi.org/10.1038/ncomms9604

    ADS  Article  Google Scholar 

  158. E.L. Shock, M.E. Holland, Quantitative habitability. Astrobiology 7(6), 839–851 (2007). https://doi.org/10.1089/ast.2007.0137

    ADS  Article  Google Scholar 

  159. A. Showman, R. Malhotra, Tidal evolution into the Laplace resonance and the resurfacing of Ganymede. Icarus 127(1), 93–111 (1997)

    ADS  Google Scholar 

  160. K. Soderlund, M. Heimpel, E. King, J. Aurnou, Turbulent models of ice giant internal dynamics: dynamos, heat transfer, and zonal flows. Icarus 224(1), 97–113 (2013)

    ADS  Google Scholar 

  161. F. Sohl, W.D. Sears, R.D. Lorenz, Tidal dissipation on Titan. Icarus 115(2), 278–294 (1995)

    ADS  Google Scholar 

  162. F. Sohl, T. Spohn, D. Breuer, K. Nagel, Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157(1), 104–119 (2002)

    ADS  Google Scholar 

  163. F. Sohl, M. Choukroun, J. Kargel, J. Kimura, R. Pappalardo, S. Vance, M. Zolotov, Subsurface water oceans on icy satellites: chemical composition and exchange processes. Space Sci. Rev. 153, 485–510 (2010). https://doi.org/10.1007/s11214-010-9646-y

    ADS  Article  Google Scholar 

  164. C. Sotin, O. Grasset, Mass-radius curve for extrasolar Earth-like planets and ocean planets. Icarus 191, 337–351 (2007)

    ADS  Google Scholar 

  165. C. Sotin, E. Parmentier, On the stability of a fluid layer containing a univariant phase transition: application to planetary interiors. Phys. Earth Planet. Inter. 55(1), 10–25 (1989). https://doi.org/10.1016/0031-9201(89)90229-X

    ADS  Article  Google Scholar 

  166. C. Sotin, J. Poirier, Viscosity of ice V. J. Phys. Colloq. 48(C1), 1 (1987)

    Google Scholar 

  167. C. Sotin, P. Gillet, J. Poirier, Creep of high-pressure ice VI, in Ices in the Solar System (Springer, Berlin, 1985), pp. 109–118

    Google Scholar 

  168. T. Spohn, D. Breuer, Interior structure and evolution of the galilean satellites, in Planetary Systems: The Long View (1998), p. 135

    Google Scholar 

  169. S.W. Squyres, R.T. Reynolds, A.L. Summers, F. Shung, Accretional heating of the satellites of Saturn and Uranus. J. Geophys. Res. 93, 8779–8794 (1988). https://doi.org/10.1029/JB093iB08p08779

    ADS  Article  Google Scholar 

  170. S.C. Stähler, M.P. Panning, S.D. Vance, R.D. Lorenz, M. van Driel, T. Nissen-Meyer, S. Kedar, Seismic wave propagation in icy ocean worlds. J. Geophys. Res., Planets 123(1), 206–232 (2018)

    ADS  Google Scholar 

  171. D.J. Stevenson, T. Spohn, G. Schubert, Magnetism and thermal evolution of the terrestrial planets. Icarus 54(3), 466–489 (1983)

    ADS  Google Scholar 

  172. G. Tammann, Ueber die Grenzen des festen Zustandes IV. Ann. Phys. 307(5), 1–31 (1900). https://doi.org/10.1002/andp.19003070502

    Article  Google Scholar 

  173. G. Tobie, O. Grasset, J.I. Lunine, A. Mocquet, C. Sotin, Titan’s internal structure inferred from a coupled thermal-orbital model. Icarus 175(2), 496–502 (2005a)

    ADS  Google Scholar 

  174. G. Tobie, A. Mocquet, C. Sotin, Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177, 534–549 (2005b). https://doi.org/10.1016/j.icarus.2005.04.006

    ADS  Article  Google Scholar 

  175. G. Tobie, J. Lunine, C. Sotin, Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440(7080), 61–64 (2006)

    ADS  Google Scholar 

  176. G. Tobie, D. Gautier, F. Hersant, Titan’s bulk composition constrained by Cassini-Huygens: implication for internal outgassing. Astrophys. J. 752(2), 125 (2012)

    ADS  Google Scholar 

  177. G. Tobie, J.I. Lunine, J. Monteux, O. Mousis, F. Nimmo, The Origin and Evolution of Titan (2014), p. 29

    Google Scholar 

  178. E. Turtle, J. Barnes, M. Trainer, R. Lorenz, S. MacKenzie, K. Hibbard, Exploring Titan’s Prebiotic Organic Chemistry and Habitability. LPI Contributions (2017), p. 1958

    Google Scholar 

  179. P. Valenti, R.J. Bodnar, C. Schmidt, Experimental determination of H2O–NaCl liquidi to 25 mass% NaCl and 1.4 GPa: application to the Jovian satellite Europa. Geochim. Cosmochim. Acta 92(C), 117–128 (2012). https://doi.org/10.1016/j.gca.2012.06.007

    ADS  Article  Google Scholar 

  180. S. Vance, J.M. Brown, Thermodynamic properties of aqueous MgSO4 to 800 MPa at temperatures from −20 to \(100 ^{\circ }\mbox{C}\) and concentrations to \(2.5\,\mbox{mol}\,\mbox{kg}^{-1}\) from sound speeds, with applications to icy world oceans. Geochim. Cosmochim. Acta 110, 176–189 (2013). https://doi.org/10.1016/j.gca.2013.01.040

    ADS  Article  Google Scholar 

  181. S. Vance, J. Harnmeijer, J. Kimura, H. Hussmann, B. deMartin, J.M. Brown, Hydrothermal systems in small ocean planets. Astrobiology 7(6), 987–1005 (2007). https://doi.org/10.1089/ast.2007.0075

    ADS  Article  Google Scholar 

  182. S. Vance, M. Bouffard, M. Choukroun, C. Sotin, Ganymede’s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet. Space Sci. 96, 62–70 (2014). https://doi.org/10.1016/j.pss.2014.03.011

    ADS  Article  Google Scholar 

  183. S. Vance, K.P. Hand, R.T. Pappalardo, Geophysical controls of chemical disequilibria in Europa. Geophys. Res. Lett. 43(10), 4871–4879 (2016). https://doi.org/10.1002/2016gl068547

    ADS  Article  Google Scholar 

  184. S. Vance, M.P. Panning, S. Stähler, F. Cammarano, B.G. Bills, G. Tobie, S. Kamata, S. Kedar, C. Sotin, W.T. Pike, R. Lorenz, H.H. Huang, J.M. Jackson, B. Banerdt, Geophysical investigations of habitability in ice-covered ocean worlds: geophysical habitability. J. Geophys. Res., Planets 123(1), 180–205 (2018). https://doi.org/10.1002/2017JE005341

    ADS  Article  Google Scholar 

  185. W. Wagner, A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31(2), 387–535 (2002)

    ADS  Google Scholar 

  186. W. Wagner, T. Riethmann, R. Feistel, A.H. Harvey, New equations for the sublimation pressure and melting pressure of H2O ice Ih. J. Phys. Chem. Ref. Data 40(4), 043103 (2011). https://doi.org/10.1063/1.3657937

    ADS  Article  Google Scholar 

  187. W.F. Waite, L.A. Stern, S.H. Kirby, W.J. Winters, D.H. Mason, Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate. Geophys. J. Int. 169(2), 767–774 (2007). https://doi.org/10.1111/j.1365-246X.2007.03382.x

    ADS  Article  Google Scholar 

  188. H. Wang, J. Zeuschner, M. Eremets, I. Troyan, J. Willams, Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature. Sci. Rep. 6, 19902 (2016). https://doi.org/10.1038/srep19902

    ADS  Article  Google Scholar 

  189. Q. Williams, Bottom-up versus top-down solidification of the cores of small solar system bodies: constraints on paradoxical cores. Earth Planet. Sci. Lett. 284(3), 564–569 (2009)

    ADS  Google Scholar 

  190. T. Yoshino, M.J. Walter, T. Katsura, Core formation in planetesimals triggered by permeable flow. Nature 422(6928), 154 (2003)

    ADS  Google Scholar 

  191. X. Zhan, G. Schubert, Powering Ganymede’s dynamo. J. Geophys. Res. 117(E8), E08011 (2012)

    ADS  Google Scholar 

  192. M.Y. Zolotov, Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessments in closed systems. Icarus 220, 713–729 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

B.J. was supported by the NASA Postdoctoral Program fellowship, other University of Washington authors were supported by the NASA Solar System Workings Grant 80NSSC17K0775 and by the Icy Worlds node of NASA’s Astrobiology Institute (08-NAI5-0021).

K.K. was supported by the Czech Science Foundation through project No. 19-10809S and by Charles University Research program No. UNCE/SCI/023.

Work by JPL co-authors was partially supported by strategic research and technology funds from the Jet Propulsion Laboratory, Caltech, and by the Icy Worlds and Titan nodes of NASA’s Astrobiology Institute (13-13NAI7_2-0024 and 17-NAI8-2-017).

K.M.S. was supported by NASA Grant NNX14AR28G.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Baptiste Journaux.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ocean Worlds

Edited by Athena Coustenis, Tilman Spohn, Rafael Rodrigo, Kevin P. Hand, Alexander Hayes, Karen Olsson-Francis, Frank Postberg, Christophe Sotin, Gabriel Tobie, Francois Raulin and Nicolas Walter

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Journaux, B., Kalousová, K., Sotin, C. et al. Large Ocean Worlds with High-Pressure Ices. Space Sci Rev 216, 7 (2020). https://doi.org/10.1007/s11214-019-0633-7

Download citation

Keywords

  • High pressure ices
  • Titan
  • Ganymede
  • Callisto
  • Exoplanets
  • Habitability