Diffuse and Pulsating Aurora

Abstract

This chapter reviews fundamental properties and recent advances of diffuse and pulsating aurora. Diffuse and pulsating aurora often occurs on closed field lines and involves energetic electron precipitation by wave-particle interaction. After summarizing the definition, large-scale morphology, types of pulsation, and driving processes, we review observation techniques, occurrence, duration, altitude, evolution, small-scale structures, fast modulation, relation to high-energy precipitation, the role of ECH waves, reflected and secondary electrons, ionosphere dynamics, and simulation of wave-particle interaction. Finally we discuss open questions of diffuse and pulsating aurora.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. S.I. Akasofu, Polar and Magnetospheric Substorms (Reidel, Dordrecht, 1968), p. 223

    Google Scholar 

  2. R.L. Arnoldy, K. Dragoon, L.J. Cahill, S.B. Mende, T.J. Rosenberg, Detailed correlations of magnetic field and riometer observations at \(L = 4.2\) with pulsating aurora. J. Geophys. Res. 87(A12), 10449 (1982). https://doi.org/10.1029/JA087iA12p10449

    ADS  Article  Google Scholar 

  3. M. Ashour-Abdalla, C. Kennel, Nonconvective and convective electron cyclotron harmonic instabilities. J. Geophys. Res. 83, 1531–1543 (1978). https://doi.org/10.1029/JA083iA04p01531

    ADS  Article  Google Scholar 

  4. K. Axelsson, T. Sergienko, H. Nilsson, U. Brändstrm, Y. Ebihara, K. Asamura, M. Hirahara, Spatial characteristics of wave-like structures in diffuse aurora obtained using optical observations. Ann. Geophys. 30(12), 1693–1701 (2012). https://doi.org/10.5194/angeo-30-1693-2012

    ADS  Article  Google Scholar 

  5. F.T. Berkey, Observations of pulsating aurora in the day sector auroral zone. Planet. Space Sci. 26, 635–650 (1978)

    ADS  Article  Google Scholar 

  6. F.T. Berkey, C.D. Anger, S.-I. Akasofu, E.P. Rieger, The signature of large-scale auroral structure in radio wave absorption. J. Geophys. Res. 85(A2), 593 (1980). https://doi.org/10.1029/JA085iA02p00593

    ADS  Article  Google Scholar 

  7. E.C. Bland, E. Heino, M.J. Kosch, N. Partamies, SuperDARN radar-derived HF radio attenuation during the September 2017 solar proton events. Space Weather 16(10), 1455–1469 (2018). https://doi.org/10.1029/2018SW001916

    ADS  Article  Google Scholar 

  8. E.C. Bland, N. Partamies, E. Heino, A.S. Yukimatu, H. Miyaoka, Energetic electron precipitation occurrence rates determined using the Syowa East SuperDARN radar. J. Geophys. Res. Space Phys. 124, 6253–6265 (2019). https://doi.org/10.1029/2018JA026437

    ADS  Article  Google Scholar 

  9. U. Brändström, the auroral large imaging system-design, operation and scientific results. IRF Scientific Report 279, Kiruna (2003)

  10. A. Brekke, H. Pettersen, Some observations of pulsating aurora at Spitzbergen. Planet. Space Sci. 19, 536540 (1971)

    Google Scholar 

  11. N.B. Brown, T.N. Davis, T.J. Hallinan, H.C. Stenbaek-Nielsen, Altitude of pulsating aurora determined by a new instrumental technique. Geophys. Res. Lett. 3, 403–404 (1976). https://doi.org/10.1029/GL003i007p00403

    ADS  Article  Google Scholar 

  12. D. Bryant, G. Courtier, A. Johnstone, Modulation of auroral electrons at large distances from the Earth. J. Atmos. Terr. Phys. 31(4), 579–592 (1969). https://doi.org/10.1016/0021-9169(69)90010-5

    ADS  Article  Google Scholar 

  13. D. Bryant, M.J. Smith, G.M. Courtier, Distant modulation of electron intensity during the expansion phase of an auroral substorm. Planet. Space Sci. 23, 867 (1975). https://doi.org/10.1016/0032-0633(75)90022-7

    ADS  Article  Google Scholar 

  14. L.B.N. Clausen, H. Nickisch, Automatic classification of auroral images from the Oslo Auroral THEMIS (OATH) data set using machine learning. J. Geophys. Res. Space Phys. 123(7), 5640–5647 (2018). https://doi.org/10.1029/2018JA025274

    ADS  Article  Google Scholar 

  15. J.M. Comberiate, F. Kamalabadi, L.J. Paxton, A tomographic model for ionospheric imaging with the Global Ultraviolet Imager. Radio Sci. 42(2), RS2011 (2007). https://doi.org/10.1029/2005RS003348

    ADS  Article  Google Scholar 

  16. M. Craven, G.B. Burns, High latitude pulsating aurora. Geophys. Res. Lett. 17(9), 1251–1254 (1990)

    ADS  Article  Google Scholar 

  17. F. Creutzberg, R. Gattinger, F. Harris, A. Vallance Jones, Pulsating auroras in relation to proton and electron auroras. Can. J. Phys. 59, 1124–1130 (1981)

    ADS  Article  Google Scholar 

  18. A.B. Crew, H.E. Spence, J.B. Blake, D.M. Lumpar, B.A. Larsen, T.P. O’Brien, S. Driscoll, M. Handley, J. Legere, S. Longworth, K. Mashburn, E. Mosleh, N. Ryhajlo, S. Smith, L. Springer, M. Widholm, First multipoint in situ observations of electron microbursts: initial results from the NSF FIREBIRD II mission. J. Geophys. Res. 121, 5272–5283 (2016). https://doi.org/10.1002/2016JA022485

    Article  Google Scholar 

  19. H. Dahlgren, N. Ivchenko, J. Sullivan, B.S. Lanchester, G. Marklund, D. Whiter, Morphology and dynamics of aurora at fine scale: first results from the ASK instrument. Ann. Geophys. 26, 1041–1048 (2008). https://doi.org/10.5194/angeo-26-1041-2008

    ADS  Article  Google Scholar 

  20. H. Dahlgren, N. Ivchenko, B.S. Lanchester, Monoenergetic high-energy electron precipitation in thin auroral filaments. Geophys. Res. Lett. 39(20), L20101 (2012). https://doi.org/10.1029/2012GL053466

    ADS  Article  Google Scholar 

  21. H. Dahlgren, B.S. Lanchester, N. Ivchenko, D.K. Whiter, Electrodynamics and energy characteristics of aurora at high resolution by optical methods. J. Geophys. Res. 121(6), 5966–5974 (2016). https://doi.org/10.1002/2016JA022446

    Article  Google Scholar 

  22. H. Dahlgren, B.S. Lanchester, N. Ivchenko, D.K. Whiter, Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution. Ann. Geophys. 35(3), 493–503 (2017). https://doi.org/10.5194/angeo-35-493-2017. https://www.ann-geophys.net/35/493/2017/

    ADS  Article  Google Scholar 

  23. C. Deehr, D. Lummerzheim, Ground-based optical observations of hydrogen emission in the auroral substorm. J. Geophys. Res. Space Phys. 106(A1), 33–44 (2001). https://doi.org/10.1029/2000JA002010

    ADS  Article  Google Scholar 

  24. A.G. Demekhov, V.Y. Trakhtengerts, A mechanism of formation of pulsating aurorae. J. Geophys. Res. 99(A4), 5831–5841 (1994). https://doi.org/10.1029/93JA01804

    ADS  Article  Google Scholar 

  25. A.G. Demekhov, U. Taubenschuss, O. Santolik, Simulation of VLF chorus emissions in the magnetosphere and comparison with THEMIS spacecraft data. J. Geophys. Res. Space Phys. 122, 166–184 (2016). https://doi.org/10.1002/2016JA023057

    ADS  Article  Google Scholar 

  26. E.F. Donovan, B.J. Jackel, I. Voronkov, T. Sotirelis, F. Creutzberg, N.A. Nicholson, Ground-based optical determination of the b2i boundary: a basis for an optical MT-index. J. Geophys. Res. Space Phys. 108(A3), 1115 (2003). https://doi.org/10.1029/2001JA009198

    ADS  Article  Google Scholar 

  27. E. Donovan, S. Mende, B. Jackel, H. Frey, M. Syrjasuo, I. Voronkov, T. Trondsen, L. Peticolas, V. Angelopoulos, S. Harris, M. Green, M. Connors, The THEMIS all-sky imaging array—system design and initial results from the prototype imager. J. Atmos. Sol.-Terr. Phys. 68, 1472–1487 (2006). https://doi.org/10.1016/j.jastp.2005.03.027

    ADS  Article  Google Scholar 

  28. C.N. Duncan, F. Creutzberg, R.L. Gattinger, F.R. Harris, A. Vallance Jones, Latitudinal and temporal characteristics of pulsating auroras. Can. J. Phys. 59, 1063–1069 (1981)

    ADS  Article  Google Scholar 

  29. R.H. Eather, Short-period auroral pulsations in \(\lambda \)6300 OI. J. Geophys. Res. 74(21), 4998–5004 (1969). https://doi.org/10.1029/JA074i021p04998

    ADS  Article  Google Scholar 

  30. Y. Ebihara, T. Sakanoi, K. Asamura, M. Hirahara, M.F. Thomsen, Reimei observation of highly structured auroras caused by nonaccelerated electrons. J. Geophys. Res. Space Phys. 115(A8), n/a–n/a (2010). https://doi.org/10.1029/2009JA015009

    Article  Google Scholar 

  31. C.-F. Enell, B. Gustavsson, B.U.E. Brändström, T.I. Sergienko, P.T. Verronen, P. Rydesäter, I. Sandahl, Tomography-like retrieval of auroral volume emission ratios for the 31 January 2008 Hotel Payload 2 event. Geosci. Instrum. Method. Data Syst. 2(1), 1–21 (2012). https://doi.org/10.5194/gid-2-1-2012

    Article  Google Scholar 

  32. D.S. Evans, G.T. Davidson, H.D. Voss, W.L. Imhof, J. Mobilia, Y.T. Chiu, Interpretation of electron spectra in morningside pulsating aurorae. J. Geophys. Res. 92(A11), 12295 (1987). https://doi.org/10.1029/JA092iA11p12295

    ADS  Article  Google Scholar 

  33. X. Fang, C.E. Randall, D. Lummerzheim, W. Wang, G. Lu, S.C. Solomon, R.A. Frahm, Parameterization of monoenergetic electron impact ionization. Geophys. Res. Lett. 37(22), n/a–n/a (2010). https://doi.org/10.1029/2010GL045406

    Article  Google Scholar 

  34. B.A. Fritz, M.L. Lessard, M.J. Blandin, P.A. Fernandes, Structure of black aurora associated with pulsating aurora. J. Geophys. Res. Space Phys. 120, 10,096–10,106 (2015). https://doi.org/10.1002/2015JA021397

    Article  Google Scholar 

  35. R. Fujii, T. Oguti, T. Yamamoto, Relationships between pulsating auroras and field-aligned electric currents. Mem. Natl. Inst. Polar Res. 36, 95–103 (1985)

    ADS  Google Scholar 

  36. R. Fujii, N. Sato, T. Ono, H. Fukunishi, T. Hirasawa, S. Kokubun, T. Araki, T. Saemundsson, Conjugacies of pulsating auroras by all-sky TV observations. Geophys. Res. Lett. 14, 115–118 (1987)

    ADS  Article  Google Scholar 

  37. M. Fukizawa, T. Sakanoi, Y. Miyoshi, K. Hosokawa, K. Shiokawa, Y. Katoh et al., Electrostatic electron cyclotron harmonic waves as a candidate to cause pulsating auroras. Geophys. Res. Lett. 45, 12,661–12,668 (2018). https://doi.org/10.1029/2018GL080145

    Article  Google Scholar 

  38. Y. Fukuda, R. Kataoka, Y. Miyoshi, Y. Katoh, T. Nishiyama, K. Shiokawa, Y. Ebihara, D. Hampton, N. Iwagami, Quasi-periodic rapid motion of pulsating auroras. Polar Sci. 10, 183–191 (2016). https://doi.org/10.1016/j.polar.2016.03.005

    ADS  Article  Google Scholar 

  39. D.M. Gillies, D. Knudsen, E. Spanswick, E. Donovan, J. Burchill, M. Patrick, Swarm observations of field-aligned currents associated with pulsating auroral patches. J. Geophys. Res. Space Phys. 120, 9484–9499 (2015). https://doi.org/10.1002/2015JA021416

    ADS  Article  Google Scholar 

  40. M. Grandin, A. Kero, N. Partamies, D. McKay, D. Whiter, A. Kozlovsky, Y. Miyoshi, Observation of pulsating aurora signatures in cosmic noise absorption data. Geophys. Res. Lett. 44, 5292–5300 (2017). https://doi.org/10.1002/2017GL073901

    ADS  Article  Google Scholar 

  41. E. Grono, E. Donovan, Differentiating diffuse auroras based on phenomenology. Ann. Geophys. 36(3), 891–898 (2018). https://doi.org/10.5194/angeo-36-891-2018

    ADS  Article  Google Scholar 

  42. E. Grono, E. Donovan, Constraining the source regions of pulsating auroras. Geophys. Res. Lett. 46, 10267–10273 (2019). https://doi.org/10.1029/2019GL084611

    ADS  Article  Google Scholar 

  43. E. Grono, E. Donovan, K.R. Murphy, Tracking patchy pulsating aurora through all-sky images. Ann. Geophys. 35(4), 777–784 (2017). https://doi.org/10.5194/angeo-35-777-2017

    ADS  Article  Google Scholar 

  44. G. Grubbs, R. Michell, M. Samara, D. Hampton, J.-M. Jahn, Predicting electron population characteristics in 2-D using multispectral ground-based imaging. Geophys. Res. Lett. 45, 15–20 (2018). https://doi.org/10.1002/2017GL075873

    ADS  Article  Google Scholar 

  45. D.-S. Han, X.-C. Chen, J.-J. Liu, Q. Qiu, K. Keika, Z.-J. Hu et al., An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station. J. Geophys. Res. Space Phys. 120(9), 7447–7465 (2015). https://doi.org/10.1002/2015JA021699

    ADS  Article  Google Scholar 

  46. D.-S. Han, J.-X. Li, Y. Nishimura, L.R. Lyons, J. Bortnik, M. Zhou et al., Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale mission and ground all-sky camera. Geophys. Res. Lett. 44(16), 8130–8139 (2017). https://doi.org/10.1002/2017GL074447

    ADS  Article  Google Scholar 

  47. M.G. Henderson, Auroral substorms, poleward boundary activations, auroral streamers, omega bands, and onset precursor activity, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophysical Monograph Series, vol. 197 (Am. Geophys. Union, Washington, 2012). https://doi.org/10.1029/2011GM001165

    Google Scholar 

  48. M. Hikishima, S. Yagitani, Y. Omura, I. Nagano, Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere. J. Geophys. Res. 114, A01203 (2009). https://doi.org/10.1029/2008JA013625

    ADS  Article  Google Scholar 

  49. M. Hikishima, Y. Omura, D. Summers, Microburst precipitation of energetic electrons associated with chorus wave generation. Geophys. Res. Lett. 37, L07103 (2010). https://doi.org/10.1029/2010GL042678

    ADS  Article  Google Scholar 

  50. F. Honary, S.R. Marple, K. Barratt, P. Chapman, M. Grill, E. Nielsen, Invited article: Digital beam-forming imaging riometer systems. Rev. Sci. Instrum. 82(3), 031301 (2011). https://doi.org/10.1063/1.3567309

    ADS  Article  Google Scholar 

  51. R.B. Horne, R.M. Thorne, Relativistic electron acceleration and precipiation during resonant interactions with whistler-mode chorus. Geophys. Res. Lett. 30, 1527 (2003). https://doi.org/10.1029/2003GL016973

    ADS  Article  Google Scholar 

  52. K. Hosokawa, Y. Ogawa, Ionospheric variation during pulsating aurora. J. Geophys. Res. Space Phys. 120, 5943–5957 (2015). https://doi.org/10.1002/2015JA021401

    ADS  Article  Google Scholar 

  53. K. Hosokawa, A. Kadokura, N. Sato, S.E. Milan, M. Lester, G. Bjornsson, T. Saemundsson, Electric field modulation behind pulsating aurora. J. Geophys. Res. 113, A11322 (2008). https://doi.org/10.1029/2008JA013601

    ADS  Article  Google Scholar 

  54. K. Hosokawa, Y. Ogawa, A. Kadokura, H. Miyaoka, N. Sato, Modulation of ionospheric conductance and electric field associated with pulsating aurora. J. Geophys. Res. Space Phys. 115(A3), n/a–n/a (2010). https://doi.org/10.1029/2009JA014683

    Article  Google Scholar 

  55. B.K. Humberset, J.W. Gjerloev, M. Samara, R.G. Michell, I.R. Mann, Temporal characteristics and energy deposition of pulsating auroral patches. J. Geophys. Res. Space Phys. 121, 7087–7107 (2016). https://doi.org/10.1002/2016JA022921

    ADS  Article  Google Scholar 

  56. B.K. Humberset, J.W. Gjerloev, I.R. Mann, R.G. Michell, M. Samara, On the persistent shape and coherence of pulsating auroral patches. J. Geophys. Res. Space Phys. 123, 4272–4289 (2018). https://doi.org/10.1029/2017JA024405

    ADS  Article  Google Scholar 

  57. B.J. Jackel, F. Creutzberg, E.F. Donovan, L.L. Cogger, Triangulation of auroral red-line emission heights, in Proceedings of the 28th Annual European Meeting on Atmospheric Studies by Optical Methods, vol. 92, ed. by K.U. Kaila, J.R.T. Jussila, H. Holma (Sodankyla Geophysical Observatory Publications, Oulu, 2003), pp. 97–100

    Google Scholar 

  58. A.N. Jaynes, M.R. Lessard, J.V. Rodriguez, E. Donovan, T.M. Loto’aniu, K. Rychert, Pulsating aurora electron flux modulations in the equatorial magnetosphere. J. Geophys. Res. Space Phys. 118, 884–894 (2013). https://doi.org/10.1002/jgra.50434

    Article  Google Scholar 

  59. A.N. Jaynes et al., Correlated Pc4–5 ULF waves, whistler-mode chorus and pulsating aurora observed by the Van Allen Probes and ground-based systems. J. Geophys. Res. Space Phys. 120, 8749–8761 (2015). https://doi.org/10.1002/2015JA021380

    ADS  Article  Google Scholar 

  60. S.F. Johnston, Autonomous meridian scanning photometer for auroral observations. Opt. Eng. 28(1), 280120 (1989). https://doi.org/10.1117/12.7976895

    ADS  Article  Google Scholar 

  61. A.D. Johnstone, Pulsating aurora. Nature 274, 119–126 (1978)

    ADS  Article  Google Scholar 

  62. S.L. Jones, M.R. Lessard, P.A. Fernandes, D. Lummerzheim, J.L. Semeter, C.J. Heinselman, K.A. Lynch, G. Michell, P.M. Kintner, H.C. Stenbaek-Nielsen, K. Asamura, PFISR and ROPA observations of pulsating aurora. J. Atmos. Sol.-Terr. Phys. 71, 708–716 (2009). https://doi.org/10.1016/j.jastp.2008.10.004

    ADS  Article  Google Scholar 

  63. S.L. Jones, M.R. Lessard, K. Rychert, E. Spanswick, E. Donovan, Large-scale aspects and temporal evolution of pulsating aurora. J. Geophys. Res. Space Phys. 116, A03214 (2011). https://doi.org/10.1029/2010ja015840

    ADS  Article  Google Scholar 

  64. S.L. Jones, M.R. Lessard, K. Rychert, E. Spanswick, E. Donovan, A.N. Jaynes, Persistent, widespread pulsating aurora: a case study. J. Geophys. Res. Space Phys. 118, 2998–3006 (2013). https://doi.org/10.1002/jgra.50301

    ADS  Article  Google Scholar 

  65. S. Kasahara, Y. Miyoshi, S. Yokota, T. Mitani, Y. Kasahara, S. Matsuda et al., Pulsating aurora from electron scattering by chorus waves. Nature 554(7692), 337–340 (2018). https://doi.org/10.1038/nature25505

    ADS  Article  Google Scholar 

  66. R. Kataoka, Y. Miyoshi, D. Hampton, T. Ishii, H. Kozako, Pulsating aurora beyond the ultra-low-frequency range. J. Geophys. Res. Space Phys. 117, A8 (2012). https://doi.org/10.1029/2012JA017987.

    Article  Google Scholar 

  67. R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Taka- hei, T. Nakai, H. Miyahara, K. Shiokawa, Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras. Ann. Geophys. 31(9), 1543–1548 (2013). https://doi.org/10.5194/angeo-31-1543-2013. https://www.ann-geophys.net/31/1543/2013/

    ADS  Article  Google Scholar 

  68. R. Kataoka, Y. Fukuda, Y. Miyoshi, H. Miyahara, S. Itoya, Y. Ebihara, D. Hampton, H. Dahlgren, D. Whiter, N. Ivchenko, Compound auroral micromorphology: ground-based high-speed imaging. Earth Planets Space 67(1), 23 (2015). https://doi.org/10.1186/s40623-015-0190-6

    ADS  Article  Google Scholar 

  69. R. Kataoka, Y. Fukuda, H.A. Uchida, H. Yamada, Y. Miyoshi, Y. Ebihara, D. Hampton, High-speed stereoscopy of aurora. Ann. Geophys. 34(1), 41–44 (2016). https://doi.org/10.5194/angeo-34-41-2016

    ADS  Article  Google Scholar 

  70. R. Kataoka, T. Nishiyama, Y. Tanaka, A. Kadokura, H.A. Uchida, Y. Ebihara, M.K. Ejiri, Y. Tomikawa, M. Tsutsumi, K. Sato, Y. Miyoshi, K. Shiokawa, S. Kurita, Y. Kasahara, M. Ozaki, K. Hosokawa, S. Matsuda, I. Shinohara, T. Takashima, T. Sato, T. Mitani, T. Hori, N. Higashio, Transient ionization of the mesosphere during auroral breakup: Arase satellite and ground-based conjugate observations at Syowa Station. Earth Planets Space 7, 19 (2019). https://doi.org/10.1186/s40623-019-0989-7

    Article  Google Scholar 

  71. Y. Katoh, A simulation study of the propagation of whistler-mode chorus in the Earth’s inner magnetosphere. Earth Planets Space 66, 6 (2014). https://doi.org/10.1186/1880-5981-66-6

    ADS  Article  Google Scholar 

  72. Y. Katoh, Y. Omura, Computer simulation of chorus wave generation in the Earth’s inner magnetosphere. Geophys. Res. Lett. 34, L03102 (2007). https://doi.org/10.1029/2006GL028594

    ADS  Article  Google Scholar 

  73. Y. Katoh, Y. Omura, Amplitude dependence of frequency sweep rates of whistler mode chorus emissions. J. Geophys. Res. 116, A07201 (2011). https://doi.org/10.1029/2011JA016496

    ADS  Article  Google Scholar 

  74. Y. Katoh, Y. Omura, Effect of the background magnetic field inhomogeneity on generation processes of whistler-mode chorus and hiss-like broadband emissions. J. Geophys. Res. Space Phys. 118, 4189–4198 (2013). https://doi.org/10.1002/jgra.50395

    ADS  Article  Google Scholar 

  75. Y. Katoh, Y. Omura, Electron hybrid code simulation of whistler-mode chorus generation with real parameters in the Earth’s inner magnetosphere. Earth Planets Space 68, 192 (2016). https://doi.org/10.1186/s40623-016-0568-0

    ADS  Article  Google Scholar 

  76. Y. Katoh, Y. Omura, Y. Miyake, H. Usui, H. Nakashima, Dependence of generation of whistler-mode chorus emissions on the temperature anisotropy and density of energetic electrons in the Earth’s inner magnetosphere. J. Geophys. Res. Space Phys. 123, 1165–1177 (2018). https://doi.org/10.1002/2017JA024801

    ADS  Article  Google Scholar 

  77. S. Kawamura, K. Hosokawa, S. Kurita, S. Oyama, Y. Miyoshi, Y. Kasahara et al., Tracking the region of high correlation between pulsating aurora and chorus: simultaneous observations with Arase satellite and ground-based all-sky imager in Russia. J. Geophys. Res. Space Phys. 124, 2769–2778 (2019). https://doi.org/10.1029/2019JA026496

    ADS  Article  Google Scholar 

  78. Y. Kazama, H. Kojima, Y. Miyoshi, Y. Kasahara, H. Usui, B.-J. Wang et al., Density depletions associated with enhancements of electron cyclotron harmonic emissions: an ERG observation. Geophys. Res. Lett. 45, 10,075–10,083 (2018). https://doi.org/10.1029/2018GL080117

    Article  Google Scholar 

  79. C.F. Kennel, H.E. Petschek, Limits on stably trapped particle fluxes. J. Geophys. Res. 71, 1 (1966). https://doi.org/10.1029/JZ071i001p00001

    ADS  Article  Google Scholar 

  80. D.R. Kenward, M.R. Lessard, B.A. Fritz, R. Varney, R.G. Michell, D. Hampton, Observations of ion upflow during pulsating aurora. J. Geophys. Res. Space Phys. (2019, submitted)

  81. G.V. Khazanov, D.G. Sibeck, E. Zesta, Is diffuse aurora driven from above or below? Geophys. Res. Lett. 44, 641–647 (2017). https://doi.org/10.1002/2016GL072063

    ADS  Article  Google Scholar 

  82. S. Kirkwood, H. Opgenoorth, J.S. Murphree, Ionospheric conductivities, electric fields and currents associated with auroral substorms measured by the EISCAT radar. Planet. Space Sci. 36(12), 1359–1380 (1988). https://doi.org/10.1016/0032-0633(88)90005-0

    ADS  Article  Google Scholar 

  83. D.J. Knudsen, J.K. Burchill, T.G. Cameron, G.A. Enno, A. Howarth, A.W. Yau, The CASSIOPE/e-POP Suprathermal Electron Imager (SEI). Space Sci. Rev. 189, 65 (2015)

    ADS  Article  Google Scholar 

  84. D.J. Knudsen, J.K. Burchill, S.C. Buchert, A.I. Eriksson, R. Gill, J.-E. Wahlund, L. Åhlen, M. Smith, B. Moffat, Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res. Space Phys. 122, 2655–2673 (2017). https://doi.org/10.1002/2016JA022571

    ADS  Article  Google Scholar 

  85. M.J. Kosch, F. Honary, C.F. del Pozo, S.R. Marple, T. Hagfors, High-resolution maps of the characteristic energy of precipitating auroral particles. J. Geophys. Res. 106(A12), 28925–28937 (2001). https://doi.org/10.1029/2001JA900107

    ADS  Article  Google Scholar 

  86. S. Kurita, Y. Katoh, Y. Omura, V. Angelopoulos, C.M. Cully, O. Le Contel, H. Misawa, THEMIS observation of chorus elements without a gap at half the gyrofrequency. J. Geophys. Res. 117, A11223 (2012). https://doi.org/10.1029/2012JA018076

    ADS  Article  Google Scholar 

  87. B.S. Lanchester, M. Ashrafi, N. Ivchenko, Simultaneous imaging of aurora on small scale in OI (777.4 nm) and N2 1P to estimate energy and flux of precipitation. Ann. Geophys. 27, 2881–2891 (2009). https://doi.org/10.5194/angeo-27-2881-2009

    ADS  Article  Google Scholar 

  88. M.R. Lessard, in A Review of Pulsating Aurora. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophys. Monogr. Ser., vol. 197 (2013), pp. 55–68. https://doi.org/10.1029/2011GM001187

    Google Scholar 

  89. W. Li, J. Bortnik, Y. Nishimura, R.M. Thorne, V. Angelopoulos, The origin of pulsating aurora: modulated whistler mode chorus waves, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson (2013). https://doi.org/10.1029/2011GM001164

    Google Scholar 

  90. J. Liang, V. Uritsky, E. Donovan, B. Ni, E. Spanswick, T. Trondsen, J. Bonnell, A. Roux, U. Auster, D. Larson, THEMIS observations of electron cyclotron harmonic emissions, ULF waves, and pulsating auroras. J. Geophys. Res. 115, A10235 (2010). https://doi.org/10.1029/2009JA015148

    ADS  Article  Google Scholar 

  91. J. Liang, B. Ni, E. Spanswick, M. Kubyshkina, E.F. Donovan, V.M. Uritsky, R.M. Thorne, V. Angelopoulos, Fast earthward flows, electron cyclotron harmonic waves, and diffuse auroras: conjunctive observations and a synthesized scenario. J. Geophys. Res. 116, A12220 (2011). https://doi.org/10.1029/2011JA017094

    ADS  Article  Google Scholar 

  92. J. Liang, E. Donovan, Y. Nishimura, B. Yang, E. Spanswick, K. Asamura, T. Sakanoi, D. Evans, R. Redmon, Low-energy ion precipitation structures associated with pulsating auroral patches. J. Geophys. Res. Space Phys. 120, 5408–5431 (2015). https://doi.org/10.1002/2015JA021094

    ADS  Article  Google Scholar 

  93. J. Liang, E. Donovan, B. Jackel, E. Spanswick, M. Gillies, On the 630 nm red-line pulsating aurora: red-line emission geospace observatory observations and model simulations. J. Geophys. Res. Space Phys. 121(8), 7988–8012 (2016). https://doi.org/10.1002/2016JA022901

    ADS  Article  Google Scholar 

  94. J. Liang, E. Donovan, A. Reimer, D. Hampton, S. Zou, R. Varney, Ionospheric electron heating associated with pulsating auroras: joint optical and PFISR observations. J. Geophys. Res. Space Phys. 123, 4430–4456 (2018). https://doi.org/10.1029/2017JA025138

    ADS  Article  Google Scholar 

  95. X. Liu, L. Chen, W. Gu, X.-J. Zhang, Electron cyclotron harmonic wave instability by loss cone distribution. J. Geophys. Res. 123, 9035–9044 (2018). https://doi.org/10.1029/2018JA025925

    Article  Google Scholar 

  96. A.T.Y. Lui, P. Perreault, S.I. Akasofu, C.D. Anger, The diffuse aurora. Planet. Space Sci. 21(5), 857–858 (1973)

    ADS  Article  Google Scholar 

  97. A.T.Y. Lui, C.D. Anger, W.J. Heikkila, J.R. Burrows, Simultaneous observations of particle precipitations and auroral. J. Geophys. Res. 82(16), 2210–2226 (1977)

    ADS  Article  Google Scholar 

  98. A.T.Y. Lui, L.L. Cogger, A. Howarth, A.W. Yau, First satellite imaging of auroral pulsations by the Fast Auroral Imager on e-POP. Geophys. Res. Lett. 42, 6877–6882 (2015). https://doi.org/10.1002/2015GL065331

    ADS  Article  Google Scholar 

  99. R. Lyons, Electron diffusion driven by magnetospheric electrostatic waves. J. Geophys. Res. 79(4), 575–580 (1974). https://doi.org/10.1029/JA079i004p00575

    ADS  Article  Google Scholar 

  100. J.E. Maggs, T.N. Davis, Measurements of the thicknesses of auroral structures. Planet. Space Sci. 16(2), 205–209 (1968). https://doi.org/10.1016/0032-0633(68)90069-X

    ADS  Article  Google Scholar 

  101. D.J. McEwan, C.N. Duncan, A campaign to study pulsating auroras. Can. J. Phys. 59(8), 1029–1033 (1981). https://doi.org/10.1139/p81-135

    ADS  Article  Google Scholar 

  102. D.J. McEwen, E. Yee, B.A. Whalen, A.W. Yau, Electron energy measurements in pulsating auroras. Can. J. Phys. 59(8), 1106–1115 (1981). https://doi.org/10.1139/p81-146

    ADS  Article  Google Scholar 

  103. D. McKay, N. Partamies, J. Vierinen, Pulsating aurora and cosmic noise absorption associated with growth-phase arcs. Ann. Geophys. 36(1), 59–69 (2018). https://doi.org/10.5194/angeo-36-59-2018

    ADS  Article  Google Scholar 

  104. D. McKay, T. Paavilainen, B. Gustavsson, A. Kvammen, N. Partamies, Lumikot: fast auroral transients during the growth phase of substorms. Geophys. Res. Lett. 46, 7214–7221 (2019). https://doi.org/10.1029/2019GL082985

    ADS  Article  Google Scholar 

  105. S.B. Mende, H.U. Frey, C.W. Carlson, J. McFadden, J. Gérard, B. Hubert et al., IMAGE and FAST observations of substorm recovery phase aurora. Geophys. Res. Lett. 29(12), 1602 (2002). https://doi.org/10.1029/2001GL013027

    ADS  Article  Google Scholar 

  106. S.B. Mende, S.E. Harris, H.U. Frey, V. Angelopoulos, C.T. Russell, E. Donovan, L.M. Peticolas, The THEMIS array of ground-based observatories for the study of auroral substorms. Space Sci. Rev. 141(1–4), 357–387 (2008). https://doi.org/10.1007/s11214-008-9380-x

    ADS  Article  Google Scholar 

  107. R.G. Michell, M. Samara, Ground magnetic field fluctuations associated with pulsating aurora. J. Geophys. Res. Space Phys. 120, 9192–9201 (2015). https://doi.org/10.1002/2015JA021252

    ADS  Article  Google Scholar 

  108. R.G. Michell, M.G. McHarg, M. Samara, D.L. Hampton, Spectral analysis of flickering aurora. J. Geophys. Res. 117, A03321 (2012). https://doi.org/10.1029/2011JA016703

    ADS  Article  Google Scholar 

  109. R.G. Michell, T. Grydeland, M. Samara, Characteristics of Poker Flat Incoherent Scatter Radar (PFISR) naturally enhanced ion-acoustic lines (NEIALs) in relation to auroral forms. Ann. Geophys. 32, 1333–1347 (2014). https://doi.org/10.5194/angeo-32-1333-2014

    ADS  Article  Google Scholar 

  110. Y. Miyoshi, Y. Katoh, T. Nishiyama, T. Sakanoi, K. Asamura, M. Hirahara, Time of flight analysis of pulsating aurora electrons, considering wave-particle interactions with propagating whistler mode waves. J. Geophys. Res. 115, A10312 (2010). https://doi.org/10.1029/2009JA015127

    ADS  Article  Google Scholar 

  111. Y. Miyoshi, S. Oyama, S. Saito, S. Kurita, H. Fujiwara, R. Kataoka, Y. Ebihara, C. Kletzing, G. Reeves, O. Santolik, M. Clilverd, C.J. Rodger, E. Turunen, F. Tsuchiya, Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations. J. Geophys. Res. 120, 2754–2766 (2015a). https://doi.org/10.1002/2014JA020690

    Article  Google Scholar 

  112. Y. Miyoshi, S. Saito, K. Seki, T. Nishiyama, R. Kataoka, K. Asamura, Y. Katoh, Y. Ebihara, T. Sakanoi, M. Hirahara, S. Oyama, S. Kurita, O. Santolik, Relation between fine structure of energy spectra for pulsating aurora electrons and frequency spectra of whistler mode chorus waves. J. Geophys. Res. 120, 7728–7736 (2015b). https://doi.org/10.1002/2015JA021562

    Article  Google Scholar 

  113. T. Motoba, Y. Ebihara, A. Kadokura, M.J. Engebretson, M.R. Lessard, A.T. Weatherwax, A.J. Gerrard, Fast-moving diffuse auroral patches: a new aspect of daytime Pc3 auroral pulsations. J. Geophys. Res. Space Phys. 122, 1542–1554 (2017). https://doi.org/10.1002/2016JA023285

    ADS  Article  Google Scholar 

  114. R. Nakamura, T. Oguti, Drifts of auroral structures and magnetospheric electric fields. J. Geophys. Res. 92(A10), 11241–11247 (1987). https://doi.org/10.1029/JA092iA10p11241

    ADS  Article  Google Scholar 

  115. P.T. Newell, Y.I. Feldstein, Y.I. Galperin, C.-I. Meng, Morphology of nightside precipitation. J. Geophys. Res. 101(A5), 10737–10748 (1996). https://doi.org/10.1029/95JA03516

    ADS  Article  Google Scholar 

  116. B. Ni, R.M. Thorne, Y.Y. Shprits, J. Bortnik, Resonant scattering of plasma sheet electrons by whistler-mode chorus: contribution to diffuse auroral precipitation. Geophys. Res. Lett. 35, L11106 (2008). https://doi.org/10.1029/2008GL034032

    ADS  Article  Google Scholar 

  117. B. Ni, R. Thorne, J. Liang, V. Angelopoulos, C. Cully, W. Li, X. Zhang, M. Hartinger, O. Le Contel, A. Roux, Global distribution of electrostatic electron cyclotron harmonic waves observed on THEMIS. Geophys. Res. Lett. 38, L17105 (2011). https://doi.org/10.1029/2011GL048793

    ADS  Article  Google Scholar 

  118. B. Ni, J. Liang, R.M. Thorne, V. Angelopoulos, R.B. Horne, M. Kubyshkina, E. Spanswick, E.F. Donovan, D. Lummerzheim, Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: a detailed case study. J. Geophys. Res. 117, A01218 (2012). https://doi.org/10.1029/2011JA017095

    ADS  Article  Google Scholar 

  119. B. Ni, R.M. Thorne, X. Zhang, J. Bortnik, Z. Pu, L. Xie, Z.-J. Hu, D. Han, R. Shi, C. Zhou, X. Gu, Origins of the Earth’s diffuse auroral precipitation. Space Sci. Rev. 200(1–4), 205–259 (2016). https://doi.org/10.1007/s11214-016-0234-7

    ADS  Article  Google Scholar 

  120. B. Ni, X. Gu, S. Fu, Z. Xiang, Y. Lou, A statistical survey of electrostatic electron cyclotron harmonic waves based on THEMIS FFF wave data. J. Geophys. Res. Space Phys. 122, 3342–3353 (2017). https://doi.org/10.1002/2016JA023433

    ADS  Article  Google Scholar 

  121. M.J. Nicolls, C.J. Heinselman, Three-dimensional measurements of traveling ionospheric disturbances with the poker flat incoherent scatter radar. Geophys. Res. Lett. 34(21), L21104 (2007). https://doi.org/10.1029/2007GL031506

    ADS  Article  Google Scholar 

  122. K. Nishi, K. Shiokawa, H. Spence, Magnetospheric source region of auroral finger-like structures observed by the RBSP-a satellite. J. Geophys. Res. Space Phys. 123(9), 7513–7522 (2018a). https://doi.org/10.1029/2018JA025480

    ADS  Article  Google Scholar 

  123. Y. Nishimura et al., Identifying the driver of pulsating aurora. Science 330, 81 (2010)

    ADS  Article  Google Scholar 

  124. Y. Nishimura et al., Estimation of magnetic field mapping accuracy using the pulsating aurora-chorus connection. Geophys. Res. Lett. 38, L14110 (2011). https://doi.org/10.1029/2011GL048281

    ADS  Article  Google Scholar 

  125. Y. Nishimura, J. Bortnik, W. Li, R.M. Thorne, B. Ni, L.R. Lyons et al., Structures of dayside whistler-mode waves deduced from conjugate diffuse aurora. J. Geophys. Res. Space Phys. 118(2), 664–673 (2013). https://doi.org/10.1029/2012JA018242

    ADS  Article  Google Scholar 

  126. Y. Nishimura, J. Bortnik, W. Li, J. Liang, R.M. Thorne, V. Angelopoulos, O. Le Contel, U. Auster, J.W. Bonnell, Chorus intensity modulation driven by time-varying field-aligned low-energy plasma. J. Geophys. Res. Space Phys. 120, 7433–7446 (2015). https://doi.org/10.1002/2015JA021330

    ADS  Article  Google Scholar 

  127. Y. Nishimura, J. Bortnik, W. Li, V. Angelopoulos, E.F. Donovan, E.L. Spanswick, Comment on “pulsating auroras produced by interactions of electrons and time domain structures” by Mozer et al. J. Geophys. Res. Space Phys. 123, 2064–2070 (2018). https://doi.org/10.1002/2017JA024844

    ADS  Article  Google Scholar 

  128. T. Nishiyama, T. Sakanoi, Y. Miyoshi, Y. Katoh, K. Asamura, S. Okano, M. Hirahara, The source region and its characteristic of pulsating aurora based on the Reimei observations. J. Geophys. Res. 116, A03226 (2011a). https://doi.org/10.1029/2010JA015507

    ADS  Article  Google Scholar 

  129. T. Nishiyama, T. Sakanoi, Y. Miyoshi, Y. Katoh, K. Asamura, S. Okano, M. Hirahara, The source region and its characteristic of pulsating aurora based on the Reimei observations. J. Geophys. Res. Space Phys. 116, A03226 (2011b). https://doi.org/10.1029/2010JA015507

    ADS  Article  Google Scholar 

  130. T. Nishiyama, T. Sakanoi, Y. Miyoshi, R. Kataoka, D. Hampton, Y. Katoh, K. Asamura, S. Okano, Fine scale structures of pulsating auroras in the early recovery phase of substorm using ground-based EMCCD camera. J. Geophys. Res. Space Phys. 117(A10), A10229 (2012). https://doi.org/10.1029/2012JA017921

    ADS  Article  Google Scholar 

  131. T. Nishiyama, T. Sakanoi, Y. Miyoshi, D.L. Hampton, Y. Katoh, R. Kataoka, S. Okano, Multiscale temporal variations of pulsating auroras: on-off pulsation and a few Hz modulation. J. Geophys. Res. Space Phys. 119(5), 3514–3527 (2014). https://doi.org/10.1002/2014JA019818. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JA019818

    ADS  Article  Google Scholar 

  132. T. Nishiyama, Y. Miyoshi, Y. Katoh, T. Sakanoi, R. Kataoka, S. Okano, Substructures with luminosity modulation and horizontal oscillation in pulsating patch: principal component analysis application to pulsating aurora. J. Geophys. Res. Space Phys. 121(3), 2360–2373 (2016). https://doi.org/10.1002/2015JA022288. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA022288

    ADS  Article  Google Scholar 

  133. B.J. O’Brien, High-latitude geophysical studies with satellite Injun 3: 3. Precipitation of electrons into the atmosphere. J. Geophys. Res. 69(1), 13–43 (1964). https://doi.org/10.1029/JZ069i001p00013

    ADS  Article  Google Scholar 

  134. T. Oguti, K. Hayashi, Multiple correlation between auroral and magnetic pulsations: 2. Determination of electric currents and electric fields around a pulsating auroral patch. J. Geophys. Res. Space Phys. 89(A9), 7467–7481 (1984). https://doi.org/10.1029/JA089iA09p07467

    ADS  Article  Google Scholar 

  135. T. Oguti, S. Kokubun, K. Hayashi, K. Tsuruda, S. Machida, T. Kitamura, O. Saka, T. Watanabe, Statistics of pulsating auroras on the basis of all-sky TV data from five stations. I—Occurrence frequency. Can. J. Phys. 59, 1150–1157 (1981a). https://doi.org/10.1139/p81-152

    ADS  Article  Google Scholar 

  136. T. Oguti, S. Kokubun, K. Hayashi, K. Tsuruda, S. Machida, T. Kitamura, O. Saka, T. Watanabe, Latitudinally propagating on-off switching aurorae and associated geomagnetic pulsations: a case study of an event of February 20, 1980. Can. J. Phys. 59, 1131–1136 (1981b)

    ADS  Article  Google Scholar 

  137. Y. Omura, D. Nunn, Triggering process of whistler-mode chorus emissions in the magnetosphere. J. Geophys. Res. 116, A05205 (2011). https://doi.org/10.1029/2010JA016280

    ADS  Article  Google Scholar 

  138. Y. Omura, Y. Katoh, D. Summers, Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res. 113, A04223 (2008). https://doi.org/10.1029/2007JA012622

    ADS  Article  Google Scholar 

  139. Y. Omura, M. Hikishima, Y. Katoh, D. Summers, S. Yagitani, Nonlinear mechanisms of lower band and upper band VLF chorus emissions in the magnetosphere. J. Geophys. Res. 114, A07217 (2009). https://doi.org/10.1029/2009JA014206

    ADS  Article  Google Scholar 

  140. S. Oyama, K. Shiokawa, J. Kurihara, T.T. Tsuda, S. Nozawa, Y. Ogawa, B.J. Watkins, Lower-thermospheric wind fluctuations measured with an FPI during pulsating aurora at Tromsø, Norway. Ann. Geophys. 28(10), 1847–1857 (2010). https://doi.org/10.5194/angeo-28-1847-2010

    ADS  Article  Google Scholar 

  141. S. Oyama, K. Shiokawa, Y. Miyoshi, K. Hosokawa, B.J. Watkins, J. Kurihara, C.T. Fallen, Lower thermospheric wind variations in auroral patches during the substorm recovery phase. J. Geophys. Res. Space Phys. 121(4), 3564–3577 (2016). https://doi.org/10.1002/2015JA022129

    ADS  Article  Google Scholar 

  142. S. Oyama, A. Kero, C.J. Rodger, M.A. Clilverd, Y. Miyoshi, N. Paratamies, E. Turunen, T. Raita, P.T. Verronen, S. Saito, Energetic electron precipitation and auroral morphology at the substorm recovery phase. J. Geophys. Res. 122, 6508–6527 (2017). https://doi.org/10.1002/2016JA023484

    Article  Google Scholar 

  143. M. Ozaki et al., A direct link between chorus emissions and pulsating aurora on timescales from milliseconds to minutes: a case study at subauroral latitudes. J. Geophys. Res. Space Phys. 120, 9617–9631 (2015). https://doi.org/10.1002/2015JA021381

    ADS  Article  Google Scholar 

  144. M. Ozaki, K. Shiokawa, Y. Miyoshi, K. Hosokawa, S. Oyama, S. Yagitani, Y. Kasahara, Y. Kasaba, S. Matsuda, R. Kataoka, Y. Ebihara, Y. Ogawa, Y. Otsuka, S. Kurita, R.C. Moore, Y.-M. Tanaka Nos, T. Nagatsuma, M. Connors, N. Nishitani, Y. Katoh, M. Hikishima, A. Kumamoto, F. Tsuchiya, A. Kadokura, T. Nishiyama, T. Inoue, K. Imamura, A. Matsuoka, I. Shinohara, Microscopic observations of pulsating aurora associated with chorus element structures: coordinated arase satellite-pwing observations. Geophys. Res. Lett. 45(22), 12,125–12,134 (2018). https://doi.org/10.1029/2018GL079812

    Article  Google Scholar 

  145. M. Ozaki et al., Visualization of rapid electron precipitation via chorus element wave–particle interactions. Nat. Commun. 10, 257 (2019). https://doi.org/10.1038/s41467-018-07996-z

    ADS  Article  Google Scholar 

  146. N. Partamies, J.M. Weygand, L. Juusola, Statistical study of auroral omega bands. Ann. Geophys. 35, 1069–1083 (2017b). https://doi.org/10.5194/angeo-35-1069-2017

    ADS  Article  Google Scholar 

  147. N. Partamies, D. Whiter, A. Kadokura, K. Kauristie, H. Nesse Tyssøy, S. Massetti, P. Stauning, T. Raita, Occurrence and average behavior of pulsating aurora. J. Geophys. Res. Space Phys. 122, 5606–5618 (2017a). https://doi.org/10.1002/2017JA024039

    ADS  Article  Google Scholar 

  148. N. Partamies, K. Bolmgren, E. Heino, N. Ivchenko, J.E. Borovsky, H. Dahlgren, Patch size evolution during pulsating aurora. J. Geophys. Res. Space Phys. 124, 4725–4738 (2019). https://doi.org/10.1029/2018JA026423

    ADS  Article  Google Scholar 

  149. L.M. Peticolas, T.J. Hallinan, H.C. Stenbaek-Nielsen, J.W. Bonnell, C.W. Carlson, A study of black aurora from aircraft-based optical observations and plasma measurements on FAST. J. Geophys. Res. Space Phys. 107(A8), 30 (2002). https://doi.org/10.1029/2001JA900157

    Article  Google Scholar 

  150. M.H. Rees, Conjugate effects of atmospherically scattered auroral electrons. Radio Sci. 3(7), 645–649 (1968). https://doi.org/10.1002/rds196837645

    ADS  Article  Google Scholar 

  151. R. Robinson, New techniques and results from incoherent scatter radars. URSI Radio Sci. Bull. 2004(311), 79–94 (2004). https://doi.org/10.23919/URSIRSB.2004.7909637

    Article  Google Scholar 

  152. J.L. Roeder, H.C. Koons, A survey of electron cyclotron waves in the magnetosphere and the diffuse auroral electron precipitation. J. Geophys. Res. 94, 2529–2541 (1989). https://doi.org/10.1029/JA094iA03p02529

    ADS  Article  Google Scholar 

  153. O. Royrvik, T.N. Davis, Pulsating aurora: local and global morphology. J. Geophys. Res. 82(29), 4720–4740 (1977)

    ADS  Article  Google Scholar 

  154. S. Saito, Y. Miyoshi, K. Seki, Relativistic electron microbursts associated with whistler chorus rising tone elements: GEMSIS-RBW simulations. J. Geophys. Res. 117, A10206 (2012). https://doi.org/10.1029/2012JA018020

    ADS  Article  Google Scholar 

  155. S. Saito, Y. Miyoshi, K. Seki, Relativistic electron microbursts associated with whistler chorus rising tone elements: GEMSIS-RBW simulations. J. Geophys. Res. 117, A10206 (2012). https://doi.org/10.1029/2012JA018020

    ADS  Article  Google Scholar 

  156. M. Samara, R.G. Michell, Ground-based observations of diffuse auroral frequencies in the context of whistler mode chorus. J. Geophys. Res. 115, A00F18 (2010). https://doi.org/10.1029/2009JA014852

    ADS  Article  Google Scholar 

  157. M. Samara, R.G. Michell, K. Asamura, M. Hirahara, D.L. Hampton, H.C. Stenbaek-Nielsen, Ground-based observations of diffuse auroral structures in conjunction with Reimei measurements. Ann. Geophys. 28(3), 873–881 (2010). https://doi.org/10.5194/angeo-28-873-2010

    ADS  Article  Google Scholar 

  158. M. Samara, R.G. Michell, R.J. Redmon, Low- altitude satellite measurements of pulsating auroral electrons. J. Geophys. Res. Space Phys. 120, 8111–8124 (2015). https://doi.org/10.1002/2015JA021292

    ADS  Article  Google Scholar 

  159. M. Samara, R.G. Michell, G.V. Khazanov, First optical observations of interhemispheric electron reflections within pulsating aurora. Geophys. Res. Lett. 44, 2618–2623 (2017). https://doi.org/10.1002/2017GL072794

    ADS  Article  Google Scholar 

  160. I. Sandahl, The particle experiment on the substorm GEOS rockets. KGI Techn. Rep. 031 (1981)

  161. I. Sandahl, Pitch angle scattering and particle precipitation in a pulsating aurora: an experimental study. KGI Rept. 185, Kiruna, Sweden (1985)

  162. I. Sandahl, L. Eliasson, R. Lundin, Rocket observations of precipitating electrons over a pulsating aurora. Geophys. Res. Lett. 7, 309–312 (1980). https://doi.org/10.1029/GL007i005p00309

    ADS  Article  Google Scholar 

  163. L. Sangalli, N. Partamies, M. Syrjäsuo, C.-F. Enell, K. Kauristie, S. Mäkinen, Performance study of the new EMCCD-based all-sky cameras for auroral imaging. Int. J. Remote Sens. 32(11), 2987–3003 (2011). https://doi.org/10.1080/01431161.2010.541505

    ADS  Article  Google Scholar 

  164. O. Santolik, D.A. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, Spatio-temporal structure of storm-time chorus. J. Geophys. Res. 108(A7), 1278 (2003). https://doi.org/10.1029/2002JA009791

    Article  Google Scholar 

  165. O. Santolik, E. Macusova, I. Kolmasova, N. Cornilleau-Wehrlin, Y. de Conchy, Propagation of lower-band whistler-mode waves in the outer Van Allen belt: systematic analysis of 11 years of multi-component data from the cluster. Geophys. Res. Lett. 41, 2729–2737 (2014). https://doi.org/10.1002/2014GL059815

    ADS  Article  Google Scholar 

  166. K. Sato, M. Tsutsumi, T. Sato, T. Nakamura, A. Saito, Y. Tomikawa, K. Nishimura, M. Kohma, H. Yamagishi, T. Yamanouchi, Program of the Antarctic Syowa MST/IS radar (PANSY). J. Atmos. Sol.-Terr. Phys. 118A, 2–15 (2014). https://doi.org/10.1016/j.jastp.2013.08.022

    ADS  Article  Google Scholar 

  167. N. Sato, A. Kadokura, Y. Tanaka, T. Nishiyama, T. Hori, A.S. Yukimatu, Omega band pulsating auroras observed onboard THEMIS spacecraft and on the ground. J. Geophys. Res. Space Phys. 120, 5524–5544 (2015). https://doi.org/10.1002/2015JA021382

    ADS  Article  Google Scholar 

  168. N. Sato, A.S. Yukimatu, Y. Tanaka, T. Hori, Morphologies of omega band auroras. Earth Planets Space 69, 103 (2017). https://doi.org/10.1186/s40623-017-0688-1

    ADS  Article  Google Scholar 

  169. M.W.J. Scourfield, W.F. Innes, N.R. Parsons, Spatial coherency in pulsating aurora. Planet. Space Sci. 20, 1843–1848 (1972)

    ADS  Article  Google Scholar 

  170. J. Semeter, F. Kamalabadi, Determination of primary electron spectra from incoherent scatter radar measurements of the auroral e region. Radio Sci. 40(2), 1–17 (2005). https://doi.org/10.1029/2004RS003042

    Article  Google Scholar 

  171. J. Semeter, M. Mendillo, J. Baumgardner, Multispectral tomographic imaging of the midlatitude aurora. J. Geophys. Res. Space Phys. 104(A11), 24565–24585 (1999). https://doi.org/10.1029/1999JA900305

    ADS  Article  Google Scholar 

  172. V.A. Sergeev, E.M. Sazhina, N.A. Tsyganenko, J.A. Lundblad, F. Soraas, Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planet. Space Sci. 31(10), 1147–1155 (1983). https://doi.org/10.1016/0032-0633(83)90103-4

    ADS  Article  Google Scholar 

  173. V.A. Sergeev, Y. Nishimura, M. Kubyshkina, V. Angelopoulos, R. Nakamura, H. Singer, Magnetospheric location of the equatorward pre-breakup arc. J. Geophys. Res. Space Phys. 117(A1), A01212 (2012). https://doi.org/10.1029/2011JA017154

    ADS  Article  Google Scholar 

  174. T. Sergienko, I. Sandahl, B. Gustavsson, L. Andersson, U. Brändström Å, Steen, a study of fine structure of diffuse aurora with ALIS-FAST measurements. 26 (2008). Retrieved from. www.ann-geophys.net/26/3185/2008/

  175. K. Shiokawa, A. Nakajima, A. Ieda, K. Sakaguchi, R. Nomura, T. Aslaksen, M. Greffen, E. Donovan, Rayleigh-Taylor type instability in auroral patches. J. Geophys. Res. Space Phys. 115(A2), A02211 (2009). https://doi.org/10.1029/2009JA014273

    ADS  Article  Google Scholar 

  176. K. Shiokawa et al., Auroral fragmentation into patches. J. Geophys. Res. Space Phys. 119, 8249–8261 (2014). https://doi.org/10.1002/2014JA020050

    ADS  Article  Google Scholar 

  177. K. Shiokawa, Y. Katoh, Y. Hamaguchi, Y. Yamamoto, T. Adachi et al., Ground-based instruments of the pwing project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the erg-ground coordinated observation network. Earth Planets Space 69(1), 160 (2017). https://doi.org/10.1186/s40623-017-0745-9

    ADS  Article  Google Scholar 

  178. N. Sivadas, J. Semeter, Y. Nishimura, A. Kero, Simultaneous measurements of substorm-related electron energization in the ionosphere and the plasma sheet. J. Geophys. Res. Space Phys. 122(10), 10,528–10,547 (2017). https://doi.org/10.1002/2017JA023995

    Article  Google Scholar 

  179. N. Sivadas, J. Semeter, Y. Nishimura, S. Mrak, Optical signatures of the outer radiation belt boundary. Geophys. Res. Lett. 46, 8588–8596 (2019). https://doi.org/10.1029/2019GL083908

    ADS  Article  Google Scholar 

  180. M.J. Smith, D.A. Bryant, T. Edwards, Pulsations in auroral electrons and positive ions. J. Atmos. Terr. Phys. 42, 167 (1980)

    ADS  Article  Google Scholar 

  181. S.C. Solomon, P.B. Hays, V.J. Abreu, Tomographic inversion of satellite photometry. Appl. Opt. 23(19), 3409 (1984). https://doi.org/10.1364/AO.23.003409

    ADS  Article  Google Scholar 

  182. T. Sørensen, J. Bjordal, H. Trefall, G.J. Kvifte, H. Pettersen, Correlation between pulsations in auroral luminosity variations and X-rays. J. Atmos. Terr. Phys. 35(5), 961–969 (1973). https://doi.org/10.1016/0021-9169(73)90075-5

    ADS  Article  Google Scholar 

  183. E. Spanswick, E. Donovan, G. Baker, Pc5 modulation of high energy electron precipitation: particle interaction regions and scattering efficiency. Ann. Geophys. 23, 1533–1542 (2005)

    ADS  Article  Google Scholar 

  184. H.C. Stenbaek-Nielsen, Pulsating aurora—the importance of the ionosphere. Geophys. Res. Lett. 7, 353–356 (1980). https://doi.org/10.1029/GL007i005p00353

    ADS  Article  Google Scholar 

  185. H.C. Stenbaek-Nielsen, T.J. Hallinan, Pulsating auroras—evidence for noncollisional thermalization of precipitating electrons. J. Geophys. Res. 84, 3257–3271 (1979). https://doi.org/10.1029/JA084iA07p03257

    ADS  Article  Google Scholar 

  186. H.C. Stenbaek-Nielsen, T.J. Hallinan, L. Peticolas, Why do auroras look the way they do? Eos, Trans. Am. Geophys. Union 80(17), 193 (1999). https://doi.org/10.1029/99EO00138

    ADS  Article  Google Scholar 

  187. C. Størmer, The Polar Aurora (Clarendon, Oxford, 1955)

    Google Scholar 

  188. R.J. Strangeway, R.E. Ergun, Y.-J. Su, C.W. Carlson, R.C. Elphic, Factors controlling ionospheric outflows as observed at intermediate altitudes. J. Geophys. Res. 110, A03221 (2005). https://doi.org/10.1029/2004JA010829

    ADS  Article  Google Scholar 

  189. D. Summers, R. Tang, Y. Omura, D.-H. Lee, Parameter spaces for linear and nonlinear whistler-mode waves. Phys. Plasmas 20, 072110 (2013). https://doi.org/10.1063/1.4816022

    ADS  Article  Google Scholar 

  190. T. Takahashi et al., Depletion of mesospheric sodium during extended period of pulsating aurora. J. Geophys. Res. Space Phys. 122, 1212–1220 (2017). https://doi.org/10.1002/2016JA023472

    ADS  Article  Google Scholar 

  191. Y.-M. Tanaka, T. Aso, B. Gustavsson, K. Tanabe, Y. Ogawa, A. Kadokura, H. Miyaoka, T. Sergienko, U. Brändström, I. Sandahl, Feasibility study on generalized-aurora computed tomography. Ann. Geophys. 29, 551–562 (2011). https://doi.org/10.5194/angeo-29-551-2011

    ADS  Article  Google Scholar 

  192. Y. Tanaka, Y. Ogawa, A. Kadokura, N. Partamies, D. Whiter, C.-F. Enell, U. Brändström, T. Sergienko, B. Gustavsson, A. Kozlovsky, H. Miyaoka, A. Yoshikawa, Eastward-expanding auroral surges observed in the post-midnight sector during a multiple-onset substorm. Earth Planets Space 67(1), 182 (2015). https://doi.org/10.1186/s40623-015-0350-8. ISSN 1880-5981

    ADS  Article  Google Scholar 

  193. R.W. Thomas, H.C. Stenbaek-Nielsen, Recurrent propagating auroral forms in pulsating auroras. J. Atmos. Terr. Phys. 43, 243 (1981)

    ADS  Article  Google Scholar 

  194. R.M. Thorne, B. Ni, X. Tao, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467, 943–946 (2010). https://doi.org/10.1038/nature09467

    ADS  Article  Google Scholar 

  195. T.T. Tsuda et al., Decrease in sodium density observed during auroral particle precipitation over Tromsø, Norway. Geophys. Res. Lett. 40, 4486–4490 (2013). https://doi.org/10.1002/grl.50897

    ADS  Article  Google Scholar 

  196. K. Tsuruda, S. Machida, T. Oguti, S. Kokubun, K. Hayashi, T. Kitamura, O. Saka, T. Watanabe, Correlations between the very low frequency chorus and pulsating aurora observed by low-light-level television at \(L = 4.4\). Can. J. Phys. 59(8), 1042–1048 (1981). https://doi.org/10.1139/p81-137

    ADS  Article  Google Scholar 

  197. E. Turunen, A. Kero, P.T. Verronen, Y. Miyoshi, S-I. Oyama, S. Saito, Mesospheric ozone destruction by high-energy electron precipitation associated with pulsating aurora. J. Geophys. Res. 121, 11,155–11,879 (2016). https://doi.org/10.1002/2016JD025015

    Article  Google Scholar 

  198. C.W. Unick, E. Donovan, M. Connors, B. Jackel, A dedicated H-beta meridian scanning photometer for proton aurora measurement. J. Geophys. Res. Space Phys. 122(1), 753–764 (2017). https://doi.org/10.1002/2016JA022630

    ADS  Article  Google Scholar 

  199. J.-E. Wahlund, H.J. Opgenoorth, I. Haggstrom, K.J. Winser, G.O.L. Jones, EISCAT observations of topside ionospheric ion outflows during auroral activity—revisited. J. Geophys. Res. 97, 3019–3037 (1992)

    ADS  Article  Google Scholar 

  200. M. Watanabe, A. Kadokura, N. Sato, T. Saemundsson, Absence of geomagnetic conjugacy in pulsating auroras. Geophys. Res. Lett. 34, L15107 (2007). https://doi.org/10.1029/2007GL030469

    ADS  Article  Google Scholar 

  201. J.M. Weygand, M.G. Kivelson, H.U. Frey, J.V. Rodriguez, V. Angelopoulos, R. Redmon, J. Barker-Ream Grocott, O. Amm, An interpretation of spacecraft and ground based observations of multiple omega band events. J. Atmos. Sol.-Terr. Phys. 133, 185–204 (2015). https://doi.org/10.1016/j.jastp.2015.08.014

    ADS  Article  Google Scholar 

  202. D.K. Whiter, B. Gustavsson, N. Partamies, L. Sangalli, A new automatic method for estimating the peak auroral emission height from all-sky camera images. Geosci. Instrum. Method. Data Syst. 2, 131–144 (2013). https://doi.org/10.5194/gi-2-131-2013

    ADS  Article  Google Scholar 

  203. C.R. Wilson, J.V. Olson, H.C. Stenbaek-Nielsen, High trace-velocity infrasound from pulsating auroras at Fairbanks, Alaska. Geophys. Res. Lett. 32(14), n/a–n/a (2005). https://doi.org/10.1029/2005GL023188

    Article  Google Scholar 

  204. Q. Wu, T.J. Rosenberg, High latitude pulsating aurora revisited. Geophys. Res. Lett. 19(1), 69–72 (1992)

    ADS  Article  Google Scholar 

  205. T. Yamamoto, On the temporal fluctuations of pulsating auroral luminosity. J. Geophys. Res. 93(A2), 897–911 (1988). https://doi.org/10.1029/JA093iA02p00897

    ADS  Article  Google Scholar 

  206. T. Yamamoto, T. Oguti, Recurrent fast motions of pulsating auroral patches: 1. A case study on optical and quantitative characteristics during a slightly active period. J. Geophys. Res. 87(A9), 7603–7614 (1982). https://doi.org/10.1029/JA087iA09p07603

    ADS  Article  Google Scholar 

  207. B. Yang, E. Donovan, J. Liang, J.M. Ruohoniemi, E. Spanswick, Using patchy pulsating aurora to remote sense magnetospheric convection. Geophys. Res. Lett. 42, 5083–5089 (2015). https://doi.org/10.1002/2015GL064700

    ADS  Article  Google Scholar 

  208. B. Yang, E. Donovan, J. Liang, E. Spanswick, A statistical study of the motion of pulsating aurora patches: using the THEMIS All-Sky Imager. Ann. Geophys. 35, 217–225 (2017). https://doi.org/10.5194/angeo-35-217-2017

    ADS  Article  Google Scholar 

  209. B. Yang, E. Spanswick, J. Liang, E. Grono, E. Donovan, Responses of different types of pulsating aurora in cosmic noise absorption. Geophys. Res. Lett. 46, 5717–5724 (2019). https://doi.org/10.1029/2019GL083289

    ADS  Article  Google Scholar 

  210. Y. Zhang, L.J. Paxton, D. Morrison, A.T.Y. Lui, H. Kil, B. Wolven, C.-I. Meng, A.B. Christensen, Undulations on the equatorward edge of the diffuse proton aurora: TIMED/GUVI observations. J. Geophys. Res. Space Phys. 110(A8), A08211 (2005). https://doi.org/10.1029/2004JA010668

    ADS  Article  Google Scholar 

  211. X. Zhang, V. Angelopoulos, B. Ni, R.M. Thorne, Predominance of ECH wave contribution to diffuse aurora in Earth’s outer magnetosphere. J. Geophys. Res. 120, 295–309 (2015). https://doi.org/10.1002/2014JA020455

    Article  Google Scholar 

  212. Q. Zhou, F. Xiao, C. Yang, S. Liu, Y. He, D.N. Baker, H.E. Spence, G.D. Reeves, H.O. Funsten, Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts. Geophys. Res. Lett. 44, 5251–5258 (2017). https://doi.org/10.1002/2017GL073051

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The work of Y.N. was supported by NASA grant NNX17AL22G and 80NSSC18K0657, NSF grants PLR-1341359, AGS-1737823, and AFOSR FA9559-16-1-0364. The work by NP was supported by the Research Council of Norway under CoE contract 223252. Y.K., Y.M., and K.H. are supported by JSPS Kakenhi (15H05747). Y.K, and Y.M are supported by JSPS Kakenhi (15H05815). Y.M is supported by JSPS Kakenhi (16H06286). Y.K is supported by JSPS Kakenhi (18H03727). Y.K., Y.M., and K.H. are supported by the International Space Science Institutes Beijing (ISSI-BJ) International Team program. The work of NS was supported by NASA Earth & Space Science Fellowship Program grant 80NSSC17K0433. The THEMIS mission and all-sky imagers are supported by NASA contract NAS5-02099, CSA contract 9F007-046101 and NSF grant AGS-1004736. ML was supported by NASA grant 80NSSC18K0950. DKW was supported by the Natural Environment Research Council (NERC) of the UK under grant NE/N004051/1. The PWING imager was installed and operated by the pulsating aurora project (http://www.psa-research.org) and PWING project (http://www.isee.nagoya-u.ac.jp/dimr/PWING/en/).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yukitoshi Nishimura.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Auroral Physics

Edited by David Knudsen, Joe Borovsky, Tomas Karlsson, Ryuho Kataoka and Noora Partmies

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishimura, Y., Lessard, M.R., Katoh, Y. et al. Diffuse and Pulsating Aurora. Space Sci Rev 216, 4 (2020). https://doi.org/10.1007/s11214-019-0629-3

Download citation

Keywords

  • Pulsating aurora
  • Diffuse aurora
  • Wave-particle interaction
  • Whistler-mode chorus
  • Energetic electron precipitation