Geoscience for Understanding Habitability in the Solar System and Beyond

Abstract

This paper reviews habitability conditions for a terrestrial planet from the point of view of geosciences. It addresses how interactions between the interior of a planet or a moon and its atmosphere and surface (including hydrosphere and biosphere) can affect habitability of the celestial body. It does not consider in detail the role of the central star but focusses more on surface conditions capable of sustaining life. We deal with fundamental issues of planetary habitability, i.e. the environmental conditions capable of sustaining life, and the above-mentioned interactions can affect the habitability of the celestial body.

We address some hotly debated questions including:

  • How do core and mantle affect the evolution and habitability of planets?

  • What are the consequences of mantle overturn on the evolution of the interior and atmosphere?

  • What is the role of the global carbon and water cycles?

  • What influence do comet and asteroid impacts exert on the evolution of the planet?

  • How does life interact with the evolution of the Earth’s geosphere and atmosphere?

  • How can knowledge of the solar system geophysics and habitability be applied to exoplanets?

In addition, we address the identification of preserved life tracers in the context of the interaction of life with planetary evolution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. O. Abramov, S.M. Wong, D.A. Kring, Differential melt scaling for oblique impacts on terrestrial planets. Icarus 218, 906–916 (2012)

    ADS  Google Scholar 

  2. M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, D. Mitchell, K.A. Anderson, C.W. Carlson, J. McFadden, H. Reme, C. Mazelle, D. Vignes, S.J. Bauer, P. Cloutier, N.F. Ness, Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106, 23403 (2001)

    ADS  Google Scholar 

  3. F. Albarède, Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009)

    ADS  Google Scholar 

  4. A.C. Allwood, J.P. Grotzinger, A.H. Knoll, I.W. Burch, M.S. Anderson, M.L. Coleman, I. Kanik, Controls on development and diversity of Early Archean stromatolites. Proc. Natl. Acad. Sci. 106(24), 9548–9555 (2009)

    ADS  Google Scholar 

  5. A.C. Allwood, I.W. Burch, J.M. Rouchy, M. Coleman, Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Astrobiology 13(9), 870–886 (2013)

    ADS  Google Scholar 

  6. J.C. Alt, C.J. Garrido, W.C. Shanks, A. Turchyn, J.A. Padrón-Navarta, V. López Sánchez-Vizcaíno, M.T. Gómez Pugnaire, C. Marchesi, Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett. 327–328, 50–60 (2012). https://doi.org/10.1016/j.epsl.2012.01.029

    ADS  Article  Google Scholar 

  7. D. Andrault, M. Muñoz, G. Pesce, V. Cerantola, A. Chumakov, I. Kantor, S. Pascarelli, R. Rüffer, L. Hennet, Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event. Geochem. Perspect. Lett. 6, 5–10 (2018). https://doi.org/10.7185/geochemlet.1801

    Article  Google Scholar 

  8. L.S. Armstrong, M.M. Hirschmann, B.D. Stanley, E.G. Falksen, S.D. Jacobsen, Speciation and solubility of reduced C–O–H–N volatiles in mafic melt: implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets. Geochim. Cosmochim. Acta 171, 283–302 (2015)

    ADS  Google Scholar 

  9. N.T. Arndt, E.G. Nisbet, Processes on young Earth and the habitats of early life. Annu. Rev. Earth Planet. Sci. 40, 521–549 (2012). https://doi.org/10.1146/annurev-earth-042711-105316

    ADS  Article  Google Scholar 

  10. N.A. Artemieva, V.A. Ivanov, Launch of martian meteorites in oblique impacts. Icarus 171, 84–101 (2004)

    ADS  Google Scholar 

  11. S. Aulbach, V. Stagno, Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44, 751–754 (2016). https://doi.org/10.1130/G38070.1

    ADS  Article  Google Scholar 

  12. G. Avice, B. Marty, R. Burgess, A. Hofmann, P. Philippot, K. Zahnle, D. Zakharov, Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochim. Cosmochim. Acta 232, 82–100 (2018). https://doi.org/10.1016/j.gca.2018.04.018

    ADS  Article  Google Scholar 

  13. J.L. Bada, A. Lazcano, Some like it hot, but not the first biomolecules. Science 296(5575), 1982–1983 (2002)

    Google Scholar 

  14. S. Barabash, A. Fedorov, J.J. Sauvaud, R. Lundin, C.T. Russell, Y. Futaana et al., The loss of ions from Venus through the plasma wake. Nature 450, 650–653 (2007)

    ADS  Google Scholar 

  15. A.C. Barr, Formation of exomoons: a solar system perspective. Astron. Rev. 12, 24 (2016)

    ADS  Google Scholar 

  16. A.C. Barr, V. Dobos, L.L. Kiss, Interior structures and tidal heating in the TRAPPIST-1 planets. Astron. Astrophys. 613, A37 (2018). arXiv:1712.05641

    ADS  Google Scholar 

  17. J.K. Barstow, S. Aigrain, P.G.J. Irwin, S. Kendrew, L.N. Fletcher, Telling twins apart: exo-Earths and Venuses with transit spectroscopy. Mon. Not. R. Astron. Soc. 458, 2657–2666 (2016)

    ADS  Google Scholar 

  18. E.A. Bell, P. Boehnke, T.M. Harrison, W.L. Mao, Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. 112(47), 14518–14521 (2015)

    ADS  Google Scholar 

  19. B. Benneke, S. Seager, Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transit spectroscopy. Astrophys. J. 753, 2 (2012)

    Google Scholar 

  20. S.V. Berdyugina, J.R. Kuhn, D.M. Harrington, T. Šantl-Temkiv, E.J. Messersmith, Remote sensing of life: polarimetric signatures of photosynthetic pigments as sensitive biomarkers. Int. J. Astrobiol. 15, 45–56 (2016)

    Google Scholar 

  21. M. Bierhaus, K. Wünnemann, D. Elbeshausen, Numerical modeling of basin-forming impacts: implications for the heat budget of planetary interiors, in 43rd Lunar and Planetary Science Conference. LPI Contribution, vol. 1659 (2012)

    Google Scholar 

  22. W.F. Bottke, D. Vokrouhlicky, D. Minton, D. Nesvorny, A. Morbidelli, R. Brasser, B. Simonson, H.F. Levison, An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012)

    ADS  Google Scholar 

  23. M. Brasier, N. McLoughlin, O. Green, D. Wacey, A fresh look at the fossil evidence for early Archaean cellular life. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 361(1470), 887–902 (2006)

    Google Scholar 

  24. D. Breuer, B. Moore, Dynamics and thermal history of the terrestrial planers, the Moon, and Io, in Treatise on Geophysics, 2nd edn, vol. 10, ed. by T. Spohn, G. Schubert. (2015), pp. 299–348

    Google Scholar 

  25. D. Breuer, A.-C. Plesa, N. Tosi, M. Grott, Water in the martian interior—the geodynamical perspective. Meteorit. Planet. Sci. 51(11), 1959–1992 (2016). https://doi.org/10.1111/maps.12727

    ADS  Article  Google Scholar 

  26. J.J. Brocks, G.D. Love, R.E. Summons, A.H. Knoll, G.A. Logan, S.A. Bowden, Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437(7060), 866 (2005)

    ADS  Google Scholar 

  27. J.J. Brocks, A.J.M. Jarrett, E. Sirantoine, F. Kenig, M. Moczydłowska, S. Porter, Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2016)

    Google Scholar 

  28. R.D. Cadle, A comparison of volcanic with other fluxes of atmospheric trace gas constituents. Rev. Geophys. 18, 746–752 (1980)

    ADS  Google Scholar 

  29. A.G. Cameron, Origin of the atmospheres of the terrestrial planets. Icarus 56(2), 195–201 (1983)

    ADS  Google Scholar 

  30. A.G.W. Cameron, W.R. Ward, The origin of the Moon. Lunar Planet. Sci. 7, 120–122 (1976)

    ADS  Google Scholar 

  31. L.H. Campbell, S.R. Taylor, No water, no granites—no oceans, no continents. Geophys. Res. Lett. 10(11), 1061–1064 (1983)

    ADS  Google Scholar 

  32. D.E. Canfield, A.N. Glazer, P.G. Falkowski, The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010)

    ADS  Google Scholar 

  33. D. Canil, Vanadium partitioning and the oxidation state of Archaean Komatiite magmas. Nature 389, 842–845 (1997)

    ADS  Google Scholar 

  34. R.M. Canup, Simulations of a late lunar-forming impact. Icarus 168(2), 433–456 (2004). https://doi.org/10.1016/j.icarus.2003.09.028

    ADS  Article  Google Scholar 

  35. M.H. Carr, D/H on Mars: effects of floods, volcanism, impacts, and polar processes. Icarus 87(1), 210–227 (1990)

    ADS  Google Scholar 

  36. D. Carrera, U. Gorti, A. Johansen, M.B. Davies, Planetesimal formation by the streaming instability in a photoevaporating disk. Astrophys. J. 839, 16 (2017)

    ADS  Google Scholar 

  37. P. Cartigny, B. Marty, Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9, 359–366 (2013)

    Google Scholar 

  38. D.C. Catling, M.W. Claire, How Earth’s atmosphere evolved to an oxic state. Earth Planet. Sci. Lett. 237, 1–20 (2005)

    ADS  Google Scholar 

  39. D.C. Catling, J.F. Kasting, Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge University Press, Cambridge, 2017)

    Google Scholar 

  40. D.C. Catling, K.J. Zahnle, C.P. McKay, Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293(5531), 839–843 (2001)

    ADS  Google Scholar 

  41. D.C. Catling, C.R. Glein, K.J. Zahnle, C.P. McKay, Why O2 is required by complex life on habitable planets and the concept of planetary ‘Oxygenation Time’. Astrobiology 5(3), 415–438 (2005)

    ADS  Google Scholar 

  42. D.C. Catling, J. Krissansen-Totton, N.Y. Kiang, D. Crisp, T.D. Robinson, S. DasSarma, A. Rushby, A.D. Del Genio, W. Bains, S. Domagal-Goldman, Exoplanet biosignatures: a framework for their assessment. Astrobioloy 18(6), 709–738 (2018). https://doi.org/10.1089/ast.2017.1737

    ADS  Article  Google Scholar 

  43. E. Chassefière, F. Leblanc, Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci. 52(11), 1039–1058 (2004)

    ADS  Google Scholar 

  44. E. Chassefière, B. Langlais, Y. Quesnel, F. Leblanc, The fate of early Mars lost water: the role of serpentinization. J. Geophys. Res. 118, 1123–1134 (2013). https://doi.org/10.1002/jgre.20089

    Article  Google Scholar 

  45. E.V. Chassefière, J. Lasue, B. Langlais, Y. Quesnel, Early Mars serpentinization-derived CH4 reservoirs, H2-induced warming and paleopressure evolution. Meteorit. Planet. Sci. 51(11), 2234–2245 (2016). https://doi.org/10.1111/maps.12784

    ADS  Article  Google Scholar 

  46. B.K. Chastain, V. Chevrier, Methane clathrate hydrates as a potential source for Martian atmospheric methane. Planet. Space Sci. 55(10), 1246–1256 (2007)

    ADS  Google Scholar 

  47. J. Checlair, K. Menou, D.S. Abbot, No snowball on habitable tidally locked planets. Astrophys. J. 845(2), 132 (2017)

    ADS  Google Scholar 

  48. R.N. Clayton, Oxygen isotopes in meteorites, in Meteorites, Comets and Planets. Treatise on Geochemistry, vol. 1, ed. by A.M. Davis (Elsevier/Pergamon, Oxford, 2005), pp. 129–142

    Google Scholar 

  49. C.S. Cockell, The origin and emergence of life under impact bombardment. Philos. Trans. R. Soc. B 361(1474), 1845–1856 (2006). https://doi.org/10.1098/rstb.2006.1908.

    Article  Google Scholar 

  50. C. Cockell, C.S. Cockell, The interplanetary exchange of photosynthesis. Orig. Life Evol. Biosph. 38, 87–104 (2008)

    ADS  Google Scholar 

  51. C. Cockell, F. Westall, T. Spohn, Geology, life and habitability, in Treatise on Geophysics, vol. 10, 2nd edn. ed. by T. Spohn, G. Schubert. (2015), p. 473

    Google Scholar 

  52. C.S. Cockell, T. Bush, C. Bryce, S. Direito, M. Fox-Powell, J.P. Harrison, H. Lammer, H. Landenmark, J. Martin-Torres, N. Nicholson, L. Noack, J. O’Malley-James, S.J. Payler, A. Rushby, T. Samuels, P. Schwendner, M.P. Zorzano, Habitability: a review. Astrobiology 16(1), 89–117 (2016). https://doi.org/10.1089/ast.2015.1295

    ADS  Article  Google Scholar 

  53. G.S. Collins, K. Wünnemann, N. Artemieva, B. Pierazzo, Numerical modelling of impact processes, in Impact Cratering, Processes and Products, ed. by G.R. Osinski, E. Pierazzo (Wiley, New York, 2013), pp. 254–268

    Google Scholar 

  54. K.C. Condie, A planet in transition: the onset of plate tectonics on earth between 3 and 2 Ga?. Geosci. Front. 9(1), 5160 (2018)

    Google Scholar 

  55. J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, G. Kletetschka, N.F. Ness, H. Rème, R.P. Lin, D.L. Mitchell, The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28, 4015 (2001)

    ADS  Google Scholar 

  56. L.A. Coogan, S.E. Dosso, Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth Planet. Sci. Lett. 415, 38–46 (2015)

    ADS  Google Scholar 

  57. L.A. Coogan, K.M. Gillis, Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate-carbonate weathering cycle and long-term climate regulation. Geochem. Geophys. Geosyst. 14(6), 1771–1886 (2013)

    ADS  Google Scholar 

  58. R. Dasgupta, K. Tsuno, Carbon contents in reduced basalts at graphite saturation: implications for the degassing of Mars, Mercury, and the Moon. J. Geophys. Res., Planets 122, 1300–1320 (2017). https://doi.org/10.1002/2017JE005289

    ADS  Article  Google Scholar 

  59. A. Davaille, S.E. Smrekar, S. Tomlinson, Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017)

    ADS  Google Scholar 

  60. S.A. Davenport, T.J. Wdowiak, D.D. Jones, P. Wdowiak, Chondritic metal toxicity as a seed stock kill mechanism in impact-caused mass extinctions. Spec. Pap., Geol. Soc. Am. 247, 71–76 (1990)

    Google Scholar 

  61. G.F. Davies, Episodic layering of the early mantle by the ‘basalt barrier’ mechanism. Earth Planet. Sci. Lett. 275, 382–392 (2008). https://doi.org/10.1016/j.epsl.2008.08.036

    ADS  Article  Google Scholar 

  62. V. Debaille, A.D. Brandon, C. O’Neill, Q.-Z. Yin, B. Jacobsen, Early martian mantle overturn inferred from isotopic composition of Nakhlite meteorites. Nat. Geosci. 2, 548–552 (2009). https://doi.org/10.1038/ngeo579

    ADS  Article  Google Scholar 

  63. V. Debaille, C. O’Neill, A.D. Brandon, P. Haenecour, Q.Z. Yin, N. Mattielli, A.H. Treiman, Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013)

    ADS  Google Scholar 

  64. C. Demoulin, Y. Lara, L. Cornet, C. François, A. Wilmotte, D. Baurain, E.J. Javaux, Cyanobacteria evolution: insight from the fossil record. Free Radic. Biol. Med. Special issue ‘How did life come to tolerate and thrive in an oxygenated world?’, ed. by W. Fischer, J. Valentine. (2019). https://doi.org/10.1016/j.freeradbiomed.2019.05.007

    Google Scholar 

  65. D.J. Des Marais, M.O. Harwit, K.W. Jucks, J.F. Kasting, D.N.C. Lin, J.I. Lunine, J. Schneider, S. Seager, W.A. Traub, N.J. Wool, Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153–181 (2002)

    ADS  Google Scholar 

  66. B. Dhuime, C.J. Hawkesworth, P.A. Cawood, C.D. Storey, A change in the geodynamics of continental growth 3 billion years ago. Science 355, 1334–1336 (2012)

    ADS  Google Scholar 

  67. B. Dhuime, A. Wuestefeld, C.J. Hawkesworth, Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015)

    ADS  Google Scholar 

  68. V. Dobos, E.L. Turner, Viscoelastic models of tidally heated exomoons. Astrophys. J. 804, 41 (2015)

    ADS  Google Scholar 

  69. V. Dobos, R. Heller, E.L. Turner, The effect of multiple heat sources on exomoon habitable zones. Astron. Astrophys. 601, 91 (2017)

    ADS  Google Scholar 

  70. M.S. Dodd, D. Papineau, T. Grenne, J.F. Slack, M. Rittner, F. Pirajno, J. O’Neil, C.T. Little, Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543(7643), 60 (2017)

    ADS  Google Scholar 

  71. T.M. Donahue, New analysis of hydrogen and deuterium escape from Venus. Icarus 141(2), 226–235 (1999)

    ADS  Google Scholar 

  72. C. Dorn, J. Venturini, A. Khan, K. Heng, Y. Alibert, R. Helled, A. Rivoldini, W. Benz, A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astron. Astrophys. 597, A37 (2017). https://doi.org/10.1051/0004-6361/201628708

    ADS  Article  Google Scholar 

  73. J. Drazkowska, Y. Alibert, B. Moore, Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, A105 (2016)

    ADS  Google Scholar 

  74. J.I. Drever, The effect of land plants on weathering rates of silicate minerals. Geochim. Cosmochim. Acta 58(10), 2325–2332 (1994)

    ADS  Google Scholar 

  75. C. Dumoulin, G. Tobie, O. Verhoeven, P. Rosenblatt, N. Rambaux, Tidal constraints on the interior of Venus. J. Geophys. Res., Planets 122, 1338–1352 (2017)

    ADS  Google Scholar 

  76. M. Edmonds, T.M. Gerlach, Vapor segregation and loss in basaltic melts. Geology 35, 751–754 (2007)

    ADS  Google Scholar 

  77. J.L. Eigenbrode, R.E. Summons, A. Steele, C. Freissinet, M. Millan, R. Navarro-González et al., Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 360(6393), 1096–1101 (2018)

    ADS  Google Scholar 

  78. L.T. Elkins-Tanton, S. Seager, Ranges of atmospheric mass and composition of super-Earth exoplanets. Astron. J. 685, 1237–1246 (2008)

    ADS  Google Scholar 

  79. L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00013.x

    ADS  Article  Google Scholar 

  80. G. Etiope, B. Sherwood Lollar, Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013)

    ADS  Google Scholar 

  81. P.J. Falkowski, L.V. Godfrey, Electrons, life and the evolution of Earth’s oxygen cycle. Philos. Trans. R. Soc. B 363, 2705–2716 (2008)

    Google Scholar 

  82. P.J. Falkowski, R.J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Högberg, S. Linder, F.T. Mackenzie, B. Moore III., T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen, The global carbon cycle: a test of our knowledge of Earth as a system. Science 290, 291–296 (2000)

    ADS  Google Scholar 

  83. J. Farquhar, H. Bao, M. Thiemans, Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000)

    ADS  Google Scholar 

  84. Y.R. Fernandez, J.-Y. Li, E.S. Howell, L.M. Woodney, Asteroids and comets, in In, ed. by T. Spohn, G. Schubert. Treatise on Geophysics, vol. 10, 2nd edn. (2015), pp. 487–527

    Google Scholar 

  85. G. Feulner, C. Hallmann, H. Kienert, Snowball cooling after algal rise. Nat. Geosci. 8(9), 659 (2015)

    ADS  Google Scholar 

  86. B.J. Foley, D. Bercovici, Scaling laws for convection with temperature-dependent viscosity and grain-damage. Geophys. J. Int. 199, 580 (2014)

    ADS  Google Scholar 

  87. D. Forgan, V. Dobos, Exomoon climate models with the carbonate-silicate cycle and viscoelastic tidal heating. Mon. Not. R. Astron. Soc. 457, 1233 (2016)

    ADS  Google Scholar 

  88. K. France, The LUVOIR science and technology definition team (STDT): overview and status, in Space Telescopes and Instrumentation, vol. 9904 (2016)

    Google Scholar 

  89. C. François, V. Debaille, J.L. Paquette, D. Baudet, E.J. Javaux, The onset of plate tectonics: HP-LT metamorphism in the Paleoproterozoic of the DRCongo. Sci. Rep. 8, 15452 (2018)

    ADS  Google Scholar 

  90. J. Fritz, B. Bitsch, E. Kührt, A. Morbidelli, C. Tornow, K. Wünnemann, V.A. Fernandes, J.L. Grenfell, H. Rauer, R. Wagner, S.C. Werner, Earth-like habitats in planetary systems. Planet. Space Sci. 98, 254–267 (2014)

    ADS  Google Scholar 

  91. D.J. Frost, C.A. McCammon, The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36(1), 389–420 (2008)

    ADS  Google Scholar 

  92. D.J. Frost, C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Trønnes, D.C. Rubie, Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409–412 (2004)

    ADS  Google Scholar 

  93. D.J. Frost, U. Mann, Y. Asahara, D.C. Rubie, The redox state of the mantle during and just after core formation. Philos. Trans. R. Soc. A 366, 4315–4337 (2008). https://doi.org/10.1098/rsta.2008.0147.Fujii

    ADS  Article  Google Scholar 

  94. Y. Fujii, H. Kawahara, Y. Suto, A. Taruya, S. Fukuda, T. Nakajima, E.L. Turner, Colors of a second Earth: estimating the fractional areas of ocean, land, and vegetation on Earth-like exoplanets. Astrophys. J. 715, 2 (2010)

    Google Scholar 

  95. Y. Fujii, D. Angerhausen, R. Deitrick, S. Domagal-Goldman, J.L. Grenfell, Y. Hori, S.R. Kane, E. Palle, H. Rauer, N. Siegler, K. Stapelfeldt, K.B. Stevenson, Exoplanet biosignatures: observational prospects. Astrobiology 18(6), 739–778 (2018). https://doi.org/10.1089/ast.2017.1733

    ADS  Article  Google Scholar 

  96. B.J. Fulton, E.A. Petigura, A.W. Howard, H. Isaacson, G.W. Marcy, P.A. Cargile, L. Hebb, L.M. Weiss, J.A. Johnson, T.D. Morton, E. Sinukoff, I.J.M. Crossfield, L.A. Hirsch, The California-Kepler survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017). https://doi.org/10.3847/1538-3881/aa80eb

    ADS  Article  Google Scholar 

  97. H. Furnes, N.R. Banerjee, K. Muehlenbachs, H. Staudigel, M. de Wit, Early life recorded in Archean pillow lavas. Science 304(5670), 578–581 (2004)

    ADS  Google Scholar 

  98. F. Gaillard, B. Scaillet, The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279(1–2), 34–43 (2009). https://doi.org/10.1016/j.epsl.2008.12.028

    ADS  Article  Google Scholar 

  99. F. Gaillard, B. Scaillet, A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014). https://doi.org/10.1016/j.epsl.2014.07.00

    ADS  Article  Google Scholar 

  100. F. Gaillard, B. Scaillet, N.T. Arndt, Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011)

    ADS  Google Scholar 

  101. F. Gaillard, J. Michalski, G. Berger, S.M. McLenna, B. Scaillet, Geochemical reservoirs and timing of sulfur cycling on Mars. Space Sci. Rev. 174, 251–300 (2012). https://doi.org/10.1007/s11214-012-9947-4

    ADS  Article  Google Scholar 

  102. F. Gaillard, B. Scaillet, M. Pichavant, G. Iacono-Marziano, The redox geodynamics linking basalts and their mantle sources through space and time. Chem. Geol. 418, 217–233 (2015). https://doi.org/10.1016/j.chemgeo.2015.07.030

    ADS  Article  Google Scholar 

  103. J.M. García-Ruiz, E. Melero-García, S.T. Hyde, Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323(5912), 362–365 (2009)

    ADS  Google Scholar 

  104. S. Gebauer, J.L. Grenfell, H. Lammer, J.-P. de Vera, L. Sproß, V. Airapetian, M. Sinnhuber, H. Rauer, Atmospheric nitrogen when life evolved on Earth. Nat. Sci. Rep. (2019, submitted)

  105. H. Genda, Y. Abe, Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164(1), 149–162 (2003)

    ADS  Google Scholar 

  106. T.V. Gerya, R.J. Stern, M. Baes, S.V. Sobolev, S.A. Whattam, Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015)

    ADS  Google Scholar 

  107. C. Gillmann, P.J. Tackley, Atmosphere/mantle coupling and feedbacks on Venus. J. Geophys. Res., Planets 119(6), 1189–1217 (2014)

    ADS  Google Scholar 

  108. C. Gillmann, E. Chassefière, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009). https://doi.org/10.1016/j.epsl.2009.07.016

    ADS  Article  Google Scholar 

  109. C. Gillmann, G.J. Golabek, P.J. Tackley, Effect of a single large impact on the coupled atmosphere-interior evolution of Venus. Icarus 268, 295–312 (2016)

    ADS  Google Scholar 

  110. C. Gillmann, G. Golabek, P.J. Tackley, S. Raymond, The role of late Veneer impacts in the evolution of Venus, in European Planetary Science Congress, vol. 11 (2017)

    Google Scholar 

  111. M. Gillon, E. Jehin, S.M. Lederer, L. Delrez, J. De Wit, A. Burdanov, V. Van Grootel, A.J. Burgasser, A.H.M.J. Triaud, C. Opitom, B.-O. Demory, D.K. Sahu, D. Bardalez Gagliuffi, P. Magain, D. Queloz, Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533(7602), 221–224 (2016). https://doi.org/10.1038/nature17448

    ADS  Article  Google Scholar 

  112. M. Gillon, A.H.M.J. Triaud, B.-O. Demory, E. Jehin, E. Agol, K.M. Deck, S.M. Lederer, J. de Wit, A. Burdanov, J.G. Ingalls, E. Bolmont, J. Leconte, S.N. Raymond, F. Selsis, M. Turbet, K. Barkaoui, A. Burgasser, M.R. Burleigh, S.J. Carey, A. Chaushev, C.M. Copperwheat, L. Delrez, C.S. Fernandes, D.L. Holdsworth, E.J. Kotze, V. Van Grootel, Y. Almleaky, Z. Benkhaldoun, P. Magain, D. Queloz, Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542(7642), 456–460 (2017). https://doi.org/10.1038/nature21360

    ADS  Article  Google Scholar 

  113. B.P. Glass, B.M. Simonson, Distal impact ejecta layers: spherules and more. Elements 8, 43–48 (2012)

    Google Scholar 

  114. S. Goderis, F. Paquay, P. Claeys, Projectile identification in terrestrial impact structures and ejecta material, in Impact Cratering: Processes and Products (2012), pp. 223–239

    Google Scholar 

  115. S. Goderis, R. Chakrabarti, V. Debaille, J. Kodolányi, Isotopes in cosmochemistry: recipe for a Solar System. J. Anal. At. Spectrom. 31, 841–862 (2016)

    Google Scholar 

  116. G.J. Golabek, T. Keller, T.V. Gerya, G.Z. Zhu, P.J. Tackley, J.A.D. Connolly, Origin of the Martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus 215, 346–357 (2011). https://doi.org/10.1016/j.icarus.2011.06.012

    ADS  Article  Google Scholar 

  117. G.J. Golabek, A. Emsenhuber, M. Jutzi, E.I. Asphaug, T.V. Gerya, Coupling SPH and thermochemical models of planets: methodology and example of a Mars-sized body. Icarus 301, 235–246 (2018). https://doi.org/10.1016/j.icarus.2017.10.003

    ADS  Article  Google Scholar 

  118. M. Gounelle, The asteroid-comet continuum: in search of lost primitivity. Elements 7, 29–34 (2011)

    Google Scholar 

  119. D.H. Green, W.O. Hibberson, I. Kovács, A. Rosenthal, Water and its influence on the lithosphere-asthenosphere boundary. Nature 467, 448–497 (2010)

    ADS  Google Scholar 

  120. J.L. Grenfell, A review of exoplanetary biosignatures. Phys. Rep. 713, 1–17 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  121. J.L. Grenfell, S. Gebauer, M. Godolt, K. Palczynski, H. Rauer, J. Stock, P. von Paris, R. Lehmann, F. Selsis, Potential biosignatures in super-Earth atmospheres II. Photochemical responses. Astrobiology 13, 415–436 (2013)

    ADS  Google Scholar 

  122. D.S. Grewal, R. Dasgupta, C.U. Sun, K. Tsuno, G. Costin, Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Science Advances 5(3), eaau3669 (2019) https://doi.org/10.1126/sciadv.aau3669

    ADS  Article  Google Scholar 

  123. D.H. Grinspoon, Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363(6428), 428 (1993)

    ADS  Google Scholar 

  124. D.H. Grinspoon, The surface and atmosphere of Venus: evolution and present state, in Towards Understanding the Climate of Venus (Springer, New York, 2013), pp. 17–22

    Google Scholar 

  125. E.G. Grosch, M. Muñoz, O. Mathon, N. McLoughlin, Earliest microbial trace fossils in Archaean pillow lavas under scrutiny: new micro-X-ray absorption near-edge spectroscopy, metamorphic and morphological constraints. Geol. Soc. (Lond.) Spec. Publ. 448(1), 57–70 (2017)

    ADS  Google Scholar 

  126. M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011)

    ADS  Google Scholar 

  127. N. Gueneli, A.M. McKenna, N. Ohkouchi, C.J. Boreham, J. Beghin, E.J. Javaux, J.J. Brocks, 1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. Proc. Natl. Acad. Sci. 115(30), 201803866 (2018)

    Google Scholar 

  128. H. Gunell, R. Maggiolo, H. Nilsson, G.S. Wieser, R. Slapak, J. Lindkvist, M. Hamrin, J. De Keyser, Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astron. Astrophys. 614, L3 (2018)

    ADS  Google Scholar 

  129. I. Halevy, D.T. Johnston, D.P. Schrag, Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204–207 (2010)

    ADS  Google Scholar 

  130. K. Hamano, Y. Abe, Atmospheric loss and supply by an impact-induced vapor cloud: its dependence on atmospheric pressure on a planet. Earth Planets Space 62(7), 599–610 (2010)

    ADS  Google Scholar 

  131. K. Hamano, H. Kawahara, Y. Abe, M. Onishi, G.L. Hashimoto, Lifetime and spectral evolution of a magma ocean with a steam atmosphere: its detectability by future direct imaging. Astrophys. J. 806, 216 (2015)

    ADS  Google Scholar 

  132. T. Hammouda, S. Keshav, Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites. Chem. Geol. 418, 171–188 (2015). https://doi.org/10.1016/j.chemgeo.2015.05.018

    ADS  Article  Google Scholar 

  133. B.M.S. Hansen, Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009)

    ADS  Google Scholar 

  134. J.D. Haqq-Misra, S.D. Domagal-Goldman, P.J. Kasting, J.F. Kasting, A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8(6), 1127–1137 (2008)

    ADS  Google Scholar 

  135. C. Hayashi, K. Nakazawa, H. Mizuno, Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43(1), 22–28 (1979)

    ADS  Google Scholar 

  136. R.M. Hazen, Geochemical Origins of Life. Fundamentals of Geobiology (2012), pp. 315–332

    Google Scholar 

  137. J.N. Head, H.J. Melosh, B.A. Ivanov, Martian meteorites launch: highspeed ejecta from small craters. Science 298, 1752–1756 (2002)

    ADS  Google Scholar 

  138. J.W. Head, C.I. Fassett, S.J. Kadish, D.E. Smith, M.T. Zuber, G.A. Neumann, E. Mazarico, Global distribution of large lunar craters: implications for resurfacing and impactor populations. Science 329, 1504–1507 (2010). https://doi.org/10.1126/science.1195050

    ADS  Article  Google Scholar 

  139. S. Hegde, I.G. Paulino-Lima, R. Kent, L. Kaltenegger, L. Rothschild, Surface biosignatures of exo-Earths: remote detection of extraterrestrial life. Proc. Natl. Acad. Sci. USA 112, 3886–3891 (2014)

    ADS  Google Scholar 

  140. R. Heller, R. Barnes, Exomoon habitability constrained by illumination and tidal heating. Astrobiology 13, 18 (2013)

    ADS  Google Scholar 

  141. R. Heller, D. Williams, D. Kipping, M.A. Limbach, E.L. Turner, R. Greenberg, T. Sasaki, É. Bolmont, O. Grasset, K. Lewis, R. Barnes, J.I. Zuluaga, Formation, habitability, and detection of extrasolar moons. Astrobiology 14, 798 (2014)

    ADS  Google Scholar 

  142. P.C. Hess, E.M. Parmentier, A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134(3), 501–514 (1995). https://doi.org/10.1016/0012-821X(95)00138-3

    ADS  Article  Google Scholar 

  143. A.M. Hessler, D.R. Lowe, R.L. Jones, D. Bird, A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428, 736–738 (2004)

    ADS  Google Scholar 

  144. K. Hickman-Lewis, B. Cavalazzi, F. Foucher, F. Westall, Most ancient evidence for life in the Barberton greenstone belt: microbial mats and biofabrics of the ∼3.47 Ga Middle Marker horizon. Precambrian Res. 312, 45–67 (2018)

    ADS  Google Scholar 

  145. N. Hirano, E. Takahashi, J. Yamamoto, W. Abe, S.P. Ingle, I. Kaneoka, T. Hirata, J. Ichi Kimura, T. Ishii, Y. Ogawa, S. Machida, K. Suyehiro, Volcanism in response to plate flexure. Science 313, 1426–1428 (2006)

    ADS  Google Scholar 

  146. M.M. Hirschmann, Magma ocean influence on early atmosphere mass and composition. Earth Planet. Sci. Lett. 341–344, 48–57 (2012). https://doi.org/10.1016/j.epsl.2012.06.015

    ADS  Article  Google Scholar 

  147. M.M. Hirschmann, R. Dasgupta, The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009). https://doi.org/10.1016/j.chemgeo.2009.1002.1008

    ADS  Article  Google Scholar 

  148. E. Hoffland, T.W. Kuyper, H. Wallander, N. van Breemen, The role of fungi in weathering. Front. Ecol. Environ. 2(5), 258–264 (2004)

    Google Scholar 

  149. H.D. Holland, The Chemical Evolution of the Atmosphere and Oceans (Princeton University Press, Princeton, 1984)

    Google Scholar 

  150. H.D. Holland, Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002)

    ADS  Google Scholar 

  151. M. Homann, C. Heubeck, A. Airo, M.M. Tice, Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Res. 266, 47–64 (2015)

    ADS  Google Scholar 

  152. D. Höning, T. Spohn, Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth. Phys. Earth Planet. Inter. 255, 27–49 (2016)

    ADS  Google Scholar 

  153. D. Höning, H. Hansen-Goos, A. Airo, T. Spohn, Biotic vs. abiotic Earth: a model for mantle hydration and continental coverage. Planet. Space Sci. 98, 5–13 (2014)

    ADS  Google Scholar 

  154. D. Höning, N. Tosi, H. Hansen-Goos, T. Spohn, Bifurcation in the growth of continental crust. Phys. Earth Planet. Inter. 287, 37 (2019). https://doi.org/10.1016/j.pepi.2019.01.001

    ADS  Article  Google Scholar 

  155. K.R. Housen, R.M. Schmidt, K.A. Holsapple, Crater ejecta scaling laws: fundamental forms based on dimensional analysis. J. Geophys. Res., Solid Earth 88(B3), 2485–2499 (1983)

    Google Scholar 

  156. R. Hu, B.L. Ehlmann, S. Seager, Theoretical spectra of terrestrial exoplanet surfaces. Astrophys. J. 752, 1 (2012)

    Google Scholar 

  157. H. Hussmann, F. Sohl, T. Spohn, Subsurface oceans and deep interiors of medium-sized outer planet satellites and trans-Neptunian objects. Icarus 185, 258 (2006)

    ADS  Google Scholar 

  158. G. Iacono-Marziano, Y. Morizet, E. Le-Trong, F. Gaillard, New experimental data and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochim. Cosmochim. Acta (2012). https://doi.org/10.1016/j.gca.2012.08.035

    Article  Google Scholar 

  159. A. Izidoro, S.N. Raymond, A. Pierens, A. Morbidelli, O.C. Winter, D. Nesvorny, The asteroid belt as a relic from a chaotic early solar system. Astrophys. J. 833, 40 (2016)

    ADS  Google Scholar 

  160. S.A. Jacobson, A. Morbidelli, S.N. Raymond, D.P. O’Brien, K.J. Walsh, D.C. Rubie, Highly siderophile elements in Earth’s mantle as a clock for the moon-forming impact. Nature 508, 84–87 (2014)

    ADS  Google Scholar 

  161. S.A. Jacobson, D.C. Rubie, J. Hernlund, A. Morbidelli, M. Nakajima, Formation, stratification, and mixing of the cores of Earth and Venus. Earth Planet. Sci. Lett. 474, 375–386 (2017)

    ADS  Google Scholar 

  162. E.J. Javaux, Challenges in evidencing the earliest traces of life. Nature (2019, in press)

  163. E.J. Javaux, V. Dehant, Habitability: from stars to cells. Astron. Astrophys. Rev. 18, 383–416 (2010). https://doi.org/10.1007/s00159-010-0030-4

    ADS  Article  Google Scholar 

  164. E.J. Javaux, K. Lepot, The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth-Sci. Rev. 176, 68–86 (2017)

    Google Scholar 

  165. E.J. Javaux, C.P. Marshall, A. Bekker, Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463(7283), 934 (2010)

    ADS  Google Scholar 

  166. M. Javoy, E. Kaminski, F. Guyot, D. Andrault, C. Sanloup, M. Moreira, S. Labrosse, A. Jambon, P. Agrinier, A. Davaille, C. Jaupart, The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010). https://doi.org/10.1016/j.epsl.2010.02.033

    ADS  Article  Google Scholar 

  167. C.P. Johnstone, M. Güdel, I. Brott, T. Lüftinger, Stellar winds on the main-sequence. II. The evolution of rotation and winds. Astron. Astrophys. 577, A28 (2015a). https://doi.org/10.1051/0004-6361/201425301

    ADS  Article  Google Scholar 

  168. C.P. Johnstone, M. Güdel, A. Stökl, H. Lammer, L. Tu, K.G. Kislyakova, T. Lüftinger, P. Odert, N.V. Erkaev, E.A. Dorfi, The evolution of stellar rotation and the hydrogen atmospheres of habitable-zone terrestrial planets. Astrophys. J. Lett. 815(L12), 1 (2015b)

    Google Scholar 

  169. A.P. Jones, A.T. Kearsley, C.R.L. Friend, E. Robin, A. Beard, A. Tamura, S. Trickett, P. Claeys, Are there signs of a large Palaeocene impact, preserved around disko bay, Greenland- Nuussuaq spherule beds origin by impact instead of volcanic eruption? in Large Meteorite Impacts III, ed. by K. Kenkman, F. Hörz, A. Deutsch. Geological Society of America Special Paper, vol. 384 (2005), pp. 281–298

    Google Scholar 

  170. J.-L. Josset, F. Westall, B.A. Hofmann, J. Spray, C. Cockell, S. Kempe, A.D. Griffiths, M. Cristina de Sanctis, L. Colangeli, D. Koschny, D. Pullan, K. Föllmi, E. Verrecchia, L. Diamond, M. Josset, E.J. Javaux, F. Esposito, M. Gunn, A.L. Souchon, T. Bontognali, O. Korablev, S. Erkman, G. Paar, S. Ulamec, F. Foucher, A. Verhaeghe, M. Tanevski, J. Vago, The Close-Up Imager (CLUPI) on board ESA ExoMars 2018 rover mission: science objectives, description, operations, and science validation activities. Astrobiology 17(6–7), 595–611 (2017)

    ADS  Google Scholar 

  171. P.J. Jugo, Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009). https://doi.org/10.1130/G25527A.1

    ADS  Article  Google Scholar 

  172. M. Jutzi, K. Holsapple, K. Wünnemann, P. Michel, Modeling asteroid collisions and impact processes, in Asteroids IV, ed. by P. Michel, F.E. De Meo, W.F. Bottke (University of Arizona Press, Tucson, 2015), pp. 679–699

    Google Scholar 

  173. L. Kaltenegger, Characterizing habitable exomoons. Astrophys. J. Lett. 712, 125 (2010)

    ADS  Google Scholar 

  174. L. Kaltenegger, F. Selsis, M. Fridlund, H. Lammer, C. Beichman, W. Danchi, C. Eiroa, T. Henning, T. Herbst, A. Léger, R. Liseau, J. Lunine, F. Paresce, A. Penny, A. Quirrenbach, H. Röttgering, J. Schneider, D. Stam, G. Tinetti, G.J. White, Deciphering spectral fingerprints of habitable exoplanets. Astrobiology 10, 89–102 (2010)

    ADS  Google Scholar 

  175. Y. Kanzaki, T. Murakami, Estimates of atmospheric CO2 in the Neoarchean-Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 159, 190–219 (2015)

    ADS  Google Scholar 

  176. S.-I. Karato, M.S. Paterson, J.D. FitzGerald, Rheology of synthetic olivine aggregates: influence of grain size and water. J. Geophys. Res. 91(B8), 8151–8176 (1986)

    ADS  Google Scholar 

  177. S.-I. Karato, A. Forte, R. Liebermann, G. Masters, L. Stixrude, in Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. Geophysical Monograph Series (2013, Am. Geophys. Union, Washington). https://doi.org/10.1029/GM117. Print ISBN: 9781118668474. Online ISBN: 9780875909752

    Google Scholar 

  178. J.F. Kasting, Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988). https://doi.org/10.1016/0019-1035(88)90116-9

    ADS  Article  Google Scholar 

  179. J.F. Kasting, Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Orig. Life Evol. Biosph. 20(3–4), 199–231 (1990)

    ADS  Google Scholar 

  180. J.F. Kasting, Atmospheric science. How was early Earth kept warm? Science 339, 44–45 (2013a)

    ADS  Google Scholar 

  181. J.F. Kasting, What caused the rise of atmospheric O2? Chem. Geol. 362, 13–25 (2013b)

    ADS  Google Scholar 

  182. J.F. Kasting, O.B. Toon, J.B. Pollack, How climate evolved on the terrestrial planets. Sci. Am. 258, 90–97 (1988). https://doi.org/10.1038/scientificamerican0288-90

    Article  Google Scholar 

  183. J.F. Kasting, D.P. Whitmire, R.T. Reynolds, Habitable zones around main sequence stars. Icarus 101, 108 (1993a)

    ADS  Google Scholar 

  184. J.F. Kasting, D.H. Eggler, S.P. Raeburn, Mantle redox evolution and the oxidation state of the Archean atmosphere. J. Geol. 101, 245–257 (1993b)

    ADS  Google Scholar 

  185. J.F. Kasting, H. Chen, R.K. Kopparapu, Stratospheric temperatures and water loss from moist greenhouse atmospheres of Earth-like planets. Astrophys. J. Lett. 813(1), L3 (2015). https://doi.org/10.1088/2041-8205/813/1/L3

    ADS  Article  Google Scholar 

  186. P.B. Kelemen, C.E. Manning, Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl. Acad. Sci. USA 112(30), E3997–E4006 (2015). https://doi.org/10.1073/pnas.1507889112

    ADS  Article  Google Scholar 

  187. K.A. Kelley, E. Cottrell, Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009)

    ADS  Google Scholar 

  188. J.D. Kendall, H.J. Melosh, Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core. Earth Planet. Sci. Lett. 448, 24–33 (2016)

    ADS  Google Scholar 

  189. T. Kenkmann, M.H. Poelchau, A. Deutsch, Bridging the gap III: impact cratering in nature, experiment, and modelling. Meteorit. Planet. Sci. 52(7), 1281–1284 (2017). https://doi.org/10.1111/maps.12911

    ADS  Article  Google Scholar 

  190. K. Kimura, R.S. Lewis, E. Anders, Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974)

    ADS  Google Scholar 

  191. T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q.-Z. Yin, A.N. Halliday, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    ADS  Google Scholar 

  192. A.H. Knoll, K.D. Bergmann, J.V. Strauss, Life: the first two billion years. Phil. Trans. R. Soc. B 371(1707), 20150493 (2016)

    Google Scholar 

  193. C. Koeberl, Ph. Claeys, L. Hecht, I. McDonald, Geochemistry of impactites. Elements 8(1), 37–42 (2012)

    Google Scholar 

  194. O. Korablev, A. Trokhimovsky, A.V. Grigoriev, A. Shakun, Y.S. Ivanov, B. Moshkin, K. Anufreychik, D. Timonin, I. Dziuban, Y.K. Kalinnikov, F. Montmessin, Three infrared spectrometers, an atmospheric chemistry suite for the ExoMars 2016 trace gas orbiter. J. Appl. Remote Sens. 8, 1 (2014)

    Google Scholar 

  195. J. Korenaga, On the likelihood of plate tectonics on super-Earths: does size matter? Astrophys. J. Lett. 725(1), L43–L46 (2010). https://doi.org/10.1088/2041-8205/725/1/L43

    ADS  Article  Google Scholar 

  196. L. Kreidberg, J.L. Bean, J.-M. Désert, B. Benneke, D. Deming, K.B. Stevenson, S. Seager, Z. Berta-Thompson, A. Seifahrt, D. Homeier, Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014)

    ADS  Google Scholar 

  197. J. Krissansen-Totton, D.C. Catling, Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. (2017). https://doi.org/10.1038/NCOMMS15423

    Article  Google Scholar 

  198. J. Krissansen-Totton, S. Olson, D.C. Catling, Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4(1), eaao5747 (2018). https://doi.org/10.1126/sciadv.aao5747

    ADS  Article  Google Scholar 

  199. L.R. Kump, M.E. Barley, Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007)

    ADS  Google Scholar 

  200. L.R. Kump, S.L. Brantley, M.A. Arthur, Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000)

    ADS  Google Scholar 

  201. M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012)

    ADS  Google Scholar 

  202. H. Lammer, H.I.M. Lichtenegger, H.K. Biernat, N.V. Erkaev, I.L. Arshukova, C. Kolb, H. Gunell, A. Lukyanov, M. Holmstrom, S. Barabash, T.L. Zhang, W. Baumjohann, Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006)

    ADS  Google Scholar 

  203. H. Lammer, J.H. Bredehöft, A. Coustenis, M.L. Khodachenko, L. Kaltenegger, O. Grasset, D. Prieur, F. Raulin, P. Ehrenfreund, M. Yamauchi, J.-E. Wahlund, J.-M. Griessmeier, G. Stangl, C.S. Cockell, Y.N. Kulikov, J.L. Grenfell, H. Rauer, What makes a planet habitable? Astron. Astrophys. Rev. 17(2), 181–249 (2009). https://doi.org/10.1007/s00159-009-0019-z

    ADS  Article  Google Scholar 

  204. H. Lammer, K.G. Kislyakova, P. Odert, M. Leitzinger, R. Schwarz, R. Pilat-Lohinger, Y.N. Kulikov, M.L. Khodachenko, M. Güdel, A. Hanslmeier, Pathways to Earth-like atmospheres. Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–511 (2011)

    ADS  Google Scholar 

  205. H. Lammer, A. Stökl, N.V. Erkaev, E.A. Dorfi, P. Odert, M. Güdel, Yu.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439(4), 3225–3238 (2014). https://doi.org/10.1093/mnras/stu085

    ADS  Article  Google Scholar 

  206. H. Lammer, A.L. Zerkle, S. Gebauer, N. Tosi, L. Noack, M. Scherf, E. Pilat-Lohinger, M. Güdel, J.L. Grenfell, M. Godolt, A. Nikolaou, Origin and evolution of the atmospheres of early Venus, Earth, and Mars. Astron. Astrophys. Rev. 76(1), 77 (2018)

    Google Scholar 

  207. H. Lammer, L. Sproß, J.L. Grenfell, M. Scherf, L. Fossati, M. Lendl, P.E. Cubillos, The role of N2 as a geo-biosignature for the detection and characterization of Earth-like habitats. Astrobiology 19(7), 927–950 (2019). https://doi.org/10.1089/ast.2018.1914

    ADS  Article  Google Scholar 

  208. C.H. Langmuir, W. Broecker, How to Build a Habitable Planet (Princeton University Press, Princeton, 2012)

    Google Scholar 

  209. J. Lasue, Y. Quesnel, B. Langlais, E. Chassefière, Methane storage capacity of the early Martian cryosphere. Icarus 260, 205–214 (2015)

    ADS  Google Scholar 

  210. C-T.A. Lee, P. Luffi, V. Le Roux, R. Dasgupta, F. Albarede, W.P. Leeman, The redox state of arc mantle using Zn/Fe systematics. Nature 468, 681–685 (2010)

    ADS  Google Scholar 

  211. A.M. Lenardic, A. Jellinek, L.-N. Moresi, A climate induced transition in the tectonic style of a terrestrial planet. Earth Planet. Sci. Lett. 271(1–4), 34–42 (2008)

    ADS  Google Scholar 

  212. T.M. Lenton, Testing Gaia: the effect of life on Earth’s habitability and regulation. Clim. Change 52, 409–422 (2002)

    Google Scholar 

  213. K. Lepot, P. Compère, E. Gérard, Z. Namsaraev, E. Verleyen, I. Tavernier, D.A. Hodgson, W. Vyverman, B. Gilbert, A. Wilmotte, E.J. Javaux, Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake. Geobiology 12(5), 424–450 (2014). https://doi.org/10.1111/gbi.12096

    Article  Google Scholar 

  214. Y. Li, R. Dasgupta, K. Tsuno, The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 C: Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles. Earth Planet. Sci. Lett. 415, 54–66 (2015a). https://doi.org/10.1016/j.epsl.2015.01.017

    ADS  Article  Google Scholar 

  215. Y. Li, R. Huang, M. Wiedenbeck, H. Kepplera, Nitrogen distribution between aqueous fluids and silicate melts. Earth Planet. Sci. Lett. 411, 218–228 (2015b)

    ADS  Google Scholar 

  216. Y. Li, R. Dasgupta, K. Tsuno, Carbon contents in reduced basalts at graphite saturation: implications for the degassing of Mars, Mercury, and the Moon. J. Geophys. Res., Planets 122, 1300–1320 (2017). https://doi.org/10.1002/2017JE005289

    ADS  Article  Google Scholar 

  217. G. Libourel, B. Marty, F. Humbert, Nitrogen solubility in basaltic melt; Part I, effect of oxygen fugacity. Geochim. Cosmochim. Acta 67, 4123–4135 (2003)

    ADS  Google Scholar 

  218. H.I.M. Lichtenegger, H. Lammer, J.-M. Grießmeier, Y.N. Kulikov, P. von Paris, W. Hausleitner, S. Krauss, H. Rauer, Aeronomical evidence for higher CO2 levels during Earth’s Hadean epoch. Icarus 210(1), 1–7 (2010). https://doi.org/10.1016/j.icarus.2010.06.042

    ADS  Article  Google Scholar 

  219. R.J. Lillis, D.A. Brain, S.W. Bougher, F. Leblanc, J.G. Luhmann, M.B. Jakosky et al., Characterizing atmospheric escape from Mars today and through time, with MAVEN. Space Sci. Rev. 195(1–4), 357–422 (2015)

    ADS  Google Scholar 

  220. D. Lourenço, A. Rozel, M. Ballmer, P.J. Tackley, Plutonic-squishy lid and beyond: implications of intrusive magmatism and characterization of a new global-tectonic regime on Earth-like planets, in Geophysical Research Abstracts, EGU General Assembly 2017. EGU2017-16304, vol. 19 (2017)

    Google Scholar 

  221. G.D. Love, E. Grosjean, C. Stalvies, D.A. Fike, J.P. Grotzinger, A.S. Bradley, Fossil steroids record the appearance of demospongiae during the cryogenian period. Nature 457, 718–721 (2009)

    ADS  Google Scholar 

  222. R. Luger, M. Sestovic, E. Kruse, S.L. Grimm, B.-O. Demory, E. Agol, E. Bolmont, D. Fabrycky, C.S. Fernandes, V. Van Grootel, A. Burgasser, M. Gillon, J.G. Ingalls, E. Jehin, S.N. Raymond, F. Selsis, A.H.M.J. Triaud, T. Barclay, G. Barentsen, S.B. Howell, L. Delrez, J. de Wit, D. Foreman-Mackey, D.L. Holdsworth, J. Leconte, S. Lederer, M. Turbet, Y. Almleaky, Z. Benkhaldoun, P. Magain, B.M. Morris, K. Heng, D. Queloz, A terrestrial-sized exoplanet at the snow line of TRAPPIST-1. Nat. Astron. 1(0129), 0129 (2017). https://doi.org/10.1038/s41550-017-0129

    ADS  Article  Google Scholar 

  223. R. Lundin, H. Lammer, I. Ribas, Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev. 129(1–3), 245–278 (2007)

    ADS  Google Scholar 

  224. J.I. Lunine, Astrobiology: A Multidisciplinary Approach (Addison-Wesley, Boston, 2005), 586 pp.

    Google Scholar 

  225. T.W. Lyons, B.C. Gill, Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6, 93–99 (2010)

    Google Scholar 

  226. T.W. Lyons, C.T. Reinhard, N.J. Planavsky, The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014). https://doi.org/10.1038/nature13068

    ADS  Article  Google Scholar 

  227. N. Madhusudhan, K.K.M. Lee, O. Mousis, A possible carbon-rich interior in super-Earth 55 Cancri e. Astrophys. J. Lett. 759, L40 (2012). https://doi.org/10.1088/2041-8205/759/2/L40

    ADS  Article  Google Scholar 

  228. L. Manske, K. Wünnemann, M. Nakajima, Impact-induced melting by giant impact events, in 49th Lunar and Planetary Science Conference, LPI Contribution (2018)

    Google Scholar 

  229. S. Marchi, R.M. Canup, R.J. Walker, Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11(1), 77 (2018)

    ADS  Google Scholar 

  230. E. Marcq, F.P. Mills, C.D. Parkinson, A.C. Vandaele, Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214(1), 10 (2018)

    ADS  Google Scholar 

  231. L. Margulis, J. Lovelock, Biological modification of the Earth’s atmosphere. Icarus 21, 471–489 (1974)

    ADS  Google Scholar 

  232. N. Marounina, G. Tobie, S. Carpy, J. Monteux, B. Charnay, O. Grasset, Evolution of Titan’s atmosphere during the late heavy bombardment. Icarus 257, 324–335 (2015)

    ADS  Google Scholar 

  233. H. Martin, F. Albarède, P. Claeys, M. Gargaud, B. Marty, A. Morbidelli, D.L. Pinti, Building of a habitable planet, in From Suns to Life: A Chronological Approach to the History of Life on Earth, ed. by M. Gargaud, P. Claeys, P. López-García, H. Martin, T. Montmerle, R. Pascal, J. Reisse (Springer, New York, 2006), 97–151, Chap. 4. https://doi.org/10.1007/s11038-006-9088-4

    Google Scholar 

  234. B. Marty, L. Zimmermann, M. Pujol, R. Burgess, P. Philippot, Nitrogen isotopic composition and density of the Archean atmosphere. Science 342(6154), 101–104 (2013). https://doi.org/10.1126/science.1240971

    ADS  Article  Google Scholar 

  235. B. Marty, G. Avice, Y. Sano, K. Altwegg, H. Balsiger, M. Hässig, A. Morbidelli, O. Mousis, M. Rubin, Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016). https://doi.org/10.1016/j.epsl.2016.02.031

    ADS  Article  Google Scholar 

  236. F. Masset, M. Snellgrove, Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 320, L55–L59 (2001)

    ADS  Google Scholar 

  237. T.M. McCollom, J.S. Seewald, A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65(21), 3769–3778 (2001)

    ADS  Google Scholar 

  238. P.J. McGovern, G. Schubert, Thermal evolution of the Earth: effects of volatile exchange between atmosphere and interior. Earth Planet. Sci. Lett. 96, 27–37 (1989)

    ADS  Google Scholar 

  239. S. McMahon, T. Bosak, J.P. Grotzinger, R.E. Milliken, R.E. Summons, M. Daye, S.A. Newman, A. Fraeman, K.H. Williford, D.E.G. Briggs, A field guide to finding fossils on Mars. J. Geophys. Res., Planets (2018). https://doi.org/10.1029/2017JE005478

    Article  Google Scholar 

  240. V.S. Meadows, Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17, 1022–1052 (2017)

    ADS  Google Scholar 

  241. V.S. Meadows, C.T. Reinhard, G.N. Arney, M.N. Parenteau, E.W. Schwieterman, S.D. Domagal-Goldman, A.P. Lincowski, K.R. Stapelfeldt, H. Rauer, S. DasSarma, S. Hegde, N. Narita, R. Deitrick, T.W. Lyons, N. Siegler, J. Lustig-Yaeger, Exoplanet biosignatures: understanding oxygen in the context of its environment. Astrobioloy 18(6), 630–662 (2018)

    ADS  Google Scholar 

  242. H.J. Melosh, Impact Cratering: A Geologic Process. Oxford Monographs on Geology and Geophysics, vol. 11 (Oxford University Press, New York, 1989), p. 253 p., 11

    Google Scholar 

  243. H.J. Melosh, Vapor plumes: a neglected aspect of impact cratering. Meteoritics 25, 386 (1990)

    ADS  Google Scholar 

  244. H.J. Melosh, A.M. Vickery, Impact erosion of the primordial atmosphere of Mars. Nature 338(6215), 487 (1989)

    ADS  Google Scholar 

  245. S. Mikhail, D.A. Sverjensky, Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere. Nat. Geosci. 7(11), 816–819 (2014)

    ADS  Google Scholar 

  246. J. Monteux, N. Coltice, F. Dubuffet, Y. Ricard, Thermo-mechanical adjustment after impacts during planetary growth. Geophys. Res. Lett. 34(24) (2007)

  247. A. Morbidelli, A. Crida, The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007)

    ADS  Google Scholar 

  248. L. Moresi, V. Solomatov, Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 133, 669 (1998)

    ADS  Google Scholar 

  249. L.M. Mukhin, M.V. Gerasimov, E.N. Safonova, Origin of precursors of organic molecules during evaporation of meteorites and mafic terrestrial rocks. Nature 340(6228), 46 (1989)

    ADS  Google Scholar 

  250. M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, M.D. Smith, Strong release of methane on Mars in Northern Summer 2003. Science 323(5917), 1041 (2009). https://doi.org/10.1126/science.1165243

    ADS  Article  Google Scholar 

  251. T. Nakagawa, H. Iwamori, Long-term stability of plate-like behavior caused by hydrous mantle convection and water absorption in the deep mantle. J. Geophys. Res., Solid Earth 122, 8431–8445 (2017)

    ADS  Google Scholar 

  252. M. Nakajima, D.J. Stevenson, Investigation of the initial state of the moon-forming disk: bridging SPH simulations and hydrostatic models. Icarus 233, 259–267 (2014)

    ADS  Google Scholar 

  253. M. Nakajima, D.J. Stevenson, Melting and mixing states of the Earth’s mantle after the moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015)

    ADS  Google Scholar 

  254. W.M. Napier, A mechanism for interstellar panspermia. Mon. Not. R. Astron. Soc. 348(1), 46–51 (2004)

    ADS  Google Scholar 

  255. W.I. Newman, E.M. Symbalisty, T.J. Ahrens, E.M. Jones, Impact erosion of planetary atmospheres: some surprising results. Icarus 138(2), 224–240 (1999)

    ADS  Google Scholar 

  256. R.W. Nicklas, I.S. Puchtel, R.D. Ash, Redox state of the Archean mantle: evidence from V partitioning in 3.5–2.4 Ga Komatiites. Geochim. Cosmochim. Acta 222, 447–466 (2018)

    ADS  Google Scholar 

  257. F. Nimmo, D.J. Stevenson, Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res., Planets 105(E5), 11969–11979 (2000)

    ADS  Google Scholar 

  258. F. Nimmo, S.D. Hart, D.G. Korycansky, C.B. Agnor, Implications of an impact origin for the martian hemispheric dichotomy. Nature 453(7199), 1220–1223 (2008). https://doi.org/10.1038/nature07025

    ADS  Article  Google Scholar 

  259. E. Nisbet, K. Zahnle, M.V. Gerasimov, J. Helbert, R. Jaumann, B.A. Hofmann, K. Benzerara, F. Westall, Creating habitable zones, at all scales, from planets to mud micro-habitats, on Earth and on Mars. Space Sci. Rev. 129(1–3), 79–121 (2007)

    ADS  Google Scholar 

  260. L. Noack, D. Breuer, T. Spohn, Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus. Icarus 217(2), 484–498 (2012)

    ADS  Google Scholar 

  261. L. Noack, M. Godolt, P. von Paris, A.-C. Plesa, B. Stracke, D. Breuer, H. Rauer, Constraints on planetary habitability from interior modeling. PSS special issue. Planet. Evol. Life 98, 14–29 (2014). https://doi.org/10.1016/j.pss.2014.01.003

    ADS  Article  Google Scholar 

  262. L. Noack, A. Rivoldini, T. Van Hoolst, Volcanism and outgassing of stagnant-lid planets: implications for the habitable zone. Phys. Earth Planet. Inter. 269, 40–57 (2017)

    ADS  Google Scholar 

  263. N. Noffke, K.A. Eriksson, R.M. Hazen, E.L. Simpson, A new window into early Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34(4), 253–256 (2006)

    ADS  Google Scholar 

  264. A.P. Nutman, V.C. Bennett, C.R. Friend, M.J. Van Kranendonk, A.R. Chivas, Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537(7621), 535 (2016)

    ADS  Google Scholar 

  265. D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006)

    ADS  Google Scholar 

  266. P. Odert et al., Escape and fractionation of volatiles and noble gases from Mars-sized planetary 175 embryos and growing protoplanets. Icarus 307, 327–346 (2018)

    ADS  Google Scholar 

  267. J.D. O’Keefe, T.J. Ahrens, Meteorite impact ejecta: dependence of mass and energy lost on planetary escape velocity. Science 198(4323), 1249–1251 (1977)

    ADS  Google Scholar 

  268. J.D. O’Keefe, T.J. Ahrens, The effect of gravity on impact crater excavation time and maximum depth; comparison with experiment, in Lunar and Planetary Science Conference, vol. 10 (1979), pp. 934–936

    Google Scholar 

  269. T. Okuchi, Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278(5344), 1781–1784 (1997). https://doi.org/10.1126/science.278.5344.1781

    ADS  Article  Google Scholar 

  270. C. O’Neill, A. Lenardic, Geological consequences of super-sized Earths. Geophys. Res. Lett. 34(19), L19204 (2007). https://doi.org/10.1029/2007GL030598

    ADS  Article  Google Scholar 

  271. C. O’Neill, A. Lenardic, A.M. Jellinek, W.S. Kiefer, Melt propagation and volcanism in mantle convection simulations, with applications for martian volcanic and atmospheric evolution. J. Geophys. Res., Planets 112, E07003 (2007)

    ADS  Google Scholar 

  272. C. O’Neill, S. Marchi, S. Zhang, W. Bottke, Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10(10), 793 (2017)

    ADS  Google Scholar 

  273. C.W. Ormel, H.H. Klahr, The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010). https://doi.org/10.1051/0004-6361/201014903

    ADS  Article  Google Scholar 

  274. J.G. O’Rourke, C. Gillmann, P. Tackley, Prospects for an ancient dynamo and modern crustal remanent magnetism on Venus. Earth Planet. Sci. Lett. 502, 46–56 (2018)

    ADS  Google Scholar 

  275. J.E. Owen, Y. Wu, The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017)

    ADS  Google Scholar 

  276. C. Oze, M. Sharma, Serpentinization and the inorganic synthesis of H2 in planetary surfaces. Icarus 186(2), 557–561 (2007)

    ADS  Google Scholar 

  277. S. Padovan, N. Tosi, A.C. Plesa, T. Ruedas, Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nat. Commun. 8, 1945 (2017). https://doi.org/10.1038/s41467-017-01692-0

    ADS  Article  Google Scholar 

  278. K. Pahlevan, D.J. Stevenson, Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262(3–4), 438–449 (2007). https://doi.org/10.1016/j.epsl.2007.07.055

    ADS  Article  Google Scholar 

  279. M.A. Pasek, J.P. Harnmeijer, R. Buick, M. Gull, Z. Atlas, Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl. Acad. Sci. USA 110, 10089–10094 (2013)

    ADS  Google Scholar 

  280. A.A. Pavlov, J.F. Kasting, Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2(1), 27–41 (2002)

    ADS  Google Scholar 

  281. A.A. Pavlov, J.F. Kasting, L.L. Brown, K.A. Rages, R. Freedman, Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11981 (2000)

    ADS  Google Scholar 

  282. E.A. Petigura, A.W. Howard, G.W. Marcy, Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Natl. Acad. Sci. 110(19), 273–19278 (2013)

    Google Scholar 

  283. L.B.S. Pham, Ö. Karatekin, Scenarios of atmospheric mass evolution on Mars influenced by asteroid and comet impacts since the late Noachian. Planet. Space Sci. 125, 1–11 (2016)

    ADS  Google Scholar 

  284. L.B.S. Pham, Ö. Karatekin, V. Dehant, Effect of meteorite impacts on the atmospheric evolution of Mars. Astrobiology Early Mars 9(1), 45–54 (2009). https://doi.org/10.1089/ast.2008.0242 (special issue)

    ADS  Article  Google Scholar 

  285. L.B.S. Pham, Ö. Karatekin, V. Dehant, Effects of impacts on the atmospheric evolution: comparison between Mars, Earth, and Venus. Planet. Space Sci. 59, 1087–1092 (2011)

    ADS  Google Scholar 

  286. E. Pierazzo, N. Artemieva, Local and global environmental effects of impacts on Earth. Elements 8, 55–60 (2012). https://doi.org/10.2113/gselements.8.1.55

    Article  Google Scholar 

  287. E. Pierazzo, H.J. Melosh, Hydrocode modeling of oblique impacts: the fate of the projectile. Meteorit. Planet. Sci. 35(1), 117–130 (2000)

    ADS  Google Scholar 

  288. E. Pierazzo, A.M. Vickery, H.J. Melosh, A reevaluation of impact melt production. Icarus 127(2), 408–423 (1997)

    ADS  Google Scholar 

  289. A. Pierens, S.N. Raymond, D. Nesvorny, A. Morbidelli, Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the grand tack and nice models. Astrophys. J. Lett. 795(1), L11 (2014). https://doi.org/10.1088/2041-8205/795/1/L11

    ADS  Article  Google Scholar 

  290. S. Pizzarello, Y. Huang, L. Becker, R.J. Poreda, R.A. Nieman, G. Cooper, M. Williams, The organic content of the Tagish Lake meteorite. Science 293, 2236–2239 (2001)

    ADS  Google Scholar 

  291. T. Plank, The chemical composition of subducting sediments, in Treatise on Geochemistry, vol. 4, ed. by R.L. Rudnick 2nd edn. (Elsevier/Pergamon, Oxford, 2014), pp. 607–629

    Google Scholar 

  292. J.P. Poirier, Introduction to the Physics of the Earth’s Interior, 2nd edn. (Cambridge University Press, Cambridge, 2000). ISBN-13: 978-0521663922, ISBN-10: 052166392X

    Google Scholar 

  293. R.R. Rafikov, Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 682, 666–682 (2006)

    ADS  Google Scholar 

  294. R. Ramstad, S. Barabash, Y. Futaana, M. Yamauchi, H. Nilsson, M. Holmström, Mars under primordial solar wind conditions: Mars express observations of the strongest CME detected at Mars under solar cycle# 24 and its impact on atmospheric ion escape. Geophys. Res. Lett. 44(21), 10805–10811 (2017)

    ADS  Google Scholar 

  295. H. Rauer, S. Gebauer, P. von Paris, J. Cabrera, M. Godolt, J.L. Grenfell, A. Belu, F. Selsis, P. Hedelt, F. Schreier, Potential biosignatures in super-Earth atmospheres I. Spectral appearance of super-Earths around M dwarfs. Astron. Astrophys. 529, A8 (2011)

    ADS  Google Scholar 

  296. H. Rauer, C. Catala, C. Aerts, T. Appourchaux, W. Benz, A. Brandeker, J. Christensen-Dalsgaard, M. Deleuil, L. Gizon, M.-J. Goupil, M. Güdel, E. Janot-Pacheco, M. Mas-Hesse, I. Pagano, G. Piotto, D. Pollacco, C. Santos, A. Smith, J.-C. Suárez, R. Szabó, S. Udry, V. Adibekyan, Y. Alibert, J.-M. Almenara, P. Amaro-Seoane, M. Ammer-von Eiff, M. Asplund, E. Antonello, S. Barnes, F. Baudin, K. Belkacem, M. Bergemann, G. Bihain, A.C. Birch, X. Bonfils, I. Boisse, A.S. Bonomo, F. Borsa, I.M. Brandão, E. Brocato, S. Brun, M. Burleigh, R. Burston, J. Cabrera, S. Cassisi, W. Chaplin, S. Charpinet, C. Chiappini, R.P. Church, S. Csizmadia, M. Cunha, M. Damasso, M.B. Davies, H.J. Deeg, R.F. Díaz, S. Dreizler, C. Dreyer, P. Eggenberger, D. Ehrenreich, P. Eigmüller, A. Erikson, R. Farmer, S. Feltzing, F. de Oliveira Fialho, P. Figueira, T. Forveille, M. Fridlund, R.A. García, P. Giommi, G. Giuffrida, M. Godolt, J. Gomes da Silva, T. Granzer, J.L. Grenfell, A. Grotsch-Noels, E. Günther, C.A. Haswell, A.P. Hatzes, G. Hébrard, S. Hekker, R. Helled, K. Heng, J.M. Jenkins, A. Johansen, M.L. Khodachenko, K.G. Kislyakova, W. Kley, U. Kolb, N. Krivova, F. Kupka, H. Lammer, A.F. Lanza, Y. Lebreton, D. Magrin, P. Marcos-Arenal, P.M. Marrese, J.P. Marques, J. Martins, S. Mathis, S. Mathur, S. Messina, A. Miglio, J. Montalban, M. Montalto, M.J. Monteiro, H. Moradi, E. Moravveji, C. Mordasini, T. Morel, A. Mortier, V. Nascimbeni, R.P. Nelson, M.B. Nielsen, L. Noack, A.J. Norton, A. Ofir, M. Oshagh, R.-M. Ouazzani, P. Pápics, V.C. Parro, P. Petit, B. Plez, E. Poretti, A. Quirrenbach, R. Ragazzoni, G. Raimondo, M. Rainer, D.R. Reese, R. Redmer, S. Reffert, B. Rojas-Ayala, I.W. Roxburgh, S. Salmon, A. Santerne, J. Schneider, J. Schou, S. Schuh, H. Schunker, A. Silva-Valio, R. Silvotti, I. Skillen, I. Snellen, F. Sohl, S.G. Sousa, A. Sozzetti, D. Stello, K.G. Strassmeier, M. Svanda, G.M. Szabó, A. Tkachenko, D. Valencia, V. Van Grootel, S.D. Vauclair, P. Ventura, F.W. Wagner, N.A. Walton, J. Weingrill, S.C. Werner, P.J. Wheatley, K. Zwintz, The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014)

    ADS  Google Scholar 

  297. S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009)

    ADS  Google Scholar 

  298. S.N. Raymond, H.E. Schlichting, F. Hersant, F. Selsis, Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226(1), 671–681 (2013)

    ADS  Google Scholar 

  299. J. Reisse, La longue histoire de la matière. Une complexité croissante depuis des milliards d’années (Presses Universitaires de France, Paris, 2011), 320 p.

    Google Scholar 

  300. K. Righter, K.E. Neff, Temperature and oxygen fugacity constraints on CK and R chondrites and implications for water and oxidation in the early solar system. Polar Sci. 1(1), 25–44 (2007). https://doi.org/10.1016/j.polar.2007.04.002

    ADS  Article  Google Scholar 

  301. J.H. Roberts, J. Arkani-Hamed, Impact heating and coupled core cooling and mantle dynamics on Mars. J. Geophys. Res., Planets 119(4), 729–744 (2014)

    ADS  Google Scholar 

  302. T.D. Robinson, K. Ennico, V.S. Meadows, W. Sparks, D.B.J. Bussey, E.W. Schwieterman, J. Breiner, Detection of ocean glint and ozone absorption using LCROSS Earth observations. Astrophys. J. 787(2), 171 (2014). https://doi.org/10.1088/0004-637X/787/2/171

    ADS  Article  Google Scholar 

  303. F. Rodeler, M. López-Morales, Feasibility studies for the detection of O2 in an Earth-like exoplanet. Astrophys. J. 781, 1 (2014)

    ADS  Google Scholar 

  304. L.A. Rogers, Most 1.6 earth-radius planets are not rocky. Astrophys. J. 801(41) (2015). https://doi.org/10.1088/0004-637X/801/1/41

    ADS  Google Scholar 

  305. T. Rolf, M.-H. Zhu, K. Wünnemann, S.C. Werner, The role of impact bombardment history in lunar evolution. Icarus 286, 138–152 (2016)

    ADS  Google Scholar 

  306. M.T. Rosing, D.K. Bird, N.H. Sleep, W. Glassley, F. Albarede, The rise of continents—an essay on the geologic consequences of photosynthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 99–113 (2006)

    Google Scholar 

  307. M. Roskosz, M.A. Bouhifd, A.P. Jephcoat, B. Marty, B.O. Mysen, Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochim. Cosmochim. Acta 121, 15–28 (2013). https://doi.org/10.1016/j.gca.2013.07.007

    ADS  Article  Google Scholar 

  308. A.B. Rozel, G.J. Golabek, C. Jain, P.J. Tackley, T. Gerya, Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017)

    ADS  Google Scholar 

  309. D.C. Rubie, S.A. Jacobson, A. Morbidelli, D.P. O’Brien, E.D. Young, J. de Vries, F. Nimmo, H. Palme, D.J. Frost, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015)

    ADS  Google Scholar 

  310. T. Ruedas, Globally smooth approximations for shock pressure decay in impacts. Icarus 289, 22–33 (2017). https://doi.org/10.1016/j.icarus.2017.02.008

    ADS  Article  Google Scholar 

  311. T. Ruedas, D. Breuer, On the relative importance of thermal and chemical buoyancy in regular and impact-induced melting in a Mars-like planet. J. Geophys. Res., Planets 122(7), 1554–1579 (2017). https://doi.org/10.1002/2016JE005221

    ADS  Article  Google Scholar 

  312. A. Salvador, H. Massol, A. Davaille, E. Marcq, P. Sarda, E. Chassefière, The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res., Planets 122, 1458–1486 (2017)

    ADS  Google Scholar 

  313. H.E. Schlichting, S. Mukhopadhyay, Atmosphere impact losses. Space Sci. Rev. 214(1), 34 (2018)

    ADS  Google Scholar 

  314. H.E. Schlichting, R. Sari, A. Yalinewich, Atmospheric mass loss during planet formation: the importance of planetesimal impacts. Icarus 247, 81–94 (2015)

    ADS  Google Scholar 

  315. P. Schulte, L. Alegret, I. Arenillas, J.A. Arz, P.J. Barton, P.R. Bown, T.J. Bralower, G.L. Christeson, P. Claeys, C.S. Cockell, G.S. Collins, A. Deutsch, T.J. Goldin, K. Goto, J.M. Grajales-Nishimura, R.A.F. Grieve, S.P.S. Gulick, K.R. Johnson, W. Kiessling, C. Koeberl, D.A. Kring, K.G. MacLeod, T. Matsui, J. Melosh, A. Montanari, J.V. Morgan, C.R. Neal, D.J. Nichols, R.D. Norris, E. Pierazzo, G. Ravizza, M. Rebolledo-Vieyra, W.U. Reimold, E. Robin, T. Salge, R.P. Speijer, A.R. Sweet, J. Urrutia-Fucugauchi, V. Vajda, M.T. Whalen, P.S. Willumsen, The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010)

    ADS  Google Scholar 

  316. D.W. Schwartzman, T. Volk, Biotic enhancement of weathering and the habitability of Earth. Nature 340, 457–460 (1989)

    ADS  Google Scholar 

  317. E.W. Schwieterman, C.S. Cockell, V.S. Meadows, Nonphotosynthetic pigments as biosignatures. Astrobioloy 15, 341–361 (2015)

    ADS  Google Scholar 

  318. E.W. Schwieterman, V.S. Meadows, S.D. Domagal-Goldman, D. Deming, G.N. Arney, R. Luger, C.E. Harman, A. Misra, R. Barnes, Identifying planetary biosignature imposters: spectral signatures of CO an O4 resulting from abiotic O2/O3 production. Astrobioloy 819, 1 (2016)

    Google Scholar 

  319. E.W. Schwieterman, N.Y. Kiang, M.N. Parenteau, C.E. Harman, S. DasSarma, T.M. Fisher, G.N. Arney, H.E. Hartnett, C.T. Reinhard, S.L. Olson, V.S. Meadows, C.S. Cockell, S.I. Walker, J.L. Grenfell, S. Hegde, S. Rugheimer, R. Hu, T.W. Lyons, Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobioloy 18(6), 663–708 (2018)

    ADS  Google Scholar 

  320. S. Seager, E.L. Turner, J. Schafer, E.B. Ford, Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5, 372–390 (2005)

    ADS  Google Scholar 

  321. A. Segura, K. Krelove, J.F. Kasting, D. Sommerlatt, V. Meadows, D. Crisp, M. Cohen, E. Mlawer, Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3, 689–708 (2003)

    ADS  Google Scholar 

  322. J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, third edition. (Wiley, New York, 2016)

    Google Scholar 

  323. F. Selsis, D. Despois, J.-P. Parisot, Signature of life on exoplanets: can Darwin produce false positive detections? Astrophys. Astrobiol. 388, 985–1003 (2002)

    ADS  Google Scholar 

  324. F. Selsis, R.D. Wordsworth, F. Forget, Thermal phase curves of nontransiting terrestrial exoplanets I. Characterizing atmospheres. Astron. Astrophys. 532, A1 (2011). https://doi.org/10.1051/0004-6361/201116654

    ADS  Article  Google Scholar 

  325. B.D. Shizgal, G.G. Arkos, Nonthermal escape of the atmospheres of Venus, Earth and Mars. Rev. Geophys. 34, 483–505 (1996). https://doi.org/10.1029/96RG02213

    ADS  Article  Google Scholar 

  326. V.V. Shuvalov, Atmospheric erosion induced by oblique impacts. Meteorit. Planet. Sci. 44(8), 1095–1105 (2009)

    ADS  Google Scholar 

  327. V.V. Shuvalov, N.A. Artemieva, M.Y. Kuz’micheva, T.V. Losseva, V.V. Svettsov, V.M. Khazins, Crater ejecta: markers of impact catastrophes. Izv. Phys. Solid Earth 48(3), 241–255 (2012)

    ADS  Google Scholar 

  328. V.V. Shuvalov, E. Kührt, D. de Niem, K. Wünnemann, Impact induced erosion of hot and dense atmospheres. Planet. Space Sci. 98, 120–127 (2014). https://doi.org/10.1016/j.pss.2013.08.018

    ADS  Article  Google Scholar 

  329. D. Sifré, E. Gardés, M. Massuyeau, L. Hashim, S. Hier-Majumder, F. Gaillard, Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509, 81–85 (2014)

    ADS  Google Scholar 

  330. B.M. Simonson, B.B. Glass, Spherule layersrecords of ancient impacts. Annu. Rev. Earth Planet. Sci. 32, 329–361 (2004)

    ADS  Google Scholar 

  331. N.H. Sleep, Martian plate tectonics. J. Geophys. Res. 99, 5639–5655 (1994)

    ADS  Google Scholar 

  332. N.H. Sleep, K. Zahnle, P.S. Neuhoff, Initiation of clement surface conditions on the early Earth. Proc. Natl Acad. Sci. USA 98, 3666–3672 (2001). https://doi.org/10.1073/pnas.071045698

    ADS  Article  Google Scholar 

  333. N.H. Sleep, D.K. Bird, E. Pope, Paleontology of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 40, 277–300 (2012). https://doi.org/10.1146/annurev-earth-092611-090602

    ADS  Article  Google Scholar 

  334. V.S. Solomatov, Why plate tectonics is rare and how it started on Earth, in Bulletin of the American Physical Society, vol. 61 (Am. Math. Soc., Providence, 2016)

    Google Scholar 

  335. V.S. Solomatov, L.N. Moresi, Stagnant lid convection on Venus. J. Geophys. Res., Planets 101(E2), 4737–4753 (1996)

    ADS  Google Scholar 

  336. S.M. Som, R. Buick, J.W. Hagadorn, T.S. Blake, J.M. Perreault, J.P. Harnmeijer, D.C. Catling, Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat. Geosci., Lett. 9, 448–451 (2016). https://doi.org/10.1038/ngeo2713

    ADS  Article  Google Scholar 

  337. G. Southam, F. Westall, T. Spohn, Geology, life and habitability, in Planets and Moons Treatise on Geophysics, vol. 10, 2nd edn. (Elsevier, Amsterdam, 2015), pp. 473–486. ISBN 978-0-444-53803-1

    Google Scholar 

  338. T. Spohn, Editorial: special issue ‘Planetary evolution and life’. Planet. Space Sci. 98, 1–4 (2014). https://doi.org/10.1016/j.pss.2014.04.015

    ADS  Article  Google Scholar 

  339. T. Spohn, G. Schubert, Oceans in the icy Galilean satellites of Jupiter. Icarus 161, 456 (2003)

    ADS  Google Scholar 

  340. V. Stagno, D.O. Ojwang, C.A. McCammon, D.J. Frost, The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84–88 (2013)

    ADS  Google Scholar 

  341. V. Stamenkovic, L. Noack, D. Breuer, T. Spohn, The influence of pressure-dependent viscosity on the thermal evolution of super-Earths. Astrophys. J. 748(1), 41 (2012). https://doi.org/10.1088/0004-637X/748/1/41

    ADS  Article  Google Scholar 

  342. R.J. Stern, M.I. Leybourne, T. Tsujimori, Kimberlites and the start of plate tectonics. Geology 44(10), 799–802 (2016)

    ADS  Google Scholar 

  343. D.J. Stevenson, Planetary magnetic fields. Rep. Prog. Phys. 46, 555 (1983)

    ADS  Google Scholar 

  344. A. Stökl, E.A. Dorfi, C.P. Johnstone, H. Lammer, Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5 M in the habitable zone. Astrophys. J. 825(2), 86 (2016). https://doi.org/10.3847/0004-637X/825/2/86

    ADS  Article  Google Scholar 

  345. J.Y. Storme, S. Golubic, A. Wilmotte, J. Kleinteich, D. Velázquez, E.J. Javaux, Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology 15, 843–857 (2015)

    ADS  Google Scholar 

  346. E.E. Stüeken, R. Buick, B.M. Guy, M.C. Koehler, Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520(7549), 666–669 (2015)

    ADS  Google Scholar 

  347. E.E. Stüeken, M.A. Kipp, M.C. Koehler, R. Buick, The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Sci. Rev. 160, 220–239 (2016a). https://doi.org/10.1016/j.earscirev.2016.07.007

    Article  Google Scholar 

  348. E.E. Stüeken, M.A. Kipp, M.C. Koehler, E.W. Schwieterman, B. Johnson, R. Buick, Modeling pN2 through geological time: implications for planetary climates and atmospheric biosignatures. Astrobiology 16(12), 949–963 (2016b)

    ADS  Google Scholar 

  349. K. Sugitani, K. Lepot, T. Nagaoka, K. Mimura, M. Van Kranendonk, D.Z. Oehler, M.R. Walter, Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley pool formation, in the Pilbara Craton, western Australia. Astrobiology 10(9), 899–920 (2010)

    ADS  Google Scholar 

  350. V.V. Svetsov, Atmospheric erosion and replenishment induced by impacts of cosmic bodies upon the Earth and Mars. Sol. Syst. Res. 41(1), 28–41 (2007)

    ADS  Google Scholar 

  351. J.W. Szostak, The origin of life on Earth and the design of alternative life forms. Mol. Front. J. 01(02), 121–131 (2017)

    Google Scholar 

  352. J.A. Tarduno, E.G. Blackman, E.E. Mamajek, Detecting the oldest geodynamo and attendant shielding from the solar wind: implications for habitability. Phys. Earth Planet. Inter. 233, 68–87 (2014)

    ADS  Google Scholar 

  353. T. Tashiro, A. Ishida, M. Hori, M. Igisu, M. Koike, P. Méjean, N. Takahata, Y. Sano, T. Komiya, Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549(7673), 516 (2017)

    ADS  Google Scholar 

  354. F. Tian, Atmospheric escape from solar system terrestrial planets and exoplanets. Annu. Rev. Earth Planet. Sci. 43, 459–476 (2015)

    ADS  Google Scholar 

  355. F. Tian, S. Ida, Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8(3), 177–180 (2015). https://doi.org/10.1038/ngeo2372

    ADS  Article  Google Scholar 

  356. F. Tian, M. Güdel, C.P. Johnstone, H. Lammer, R. Luger, P. Odert, Water loss from young planets. Space Sci. Rev. 214(3), 65 (2018)

    ADS  Google Scholar 

  357. S.M. Tikoo, L.T. Elkins-Tanton, The fate of water within Earth and super-Earths and implications for plate tectonics. Philos. Trans. R. Soc. A 375, 20150394 (2017)

    ADS  Google Scholar 

  358. G. Tinetti, V.S. Meadows, D. Crisp, N.Y. Kiang, B.H. Kahn, E. Bosc, E. Fishbein, T. Velusamy, M. Turnbull, Detectability of planetary characteristics in disk-averaged spectra II: synthetic spectra and light-curves of Earth. Astrobiology 6, 881–900 (2006)

    ADS  Google Scholar 

  359. N. Tosi, M. Godolt, B. Stracke, T. Ruedas, J.L. Grenfell, D. Höning, A. Nikolaou, A.-C. Plesa, D. Breuer, T. Spohn, The habitability of a stagnant-lid Earth. Astron. Astrophys. 605, A71 (2017). https://doi.org/10.1051/0004-6361/201730728

    ADS  Article  Google Scholar 

  360. L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577(L3), 577–580 (2015). https://doi.org/10.1051/0004-6361/201526146

    Article  Google Scholar 

  361. M. Turbet, F. Forget, V. Svetsov, O. Popova, C. Gillmann, Ö. Karatekin, Q. Wallemacq, J.W. Head, R. Wordsworth, Catastrophic events: possible solutions to the early Mars enigma (s), in 6th Mars Atmosphere Modelling and Observation (MAMO) Workshop, vol. 4304 (2017), extended abstract

    Google Scholar 

  362. M. Turbet, E. Bolmont, J. Leconte et al., The nature of the TRAPPIST-1 exoplanets. Astron. Astrophys. 612, A86 (2018). https://doi.org/10.1051/0004-6361/201732233

    Article  Google Scholar 

  363. J.L. Vago, F. Westall, A.J. Coates, Pasteur Instrument Teams: R. Jaumann, O. Korablev, V. Ciarletti, I. Mitrofanov, J.-L. Josset, M.C. De Sanctis, J.-P. Bibring, F. Rull, F. Goesmann, H. Steininger, W. Goetz, W. Brinckerhoff, C. Szopa, F. Raulin, Landing Site Selection Working Group: H.G.M. Edwards, L.G. Whyte, A.G. Fairén, J.-P. Bibring, J. Bridges, E. Hauber, G.G. Ori, S. Werner, D. Loizeau, R.O. Kuzmin, R.M.E. Williams, J. Flahaut, F. Forget, J.L. Vago, D. Rodionov, O. Korablev, H. Svedhem, E. Sefton-Nash, G. Kminek, L. Lorenzoni, L. Joudrier, V. Mikhailov, A. Zashchirinskiy, S. Alexashkin, F. Calantropio, A. Merlo, P. Poulakis, O. Witasse, O. Bayle, S. Bayón, Other Contributors: U. Meierhenrich, J. Carter, J.M. García-Ruiz, P. Baglioni, A. Haldemann, A.J. Ball, A. Debus, R. Lindner, F. Haessig, D. Monteiro, R. Trautner, C. Voland, P. Rebeyre, D. Goulty, F. Didot, S. Durrant, E. Zekri, D. Koschny, A. Toni, G. Visentin, M. Zwick, M. van Winnendael, M. Azkarate, C. Carreau, Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17(6–7), 471–510 (2017).

    ADS  Google Scholar 

  364. D. Valencia, R.J. O’Connell, D.D. Sasselov, Inevitability of plate tectonics on super-Earths. Astrophys. J. 670(1), L45–L48 (2007). https://doi.org/10.1086/524012

    ADS  Article  Google Scholar 

  365. H.J.J. van Heck, P.J. Tackley, Plate tectonics on super-earths: equally or more likely than on Earth. Earth and Planetary Science Letters 310(3), 252–261 (2011). https://doi.org/10.1016/j.epsl.2011.07.029

    ADS  Article  Google Scholar 

  366. L. Van Valen, The history and stability of atmospheric oxygen. Science 171(3970), 439–443 (1971)

    ADS  Google Scholar 

  367. M.A. Van Zuilen, A. Lepland, G. Arrhenius, Reassessing the evidence for the earliest traces of life. Nature 418(6898), 627–630 (2002). https://doi.org/10.1038/nature00934

    ADS  Article  Google Scholar 

  368. D. Veras, D.J. Armstrong, J.A. Blake, J.F. Gutiérrez-Marcos, A.P. Jackson, H. Schäeffer, Dynamical and biological panspermia constraints within multi-planet exosystems. Astrobiology 18(9), 1106–1122 (2018). https://doi.org/10.1089/ast.2017.1786

    ADS  Article  Google Scholar 

  369. A.M. Vickery, H.J. Melosh, Atmospheric erosion and impactor retention in large impacts, with application to mass extinctions, in Global Catastrophes in Earth History, vol. 247 (1990), pp. 289–300

    Google Scholar 

  370. A.A. Vidotto, M. Jardine, C. Helling, Early UV ingress in WASP-12b: measuring planetary magnetic fields. Astrophys. J. Lett. 722, 2 (2010)

    Google Scholar 

  371. P. von Paris, P. Hedelt, F. Selsis, F. Schreier, T. Trautmann, Characterization of potentially habitable planets: retrieval of atmospheric and planetary properties from emission spectra. Astron. Astrophys. 551, A120 (2013)

    Google Scholar 

  372. D. Wacey, N. Noffke, M. Saunders, P. Guagliardo, D.M. Pyle, Volcanogenic pseudo-fossils from the ∼3.48 Ga dresser formation, Pilbara, Western Australia. Astrobiology (2018). https://doi.org/10.1089/ast.2017.1734

    Article  Google Scholar 

  373. J. Wade, B.J. Wood, Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    ADS  Google Scholar 

  374. F.W. Wagner, N. Tosi, F. Sohl, F. Rauer, T. Spohn, Rocky super-Earth interiors structure and internal dynamics of CoRoT-7b and Kepler-10b. Astron. Astrophys. 541, A103 (2012). https://doi.org/10.1051/0004-6361/201118441

    ADS  Article  Google Scholar 

  375. R.J. Walker, Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde, Geochem. 69, 101–125 (2009)

    ADS  Google Scholar 

  376. J.C.G. Walker, P.B. Hays, J.F. Kasting, A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776 (1981)

    ADS  Google Scholar 

  377. S.I. Walker, W. Bains, L. Cronin, S. Dassarma, S.O. Danielache, S. Domagal-Goldman, B. Kacar, N.Y. Kiang, A. Lenardic, C. Reinhard, W. Moore, E.W. Schwieterman, E.L. Shkolnik, H.B. Smith, Exoplanet biosignatures: future directions. Astrobiology 18(6), 779–824 (2018). https://doi.org/10.1089/ast.2017.1738

    ADS  Article  Google Scholar 

  378. K. Wallmann, G. Aloisi, The global carbon cycle: geological processes, in Fundamentals of Geobiology, ed. by A.H. Knoll, D.E. Canfield, K.O. Konhauser (Wiley, New York, 2012), pp. 20–35

    Google Scholar 

  379. K.J. Walsh, A. Morbidelli, N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475(7355), 206–209 (2011). https://doi.org/10.1038/nature10201

    ADS  Article  Google Scholar 

  380. B. Ward, The global nitrogen cycle, in Fundamentals of Geobiology, ed. by A.H. Knoll, D.E. Canfield, K.O. Konhauser (Wiley, New York, 2012), pp. 36–48

    Google Scholar 

  381. C. Warren, Plate tectonics: when ancient continents collide. Nat. Geosci. 10, 245–246 (2017)

    ADS  Google Scholar 

  382. A.J. Watson, T.M. Donahue, J.C.G. Walker, The dynamics of a highly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48, 150–166 (1981)

    ADS  Google Scholar 

  383. W.A. Watters, M.T. Zuber, B.H. Hager, Thermal perturbations caused by large impacts and consequences for mantle convection. J. Geophys. Res., Planets 114, E2 (2009)

    Google Scholar 

  384. O.M. Weller, M.R. St-Onge, Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogeny. Nat. Geosci. 10(4), 305–311 (2017). https://doi.org/10.1038/ngeo2904

    ADS  Article  Google Scholar 

  385. S.C. Werner, B.A. Ivanov, Exogenic dynamics, cratering and surface ages, in Treatise on Geophysics, vol. 11, ed. by e.G. Schubert 2nd edn. (Elsevier, Amsterdam, 2015), pp. 327–365

    Google Scholar 

  386. F. Westall, Morphological biosignatures in early terrestrial and extraterrestrial materials. Space Sci. Rev. 135(1–4), 95–114 (2008)

    ADS  Google Scholar 

  387. F. Westall, F. Foucher, B. Cavalazzi, S.T. de Vries, W. Nijman, V. Pearson, J. Watson, V. Verschovsky, I. Wright, A.N. Rousaud, D. Marchesini, A. Severine, Volcaniclastic habitats for early life on Earth and Mars: a case study from ∼3.5 Ga-old rocks from the Pilbara, Australia. Planet. Space Sci. 59(10), 1093–1106 (2011). https://doi.org/10.1016/j.pss.2010.09.006

    ADS  Article  Google Scholar 

  388. F. Westall, F. Foucher, N. Bost, M. Bertrand, D. Loizeau, J.L. Vago, G. Kminek, F. Gaboyer, K.A. Campbell, J.-G. Bréhéret, P. Gautret, C.S. Cockell, Biosignatures on Mars: what, where, and how? Implications for the search for martian life. Astrobiology 15, 998–1029 (2015)

    ADS  Google Scholar 

  389. M.J. Whitehouse, A.A. Nemchin, R.T. Pidgeon, What can Hadean detrital zircon really tell us? A critical evaluation of their geochronology with implications for the interpretation of oxygen and hafnium isotopes. Gondwana Res. 51, 78–91 (2017)

    ADS  Google Scholar 

  390. D.M. Williams, Capture of terrestrial-sized moons by gas giant planets. Astrobiology 13, 315 (2013)

    ADS  Google Scholar 

  391. E.T. Wolf, Assessing the habitability of the TRAPPIST-1 system using a 3D climate model. Astrophys. J. Lett. 839, L1 (2017)

    ADS  Google Scholar 

  392. C.-C. Yang, A. Johansen, D. Carrera, Concentrating small particles in protoplanetary disks through the streaming instability. Astron. Astrophys. 606, A80 (2017)

    Google Scholar 

  393. Y.L. Yung, W.B. De More, Earth: imprint of life, in Photochemistry of Planetary Atmospheres. (Oxford University Press, London, 1999), Chap. 9

    Google Scholar 

  394. K.J. Zahnle, N.H. Sleep, Comets and the Origin and Evolution of Life, 1st edn. P.J. Thomas, C.F. Chyba, C.P. McKay (Springer, New York, 1997), pp. 175–208

    Google Scholar 

  395. K.J. Zahnle, N.H. Sleep, Comets and the Origin and Evolution of Life, 2nd edn, ed. by P.J. Thomas, C.F. Chyba, C.P. McKay (Springer, Berlin, 2006), pp. 207–252

    Google Scholar 

  396. A.L. Zerkle, S. Mikhail, The geobiological nitrogen cycle: from microbes to the mantle. Geobiology 15, 343–352 (2017)

    Google Scholar 

  397. A.L. Zerkle, S.W. Poulton, R.J. Newton, C. Mettam, M.W. Claire, A. Bekker, C.K. Junium, Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465–467 (2017). https://doi.org/10.1038/nature20826

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This paper was triggered by presentations and discussions that were held during the conference “Geoscience for understanding habitability in the solar system and beyond” held in the Azores from the 25th–29th September 2017. The workshop (and the work behind the scientific presentations) was supported by: – European COST (Cooperation in Science and Technology) Action TD1308 “ORIGINS” (Origins and evolution of life on Earth and in the Universe),

– EGU (European Geophysical Union) Galileo conferences,

– EuroPlaNet (European Planetology Network) 2020 RI (Research Infrastructure) (EPN2020-RI),

– German TRR 170 (TransRegio collaborative research) network,

– GINOP-2.3.2-15-2016-00003,

– Hungarian National Research, Development and Innovation Office (NKFIH) grants K119993, K-115709,

– The Austrian Science Fund (FWF) NFN project S11601-N16 “Pathways to Habitability: From Disks to Active Stars, Planets and Life” (related sub-projects S11604-N16, S11606-N16 and S11607-N16),

– Planet TOPERS (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS) Belgian IAP (Inter-university Attraction Pole) PAI-IAP P7/15,

– EU FP7-ERC Starting Grant ELiTE 308074: Early life Traces, Evolution, and Implications for astrobiology,

– FNRS FRFC T.0029.13 ExtraOrDynHa,

– ET-HOME (Evolution and Tracers of the Habitability of Mars and Earth) Belgian Excellence of Science—EoS-program, EOS 30442502. They are very much acknowledged, as well as anonymous reviewers for their helpful reviews.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Veronique Dehant.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dehant, V., Debaille, V., Dobos, V. et al. Geoscience for Understanding Habitability in the Solar System and Beyond. Space Sci Rev 215, 42 (2019). https://doi.org/10.1007/s11214-019-0608-8

Download citation

Keywords

  • Habitability
  • Early Earth
  • Planet evolution
  • Exoplanets