Skip to main content
Log in

Geoscience for Understanding Habitability in the Solar System and Beyond

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This paper reviews habitability conditions for a terrestrial planet from the point of view of geosciences. It addresses how interactions between the interior of a planet or a moon and its atmosphere and surface (including hydrosphere and biosphere) can affect habitability of the celestial body. It does not consider in detail the role of the central star but focusses more on surface conditions capable of sustaining life. We deal with fundamental issues of planetary habitability, i.e. the environmental conditions capable of sustaining life, and the above-mentioned interactions can affect the habitability of the celestial body.

We address some hotly debated questions including:

  • How do core and mantle affect the evolution and habitability of planets?

  • What are the consequences of mantle overturn on the evolution of the interior and atmosphere?

  • What is the role of the global carbon and water cycles?

  • What influence do comet and asteroid impacts exert on the evolution of the planet?

  • How does life interact with the evolution of the Earth’s geosphere and atmosphere?

  • How can knowledge of the solar system geophysics and habitability be applied to exoplanets?

In addition, we address the identification of preserved life tracers in the context of the interaction of life with planetary evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • O. Abramov, S.M. Wong, D.A. Kring, Differential melt scaling for oblique impacts on terrestrial planets. Icarus 218, 906–916 (2012)

    ADS  Google Scholar 

  • M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, D. Mitchell, K.A. Anderson, C.W. Carlson, J. McFadden, H. Reme, C. Mazelle, D. Vignes, S.J. Bauer, P. Cloutier, N.F. Ness, Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106, 23403 (2001)

    ADS  Google Scholar 

  • F. Albarède, Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009)

    ADS  Google Scholar 

  • A.C. Allwood, J.P. Grotzinger, A.H. Knoll, I.W. Burch, M.S. Anderson, M.L. Coleman, I. Kanik, Controls on development and diversity of Early Archean stromatolites. Proc. Natl. Acad. Sci. 106(24), 9548–9555 (2009)

    ADS  Google Scholar 

  • A.C. Allwood, I.W. Burch, J.M. Rouchy, M. Coleman, Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Astrobiology 13(9), 870–886 (2013)

    ADS  Google Scholar 

  • J.C. Alt, C.J. Garrido, W.C. Shanks, A. Turchyn, J.A. Padrón-Navarta, V. López Sánchez-Vizcaíno, M.T. Gómez Pugnaire, C. Marchesi, Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett. 327–328, 50–60 (2012). https://doi.org/10.1016/j.epsl.2012.01.029

    Article  ADS  Google Scholar 

  • D. Andrault, M. Muñoz, G. Pesce, V. Cerantola, A. Chumakov, I. Kantor, S. Pascarelli, R. Rüffer, L. Hennet, Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event. Geochem. Perspect. Lett. 6, 5–10 (2018). https://doi.org/10.7185/geochemlet.1801

    Article  Google Scholar 

  • L.S. Armstrong, M.M. Hirschmann, B.D. Stanley, E.G. Falksen, S.D. Jacobsen, Speciation and solubility of reduced C–O–H–N volatiles in mafic melt: implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets. Geochim. Cosmochim. Acta 171, 283–302 (2015)

    ADS  Google Scholar 

  • N.T. Arndt, E.G. Nisbet, Processes on young Earth and the habitats of early life. Annu. Rev. Earth Planet. Sci. 40, 521–549 (2012). https://doi.org/10.1146/annurev-earth-042711-105316

    Article  ADS  Google Scholar 

  • N.A. Artemieva, V.A. Ivanov, Launch of martian meteorites in oblique impacts. Icarus 171, 84–101 (2004)

    ADS  Google Scholar 

  • S. Aulbach, V. Stagno, Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44, 751–754 (2016). https://doi.org/10.1130/G38070.1

    Article  ADS  Google Scholar 

  • G. Avice, B. Marty, R. Burgess, A. Hofmann, P. Philippot, K. Zahnle, D. Zakharov, Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochim. Cosmochim. Acta 232, 82–100 (2018). https://doi.org/10.1016/j.gca.2018.04.018

    Article  ADS  Google Scholar 

  • J.L. Bada, A. Lazcano, Some like it hot, but not the first biomolecules. Science 296(5575), 1982–1983 (2002)

    Google Scholar 

  • S. Barabash, A. Fedorov, J.J. Sauvaud, R. Lundin, C.T. Russell, Y. Futaana et al., The loss of ions from Venus through the plasma wake. Nature 450, 650–653 (2007)

    ADS  Google Scholar 

  • A.C. Barr, Formation of exomoons: a solar system perspective. Astron. Rev. 12, 24 (2016)

    ADS  Google Scholar 

  • A.C. Barr, V. Dobos, L.L. Kiss, Interior structures and tidal heating in the TRAPPIST-1 planets. Astron. Astrophys. 613, A37 (2018). arXiv:1712.05641

    ADS  Google Scholar 

  • J.K. Barstow, S. Aigrain, P.G.J. Irwin, S. Kendrew, L.N. Fletcher, Telling twins apart: exo-Earths and Venuses with transit spectroscopy. Mon. Not. R. Astron. Soc. 458, 2657–2666 (2016)

    ADS  Google Scholar 

  • E.A. Bell, P. Boehnke, T.M. Harrison, W.L. Mao, Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. 112(47), 14518–14521 (2015)

    ADS  Google Scholar 

  • B. Benneke, S. Seager, Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transit spectroscopy. Astrophys. J. 753, 2 (2012)

    Google Scholar 

  • S.V. Berdyugina, J.R. Kuhn, D.M. Harrington, T. Šantl-Temkiv, E.J. Messersmith, Remote sensing of life: polarimetric signatures of photosynthetic pigments as sensitive biomarkers. Int. J. Astrobiol. 15, 45–56 (2016)

    Google Scholar 

  • M. Bierhaus, K. Wünnemann, D. Elbeshausen, Numerical modeling of basin-forming impacts: implications for the heat budget of planetary interiors, in 43rd Lunar and Planetary Science Conference. LPI Contribution, vol. 1659 (2012)

    Google Scholar 

  • W.F. Bottke, D. Vokrouhlicky, D. Minton, D. Nesvorny, A. Morbidelli, R. Brasser, B. Simonson, H.F. Levison, An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012)

    ADS  Google Scholar 

  • M. Brasier, N. McLoughlin, O. Green, D. Wacey, A fresh look at the fossil evidence for early Archaean cellular life. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 361(1470), 887–902 (2006)

    Google Scholar 

  • D. Breuer, B. Moore, Dynamics and thermal history of the terrestrial planers, the Moon, and Io, in Treatise on Geophysics, 2nd edn, vol. 10, ed. by T. Spohn, G. Schubert. (2015), pp. 299–348

    Google Scholar 

  • D. Breuer, A.-C. Plesa, N. Tosi, M. Grott, Water in the martian interior—the geodynamical perspective. Meteorit. Planet. Sci. 51(11), 1959–1992 (2016). https://doi.org/10.1111/maps.12727

    Article  ADS  Google Scholar 

  • J.J. Brocks, G.D. Love, R.E. Summons, A.H. Knoll, G.A. Logan, S.A. Bowden, Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437(7060), 866 (2005)

    ADS  Google Scholar 

  • J.J. Brocks, A.J.M. Jarrett, E. Sirantoine, F. Kenig, M. Moczydłowska, S. Porter, Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2016)

    Google Scholar 

  • R.D. Cadle, A comparison of volcanic with other fluxes of atmospheric trace gas constituents. Rev. Geophys. 18, 746–752 (1980)

    ADS  Google Scholar 

  • A.G. Cameron, Origin of the atmospheres of the terrestrial planets. Icarus 56(2), 195–201 (1983)

    ADS  Google Scholar 

  • A.G.W. Cameron, W.R. Ward, The origin of the Moon. Lunar Planet. Sci. 7, 120–122 (1976)

    ADS  Google Scholar 

  • L.H. Campbell, S.R. Taylor, No water, no granites—no oceans, no continents. Geophys. Res. Lett. 10(11), 1061–1064 (1983)

    ADS  Google Scholar 

  • D.E. Canfield, A.N. Glazer, P.G. Falkowski, The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010)

    ADS  Google Scholar 

  • D. Canil, Vanadium partitioning and the oxidation state of Archaean Komatiite magmas. Nature 389, 842–845 (1997)

    ADS  Google Scholar 

  • R.M. Canup, Simulations of a late lunar-forming impact. Icarus 168(2), 433–456 (2004). https://doi.org/10.1016/j.icarus.2003.09.028

    Article  ADS  Google Scholar 

  • M.H. Carr, D/H on Mars: effects of floods, volcanism, impacts, and polar processes. Icarus 87(1), 210–227 (1990)

    ADS  Google Scholar 

  • D. Carrera, U. Gorti, A. Johansen, M.B. Davies, Planetesimal formation by the streaming instability in a photoevaporating disk. Astrophys. J. 839, 16 (2017)

    ADS  Google Scholar 

  • P. Cartigny, B. Marty, Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9, 359–366 (2013)

    Google Scholar 

  • D.C. Catling, M.W. Claire, How Earth’s atmosphere evolved to an oxic state. Earth Planet. Sci. Lett. 237, 1–20 (2005)

    ADS  Google Scholar 

  • D.C. Catling, J.F. Kasting, Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge University Press, Cambridge, 2017)

    Google Scholar 

  • D.C. Catling, K.J. Zahnle, C.P. McKay, Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293(5531), 839–843 (2001)

    ADS  Google Scholar 

  • D.C. Catling, C.R. Glein, K.J. Zahnle, C.P. McKay, Why O2 is required by complex life on habitable planets and the concept of planetary ‘Oxygenation Time’. Astrobiology 5(3), 415–438 (2005)

    ADS  Google Scholar 

  • D.C. Catling, J. Krissansen-Totton, N.Y. Kiang, D. Crisp, T.D. Robinson, S. DasSarma, A. Rushby, A.D. Del Genio, W. Bains, S. Domagal-Goldman, Exoplanet biosignatures: a framework for their assessment. Astrobioloy 18(6), 709–738 (2018). https://doi.org/10.1089/ast.2017.1737

    Article  ADS  Google Scholar 

  • E. Chassefière, F. Leblanc, Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci. 52(11), 1039–1058 (2004)

    ADS  Google Scholar 

  • E. Chassefière, B. Langlais, Y. Quesnel, F. Leblanc, The fate of early Mars lost water: the role of serpentinization. J. Geophys. Res. 118, 1123–1134 (2013). https://doi.org/10.1002/jgre.20089

    Article  Google Scholar 

  • E.V. Chassefière, J. Lasue, B. Langlais, Y. Quesnel, Early Mars serpentinization-derived CH4 reservoirs, H2-induced warming and paleopressure evolution. Meteorit. Planet. Sci. 51(11), 2234–2245 (2016). https://doi.org/10.1111/maps.12784

    Article  ADS  Google Scholar 

  • B.K. Chastain, V. Chevrier, Methane clathrate hydrates as a potential source for Martian atmospheric methane. Planet. Space Sci. 55(10), 1246–1256 (2007)

    ADS  Google Scholar 

  • J. Checlair, K. Menou, D.S. Abbot, No snowball on habitable tidally locked planets. Astrophys. J. 845(2), 132 (2017)

    ADS  Google Scholar 

  • R.N. Clayton, Oxygen isotopes in meteorites, in Meteorites, Comets and Planets. Treatise on Geochemistry, vol. 1, ed. by A.M. Davis (Elsevier/Pergamon, Oxford, 2005), pp. 129–142

    Google Scholar 

  • C.S. Cockell, The origin and emergence of life under impact bombardment. Philos. Trans. R. Soc. B 361(1474), 1845–1856 (2006). https://doi.org/10.1098/rstb.2006.1908.

    Article  Google Scholar 

  • C. Cockell, C.S. Cockell, The interplanetary exchange of photosynthesis. Orig. Life Evol. Biosph. 38, 87–104 (2008)

    ADS  Google Scholar 

  • C. Cockell, F. Westall, T. Spohn, Geology, life and habitability, in Treatise on Geophysics, vol. 10, 2nd edn. ed. by T. Spohn, G. Schubert. (2015), p. 473

    Google Scholar 

  • C.S. Cockell, T. Bush, C. Bryce, S. Direito, M. Fox-Powell, J.P. Harrison, H. Lammer, H. Landenmark, J. Martin-Torres, N. Nicholson, L. Noack, J. O’Malley-James, S.J. Payler, A. Rushby, T. Samuels, P. Schwendner, M.P. Zorzano, Habitability: a review. Astrobiology 16(1), 89–117 (2016). https://doi.org/10.1089/ast.2015.1295

    Article  ADS  Google Scholar 

  • G.S. Collins, K. Wünnemann, N. Artemieva, B. Pierazzo, Numerical modelling of impact processes, in Impact Cratering, Processes and Products, ed. by G.R. Osinski, E. Pierazzo (Wiley, New York, 2013), pp. 254–268

    Google Scholar 

  • K.C. Condie, A planet in transition: the onset of plate tectonics on earth between 3 and 2 Ga?. Geosci. Front. 9(1), 5160 (2018)

    Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, G. Kletetschka, N.F. Ness, H. Rème, R.P. Lin, D.L. Mitchell, The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28, 4015 (2001)

    ADS  Google Scholar 

  • L.A. Coogan, S.E. Dosso, Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth Planet. Sci. Lett. 415, 38–46 (2015)

    ADS  Google Scholar 

  • L.A. Coogan, K.M. Gillis, Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate-carbonate weathering cycle and long-term climate regulation. Geochem. Geophys. Geosyst. 14(6), 1771–1886 (2013)

    ADS  Google Scholar 

  • R. Dasgupta, K. Tsuno, Carbon contents in reduced basalts at graphite saturation: implications for the degassing of Mars, Mercury, and the Moon. J. Geophys. Res., Planets 122, 1300–1320 (2017). https://doi.org/10.1002/2017JE005289

    Article  ADS  Google Scholar 

  • A. Davaille, S.E. Smrekar, S. Tomlinson, Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017)

    ADS  Google Scholar 

  • S.A. Davenport, T.J. Wdowiak, D.D. Jones, P. Wdowiak, Chondritic metal toxicity as a seed stock kill mechanism in impact-caused mass extinctions. Spec. Pap., Geol. Soc. Am. 247, 71–76 (1990)

    Google Scholar 

  • G.F. Davies, Episodic layering of the early mantle by the ‘basalt barrier’ mechanism. Earth Planet. Sci. Lett. 275, 382–392 (2008). https://doi.org/10.1016/j.epsl.2008.08.036

    Article  ADS  Google Scholar 

  • V. Debaille, A.D. Brandon, C. O’Neill, Q.-Z. Yin, B. Jacobsen, Early martian mantle overturn inferred from isotopic composition of Nakhlite meteorites. Nat. Geosci. 2, 548–552 (2009). https://doi.org/10.1038/ngeo579

    Article  ADS  Google Scholar 

  • V. Debaille, C. O’Neill, A.D. Brandon, P. Haenecour, Q.Z. Yin, N. Mattielli, A.H. Treiman, Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013)

    ADS  Google Scholar 

  • C. Demoulin, Y. Lara, L. Cornet, C. François, A. Wilmotte, D. Baurain, E.J. Javaux, Cyanobacteria evolution: insight from the fossil record. Free Radic. Biol. Med. Special issue ‘How did life come to tolerate and thrive in an oxygenated world?’, ed. by W. Fischer, J. Valentine. (2019). https://doi.org/10.1016/j.freeradbiomed.2019.05.007

    Google Scholar 

  • D.J. Des Marais, M.O. Harwit, K.W. Jucks, J.F. Kasting, D.N.C. Lin, J.I. Lunine, J. Schneider, S. Seager, W.A. Traub, N.J. Wool, Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153–181 (2002)

    ADS  Google Scholar 

  • B. Dhuime, C.J. Hawkesworth, P.A. Cawood, C.D. Storey, A change in the geodynamics of continental growth 3 billion years ago. Science 355, 1334–1336 (2012)

    ADS  Google Scholar 

  • B. Dhuime, A. Wuestefeld, C.J. Hawkesworth, Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015)

    ADS  Google Scholar 

  • V. Dobos, E.L. Turner, Viscoelastic models of tidally heated exomoons. Astrophys. J. 804, 41 (2015)

    ADS  Google Scholar 

  • V. Dobos, R. Heller, E.L. Turner, The effect of multiple heat sources on exomoon habitable zones. Astron. Astrophys. 601, 91 (2017)

    ADS  Google Scholar 

  • M.S. Dodd, D. Papineau, T. Grenne, J.F. Slack, M. Rittner, F. Pirajno, J. O’Neil, C.T. Little, Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543(7643), 60 (2017)

    ADS  Google Scholar 

  • T.M. Donahue, New analysis of hydrogen and deuterium escape from Venus. Icarus 141(2), 226–235 (1999)

    ADS  Google Scholar 

  • C. Dorn, J. Venturini, A. Khan, K. Heng, Y. Alibert, R. Helled, A. Rivoldini, W. Benz, A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astron. Astrophys. 597, A37 (2017). https://doi.org/10.1051/0004-6361/201628708

    Article  ADS  Google Scholar 

  • J. Drazkowska, Y. Alibert, B. Moore, Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, A105 (2016)

    ADS  Google Scholar 

  • J.I. Drever, The effect of land plants on weathering rates of silicate minerals. Geochim. Cosmochim. Acta 58(10), 2325–2332 (1994)

    ADS  Google Scholar 

  • C. Dumoulin, G. Tobie, O. Verhoeven, P. Rosenblatt, N. Rambaux, Tidal constraints on the interior of Venus. J. Geophys. Res., Planets 122, 1338–1352 (2017)

    ADS  Google Scholar 

  • M. Edmonds, T.M. Gerlach, Vapor segregation and loss in basaltic melts. Geology 35, 751–754 (2007)

    ADS  Google Scholar 

  • J.L. Eigenbrode, R.E. Summons, A. Steele, C. Freissinet, M. Millan, R. Navarro-González et al., Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 360(6393), 1096–1101 (2018)

    ADS  Google Scholar 

  • L.T. Elkins-Tanton, S. Seager, Ranges of atmospheric mass and composition of super-Earth exoplanets. Astron. J. 685, 1237–1246 (2008)

    ADS  Google Scholar 

  • L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00013.x

    Article  ADS  Google Scholar 

  • G. Etiope, B. Sherwood Lollar, Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013)

    ADS  Google Scholar 

  • P.J. Falkowski, L.V. Godfrey, Electrons, life and the evolution of Earth’s oxygen cycle. Philos. Trans. R. Soc. B 363, 2705–2716 (2008)

    Google Scholar 

  • P.J. Falkowski, R.J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Högberg, S. Linder, F.T. Mackenzie, B. Moore III., T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen, The global carbon cycle: a test of our knowledge of Earth as a system. Science 290, 291–296 (2000)

    ADS  Google Scholar 

  • J. Farquhar, H. Bao, M. Thiemans, Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000)

    ADS  Google Scholar 

  • Y.R. Fernandez, J.-Y. Li, E.S. Howell, L.M. Woodney, Asteroids and comets, in In, ed. by T. Spohn, G. Schubert. Treatise on Geophysics, vol. 10, 2nd edn. (2015), pp. 487–527

    Google Scholar 

  • G. Feulner, C. Hallmann, H. Kienert, Snowball cooling after algal rise. Nat. Geosci. 8(9), 659 (2015)

    ADS  Google Scholar 

  • B.J. Foley, D. Bercovici, Scaling laws for convection with temperature-dependent viscosity and grain-damage. Geophys. J. Int. 199, 580 (2014)

    ADS  Google Scholar 

  • D. Forgan, V. Dobos, Exomoon climate models with the carbonate-silicate cycle and viscoelastic tidal heating. Mon. Not. R. Astron. Soc. 457, 1233 (2016)

    ADS  Google Scholar 

  • K. France, The LUVOIR science and technology definition team (STDT): overview and status, in Space Telescopes and Instrumentation, vol. 9904 (2016)

    Google Scholar 

  • C. François, V. Debaille, J.L. Paquette, D. Baudet, E.J. Javaux, The onset of plate tectonics: HP-LT metamorphism in the Paleoproterozoic of the DRCongo. Sci. Rep. 8, 15452 (2018)

    ADS  Google Scholar 

  • J. Fritz, B. Bitsch, E. Kührt, A. Morbidelli, C. Tornow, K. Wünnemann, V.A. Fernandes, J.L. Grenfell, H. Rauer, R. Wagner, S.C. Werner, Earth-like habitats in planetary systems. Planet. Space Sci. 98, 254–267 (2014)

    ADS  Google Scholar 

  • D.J. Frost, C.A. McCammon, The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36(1), 389–420 (2008)

    ADS  Google Scholar 

  • D.J. Frost, C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Trønnes, D.C. Rubie, Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409–412 (2004)

    ADS  Google Scholar 

  • D.J. Frost, U. Mann, Y. Asahara, D.C. Rubie, The redox state of the mantle during and just after core formation. Philos. Trans. R. Soc. A 366, 4315–4337 (2008). https://doi.org/10.1098/rsta.2008.0147.Fujii

    Article  ADS  Google Scholar 

  • Y. Fujii, H. Kawahara, Y. Suto, A. Taruya, S. Fukuda, T. Nakajima, E.L. Turner, Colors of a second Earth: estimating the fractional areas of ocean, land, and vegetation on Earth-like exoplanets. Astrophys. J. 715, 2 (2010)

    Google Scholar 

  • Y. Fujii, D. Angerhausen, R. Deitrick, S. Domagal-Goldman, J.L. Grenfell, Y. Hori, S.R. Kane, E. Palle, H. Rauer, N. Siegler, K. Stapelfeldt, K.B. Stevenson, Exoplanet biosignatures: observational prospects. Astrobiology 18(6), 739–778 (2018). https://doi.org/10.1089/ast.2017.1733

    Article  ADS  Google Scholar 

  • B.J. Fulton, E.A. Petigura, A.W. Howard, H. Isaacson, G.W. Marcy, P.A. Cargile, L. Hebb, L.M. Weiss, J.A. Johnson, T.D. Morton, E. Sinukoff, I.J.M. Crossfield, L.A. Hirsch, The California-Kepler survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017). https://doi.org/10.3847/1538-3881/aa80eb

    Article  ADS  Google Scholar 

  • H. Furnes, N.R. Banerjee, K. Muehlenbachs, H. Staudigel, M. de Wit, Early life recorded in Archean pillow lavas. Science 304(5670), 578–581 (2004)

    ADS  Google Scholar 

  • F. Gaillard, B. Scaillet, The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279(1–2), 34–43 (2009). https://doi.org/10.1016/j.epsl.2008.12.028

    Article  ADS  Google Scholar 

  • F. Gaillard, B. Scaillet, A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014). https://doi.org/10.1016/j.epsl.2014.07.00

    Article  ADS  Google Scholar 

  • F. Gaillard, B. Scaillet, N.T. Arndt, Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011)

    ADS  Google Scholar 

  • F. Gaillard, J. Michalski, G. Berger, S.M. McLenna, B. Scaillet, Geochemical reservoirs and timing of sulfur cycling on Mars. Space Sci. Rev. 174, 251–300 (2012). https://doi.org/10.1007/s11214-012-9947-4

    Article  ADS  Google Scholar 

  • F. Gaillard, B. Scaillet, M. Pichavant, G. Iacono-Marziano, The redox geodynamics linking basalts and their mantle sources through space and time. Chem. Geol. 418, 217–233 (2015). https://doi.org/10.1016/j.chemgeo.2015.07.030

    Article  ADS  Google Scholar 

  • J.M. García-Ruiz, E. Melero-García, S.T. Hyde, Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323(5912), 362–365 (2009)

    ADS  Google Scholar 

  • S. Gebauer, J.L. Grenfell, H. Lammer, J.-P. de Vera, L. Sproß, V. Airapetian, M. Sinnhuber, H. Rauer, Atmospheric nitrogen when life evolved on Earth. Nat. Sci. Rep. (2019, submitted)

  • H. Genda, Y. Abe, Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164(1), 149–162 (2003)

    ADS  Google Scholar 

  • T.V. Gerya, R.J. Stern, M. Baes, S.V. Sobolev, S.A. Whattam, Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015)

    ADS  Google Scholar 

  • C. Gillmann, P.J. Tackley, Atmosphere/mantle coupling and feedbacks on Venus. J. Geophys. Res., Planets 119(6), 1189–1217 (2014)

    ADS  Google Scholar 

  • C. Gillmann, E. Chassefière, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009). https://doi.org/10.1016/j.epsl.2009.07.016

    Article  ADS  Google Scholar 

  • C. Gillmann, G.J. Golabek, P.J. Tackley, Effect of a single large impact on the coupled atmosphere-interior evolution of Venus. Icarus 268, 295–312 (2016)

    ADS  Google Scholar 

  • C. Gillmann, G. Golabek, P.J. Tackley, S. Raymond, The role of late Veneer impacts in the evolution of Venus, in European Planetary Science Congress, vol. 11 (2017)

    Google Scholar 

  • M. Gillon, E. Jehin, S.M. Lederer, L. Delrez, J. De Wit, A. Burdanov, V. Van Grootel, A.J. Burgasser, A.H.M.J. Triaud, C. Opitom, B.-O. Demory, D.K. Sahu, D. Bardalez Gagliuffi, P. Magain, D. Queloz, Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533(7602), 221–224 (2016). https://doi.org/10.1038/nature17448

    Article  ADS  Google Scholar 

  • M. Gillon, A.H.M.J. Triaud, B.-O. Demory, E. Jehin, E. Agol, K.M. Deck, S.M. Lederer, J. de Wit, A. Burdanov, J.G. Ingalls, E. Bolmont, J. Leconte, S.N. Raymond, F. Selsis, M. Turbet, K. Barkaoui, A. Burgasser, M.R. Burleigh, S.J. Carey, A. Chaushev, C.M. Copperwheat, L. Delrez, C.S. Fernandes, D.L. Holdsworth, E.J. Kotze, V. Van Grootel, Y. Almleaky, Z. Benkhaldoun, P. Magain, D. Queloz, Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542(7642), 456–460 (2017). https://doi.org/10.1038/nature21360

    Article  ADS  Google Scholar 

  • B.P. Glass, B.M. Simonson, Distal impact ejecta layers: spherules and more. Elements 8, 43–48 (2012)

    Google Scholar 

  • S. Goderis, F. Paquay, P. Claeys, Projectile identification in terrestrial impact structures and ejecta material, in Impact Cratering: Processes and Products (2012), pp. 223–239

    Google Scholar 

  • S. Goderis, R. Chakrabarti, V. Debaille, J. Kodolányi, Isotopes in cosmochemistry: recipe for a Solar System. J. Anal. At. Spectrom. 31, 841–862 (2016)

    Google Scholar 

  • G.J. Golabek, T. Keller, T.V. Gerya, G.Z. Zhu, P.J. Tackley, J.A.D. Connolly, Origin of the Martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus 215, 346–357 (2011). https://doi.org/10.1016/j.icarus.2011.06.012

    Article  ADS  Google Scholar 

  • G.J. Golabek, A. Emsenhuber, M. Jutzi, E.I. Asphaug, T.V. Gerya, Coupling SPH and thermochemical models of planets: methodology and example of a Mars-sized body. Icarus 301, 235–246 (2018). https://doi.org/10.1016/j.icarus.2017.10.003

    Article  ADS  Google Scholar 

  • M. Gounelle, The asteroid-comet continuum: in search of lost primitivity. Elements 7, 29–34 (2011)

    Google Scholar 

  • D.H. Green, W.O. Hibberson, I. Kovács, A. Rosenthal, Water and its influence on the lithosphere-asthenosphere boundary. Nature 467, 448–497 (2010)

    ADS  Google Scholar 

  • J.L. Grenfell, A review of exoplanetary biosignatures. Phys. Rep. 713, 1–17 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • J.L. Grenfell, S. Gebauer, M. Godolt, K. Palczynski, H. Rauer, J. Stock, P. von Paris, R. Lehmann, F. Selsis, Potential biosignatures in super-Earth atmospheres II. Photochemical responses. Astrobiology 13, 415–436 (2013)

    ADS  Google Scholar 

  • D.S. Grewal, R. Dasgupta, C.U. Sun, K. Tsuno, G. Costin, Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Science Advances 5(3), eaau3669 (2019) https://doi.org/10.1126/sciadv.aau3669

    Article  ADS  Google Scholar 

  • D.H. Grinspoon, Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363(6428), 428 (1993)

    ADS  Google Scholar 

  • D.H. Grinspoon, The surface and atmosphere of Venus: evolution and present state, in Towards Understanding the Climate of Venus (Springer, New York, 2013), pp. 17–22

    Google Scholar 

  • E.G. Grosch, M. Muñoz, O. Mathon, N. McLoughlin, Earliest microbial trace fossils in Archaean pillow lavas under scrutiny: new micro-X-ray absorption near-edge spectroscopy, metamorphic and morphological constraints. Geol. Soc. (Lond.) Spec. Publ. 448(1), 57–70 (2017)

    ADS  Google Scholar 

  • M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011)

    ADS  Google Scholar 

  • N. Gueneli, A.M. McKenna, N. Ohkouchi, C.J. Boreham, J. Beghin, E.J. Javaux, J.J. Brocks, 1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. Proc. Natl. Acad. Sci. 115(30), 201803866 (2018)

    Google Scholar 

  • H. Gunell, R. Maggiolo, H. Nilsson, G.S. Wieser, R. Slapak, J. Lindkvist, M. Hamrin, J. De Keyser, Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astron. Astrophys. 614, L3 (2018)

    ADS  Google Scholar 

  • I. Halevy, D.T. Johnston, D.P. Schrag, Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204–207 (2010)

    ADS  Google Scholar 

  • K. Hamano, Y. Abe, Atmospheric loss and supply by an impact-induced vapor cloud: its dependence on atmospheric pressure on a planet. Earth Planets Space 62(7), 599–610 (2010)

    ADS  Google Scholar 

  • K. Hamano, H. Kawahara, Y. Abe, M. Onishi, G.L. Hashimoto, Lifetime and spectral evolution of a magma ocean with a steam atmosphere: its detectability by future direct imaging. Astrophys. J. 806, 216 (2015)

    ADS  Google Scholar 

  • T. Hammouda, S. Keshav, Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites. Chem. Geol. 418, 171–188 (2015). https://doi.org/10.1016/j.chemgeo.2015.05.018

    Article  ADS  Google Scholar 

  • B.M.S. Hansen, Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009)

    ADS  Google Scholar 

  • J.D. Haqq-Misra, S.D. Domagal-Goldman, P.J. Kasting, J.F. Kasting, A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8(6), 1127–1137 (2008)

    ADS  Google Scholar 

  • C. Hayashi, K. Nakazawa, H. Mizuno, Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43(1), 22–28 (1979)

    ADS  Google Scholar 

  • R.M. Hazen, Geochemical Origins of Life. Fundamentals of Geobiology (2012), pp. 315–332

    Google Scholar 

  • J.N. Head, H.J. Melosh, B.A. Ivanov, Martian meteorites launch: highspeed ejecta from small craters. Science 298, 1752–1756 (2002)

    ADS  Google Scholar 

  • J.W. Head, C.I. Fassett, S.J. Kadish, D.E. Smith, M.T. Zuber, G.A. Neumann, E. Mazarico, Global distribution of large lunar craters: implications for resurfacing and impactor populations. Science 329, 1504–1507 (2010). https://doi.org/10.1126/science.1195050

    Article  ADS  Google Scholar 

  • S. Hegde, I.G. Paulino-Lima, R. Kent, L. Kaltenegger, L. Rothschild, Surface biosignatures of exo-Earths: remote detection of extraterrestrial life. Proc. Natl. Acad. Sci. USA 112, 3886–3891 (2014)

    ADS  Google Scholar 

  • R. Heller, R. Barnes, Exomoon habitability constrained by illumination and tidal heating. Astrobiology 13, 18 (2013)

    ADS  Google Scholar 

  • R. Heller, D. Williams, D. Kipping, M.A. Limbach, E.L. Turner, R. Greenberg, T. Sasaki, É. Bolmont, O. Grasset, K. Lewis, R. Barnes, J.I. Zuluaga, Formation, habitability, and detection of extrasolar moons. Astrobiology 14, 798 (2014)

    ADS  Google Scholar 

  • P.C. Hess, E.M. Parmentier, A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134(3), 501–514 (1995). https://doi.org/10.1016/0012-821X(95)00138-3

    Article  ADS  Google Scholar 

  • A.M. Hessler, D.R. Lowe, R.L. Jones, D. Bird, A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428, 736–738 (2004)

    ADS  Google Scholar 

  • K. Hickman-Lewis, B. Cavalazzi, F. Foucher, F. Westall, Most ancient evidence for life in the Barberton greenstone belt: microbial mats and biofabrics of the ∼3.47 Ga Middle Marker horizon. Precambrian Res. 312, 45–67 (2018)

    ADS  Google Scholar 

  • N. Hirano, E. Takahashi, J. Yamamoto, W. Abe, S.P. Ingle, I. Kaneoka, T. Hirata, J. Ichi Kimura, T. Ishii, Y. Ogawa, S. Machida, K. Suyehiro, Volcanism in response to plate flexure. Science 313, 1426–1428 (2006)

    ADS  Google Scholar 

  • M.M. Hirschmann, Magma ocean influence on early atmosphere mass and composition. Earth Planet. Sci. Lett. 341–344, 48–57 (2012). https://doi.org/10.1016/j.epsl.2012.06.015

    Article  ADS  Google Scholar 

  • M.M. Hirschmann, R. Dasgupta, The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009). https://doi.org/10.1016/j.chemgeo.2009.1002.1008

    Article  ADS  Google Scholar 

  • E. Hoffland, T.W. Kuyper, H. Wallander, N. van Breemen, The role of fungi in weathering. Front. Ecol. Environ. 2(5), 258–264 (2004)

    Google Scholar 

  • H.D. Holland, The Chemical Evolution of the Atmosphere and Oceans (Princeton University Press, Princeton, 1984)

    Google Scholar 

  • H.D. Holland, Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002)

    ADS  Google Scholar 

  • M. Homann, C. Heubeck, A. Airo, M.M. Tice, Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Res. 266, 47–64 (2015)

    ADS  Google Scholar 

  • D. Höning, T. Spohn, Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth. Phys. Earth Planet. Inter. 255, 27–49 (2016)

    ADS  Google Scholar 

  • D. Höning, H. Hansen-Goos, A. Airo, T. Spohn, Biotic vs. abiotic Earth: a model for mantle hydration and continental coverage. Planet. Space Sci. 98, 5–13 (2014)

    ADS  Google Scholar 

  • D. Höning, N. Tosi, H. Hansen-Goos, T. Spohn, Bifurcation in the growth of continental crust. Phys. Earth Planet. Inter. 287, 37 (2019). https://doi.org/10.1016/j.pepi.2019.01.001

    Article  ADS  Google Scholar 

  • K.R. Housen, R.M. Schmidt, K.A. Holsapple, Crater ejecta scaling laws: fundamental forms based on dimensional analysis. J. Geophys. Res., Solid Earth 88(B3), 2485–2499 (1983)

    Google Scholar 

  • R. Hu, B.L. Ehlmann, S. Seager, Theoretical spectra of terrestrial exoplanet surfaces. Astrophys. J. 752, 1 (2012)

    Google Scholar 

  • H. Hussmann, F. Sohl, T. Spohn, Subsurface oceans and deep interiors of medium-sized outer planet satellites and trans-Neptunian objects. Icarus 185, 258 (2006)

    ADS  Google Scholar 

  • G. Iacono-Marziano, Y. Morizet, E. Le-Trong, F. Gaillard, New experimental data and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochim. Cosmochim. Acta (2012). https://doi.org/10.1016/j.gca.2012.08.035

    Article  Google Scholar 

  • A. Izidoro, S.N. Raymond, A. Pierens, A. Morbidelli, O.C. Winter, D. Nesvorny, The asteroid belt as a relic from a chaotic early solar system. Astrophys. J. 833, 40 (2016)

    ADS  Google Scholar 

  • S.A. Jacobson, A. Morbidelli, S.N. Raymond, D.P. O’Brien, K.J. Walsh, D.C. Rubie, Highly siderophile elements in Earth’s mantle as a clock for the moon-forming impact. Nature 508, 84–87 (2014)

    ADS  Google Scholar 

  • S.A. Jacobson, D.C. Rubie, J. Hernlund, A. Morbidelli, M. Nakajima, Formation, stratification, and mixing of the cores of Earth and Venus. Earth Planet. Sci. Lett. 474, 375–386 (2017)

    ADS  Google Scholar 

  • E.J. Javaux, Challenges in evidencing the earliest traces of life. Nature (2019, in press)

  • E.J. Javaux, V. Dehant, Habitability: from stars to cells. Astron. Astrophys. Rev. 18, 383–416 (2010). https://doi.org/10.1007/s00159-010-0030-4

    Article  ADS  Google Scholar 

  • E.J. Javaux, K. Lepot, The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth-Sci. Rev. 176, 68–86 (2017)

    Google Scholar 

  • E.J. Javaux, C.P. Marshall, A. Bekker, Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463(7283), 934 (2010)

    ADS  Google Scholar 

  • M. Javoy, E. Kaminski, F. Guyot, D. Andrault, C. Sanloup, M. Moreira, S. Labrosse, A. Jambon, P. Agrinier, A. Davaille, C. Jaupart, The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010). https://doi.org/10.1016/j.epsl.2010.02.033

    Article  ADS  Google Scholar 

  • C.P. Johnstone, M. Güdel, I. Brott, T. Lüftinger, Stellar winds on the main-sequence. II. The evolution of rotation and winds. Astron. Astrophys. 577, A28 (2015a). https://doi.org/10.1051/0004-6361/201425301

    Article  ADS  Google Scholar 

  • C.P. Johnstone, M. Güdel, A. Stökl, H. Lammer, L. Tu, K.G. Kislyakova, T. Lüftinger, P. Odert, N.V. Erkaev, E.A. Dorfi, The evolution of stellar rotation and the hydrogen atmospheres of habitable-zone terrestrial planets. Astrophys. J. Lett. 815(L12), 1 (2015b)

    Google Scholar 

  • A.P. Jones, A.T. Kearsley, C.R.L. Friend, E. Robin, A. Beard, A. Tamura, S. Trickett, P. Claeys, Are there signs of a large Palaeocene impact, preserved around disko bay, Greenland- Nuussuaq spherule beds origin by impact instead of volcanic eruption? in Large Meteorite Impacts III, ed. by K. Kenkman, F. Hörz, A. Deutsch. Geological Society of America Special Paper, vol. 384 (2005), pp. 281–298

    Google Scholar 

  • J.-L. Josset, F. Westall, B.A. Hofmann, J. Spray, C. Cockell, S. Kempe, A.D. Griffiths, M. Cristina de Sanctis, L. Colangeli, D. Koschny, D. Pullan, K. Föllmi, E. Verrecchia, L. Diamond, M. Josset, E.J. Javaux, F. Esposito, M. Gunn, A.L. Souchon, T. Bontognali, O. Korablev, S. Erkman, G. Paar, S. Ulamec, F. Foucher, A. Verhaeghe, M. Tanevski, J. Vago, The Close-Up Imager (CLUPI) on board ESA ExoMars 2018 rover mission: science objectives, description, operations, and science validation activities. Astrobiology 17(6–7), 595–611 (2017)

    ADS  Google Scholar 

  • P.J. Jugo, Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009). https://doi.org/10.1130/G25527A.1

    Article  ADS  Google Scholar 

  • M. Jutzi, K. Holsapple, K. Wünnemann, P. Michel, Modeling asteroid collisions and impact processes, in Asteroids IV, ed. by P. Michel, F.E. De Meo, W.F. Bottke (University of Arizona Press, Tucson, 2015), pp. 679–699

    Google Scholar 

  • L. Kaltenegger, Characterizing habitable exomoons. Astrophys. J. Lett. 712, 125 (2010)

    ADS  Google Scholar 

  • L. Kaltenegger, F. Selsis, M. Fridlund, H. Lammer, C. Beichman, W. Danchi, C. Eiroa, T. Henning, T. Herbst, A. Léger, R. Liseau, J. Lunine, F. Paresce, A. Penny, A. Quirrenbach, H. Röttgering, J. Schneider, D. Stam, G. Tinetti, G.J. White, Deciphering spectral fingerprints of habitable exoplanets. Astrobiology 10, 89–102 (2010)

    ADS  Google Scholar 

  • Y. Kanzaki, T. Murakami, Estimates of atmospheric CO2 in the Neoarchean-Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 159, 190–219 (2015)

    ADS  Google Scholar 

  • S.-I. Karato, M.S. Paterson, J.D. FitzGerald, Rheology of synthetic olivine aggregates: influence of grain size and water. J. Geophys. Res. 91(B8), 8151–8176 (1986)

    ADS  Google Scholar 

  • S.-I. Karato, A. Forte, R. Liebermann, G. Masters, L. Stixrude, in Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. Geophysical Monograph Series (2013, Am. Geophys. Union, Washington). https://doi.org/10.1029/GM117. Print ISBN: 9781118668474. Online ISBN: 9780875909752

    Chapter  Google Scholar 

  • J.F. Kasting, Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988). https://doi.org/10.1016/0019-1035(88)90116-9

    Article  ADS  Google Scholar 

  • J.F. Kasting, Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Orig. Life Evol. Biosph. 20(3–4), 199–231 (1990)

    ADS  Google Scholar 

  • J.F. Kasting, Atmospheric science. How was early Earth kept warm? Science 339, 44–45 (2013a)

    ADS  Google Scholar 

  • J.F. Kasting, What caused the rise of atmospheric O2? Chem. Geol. 362, 13–25 (2013b)

    ADS  Google Scholar 

  • J.F. Kasting, O.B. Toon, J.B. Pollack, How climate evolved on the terrestrial planets. Sci. Am. 258, 90–97 (1988). https://doi.org/10.1038/scientificamerican0288-90

    Article  Google Scholar 

  • J.F. Kasting, D.P. Whitmire, R.T. Reynolds, Habitable zones around main sequence stars. Icarus 101, 108 (1993a)

    ADS  Google Scholar 

  • J.F. Kasting, D.H. Eggler, S.P. Raeburn, Mantle redox evolution and the oxidation state of the Archean atmosphere. J. Geol. 101, 245–257 (1993b)

    ADS  Google Scholar 

  • J.F. Kasting, H. Chen, R.K. Kopparapu, Stratospheric temperatures and water loss from moist greenhouse atmospheres of Earth-like planets. Astrophys. J. Lett. 813(1), L3 (2015). https://doi.org/10.1088/2041-8205/813/1/L3

    Article  ADS  Google Scholar 

  • P.B. Kelemen, C.E. Manning, Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl. Acad. Sci. USA 112(30), E3997–E4006 (2015). https://doi.org/10.1073/pnas.1507889112

    Article  ADS  Google Scholar 

  • K.A. Kelley, E. Cottrell, Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009)

    ADS  Google Scholar 

  • J.D. Kendall, H.J. Melosh, Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core. Earth Planet. Sci. Lett. 448, 24–33 (2016)

    ADS  Google Scholar 

  • T. Kenkmann, M.H. Poelchau, A. Deutsch, Bridging the gap III: impact cratering in nature, experiment, and modelling. Meteorit. Planet. Sci. 52(7), 1281–1284 (2017). https://doi.org/10.1111/maps.12911

    Article  ADS  Google Scholar 

  • K. Kimura, R.S. Lewis, E. Anders, Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974)

    ADS  Google Scholar 

  • T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q.-Z. Yin, A.N. Halliday, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    ADS  Google Scholar 

  • A.H. Knoll, K.D. Bergmann, J.V. Strauss, Life: the first two billion years. Phil. Trans. R. Soc. B 371(1707), 20150493 (2016)

    Google Scholar 

  • C. Koeberl, Ph. Claeys, L. Hecht, I. McDonald, Geochemistry of impactites. Elements 8(1), 37–42 (2012)

    Google Scholar 

  • O. Korablev, A. Trokhimovsky, A.V. Grigoriev, A. Shakun, Y.S. Ivanov, B. Moshkin, K. Anufreychik, D. Timonin, I. Dziuban, Y.K. Kalinnikov, F. Montmessin, Three infrared spectrometers, an atmospheric chemistry suite for the ExoMars 2016 trace gas orbiter. J. Appl. Remote Sens. 8, 1 (2014)

    Google Scholar 

  • J. Korenaga, On the likelihood of plate tectonics on super-Earths: does size matter? Astrophys. J. Lett. 725(1), L43–L46 (2010). https://doi.org/10.1088/2041-8205/725/1/L43

    Article  ADS  Google Scholar 

  • L. Kreidberg, J.L. Bean, J.-M. Désert, B. Benneke, D. Deming, K.B. Stevenson, S. Seager, Z. Berta-Thompson, A. Seifahrt, D. Homeier, Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014)

    ADS  Google Scholar 

  • J. Krissansen-Totton, D.C. Catling, Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. (2017). https://doi.org/10.1038/NCOMMS15423

    Article  Google Scholar 

  • J. Krissansen-Totton, S. Olson, D.C. Catling, Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4(1), eaao5747 (2018). https://doi.org/10.1126/sciadv.aao5747

    Article  ADS  Google Scholar 

  • L.R. Kump, M.E. Barley, Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007)

    ADS  Google Scholar 

  • L.R. Kump, S.L. Brantley, M.A. Arthur, Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000)

    ADS  Google Scholar 

  • M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012)

    ADS  Google Scholar 

  • H. Lammer, H.I.M. Lichtenegger, H.K. Biernat, N.V. Erkaev, I.L. Arshukova, C. Kolb, H. Gunell, A. Lukyanov, M. Holmstrom, S. Barabash, T.L. Zhang, W. Baumjohann, Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006)

    ADS  Google Scholar 

  • H. Lammer, J.H. Bredehöft, A. Coustenis, M.L. Khodachenko, L. Kaltenegger, O. Grasset, D. Prieur, F. Raulin, P. Ehrenfreund, M. Yamauchi, J.-E. Wahlund, J.-M. Griessmeier, G. Stangl, C.S. Cockell, Y.N. Kulikov, J.L. Grenfell, H. Rauer, What makes a planet habitable? Astron. Astrophys. Rev. 17(2), 181–249 (2009). https://doi.org/10.1007/s00159-009-0019-z

    Article  ADS  Google Scholar 

  • H. Lammer, K.G. Kislyakova, P. Odert, M. Leitzinger, R. Schwarz, R. Pilat-Lohinger, Y.N. Kulikov, M.L. Khodachenko, M. Güdel, A. Hanslmeier, Pathways to Earth-like atmospheres. Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–511 (2011)

    ADS  Google Scholar 

  • H. Lammer, A. Stökl, N.V. Erkaev, E.A. Dorfi, P. Odert, M. Güdel, Yu.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439(4), 3225–3238 (2014). https://doi.org/10.1093/mnras/stu085

    Article  ADS  Google Scholar 

  • H. Lammer, A.L. Zerkle, S. Gebauer, N. Tosi, L. Noack, M. Scherf, E. Pilat-Lohinger, M. Güdel, J.L. Grenfell, M. Godolt, A. Nikolaou, Origin and evolution of the atmospheres of early Venus, Earth, and Mars. Astron. Astrophys. Rev. 76(1), 77 (2018)

    Google Scholar 

  • H. Lammer, L. Sproß, J.L. Grenfell, M. Scherf, L. Fossati, M. Lendl, P.E. Cubillos, The role of N2 as a geo-biosignature for the detection and characterization of Earth-like habitats. Astrobiology 19(7), 927–950 (2019). https://doi.org/10.1089/ast.2018.1914

    Article  ADS  Google Scholar 

  • C.H. Langmuir, W. Broecker, How to Build a Habitable Planet (Princeton University Press, Princeton, 2012)

    Google Scholar 

  • J. Lasue, Y. Quesnel, B. Langlais, E. Chassefière, Methane storage capacity of the early Martian cryosphere. Icarus 260, 205–214 (2015)

    ADS  Google Scholar 

  • C-T.A. Lee, P. Luffi, V. Le Roux, R. Dasgupta, F. Albarede, W.P. Leeman, The redox state of arc mantle using Zn/Fe systematics. Nature 468, 681–685 (2010)

    ADS  Google Scholar 

  • A.M. Lenardic, A. Jellinek, L.-N. Moresi, A climate induced transition in the tectonic style of a terrestrial planet. Earth Planet. Sci. Lett. 271(1–4), 34–42 (2008)

    ADS  Google Scholar 

  • T.M. Lenton, Testing Gaia: the effect of life on Earth’s habitability and regulation. Clim. Change 52, 409–422 (2002)

    Google Scholar 

  • K. Lepot, P. Compère, E. Gérard, Z. Namsaraev, E. Verleyen, I. Tavernier, D.A. Hodgson, W. Vyverman, B. Gilbert, A. Wilmotte, E.J. Javaux, Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake. Geobiology 12(5), 424–450 (2014). https://doi.org/10.1111/gbi.12096

    Article  Google Scholar 

  • Y. Li, R. Dasgupta, K. Tsuno, The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 C: Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles. Earth Planet. Sci. Lett. 415, 54–66 (2015a). https://doi.org/10.1016/j.epsl.2015.01.017

    Article  ADS  Google Scholar 

  • Y. Li, R. Huang, M. Wiedenbeck, H. Kepplera, Nitrogen distribution between aqueous fluids and silicate melts. Earth Planet. Sci. Lett. 411, 218–228 (2015b)

    ADS  Google Scholar 

  • Y. Li, R. Dasgupta, K. Tsuno, Carbon contents in reduced basalts at graphite saturation: implications for the degassing of Mars, Mercury, and the Moon. J. Geophys. Res., Planets 122, 1300–1320 (2017). https://doi.org/10.1002/2017JE005289

    Article  ADS  Google Scholar 

  • G. Libourel, B. Marty, F. Humbert, Nitrogen solubility in basaltic melt; Part I, effect of oxygen fugacity. Geochim. Cosmochim. Acta 67, 4123–4135 (2003)

    ADS  Google Scholar 

  • H.I.M. Lichtenegger, H. Lammer, J.-M. Grießmeier, Y.N. Kulikov, P. von Paris, W. Hausleitner, S. Krauss, H. Rauer, Aeronomical evidence for higher CO2 levels during Earth’s Hadean epoch. Icarus 210(1), 1–7 (2010). https://doi.org/10.1016/j.icarus.2010.06.042

    Article  ADS  Google Scholar 

  • R.J. Lillis, D.A. Brain, S.W. Bougher, F. Leblanc, J.G. Luhmann, M.B. Jakosky et al., Characterizing atmospheric escape from Mars today and through time, with MAVEN. Space Sci. Rev. 195(1–4), 357–422 (2015)

    ADS  Google Scholar 

  • D. Lourenço, A. Rozel, M. Ballmer, P.J. Tackley, Plutonic-squishy lid and beyond: implications of intrusive magmatism and characterization of a new global-tectonic regime on Earth-like planets, in Geophysical Research Abstracts, EGU General Assembly 2017. EGU2017-16304, vol. 19 (2017)

    Google Scholar 

  • G.D. Love, E. Grosjean, C. Stalvies, D.A. Fike, J.P. Grotzinger, A.S. Bradley, Fossil steroids record the appearance of demospongiae during the cryogenian period. Nature 457, 718–721 (2009)

    ADS  Google Scholar 

  • R. Luger, M. Sestovic, E. Kruse, S.L. Grimm, B.-O. Demory, E. Agol, E. Bolmont, D. Fabrycky, C.S. Fernandes, V. Van Grootel, A. Burgasser, M. Gillon, J.G. Ingalls, E. Jehin, S.N. Raymond, F. Selsis, A.H.M.J. Triaud, T. Barclay, G. Barentsen, S.B. Howell, L. Delrez, J. de Wit, D. Foreman-Mackey, D.L. Holdsworth, J. Leconte, S. Lederer, M. Turbet, Y. Almleaky, Z. Benkhaldoun, P. Magain, B.M. Morris, K. Heng, D. Queloz, A terrestrial-sized exoplanet at the snow line of TRAPPIST-1. Nat. Astron. 1(0129), 0129 (2017). https://doi.org/10.1038/s41550-017-0129

    Article  ADS  Google Scholar 

  • R. Lundin, H. Lammer, I. Ribas, Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev. 129(1–3), 245–278 (2007)

    ADS  Google Scholar 

  • J.I. Lunine, Astrobiology: A Multidisciplinary Approach (Addison-Wesley, Boston, 2005), 586 pp.

    Google Scholar 

  • T.W. Lyons, B.C. Gill, Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6, 93–99 (2010)

    Google Scholar 

  • T.W. Lyons, C.T. Reinhard, N.J. Planavsky, The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014). https://doi.org/10.1038/nature13068

    Article  ADS  Google Scholar 

  • N. Madhusudhan, K.K.M. Lee, O. Mousis, A possible carbon-rich interior in super-Earth 55 Cancri e. Astrophys. J. Lett. 759, L40 (2012). https://doi.org/10.1088/2041-8205/759/2/L40

    Article  ADS  Google Scholar 

  • L. Manske, K. Wünnemann, M. Nakajima, Impact-induced melting by giant impact events, in 49th Lunar and Planetary Science Conference, LPI Contribution (2018)

    Google Scholar 

  • S. Marchi, R.M. Canup, R.J. Walker, Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11(1), 77 (2018)

    ADS  Google Scholar 

  • E. Marcq, F.P. Mills, C.D. Parkinson, A.C. Vandaele, Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214(1), 10 (2018)

    ADS  Google Scholar 

  • L. Margulis, J. Lovelock, Biological modification of the Earth’s atmosphere. Icarus 21, 471–489 (1974)

    ADS  Google Scholar 

  • N. Marounina, G. Tobie, S. Carpy, J. Monteux, B. Charnay, O. Grasset, Evolution of Titan’s atmosphere during the late heavy bombardment. Icarus 257, 324–335 (2015)

    ADS  Google Scholar 

  • H. Martin, F. Albarède, P. Claeys, M. Gargaud, B. Marty, A. Morbidelli, D.L. Pinti, Building of a habitable planet, in From Suns to Life: A Chronological Approach to the History of Life on Earth, ed. by M. Gargaud, P. Claeys, P. López-García, H. Martin, T. Montmerle, R. Pascal, J. Reisse (Springer, New York, 2006), 97–151, Chap. 4. https://doi.org/10.1007/s11038-006-9088-4

    Chapter  Google Scholar 

  • B. Marty, L. Zimmermann, M. Pujol, R. Burgess, P. Philippot, Nitrogen isotopic composition and density of the Archean atmosphere. Science 342(6154), 101–104 (2013). https://doi.org/10.1126/science.1240971

    Article  ADS  Google Scholar 

  • B. Marty, G. Avice, Y. Sano, K. Altwegg, H. Balsiger, M. Hässig, A. Morbidelli, O. Mousis, M. Rubin, Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016). https://doi.org/10.1016/j.epsl.2016.02.031

    Article  ADS  Google Scholar 

  • F. Masset, M. Snellgrove, Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 320, L55–L59 (2001)

    ADS  Google Scholar 

  • T.M. McCollom, J.S. Seewald, A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65(21), 3769–3778 (2001)

    ADS  Google Scholar 

  • P.J. McGovern, G. Schubert, Thermal evolution of the Earth: effects of volatile exchange between atmosphere and interior. Earth Planet. Sci. Lett. 96, 27–37 (1989)

    ADS  Google Scholar 

  • S. McMahon, T. Bosak, J.P. Grotzinger, R.E. Milliken, R.E. Summons, M. Daye, S.A. Newman, A. Fraeman, K.H. Williford, D.E.G. Briggs, A field guide to finding fossils on Mars. J. Geophys. Res., Planets (2018). https://doi.org/10.1029/2017JE005478

    Article  Google Scholar 

  • V.S. Meadows, Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17, 1022–1052 (2017)

    ADS  Google Scholar 

  • V.S. Meadows, C.T. Reinhard, G.N. Arney, M.N. Parenteau, E.W. Schwieterman, S.D. Domagal-Goldman, A.P. Lincowski, K.R. Stapelfeldt, H. Rauer, S. DasSarma, S. Hegde, N. Narita, R. Deitrick, T.W. Lyons, N. Siegler, J. Lustig-Yaeger, Exoplanet biosignatures: understanding oxygen in the context of its environment. Astrobioloy 18(6), 630–662 (2018)

    ADS  Google Scholar 

  • H.J. Melosh, Impact Cratering: A Geologic Process. Oxford Monographs on Geology and Geophysics, vol. 11 (Oxford University Press, New York, 1989), p. 253 p., 11

    Google Scholar 

  • H.J. Melosh, Vapor plumes: a neglected aspect of impact cratering. Meteoritics 25, 386 (1990)

    ADS  Google Scholar 

  • H.J. Melosh, A.M. Vickery, Impact erosion of the primordial atmosphere of Mars. Nature 338(6215), 487 (1989)

    ADS  Google Scholar 

  • S. Mikhail, D.A. Sverjensky, Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere. Nat. Geosci. 7(11), 816–819 (2014)

    ADS  Google Scholar 

  • J. Monteux, N. Coltice, F. Dubuffet, Y. Ricard, Thermo-mechanical adjustment after impacts during planetary growth. Geophys. Res. Lett. 34(24) (2007)

  • A. Morbidelli, A. Crida, The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007)

    ADS  Google Scholar 

  • L. Moresi, V. Solomatov, Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 133, 669 (1998)

    ADS  Google Scholar 

  • L.M. Mukhin, M.V. Gerasimov, E.N. Safonova, Origin of precursors of organic molecules during evaporation of meteorites and mafic terrestrial rocks. Nature 340(6228), 46 (1989)

    ADS  Google Scholar 

  • M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, M.D. Smith, Strong release of methane on Mars in Northern Summer 2003. Science 323(5917), 1041 (2009). https://doi.org/10.1126/science.1165243

    Article  ADS  Google Scholar 

  • T. Nakagawa, H. Iwamori, Long-term stability of plate-like behavior caused by hydrous mantle convection and water absorption in the deep mantle. J. Geophys. Res., Solid Earth 122, 8431–8445 (2017)

    ADS  Google Scholar 

  • M. Nakajima, D.J. Stevenson, Investigation of the initial state of the moon-forming disk: bridging SPH simulations and hydrostatic models. Icarus 233, 259–267 (2014)

    ADS  Google Scholar 

  • M. Nakajima, D.J. Stevenson, Melting and mixing states of the Earth’s mantle after the moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015)

    ADS  Google Scholar 

  • W.M. Napier, A mechanism for interstellar panspermia. Mon. Not. R. Astron. Soc. 348(1), 46–51 (2004)

    ADS  Google Scholar 

  • W.I. Newman, E.M. Symbalisty, T.J. Ahrens, E.M. Jones, Impact erosion of planetary atmospheres: some surprising results. Icarus 138(2), 224–240 (1999)

    ADS  Google Scholar 

  • R.W. Nicklas, I.S. Puchtel, R.D. Ash, Redox state of the Archean mantle: evidence from V partitioning in 3.5–2.4 Ga Komatiites. Geochim. Cosmochim. Acta 222, 447–466 (2018)

    ADS  Google Scholar 

  • F. Nimmo, D.J. Stevenson, Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res., Planets 105(E5), 11969–11979 (2000)

    ADS  Google Scholar 

  • F. Nimmo, S.D. Hart, D.G. Korycansky, C.B. Agnor, Implications of an impact origin for the martian hemispheric dichotomy. Nature 453(7199), 1220–1223 (2008). https://doi.org/10.1038/nature07025

    Article  ADS  Google Scholar 

  • E. Nisbet, K. Zahnle, M.V. Gerasimov, J. Helbert, R. Jaumann, B.A. Hofmann, K. Benzerara, F. Westall, Creating habitable zones, at all scales, from planets to mud micro-habitats, on Earth and on Mars. Space Sci. Rev. 129(1–3), 79–121 (2007)

    ADS  Google Scholar 

  • L. Noack, D. Breuer, T. Spohn, Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus. Icarus 217(2), 484–498 (2012)

    ADS  Google Scholar 

  • L. Noack, M. Godolt, P. von Paris, A.-C. Plesa, B. Stracke, D. Breuer, H. Rauer, Constraints on planetary habitability from interior modeling. PSS special issue. Planet. Evol. Life 98, 14–29 (2014). https://doi.org/10.1016/j.pss.2014.01.003

    Article  ADS  Google Scholar 

  • L. Noack, A. Rivoldini, T. Van Hoolst, Volcanism and outgassing of stagnant-lid planets: implications for the habitable zone. Phys. Earth Planet. Inter. 269, 40–57 (2017)

    ADS  Google Scholar 

  • N. Noffke, K.A. Eriksson, R.M. Hazen, E.L. Simpson, A new window into early Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34(4), 253–256 (2006)

    ADS  Google Scholar 

  • A.P. Nutman, V.C. Bennett, C.R. Friend, M.J. Van Kranendonk, A.R. Chivas, Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537(7621), 535 (2016)

    ADS  Google Scholar 

  • D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006)

    ADS  Google Scholar 

  • P. Odert et al., Escape and fractionation of volatiles and noble gases from Mars-sized planetary 175 embryos and growing protoplanets. Icarus 307, 327–346 (2018)

    ADS  Google Scholar 

  • J.D. O’Keefe, T.J. Ahrens, Meteorite impact ejecta: dependence of mass and energy lost on planetary escape velocity. Science 198(4323), 1249–1251 (1977)

    ADS  Google Scholar 

  • J.D. O’Keefe, T.J. Ahrens, The effect of gravity on impact crater excavation time and maximum depth; comparison with experiment, in Lunar and Planetary Science Conference, vol. 10 (1979), pp. 934–936

    Google Scholar 

  • T. Okuchi, Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278(5344), 1781–1784 (1997). https://doi.org/10.1126/science.278.5344.1781

    Article  ADS  Google Scholar 

  • C. O’Neill, A. Lenardic, Geological consequences of super-sized Earths. Geophys. Res. Lett. 34(19), L19204 (2007). https://doi.org/10.1029/2007GL030598

    Article  ADS  Google Scholar 

  • C. O’Neill, A. Lenardic, A.M. Jellinek, W.S. Kiefer, Melt propagation and volcanism in mantle convection simulations, with applications for martian volcanic and atmospheric evolution. J. Geophys. Res., Planets 112, E07003 (2007)

    ADS  Google Scholar 

  • C. O’Neill, S. Marchi, S. Zhang, W. Bottke, Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10(10), 793 (2017)

    ADS  Google Scholar 

  • C.W. Ormel, H.H. Klahr, The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010). https://doi.org/10.1051/0004-6361/201014903

    Article  ADS  Google Scholar 

  • J.G. O’Rourke, C. Gillmann, P. Tackley, Prospects for an ancient dynamo and modern crustal remanent magnetism on Venus. Earth Planet. Sci. Lett. 502, 46–56 (2018)

    ADS  Google Scholar 

  • J.E. Owen, Y. Wu, The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017)

    ADS  Google Scholar 

  • C. Oze, M. Sharma, Serpentinization and the inorganic synthesis of H2 in planetary surfaces. Icarus 186(2), 557–561 (2007)

    ADS  Google Scholar 

  • S. Padovan, N. Tosi, A.C. Plesa, T. Ruedas, Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nat. Commun. 8, 1945 (2017). https://doi.org/10.1038/s41467-017-01692-0

    Article  ADS  Google Scholar 

  • K. Pahlevan, D.J. Stevenson, Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262(3–4), 438–449 (2007). https://doi.org/10.1016/j.epsl.2007.07.055

    Article  ADS  Google Scholar 

  • M.A. Pasek, J.P. Harnmeijer, R. Buick, M. Gull, Z. Atlas, Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl. Acad. Sci. USA 110, 10089–10094 (2013)

    ADS  Google Scholar 

  • A.A. Pavlov, J.F. Kasting, Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2(1), 27–41 (2002)

    ADS  Google Scholar 

  • A.A. Pavlov, J.F. Kasting, L.L. Brown, K.A. Rages, R. Freedman, Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11981 (2000)

    ADS  Google Scholar 

  • E.A. Petigura, A.W. Howard, G.W. Marcy, Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Natl. Acad. Sci. 110(19), 273–19278 (2013)

    Google Scholar 

  • L.B.S. Pham, Ö. Karatekin, Scenarios of atmospheric mass evolution on Mars influenced by asteroid and comet impacts since the late Noachian. Planet. Space Sci. 125, 1–11 (2016)

    ADS  Google Scholar 

  • L.B.S. Pham, Ö. Karatekin, V. Dehant, Effect of meteorite impacts on the atmospheric evolution of Mars. Astrobiology Early Mars 9(1), 45–54 (2009). https://doi.org/10.1089/ast.2008.0242 (special issue)

    Article  ADS  Google Scholar 

  • L.B.S. Pham, Ö. Karatekin, V. Dehant, Effects of impacts on the atmospheric evolution: comparison between Mars, Earth, and Venus. Planet. Space Sci. 59, 1087–1092 (2011)

    ADS  Google Scholar 

  • E. Pierazzo, N. Artemieva, Local and global environmental effects of impacts on Earth. Elements 8, 55–60 (2012). https://doi.org/10.2113/gselements.8.1.55

    Article  Google Scholar 

  • E. Pierazzo, H.J. Melosh, Hydrocode modeling of oblique impacts: the fate of the projectile. Meteorit. Planet. Sci. 35(1), 117–130 (2000)

    ADS  Google Scholar 

  • E. Pierazzo, A.M. Vickery, H.J. Melosh, A reevaluation of impact melt production. Icarus 127(2), 408–423 (1997)

    ADS  Google Scholar 

  • A. Pierens, S.N. Raymond, D. Nesvorny, A. Morbidelli, Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the grand tack and nice models. Astrophys. J. Lett. 795(1), L11 (2014). https://doi.org/10.1088/2041-8205/795/1/L11

    Article  ADS  Google Scholar 

  • S. Pizzarello, Y. Huang, L. Becker, R.J. Poreda, R.A. Nieman, G. Cooper, M. Williams, The organic content of the Tagish Lake meteorite. Science 293, 2236–2239 (2001)

    ADS  Google Scholar 

  • T. Plank, The chemical composition of subducting sediments, in Treatise on Geochemistry, vol. 4, ed. by R.L. Rudnick 2nd edn. (Elsevier/Pergamon, Oxford, 2014), pp. 607–629

    Google Scholar 

  • J.P. Poirier, Introduction to the Physics of the Earth’s Interior, 2nd edn. (Cambridge University Press, Cambridge, 2000). ISBN-13: 978-0521663922, ISBN-10: 052166392X

    Google Scholar 

  • R.R. Rafikov, Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 682, 666–682 (2006)

    ADS  Google Scholar 

  • R. Ramstad, S. Barabash, Y. Futaana, M. Yamauchi, H. Nilsson, M. Holmström, Mars under primordial solar wind conditions: Mars express observations of the strongest CME detected at Mars under solar cycle# 24 and its impact on atmospheric ion escape. Geophys. Res. Lett. 44(21), 10805–10811 (2017)

    ADS  Google Scholar 

  • H. Rauer, S. Gebauer, P. von Paris, J. Cabrera, M. Godolt, J.L. Grenfell, A. Belu, F. Selsis, P. Hedelt, F. Schreier, Potential biosignatures in super-Earth atmospheres I. Spectral appearance of super-Earths around M dwarfs. Astron. Astrophys. 529, A8 (2011)

    ADS  Google Scholar 

  • H. Rauer, C. Catala, C. Aerts, T. Appourchaux, W. Benz, A. Brandeker, J. Christensen-Dalsgaard, M. Deleuil, L. Gizon, M.-J. Goupil, M. Güdel, E. Janot-Pacheco, M. Mas-Hesse, I. Pagano, G. Piotto, D. Pollacco, C. Santos, A. Smith, J.-C. Suárez, R. Szabó, S. Udry, V. Adibekyan, Y. Alibert, J.-M. Almenara, P. Amaro-Seoane, M. Ammer-von Eiff, M. Asplund, E. Antonello, S. Barnes, F. Baudin, K. Belkacem, M. Bergemann, G. Bihain, A.C. Birch, X. Bonfils, I. Boisse, A.S. Bonomo, F. Borsa, I.M. Brandão, E. Brocato, S. Brun, M. Burleigh, R. Burston, J. Cabrera, S. Cassisi, W. Chaplin, S. Charpinet, C. Chiappini, R.P. Church, S. Csizmadia, M. Cunha, M. Damasso, M.B. Davies, H.J. Deeg, R.F. Díaz, S. Dreizler, C. Dreyer, P. Eggenberger, D. Ehrenreich, P. Eigmüller, A. Erikson, R. Farmer, S. Feltzing, F. de Oliveira Fialho, P. Figueira, T. Forveille, M. Fridlund, R.A. García, P. Giommi, G. Giuffrida, M. Godolt, J. Gomes da Silva, T. Granzer, J.L. Grenfell, A. Grotsch-Noels, E. Günther, C.A. Haswell, A.P. Hatzes, G. Hébrard, S. Hekker, R. Helled, K. Heng, J.M. Jenkins, A. Johansen, M.L. Khodachenko, K.G. Kislyakova, W. Kley, U. Kolb, N. Krivova, F. Kupka, H. Lammer, A.F. Lanza, Y. Lebreton, D. Magrin, P. Marcos-Arenal, P.M. Marrese, J.P. Marques, J. Martins, S. Mathis, S. Mathur, S. Messina, A. Miglio, J. Montalban, M. Montalto, M.J. Monteiro, H. Moradi, E. Moravveji, C. Mordasini, T. Morel, A. Mortier, V. Nascimbeni, R.P. Nelson, M.B. Nielsen, L. Noack, A.J. Norton, A. Ofir, M. Oshagh, R.-M. Ouazzani, P. Pápics, V.C. Parro, P. Petit, B. Plez, E. Poretti, A. Quirrenbach, R. Ragazzoni, G. Raimondo, M. Rainer, D.R. Reese, R. Redmer, S. Reffert, B. Rojas-Ayala, I.W. Roxburgh, S. Salmon, A. Santerne, J. Schneider, J. Schou, S. Schuh, H. Schunker, A. Silva-Valio, R. Silvotti, I. Skillen, I. Snellen, F. Sohl, S.G. Sousa, A. Sozzetti, D. Stello, K.G. Strassmeier, M. Svanda, G.M. Szabó, A. Tkachenko, D. Valencia, V. Van Grootel, S.D. Vauclair, P. Ventura, F.W. Wagner, N.A. Walton, J. Weingrill, S.C. Werner, P.J. Wheatley, K. Zwintz, The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014)

    ADS  Google Scholar 

  • S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009)

    ADS  Google Scholar 

  • S.N. Raymond, H.E. Schlichting, F. Hersant, F. Selsis, Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226(1), 671–681 (2013)

    ADS  Google Scholar 

  • J. Reisse, La longue histoire de la matière. Une complexité croissante depuis des milliards d’années (Presses Universitaires de France, Paris, 2011), 320 p.

    Google Scholar 

  • K. Righter, K.E. Neff, Temperature and oxygen fugacity constraints on CK and R chondrites and implications for water and oxidation in the early solar system. Polar Sci. 1(1), 25–44 (2007). https://doi.org/10.1016/j.polar.2007.04.002

    Article  ADS  Google Scholar 

  • J.H. Roberts, J. Arkani-Hamed, Impact heating and coupled core cooling and mantle dynamics on Mars. J. Geophys. Res., Planets 119(4), 729–744 (2014)

    ADS  Google Scholar 

  • T.D. Robinson, K. Ennico, V.S. Meadows, W. Sparks, D.B.J. Bussey, E.W. Schwieterman, J. Breiner, Detection of ocean glint and ozone absorption using LCROSS Earth observations. Astrophys. J. 787(2), 171 (2014). https://doi.org/10.1088/0004-637X/787/2/171

    Article  ADS  Google Scholar 

  • F. Rodeler, M. López-Morales, Feasibility studies for the detection of O2 in an Earth-like exoplanet. Astrophys. J. 781, 1 (2014)

    ADS  Google Scholar 

  • L.A. Rogers, Most 1.6 earth-radius planets are not rocky. Astrophys. J. 801(41) (2015). https://doi.org/10.1088/0004-637X/801/1/41

    ADS  Google Scholar 

  • T. Rolf, M.-H. Zhu, K. Wünnemann, S.C. Werner, The role of impact bombardment history in lunar evolution. Icarus 286, 138–152 (2016)

    ADS  Google Scholar 

  • M.T. Rosing, D.K. Bird, N.H. Sleep, W. Glassley, F. Albarede, The rise of continents—an essay on the geologic consequences of photosynthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 99–113 (2006)

    Google Scholar 

  • M. Roskosz, M.A. Bouhifd, A.P. Jephcoat, B. Marty, B.O. Mysen, Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochim. Cosmochim. Acta 121, 15–28 (2013). https://doi.org/10.1016/j.gca.2013.07.007

    Article  ADS  Google Scholar 

  • A.B. Rozel, G.J. Golabek, C. Jain, P.J. Tackley, T. Gerya, Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017)

    ADS  Google Scholar 

  • D.C. Rubie, S.A. Jacobson, A. Morbidelli, D.P. O’Brien, E.D. Young, J. de Vries, F. Nimmo, H. Palme, D.J. Frost, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015)

    ADS  Google Scholar 

  • T. Ruedas, Globally smooth approximations for shock pressure decay in impacts. Icarus 289, 22–33 (2017). https://doi.org/10.1016/j.icarus.2017.02.008

    Article  ADS  Google Scholar 

  • T. Ruedas, D. Breuer, On the relative importance of thermal and chemical buoyancy in regular and impact-induced melting in a Mars-like planet. J. Geophys. Res., Planets 122(7), 1554–1579 (2017). https://doi.org/10.1002/2016JE005221

    Article  ADS  Google Scholar 

  • A. Salvador, H. Massol, A. Davaille, E. Marcq, P. Sarda, E. Chassefière, The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res., Planets 122, 1458–1486 (2017)

    ADS  Google Scholar 

  • H.E. Schlichting, S. Mukhopadhyay, Atmosphere impact losses. Space Sci. Rev. 214(1), 34 (2018)

    ADS  Google Scholar 

  • H.E. Schlichting, R. Sari, A. Yalinewich, Atmospheric mass loss during planet formation: the importance of planetesimal impacts. Icarus 247, 81–94 (2015)

    ADS  Google Scholar 

  • P. Schulte, L. Alegret, I. Arenillas, J.A. Arz, P.J. Barton, P.R. Bown, T.J. Bralower, G.L. Christeson, P. Claeys, C.S. Cockell, G.S. Collins, A. Deutsch, T.J. Goldin, K. Goto, J.M. Grajales-Nishimura, R.A.F. Grieve, S.P.S. Gulick, K.R. Johnson, W. Kiessling, C. Koeberl, D.A. Kring, K.G. MacLeod, T. Matsui, J. Melosh, A. Montanari, J.V. Morgan, C.R. Neal, D.J. Nichols, R.D. Norris, E. Pierazzo, G. Ravizza, M. Rebolledo-Vieyra, W.U. Reimold, E. Robin, T. Salge, R.P. Speijer, A.R. Sweet, J. Urrutia-Fucugauchi, V. Vajda, M.T. Whalen, P.S. Willumsen, The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010)

    ADS  Google Scholar 

  • D.W. Schwartzman, T. Volk, Biotic enhancement of weathering and the habitability of Earth. Nature 340, 457–460 (1989)

    ADS  Google Scholar 

  • E.W. Schwieterman, C.S. Cockell, V.S. Meadows, Nonphotosynthetic pigments as biosignatures. Astrobioloy 15, 341–361 (2015)

    ADS  Google Scholar 

  • E.W. Schwieterman, V.S. Meadows, S.D. Domagal-Goldman, D. Deming, G.N. Arney, R. Luger, C.E. Harman, A. Misra, R. Barnes, Identifying planetary biosignature imposters: spectral signatures of CO an O4 resulting from abiotic O2/O3 production. Astrobioloy 819, 1 (2016)

    Google Scholar 

  • E.W. Schwieterman, N.Y. Kiang, M.N. Parenteau, C.E. Harman, S. DasSarma, T.M. Fisher, G.N. Arney, H.E. Hartnett, C.T. Reinhard, S.L. Olson, V.S. Meadows, C.S. Cockell, S.I. Walker, J.L. Grenfell, S. Hegde, S. Rugheimer, R. Hu, T.W. Lyons, Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobioloy 18(6), 663–708 (2018)

    ADS  Google Scholar 

  • S. Seager, E.L. Turner, J. Schafer, E.B. Ford, Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5, 372–390 (2005)

    ADS  Google Scholar 

  • A. Segura, K. Krelove, J.F. Kasting, D. Sommerlatt, V. Meadows, D. Crisp, M. Cohen, E. Mlawer, Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3, 689–708 (2003)

    ADS  Google Scholar 

  • J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, third edition. (Wiley, New York, 2016)

    Google Scholar 

  • F. Selsis, D. Despois, J.-P. Parisot, Signature of life on exoplanets: can Darwin produce false positive detections? Astrophys. Astrobiol. 388, 985–1003 (2002)

    ADS  Google Scholar 

  • F. Selsis, R.D. Wordsworth, F. Forget, Thermal phase curves of nontransiting terrestrial exoplanets I. Characterizing atmospheres. Astron. Astrophys. 532, A1 (2011). https://doi.org/10.1051/0004-6361/201116654

    Article  ADS  Google Scholar 

  • B.D. Shizgal, G.G. Arkos, Nonthermal escape of the atmospheres of Venus, Earth and Mars. Rev. Geophys. 34, 483–505 (1996). https://doi.org/10.1029/96RG02213

    Article  ADS  Google Scholar 

  • V.V. Shuvalov, Atmospheric erosion induced by oblique impacts. Meteorit. Planet. Sci. 44(8), 1095–1105 (2009)

    ADS  Google Scholar 

  • V.V. Shuvalov, N.A. Artemieva, M.Y. Kuz’micheva, T.V. Losseva, V.V. Svettsov, V.M. Khazins, Crater ejecta: markers of impact catastrophes. Izv. Phys. Solid Earth 48(3), 241–255 (2012)

    ADS  Google Scholar 

  • V.V. Shuvalov, E. Kührt, D. de Niem, K. Wünnemann, Impact induced erosion of hot and dense atmospheres. Planet. Space Sci. 98, 120–127 (2014). https://doi.org/10.1016/j.pss.2013.08.018

    Article  ADS  Google Scholar 

  • D. Sifré, E. Gardés, M. Massuyeau, L. Hashim, S. Hier-Majumder, F. Gaillard, Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509, 81–85 (2014)

    ADS  Google Scholar 

  • B.M. Simonson, B.B. Glass, Spherule layersrecords of ancient impacts. Annu. Rev. Earth Planet. Sci. 32, 329–361 (2004)

    ADS  Google Scholar 

  • N.H. Sleep, Martian plate tectonics. J. Geophys. Res. 99, 5639–5655 (1994)

    ADS  Google Scholar 

  • N.H. Sleep, K. Zahnle, P.S. Neuhoff, Initiation of clement surface conditions on the early Earth. Proc. Natl Acad. Sci. USA 98, 3666–3672 (2001). https://doi.org/10.1073/pnas.071045698

    Article  ADS  Google Scholar 

  • N.H. Sleep, D.K. Bird, E. Pope, Paleontology of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 40, 277–300 (2012). https://doi.org/10.1146/annurev-earth-092611-090602

    Article  ADS  Google Scholar 

  • V.S. Solomatov, Why plate tectonics is rare and how it started on Earth, in Bulletin of the American Physical Society, vol. 61 (Am. Math. Soc., Providence, 2016)

    Google Scholar 

  • V.S. Solomatov, L.N. Moresi, Stagnant lid convection on Venus. J. Geophys. Res., Planets 101(E2), 4737–4753 (1996)

    ADS  Google Scholar 

  • S.M. Som, R. Buick, J.W. Hagadorn, T.S. Blake, J.M. Perreault, J.P. Harnmeijer, D.C. Catling, Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat. Geosci., Lett. 9, 448–451 (2016). https://doi.org/10.1038/ngeo2713

    Article  ADS  Google Scholar 

  • G. Southam, F. Westall, T. Spohn, Geology, life and habitability, in Planets and Moons Treatise on Geophysics, vol. 10, 2nd edn. (Elsevier, Amsterdam, 2015), pp. 473–486. ISBN 978-0-444-53803-1

    Google Scholar 

  • T. Spohn, Editorial: special issue ‘Planetary evolution and life’. Planet. Space Sci. 98, 1–4 (2014). https://doi.org/10.1016/j.pss.2014.04.015

    Article  ADS  Google Scholar 

  • T. Spohn, G. Schubert, Oceans in the icy Galilean satellites of Jupiter. Icarus 161, 456 (2003)

    ADS  Google Scholar 

  • V. Stagno, D.O. Ojwang, C.A. McCammon, D.J. Frost, The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84–88 (2013)

    ADS  Google Scholar 

  • V. Stamenkovic, L. Noack, D. Breuer, T. Spohn, The influence of pressure-dependent viscosity on the thermal evolution of super-Earths. Astrophys. J. 748(1), 41 (2012). https://doi.org/10.1088/0004-637X/748/1/41

    Article  ADS  Google Scholar 

  • R.J. Stern, M.I. Leybourne, T. Tsujimori, Kimberlites and the start of plate tectonics. Geology 44(10), 799–802 (2016)

    ADS  Google Scholar 

  • D.J. Stevenson, Planetary magnetic fields. Rep. Prog. Phys. 46, 555 (1983)

    ADS  Google Scholar 

  • A. Stökl, E.A. Dorfi, C.P. Johnstone, H. Lammer, Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5 M in the habitable zone. Astrophys. J. 825(2), 86 (2016). https://doi.org/10.3847/0004-637X/825/2/86

    Article  ADS  Google Scholar 

  • J.Y. Storme, S. Golubic, A. Wilmotte, J. Kleinteich, D. Velázquez, E.J. Javaux, Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology 15, 843–857 (2015)

    ADS  Google Scholar 

  • E.E. Stüeken, R. Buick, B.M. Guy, M.C. Koehler, Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520(7549), 666–669 (2015)

    ADS  Google Scholar 

  • E.E. Stüeken, M.A. Kipp, M.C. Koehler, R. Buick, The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Sci. Rev. 160, 220–239 (2016a). https://doi.org/10.1016/j.earscirev.2016.07.007

    Article  Google Scholar 

  • E.E. Stüeken, M.A. Kipp, M.C. Koehler, E.W. Schwieterman, B. Johnson, R. Buick, Modeling pN2 through geological time: implications for planetary climates and atmospheric biosignatures. Astrobiology 16(12), 949–963 (2016b)

    ADS  Google Scholar 

  • K. Sugitani, K. Lepot, T. Nagaoka, K. Mimura, M. Van Kranendonk, D.Z. Oehler, M.R. Walter, Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley pool formation, in the Pilbara Craton, western Australia. Astrobiology 10(9), 899–920 (2010)

    ADS  Google Scholar 

  • V.V. Svetsov, Atmospheric erosion and replenishment induced by impacts of cosmic bodies upon the Earth and Mars. Sol. Syst. Res. 41(1), 28–41 (2007)

    ADS  Google Scholar 

  • J.W. Szostak, The origin of life on Earth and the design of alternative life forms. Mol. Front. J. 01(02), 121–131 (2017)

    Google Scholar 

  • J.A. Tarduno, E.G. Blackman, E.E. Mamajek, Detecting the oldest geodynamo and attendant shielding from the solar wind: implications for habitability. Phys. Earth Planet. Inter. 233, 68–87 (2014)

    ADS  Google Scholar 

  • T. Tashiro, A. Ishida, M. Hori, M. Igisu, M. Koike, P. Méjean, N. Takahata, Y. Sano, T. Komiya, Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549(7673), 516 (2017)

    ADS  Google Scholar 

  • F. Tian, Atmospheric escape from solar system terrestrial planets and exoplanets. Annu. Rev. Earth Planet. Sci. 43, 459–476 (2015)

    ADS  Google Scholar 

  • F. Tian, S. Ida, Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8(3), 177–180 (2015). https://doi.org/10.1038/ngeo2372

    Article  ADS  Google Scholar 

  • F. Tian, M. Güdel, C.P. Johnstone, H. Lammer, R. Luger, P. Odert, Water loss from young planets. Space Sci. Rev. 214(3), 65 (2018)

    ADS  Google Scholar 

  • S.M. Tikoo, L.T. Elkins-Tanton, The fate of water within Earth and super-Earths and implications for plate tectonics. Philos. Trans. R. Soc. A 375, 20150394 (2017)

    ADS  Google Scholar 

  • G. Tinetti, V.S. Meadows, D. Crisp, N.Y. Kiang, B.H. Kahn, E. Bosc, E. Fishbein, T. Velusamy, M. Turnbull, Detectability of planetary characteristics in disk-averaged spectra II: synthetic spectra and light-curves of Earth. Astrobiology 6, 881–900 (2006)

    ADS  Google Scholar 

  • N. Tosi, M. Godolt, B. Stracke, T. Ruedas, J.L. Grenfell, D. Höning, A. Nikolaou, A.-C. Plesa, D. Breuer, T. Spohn, The habitability of a stagnant-lid Earth. Astron. Astrophys. 605, A71 (2017). https://doi.org/10.1051/0004-6361/201730728

    Article  ADS  Google Scholar 

  • L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577(L3), 577–580 (2015). https://doi.org/10.1051/0004-6361/201526146

    Article  Google Scholar 

  • M. Turbet, F. Forget, V. Svetsov, O. Popova, C. Gillmann, Ö. Karatekin, Q. Wallemacq, J.W. Head, R. Wordsworth, Catastrophic events: possible solutions to the early Mars enigma (s), in 6th Mars Atmosphere Modelling and Observation (MAMO) Workshop, vol. 4304 (2017), extended abstract

    Google Scholar 

  • M. Turbet, E. Bolmont, J. Leconte et al., The nature of the TRAPPIST-1 exoplanets. Astron. Astrophys. 612, A86 (2018). https://doi.org/10.1051/0004-6361/201732233

    Article  Google Scholar 

  • J.L. Vago, F. Westall, A.J. Coates, Pasteur Instrument Teams: R. Jaumann, O. Korablev, V. Ciarletti, I. Mitrofanov, J.-L. Josset, M.C. De Sanctis, J.-P. Bibring, F. Rull, F. Goesmann, H. Steininger, W. Goetz, W. Brinckerhoff, C. Szopa, F. Raulin, Landing Site Selection Working Group: H.G.M. Edwards, L.G. Whyte, A.G. Fairén, J.-P. Bibring, J. Bridges, E. Hauber, G.G. Ori, S. Werner, D. Loizeau, R.O. Kuzmin, R.M.E. Williams, J. Flahaut, F. Forget, J.L. Vago, D. Rodionov, O. Korablev, H. Svedhem, E. Sefton-Nash, G. Kminek, L. Lorenzoni, L. Joudrier, V. Mikhailov, A. Zashchirinskiy, S. Alexashkin, F. Calantropio, A. Merlo, P. Poulakis, O. Witasse, O. Bayle, S. Bayón, Other Contributors: U. Meierhenrich, J. Carter, J.M. García-Ruiz, P. Baglioni, A. Haldemann, A.J. Ball, A. Debus, R. Lindner, F. Haessig, D. Monteiro, R. Trautner, C. Voland, P. Rebeyre, D. Goulty, F. Didot, S. Durrant, E. Zekri, D. Koschny, A. Toni, G. Visentin, M. Zwick, M. van Winnendael, M. Azkarate, C. Carreau, Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17(6–7), 471–510 (2017).

    ADS  Google Scholar 

  • D. Valencia, R.J. O’Connell, D.D. Sasselov, Inevitability of plate tectonics on super-Earths. Astrophys. J. 670(1), L45–L48 (2007). https://doi.org/10.1086/524012

    Article  ADS  Google Scholar 

  • H.J.J. van Heck, P.J. Tackley, Plate tectonics on super-earths: equally or more likely than on Earth. Earth and Planetary Science Letters 310(3), 252–261 (2011). https://doi.org/10.1016/j.epsl.2011.07.029

    Article  ADS  Google Scholar 

  • L. Van Valen, The history and stability of atmospheric oxygen. Science 171(3970), 439–443 (1971)

    ADS  Google Scholar 

  • M.A. Van Zuilen, A. Lepland, G. Arrhenius, Reassessing the evidence for the earliest traces of life. Nature 418(6898), 627–630 (2002). https://doi.org/10.1038/nature00934

    Article  ADS  Google Scholar 

  • D. Veras, D.J. Armstrong, J.A. Blake, J.F. Gutiérrez-Marcos, A.P. Jackson, H. Schäeffer, Dynamical and biological panspermia constraints within multi-planet exosystems. Astrobiology 18(9), 1106–1122 (2018). https://doi.org/10.1089/ast.2017.1786

    Article  ADS  Google Scholar 

  • A.M. Vickery, H.J. Melosh, Atmospheric erosion and impactor retention in large impacts, with application to mass extinctions, in Global Catastrophes in Earth History, vol. 247 (1990), pp. 289–300

    Google Scholar 

  • A.A. Vidotto, M. Jardine, C. Helling, Early UV ingress in WASP-12b: measuring planetary magnetic fields. Astrophys. J. Lett. 722, 2 (2010)

    Google Scholar 

  • P. von Paris, P. Hedelt, F. Selsis, F. Schreier, T. Trautmann, Characterization of potentially habitable planets: retrieval of atmospheric and planetary properties from emission spectra. Astron. Astrophys. 551, A120 (2013)

    Google Scholar 

  • D. Wacey, N. Noffke, M. Saunders, P. Guagliardo, D.M. Pyle, Volcanogenic pseudo-fossils from the ∼3.48 Ga dresser formation, Pilbara, Western Australia. Astrobiology (2018). https://doi.org/10.1089/ast.2017.1734

    Article  Google Scholar 

  • J. Wade, B.J. Wood, Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    ADS  Google Scholar 

  • F.W. Wagner, N. Tosi, F. Sohl, F. Rauer, T. Spohn, Rocky super-Earth interiors structure and internal dynamics of CoRoT-7b and Kepler-10b. Astron. Astrophys. 541, A103 (2012). https://doi.org/10.1051/0004-6361/201118441

    Article  ADS  Google Scholar 

  • R.J. Walker, Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde, Geochem. 69, 101–125 (2009)

    ADS  Google Scholar 

  • J.C.G. Walker, P.B. Hays, J.F. Kasting, A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776 (1981)

    ADS  Google Scholar 

  • S.I. Walker, W. Bains, L. Cronin, S. Dassarma, S.O. Danielache, S. Domagal-Goldman, B. Kacar, N.Y. Kiang, A. Lenardic, C. Reinhard, W. Moore, E.W. Schwieterman, E.L. Shkolnik, H.B. Smith, Exoplanet biosignatures: future directions. Astrobiology 18(6), 779–824 (2018). https://doi.org/10.1089/ast.2017.1738

    Article  ADS  Google Scholar 

  • K. Wallmann, G. Aloisi, The global carbon cycle: geological processes, in Fundamentals of Geobiology, ed. by A.H. Knoll, D.E. Canfield, K.O. Konhauser (Wiley, New York, 2012), pp. 20–35

    Google Scholar 

  • K.J. Walsh, A. Morbidelli, N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475(7355), 206–209 (2011). https://doi.org/10.1038/nature10201

    Article  ADS  Google Scholar 

  • B. Ward, The global nitrogen cycle, in Fundamentals of Geobiology, ed. by A.H. Knoll, D.E. Canfield, K.O. Konhauser (Wiley, New York, 2012), pp. 36–48

    Google Scholar 

  • C. Warren, Plate tectonics: when ancient continents collide. Nat. Geosci. 10, 245–246 (2017)

    ADS  Google Scholar 

  • A.J. Watson, T.M. Donahue, J.C.G. Walker, The dynamics of a highly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48, 150–166 (1981)

    ADS  Google Scholar 

  • W.A. Watters, M.T. Zuber, B.H. Hager, Thermal perturbations caused by large impacts and consequences for mantle convection. J. Geophys. Res., Planets 114, E2 (2009)

    Google Scholar 

  • O.M. Weller, M.R. St-Onge, Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogeny. Nat. Geosci. 10(4), 305–311 (2017). https://doi.org/10.1038/ngeo2904

    Article  ADS  Google Scholar 

  • S.C. Werner, B.A. Ivanov, Exogenic dynamics, cratering and surface ages, in Treatise on Geophysics, vol. 11, ed. by e.G. Schubert 2nd edn. (Elsevier, Amsterdam, 2015), pp. 327–365

    Google Scholar 

  • F. Westall, Morphological biosignatures in early terrestrial and extraterrestrial materials. Space Sci. Rev. 135(1–4), 95–114 (2008)

    ADS  Google Scholar 

  • F. Westall, F. Foucher, B. Cavalazzi, S.T. de Vries, W. Nijman, V. Pearson, J. Watson, V. Verschovsky, I. Wright, A.N. Rousaud, D. Marchesini, A. Severine, Volcaniclastic habitats for early life on Earth and Mars: a case study from ∼3.5 Ga-old rocks from the Pilbara, Australia. Planet. Space Sci. 59(10), 1093–1106 (2011). https://doi.org/10.1016/j.pss.2010.09.006

    Article  ADS  Google Scholar 

  • F. Westall, F. Foucher, N. Bost, M. Bertrand, D. Loizeau, J.L. Vago, G. Kminek, F. Gaboyer, K.A. Campbell, J.-G. Bréhéret, P. Gautret, C.S. Cockell, Biosignatures on Mars: what, where, and how? Implications for the search for martian life. Astrobiology 15, 998–1029 (2015)

    ADS  Google Scholar 

  • M.J. Whitehouse, A.A. Nemchin, R.T. Pidgeon, What can Hadean detrital zircon really tell us? A critical evaluation of their geochronology with implications for the interpretation of oxygen and hafnium isotopes. Gondwana Res. 51, 78–91 (2017)

    ADS  Google Scholar 

  • D.M. Williams, Capture of terrestrial-sized moons by gas giant planets. Astrobiology 13, 315 (2013)

    ADS  Google Scholar 

  • E.T. Wolf, Assessing the habitability of the TRAPPIST-1 system using a 3D climate model. Astrophys. J. Lett. 839, L1 (2017)

    ADS  Google Scholar 

  • C.-C. Yang, A. Johansen, D. Carrera, Concentrating small particles in protoplanetary disks through the streaming instability. Astron. Astrophys. 606, A80 (2017)

    Google Scholar 

  • Y.L. Yung, W.B. De More, Earth: imprint of life, in Photochemistry of Planetary Atmospheres. (Oxford University Press, London, 1999), Chap. 9

    Google Scholar 

  • K.J. Zahnle, N.H. Sleep, Comets and the Origin and Evolution of Life, 1st edn. P.J. Thomas, C.F. Chyba, C.P. McKay (Springer, New York, 1997), pp. 175–208

    Google Scholar 

  • K.J. Zahnle, N.H. Sleep, Comets and the Origin and Evolution of Life, 2nd edn, ed. by P.J. Thomas, C.F. Chyba, C.P. McKay (Springer, Berlin, 2006), pp. 207–252

    Google Scholar 

  • A.L. Zerkle, S. Mikhail, The geobiological nitrogen cycle: from microbes to the mantle. Geobiology 15, 343–352 (2017)

    Google Scholar 

  • A.L. Zerkle, S.W. Poulton, R.J. Newton, C. Mettam, M.W. Claire, A. Bekker, C.K. Junium, Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465–467 (2017). https://doi.org/10.1038/nature20826

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper was triggered by presentations and discussions that were held during the conference “Geoscience for understanding habitability in the solar system and beyond” held in the Azores from the 25th–29th September 2017. The workshop (and the work behind the scientific presentations) was supported by: – European COST (Cooperation in Science and Technology) Action TD1308 “ORIGINS” (Origins and evolution of life on Earth and in the Universe),

– EGU (European Geophysical Union) Galileo conferences,

– EuroPlaNet (European Planetology Network) 2020 RI (Research Infrastructure) (EPN2020-RI),

– German TRR 170 (TransRegio collaborative research) network,

– GINOP-2.3.2-15-2016-00003,

– Hungarian National Research, Development and Innovation Office (NKFIH) grants K119993, K-115709,

– The Austrian Science Fund (FWF) NFN project S11601-N16 “Pathways to Habitability: From Disks to Active Stars, Planets and Life” (related sub-projects S11604-N16, S11606-N16 and S11607-N16),

– Planet TOPERS (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS) Belgian IAP (Inter-university Attraction Pole) PAI-IAP P7/15,

– EU FP7-ERC Starting Grant ELiTE 308074: Early life Traces, Evolution, and Implications for astrobiology,

– FNRS FRFC T.0029.13 ExtraOrDynHa,

– ET-HOME (Evolution and Tracers of the Habitability of Mars and Earth) Belgian Excellence of Science—EoS-program, EOS 30442502. They are very much acknowledged, as well as anonymous reviewers for their helpful reviews.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehant, V., Debaille, V., Dobos, V. et al. Geoscience for Understanding Habitability in the Solar System and Beyond. Space Sci Rev 215, 42 (2019). https://doi.org/10.1007/s11214-019-0608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-019-0608-8

Keywords

Navigation