Skip to main content

Interstellar Dust in the Solar System

Abstract

Interstellar dust from the Local Interstellar Cloud was detected unambiguously for the first time in 1992 (Grün et al. in Nature 362:428–430, 1993). Since then, great progress has been made in observing local interstellar dust in the Solar System using a variety of methods that, all together, provide complementary views of the dust particles from our local galactic neighborhood. The complementary methods discussed in this paper are: (1) in situ observations with dust detectors, (2) sample return, (3) observations of dust in the infrared, and (4) detections using spacecraft antennae. We review the current state of the art of local interstellar dust research, with a special focus on the advances made in the last ∼10 years of interstellar dust research. We introduce this paper with an overview of the definitions of interstellar dust. We describe the dynamics of the dust particles moving through the heliosphere and report on the progress made in the modelling efforts especially in the last decade. We also review the currently available in situ measurements of interstellar dust flux, speed, direction and size distribution from various missions, in specific from Ulysses and Cassini, and their interpretation in context of the dust dynamics studies. Interstellar dust composition is also reviewed from Cassini in situ time of flight measurements and from the Stardust sample return mission that both took place in the last decade. Finally, also new dust measurements from spacecraft antennae are reviewed. The paper concludes with a discussion on currently still open questions, and an outlook for the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    The Local Interstellar Cloud is a warm, low-density cloud surrounding the solar system that is located itself in a hot and even lower-density region called the “Local Bubble” (Frisch et al. 2011).

  2. 2.

    The heliosphere is the region of space around the Sun that is dominated by the solar wind plasma, with respect to the ISM plasma.

  3. 3.

    This contemporary extrasolar dust may be modified by its journey through the solar system and near the Sun though.

  4. 4.

    See Schwehm (1976) and Burns et al. (1979) for calculating radiation pressure efficiencies, and Silsbee and Draine (2016) and Kimura (2017) for a discussion on the radiation pressure efficiencies for ISD, applied in specific to the Stardust mission (Sect. 5).

  5. 5.

    A newer analysis of the complete Ulysses dataset, but excluding the period where the dust flow was shifted in direction (2005, see Sect. 3.2), has resulted in a derived flow direction of \(+75^{\circ }\pm 30\) ecliptic longitude and \(-13^{\circ }\pm 4\) ecliptic latitude (Strub et al. 2015). This corresponds roughly to the flow direction of the interstellar helium from IBEX He data between 2009 and 2013: \(+75.6^{\circ }\pm 1.4\) ecliptic longitude, and \(-5.12^{\circ }\pm 0.27\) ecliptic latitude (Schwadron et al. 2015) and earlier ISD directions derived from Ulysses data by Landgraf (1998), Frisch et al. (1999), and Kimura et al. (2003b). The average speed of the ISD particles measured by Ulysses was \(24\pm 12~\mbox{km}\,\mbox{s}^{-1}\) (Krüger et al. 2015), compatible with the Helium inflow speed of \(26.3\pm 0.4~\mbox{km}\,\mbox{s}^{-1}\) (Witte 2004) and with earlier determination of the heliocentric ISD inflow speed \(V_{\infty ,\mathit{ISD}} = 25.7\pm 0.5~\mbox{km}\,\mbox{s}^{-1}\) from the then available Ulysses ISD data by Kimura et al. (2003b).

  6. 6.

    See Sterken et al. (2013) for examples of gravitational focusing effects for \(\beta =0.5\) at Asteroid, Jupiter and Saturn distance from the Sun, in the ecliptic plane.

  7. 7.

    Mukai (1981) calculated an equilibrium potential of \(+0.5\) to \(+6~\mbox{V}\) for graphite at 1 AU and \(+4\) to \(+14~\mbox{V}\) for silicate grains depending on solar wind conditions. For charging in other plasma conditions (e.g. in the heliosphere boundary regions), we refer to Sect. 2.2.

  8. 8.

    Figures 45 and 46 in Sterken et al. (2012) visualize such “Lorentz-force-modulated \(\beta \)-cones”.

  9. 9.

    Kimura and Mann (1998) found \(+12~\mbox{V}\) for Silicate particles and \(+6~\mbox{V}\) for Carbon for particles with radius about 0.3 μm, while Alexashov et al. (2016) estimated a potential of \(+2\) to \(+3~\mbox{V}\). Ma et al. (2013) calculated higher charges for aggregates than for compact spheres (see Sect. 2.1.2)

  10. 10.

    The inner heliosphere is the part of the heliosphere where the solar wind dominates the plasma and is still supersonic.

  11. 11.

    Figure 19 in Sterken et al. (2015) illustrates how the incoming particles move through a different phase of the solar cycle in the solar system than they did earlier when crossing the heliosphere boundary regions.

  12. 12.

    The heliopause is the boundary between the solar wind dominated inner heliosphere, and the region around the heliosphere where interstellar medium plasma dominates.

  13. 13.

    ISD data from Helios were sampled between 1974 and 1980, before Ulysses, but were recognized in the data and analysed only after the first Ulysses ISD detections (Altobelli 2004; Altobelli et al. 2006).

References

  1. C.M.O. Alexander, L.R. Nittler, J. Davidson, F.J. Ciesla, Measuring the level of interstellar inheritance in the solar protoplanetary disk. Meteorit. Planet. Sci. 52, 1797–1821 (2017). https://doi.org/10.1111/maps.12891

    ADS  Article  Google Scholar 

  2. D.B. Alexashov, O.A. Katushkina, V.V. Izmodenov, P.S. Akaev, Interstellar dust distribution outside the heliopause: deflection at the heliospheric interface. Mon. Not. R. Astron. Soc. 458, 2553–2564 (2016). https://doi.org/10.1093/mnras/stw514

    ADS  Article  Google Scholar 

  3. N. Altobelli, Monitoring of the interstellar dust stream in the inner solar system using data of different spacecraft. PhD thesis, Ruprecht-Karls-Universität Heidelberg (2004)

  4. N. Altobelli, S. Kempf, M. Landgraf, R. Srama, V. Dikarev, H. Krüger, G. Moragas-Klostermeyer, E. Grün, Cassini between Venus and Earth: detection of interstellar dust. J. Geophys. Res. Space Phys. 108, 8032 (2003). https://doi.org/10.1029/2003JA009874

    ADS  Article  Google Scholar 

  5. N. Altobelli, S. Kempf, H. Krüger, M. Landgraf, M. Roy, E. Grün, Interstellar dust flux measurements by the Galileo dust instrument between the orbits of Venus and Mars. J. Geophys. Res. Space Phys. 110, A07102 (2005). https://doi.org/10.1029/2004JA010772

    ADS  Article  Google Scholar 

  6. N. Altobelli, E. Grün, M. Landgraf, A new look into the Helios dust experiment data: presence of interstellar dust inside the Earth’s orbit. Astron. Astrophys. 448, 243–252 (2006). https://doi.org/10.1051/0004-6361:20053909

    ADS  Article  Google Scholar 

  7. N. Altobelli, F. Postberg, K. Fiege, M. Trieloff, H. Kimura, V.J. Sterken, H.W. Hsu, J. Hillier, N. Khawaja, G. Moragas-Klostermeyer, J. Blum, M. Burton, R. Srama, S. Kempf, E. Gruen, Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer. Science 352, 312–318 (2016). https://doi.org/10.1126/science.aac6397

    ADS  Article  Google Scholar 

  8. L. Andersson, T.D. Weber, D. Malaspina, F. Crary, R.E. Ergun, G.T. Delory, C.M. Fowler, M.W. Morooka, T. McEnulty, A.I. Eriksson, D.J. Andrews, M. Horanyi, A. Collette, R. Yelle, B.M. Jakosky, Dust observations at orbital altitudes surrounding Mars. Science 350, 0398 (2015). https://doi.org/10.1126/science.aad0398

    Article  Google Scholar 

  9. W.J. Baggaley, Advanced Meteor Orbit Radar observations of interstellar meteoroids. J. Geophys. Res. 105(10), 10353–10362 (2000). https://doi.org/10.1029/1999JA900383

    ADS  Article  Google Scholar 

  10. M. Baguhl, E. Grün, M. Landgraf, In situ measurements of interstellar dust with the ULYSSES and Galileo spaceprobes. Space Sci. Rev. 78, 165–172 (1996). https://doi.org/10.1007/BF00170803

    ADS  Article  Google Scholar 

  11. H.A. Bechtel, G.J. Flynn, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, A.L. Butterworth, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, D.R. Frank, Z. Gainsforth, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A.S. Simionovici, V.A. Solé, R. Srama, F.J. Stadermann, T. Stephan, V.J. Sterken, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. von Korff, A.J. Westphal, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination III: infrared spectroscopic analysis of interstellar dust candidates. Meteorit. Planet. Sci. 49, 1548–1561 (2014). https://doi.org/10.1111/maps.12125

    ADS  Article  Google Scholar 

  12. J.L. Bertaux, J.E. Blamont, Possible evidence for penetration of interstellar dust into the solar system. Nature 262, 263–266 (1976). https://doi.org/10.1038/262263a0

    ADS  Article  Google Scholar 

  13. J.P. Bradley, L.P. Keller, T.P. Snow, M.S. Hanner, G.J. Flynn, J.C. Gezo, S.J. Clemett, D.E. Brownlee, J.E. Bowey, An infrared spectral match between GEMS and interstellar grains. Science 285, 1716–1718 (1999). https://doi.org/10.1126/science.285.5434.1716

    ADS  Article  Google Scholar 

  14. F.E. Brenker, A.J. Westphal, L. Vincze, M. Burghammer, S. Schmitz, T. Schoonjans, G. Silversmit, B. Vekemans, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, H.A. Bechtel, J. Borg, J. Bridges, D.E. Brownlee, M. Burchell, A.L. Butterworth, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, P. Fougeray, D.R. Frank, Z. Gainsforth, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, A.S. Simionovici, V.A. Solé, R. Srama, F. Stadermann, T. Stephan, V.J. Sterken, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, J. Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination V: XRF analyses of interstellar dust candidates at ESRF ID13. Meteorit. Planet. Sci. 49, 1594–1611 (2014). https://doi.org/10.1111/maps.12206

    ADS  Article  Google Scholar 

  15. J.A. Burns, P.L. Lamy, S. Soter, Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979). https://doi.org/10.1016/0019-1035(79)90050-2

    ADS  Article  Google Scholar 

  16. A.L. Butterworth, A.J. Westphal, T. Tyliszczak, Z. Gainsforth, J. Stodolna, D.R. Frank, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A.S. Simionovici, V.A. Solé, R. Srama, F.J. Stadermann, T. Stephan, V.J. Sterken, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, B. Vekemans, L. Vincze, J. von Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination IV: Scanning transmission X-ray microscopy analyses of impact features in the Stardust Interstellar Dust Collector. Meteorit. Planet. Sci. 49, 1562–1593 (2014). https://doi.org/10.1111/maps.12220

    ADS  Article  Google Scholar 

  17. A. Collette, E. Grün, D. Malaspina, Z. Sternovsky, Micrometeoroid impact charge yield for common spacecraft materials. J. Geophys. Res. Space Phys. 119, 6019–6026 (2014). https://doi.org/10.1002/2014JA020042

    ADS  Article  Google Scholar 

  18. A. Collette, G. Meyer, D. Malaspina, Z. Sternovsky, Laboratory investigation of antenna signals from dust impacts on spacecraft. J. Geophys. Res. Space Phys. 120, 5298–5305 (2015). https://doi.org/10.1002/2015JA021198

    ADS  Article  Google Scholar 

  19. A. Collette, D.M. Malaspina, Z. Sternovsky, Characteristic temperatures of hypervelocity dust impact plasmas. J. Geophys. Res. Space Phys. 121, 8182–8187 (2016). https://doi.org/10.1002/2015JA022220

    ADS  Article  Google Scholar 

  20. A. Czechowski, I. Mann, Penetration of interstellar dust grains into the heliosphere. J. Geophys. Res. Space Phys. 108, 8038 (2003). https://doi.org/10.1029/2003JA009917

    ADS  Article  Google Scholar 

  21. J.M.A. Danby, G.L. Camm, Statistical dynamics and accretion. Mon. Not. R. Astron. Soc. 117, 50 (1957). https://doi.org/10.1093/mnras/117.1.50

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. H. Dietzel, G. Eichhorn, H. Fechtig, E. Grun, H.J. Hoffmann, J. Kissel, The HEOS 2 and HELIOS micrometeoroid experiments. J. Phys. E, Sci. Instrum. 6, 209–217 (1973). https://doi.org/10.1088/0022-3735/6/3/008

    ADS  Article  Google Scholar 

  23. B.T. Draine, H.M. Lee, Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89–108 (1984). https://doi.org/10.1086/162480

    ADS  Article  Google Scholar 

  24. F. Feng, H.R.A. Jones, Oumuamua as a messenger from the Local Association. Astrophys. J. Lett. 852, L27 (2018). https://doi.org/10.3847/2041-8213/aaa404. 1711.08800

    ADS  Article  Google Scholar 

  25. K. Fiege, M. Trieloff, J.K. Hillier, M. Guglielmino, F. Postberg, R. Srama, S. Kempf, J. Blum, Calibration of relative sensitivity factors for impact ionization detectors with high-velocity silicate microparticles. Icarus 241, 336–345 (2014). https://doi.org/10.1016/j.icarus.2014.07.015

    ADS  Article  Google Scholar 

  26. G.J. Flynn, S.R. Sutton, B. Lai, S. Wirick, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, A.L. Butterworth, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, D. Frank, Z. Gainsforth, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A. Simionovici, V.A. Sol, R. Srama, F.J. Stadermann, T. Stephan, V. Sterken, J. Stodolna, R.M. Stroud, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. von Korff, A.J. Westphal, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination VII: synchrotron X-ray fluorescence analysis of six Stardust interstellar candidates measured with the Advanced Photon Source 2-ID-D microprobe. Meteorit. Planet. Sci. 49, 1626–1644 (2014). https://doi.org/10.1111/maps.12144

    ADS  Article  Google Scholar 

  27. D.R. Frank, A.J. Westphal, M.E. Zolensky, Z. Gainsforth, A.L. Butterworth, R.K. Bastien, C. Allen, D. Anderson, A. Ansari, S. Bajt, N. Bassim, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A.S. Simionovici, V.A. Solé, R. Srama, T. Stephan, V.J. Sterken, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. von Korff, N. Wordsworth, D. Zevin, Stardust Interstellar Preliminary Examination II: curating the interstellar dust collector, picokeystones, and sources of impact tracks. Meteorit. Planet. Sci. 49, 1522–1547 (2014). https://doi.org/10.1111/maps.12147

    ADS  Article  Google Scholar 

  28. P.C. Frisch, Foreword. J. Geophys. Res. 105, 10237–10238 (2000). https://doi.org/10.1029/1999JA900349

    ADS  Article  Google Scholar 

  29. P.C. Frisch, J.D. Slavin, Interstellar dust close to the Sun. Earth Planets Space 65, 175 (2013)

    ADS  Article  Google Scholar 

  30. P.C. Frisch, J.M. Dorschner, J. Geiss, J.M. Greenberg, E. Grün, M. Landgraf, P. Hoppe, A.P. Jones, W. Krätschmer, T.J. Linde, G.E. Morfill, W. Reach, J.D. Slavin, J. Svestka, A.N. Witt, G.P. Zank, Dust in the local interstellar wind. Astrophys. J. 525, 492–516 (1999). https://doi.org/10.1086/307869. astro-ph/9905108

    ADS  Article  Google Scholar 

  31. P.C. Frisch, S. Redfield, J.D. Slavin, The interstellar medium surrounding the Sun. Annu. Rev. Astron. Astrophys. 49, 237–279 (2011). https://doi.org/10.1146/annurev-astro-081710-102613

    ADS  Article  Google Scholar 

  32. Z. Gainsforth, F.E. Brenker, A.S. Simionovici, S. Schmitz, M. Burghammer, A.L. Butterworth, P. Cloetens, L. Lemelle, J.A.S. Tresserras, T. Schoonjans, G. Silversmit, V.A. Solé, B. Vekemans, L. Vincze, A.J. Westphal, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, H.A. Bechtel, J. Borg, J. Bridges, D.E. Brownlee, M. Burchell, H. Changela, A.M. Davis, R. Doll, C. Floss, G. Flynn, P. Fougeray, D. Frank, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, R. Srama, T. Stephan, V. Sterken, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, J. von Korff, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination VIII: identification of crystalline material in two interstellar candidates. Meteorit. Planet. Sci. 49, 1645–1665 (2014). https://doi.org/10.1111/maps.12148

    ADS  Article  Google Scholar 

  33. J.M. Greenberg, A. Li, What are the true astronomical silicates? Astron. Astrophys. 309, 258–266 (1996)

    ADS  Google Scholar 

  34. K. Grogan, S.F. Dermott, B.A.S. Gustafson, An estimation of the interstellar contribution to the zodiacal thermal emission. Astrophys. J. 472, 812 (1996). https://doi.org/10.1086/178110

    ADS  Article  Google Scholar 

  35. E. Grün, R. Srama (Cosmic Dune Team), The Cosmic DUNE dust astronomy mission, in European Planetary Science Congress 2006 (2006), p. 292

    Google Scholar 

  36. E. Grün, J. Svestka, Physics of interplanetary and interstellar dust. Space Sci. Rev. 78, 347–360 (1996). https://doi.org/10.1007/BF00170821

    ADS  Article  Google Scholar 

  37. E. Grün, H. Fechtig, J. Kissel, The micrometeorite experiment on HELIOS. Geochim. Cosmochim. Acta, Suppl. (1984)

  38. E. Grün, H. Fechtig, M.S. Hanner, J. Kissel, B.A. Lindblad, D. Linkert, D. Maas, G.E. Morfill, H.A. Zook, The Galileo dust detector. Space Sci. Rev. 60, 317–340 (1992). https://doi.org/10.1007/BF00216860

    ADS  Article  Google Scholar 

  39. E. Grün, H. Zook, M. Baguhl, A. Balogh, S. Bame, H. Fechtig, R. Forsyth, M. Hanner, M. Horanyi, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. McDonnel, G. Morfill, J. Phillips, C. Polanskey, G. Schwehm, N. Siddique, P. Staubach, J. Svestka, A. Taylor, Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430 (1993)

    ADS  Article  Google Scholar 

  40. E. Grün, B. Gustafson, I. Mann, M. Baguhl, G.E. Morfill, P. Staubach, A. Taylor, H.A. Zook, Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994)

    ADS  Google Scholar 

  41. E. Grün, Z. Sternovsky, M. Horanyi, V. Hoxie, S. Robertson, J. Xi, S. Auer, M. Landgraf, F. Postberg, M.C. Price, R. Srama, N.A. Starkey, J.K. Hillier, I.A. Franchi, P. Tsou, A. Westphal, Z. Gainsforth, Active cosmic dust collector. Planet. Space Sci. 60, 261–273 (2012). https://doi.org/10.1016/j.pss.2011.09.006

    ADS  Article  Google Scholar 

  42. D.A. Gurnett, E. Grun, D. Gallagher, W.S. Kurth, F.L. Scarf, Micron-sized particles detected near Saturn by the Voyager plasma wave instrument. Icarus 53, 236–254 (1983). https://doi.org/10.1016/0019-1035(83)90145-8

    ADS  Article  Google Scholar 

  43. D.A. Gurnett, T.F. Averkamp, F.L. Scarf, E. Grun, Dust particles detected near Giacobini-Zinner by the ICE plasma wave instrument. Geophys. Res. Lett. 13, 291–294 (1986). https://doi.org/10.1029/GL013i003p00291

    ADS  Article  Google Scholar 

  44. D.A. Gurnett, W.S. Kurth, K.L. Scarf, J.A. Burns, J.N. Cuzzi, Micron-sized particle impacts detected near Uranus by the Voyager 2 plasma wave instrument. J. Geophys. Res. 92(14), 14959–14968 (1987). https://doi.org/10.1029/JA092iA13p14959

    ADS  Article  Google Scholar 

  45. D.A. Gurnett, W.S. Kurth, L.J. Granroth, S.C. Allendorf, R.L. Poynter, Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument. J. Geophys. Res. 96, 19 (1991). https://doi.org/10.1029/91JA01270

    Article  Google Scholar 

  46. D.A. Gurnett, W.S. Kurth, D.L. Kirchner, G.B. Hospodarsky, T.F. Averkamp, P. Zarka, A. Lecacheux, R. Manning, A. Roux, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Meyer,hajdukova:2018iaubook A. Meyer, R. Boström, G. Gustafsson, J.E. Wahlund, L. Åhlen, H.O. Rucker, H.P. Ladreiter, W. Macher, L.J.C. Woolliscroft, H. Alleyne, M.L. Kaiser, M.D. Desch, W.M. Farrell, C.C. Harvey, P. Louarn, P.J. Kellogg, K. Goetz, A. Pedersen, The Cassini radio and plasma wave investigation. Space Sci. Rev. 114, 395–463 (2004). https://doi.org/10.1007/s11214-004-1434-0

    ADS  Article  Google Scholar 

  47. B.A.S. Gustafson, Physics of zodiacal dust. Annu. Rev. Earth Planet. Sci. 22, 553–595 (1994). https://doi.org/10.1146/annurev.ea.22.050194.003005

    ADS  Article  Google Scholar 

  48. B.S. Gustafson, N. Misconi, Streaming of interstellar grains in the solar system. Nature 282, 276–278 (1979)

    ADS  Article  Google Scholar 

  49. M. Hajdukova, V.J. Sterken, P. Wiegert, Interstellar meteoroids (2019)

  50. J.K. Hillier, S.F. Green, N. McBride, J.P. Schwanethal, F. Postberg, R. Srama, S. Kempf, G. Moragas-Klostermeyer, J.A.M. McDonnell, E. Grün, The composition of Saturn’s E ring. Mon. Not. R. Astron. Soc. 377, 1588–1596 (2007). https://doi.org/10.1111/j.1365-2966.2007.11710.x

    ADS  Article  Google Scholar 

  51. M. Horanyi, Charged dust dynamics in the solar system. Annu. Rev. Astron. Astrophys. 34, 383–418 (1996). https://doi.org/10.1146/annurev.astro.34.1.383

    ADS  Article  Google Scholar 

  52. ISPE, Meteorit. Planet. Sci. 49(9), 1509–1733 (2014). http://onlinelibrary.wiley.com/doi/10.1111/maps.2014.49.issue-9/issuetoc

    Article  Google Scholar 

  53. E.B. Jenkins, A unified representation of gas-phase element depletions in the interstellar medium. Astrophys. J. 700, 1299–1348 (2009). https://doi.org/10.1088/0004-637X/700/2/1299

    ADS  Article  Google Scholar 

  54. L.P. Keller, S. Messenger, On the origins of GEMS grains. Geochim. Cosmochim. Acta 75, 5336–5365 (2011). https://doi.org/10.1016/j.gca.2011.06.040

    ADS  Article  Google Scholar 

  55. P.J. Kellogg, K. Goetz, S.J. Monson, Dust impact signals on the wind spacecraft. J. Geophys. Res. Space Phys. 121, 966–991 (2016). https://doi.org/10.1002/2015JA021124

    ADS  Article  Google Scholar 

  56. F. Kemper, W.J. Vriend, A.G.G.M. Tielens, The absence of crystalline silicates in the diffuse interstellar medium. Astrophys. J. 609, 826–837 (2004). https://doi.org/10.1086/421339. astro-ph/0403609

    ADS  Article  Google Scholar 

  57. S. Kempf, R. Srama, N. Altobelli, S. Auer, V. Tschernjawski, J. Bradley, M.E. Burton, S. Helfert, T.V. Johnson, H. Krüger, G. Moragas-Klostermeyer, E. Grün, Cassini between Earth and asteroid belt: first in-situ charge measurements of interplanetary grains. Icarus 171, 317–335 (2004). https://doi.org/10.1016/j.icarus.2004.05.017

    ADS  Article  Google Scholar 

  58. S. Kempf, N. Altobelli, C. Briois, E. Grün, M. Horanyi, F. Postberg, J. Schmidt, R. Srama, Z. Sternovsky, G. Tobie, M. Zolotov, SUDA: a dust mass spectrometer for compositional surface mapping for a mission to Europa, in European Planetary Science Congress, vol. 9 (2014), EPSC2014-229

    Google Scholar 

  59. H. Kimura, Interstellar dust in the Local Cloud surrounding the Sun. Mon. Not. R. Astron. Soc. 449, 2250–2258 (2015). https://doi.org/10.1093/mnras/stv427

    ADS  Article  Google Scholar 

  60. H. Kimura, On the photoelectric quantum yield of small dust particles. Mon. Not. R. Astron. Soc. 459, 2751–2761 (2016). https://doi.org/10.1093/mnras/stw820. 1604.03664

    ADS  Article  Google Scholar 

  61. H. Kimura, High radiation pressure on interstellar dust computed by light-scattering simulation on fluffy agglomerates of magnesium-silicate grains with metallic-iron inclusions. Astrophys. J. Lett. 839, L23 (2017). https://doi.org/10.3847/2041-8213/aa6c2d. 1704.02066

    ADS  Article  Google Scholar 

  62. H. Kimura, I. Mann, The electric charging of interstellar dust in the solar system and consequences for its dynamics. Astrophys. J. 499, 454–462 (1998). https://doi.org/10.1086/305613

    ADS  Article  Google Scholar 

  63. H. Kimura, I. Mann, Filtering of the interstellar dust flow near the heliopause: the importance of secondary electron emission for the grain charging. Earth Planets Space 51, 1223–1232 (1999). https://doi.org/10.1186/BF03351596

    ADS  Article  Google Scholar 

  64. H. Kimura, I. Mann, Selection effects on interstellar dust in heliosphere. Adv. Space Res. 25, 299–302 (2000). https://doi.org/10.1016/S0273-1177(99)00952-7

    ADS  Article  Google Scholar 

  65. H. Kimura, I. Mann, E.K. Jessberger, Composition, structure, and size distribution of dust in the local interstellar cloud. Astrophys. J. 583, 314–321 (2003a). https://doi.org/10.1086/345102

    ADS  Article  Google Scholar 

  66. H. Kimura, I. Mann, E.K. Jessberger, Elemental abundances and mass densities of dust and gas in the local interstellar cloud. Astrophys. J. 582, 846–858 (2003b). https://doi.org/10.1086/344691

    ADS  Article  Google Scholar 

  67. D. Koschny, R.H. Soja, C. Engrand, G.J. Flynn, J. Lasue, A.C. Levasseur-Regourd, T. Nakamura, D. Malaspina, A.R. Poppe, V.J. Sterken, J.M. Trigo-Rodríguez, Interplanetary dust, meteoroids, meteors and meteorites. Space Sci. Rev. 215(4), 1–62 (2019)

    Article  Google Scholar 

  68. H. Krüger, M. Landgraf, N. Altobelli, E. Grün, Interstellar dust in the solar system. Space Sci. Rev. 130, 401–408 (2007). https://doi.org/10.1007/s11214-007-9181-7. 0706.3110

    ADS  Article  Google Scholar 

  69. H. Krüger, P. Strub, E. Grün, V.J. Sterken, Sixteen years of Ulysses interstellar dust measurements in the solar system. I. Mass distribution and gas-to-dust mass ratio. Astrophys. J. 812, 139 (2015). https://doi.org/10.1088/0004-637X/812/2/139. 1510.06180

    ADS  Article  Google Scholar 

  70. H. Krüger, M. Kobayashi, T. Arai, R. Srama, B.V. Sarli, H. Kimura, G. Moragas-Klostermeyer, R. Soja, N. Altobelli, E. Grün, Dust analysis on board the Destiny+ mission to 3200 Phaethon, in European Planetary Science Congress, vol. 11 (2017), EPSC2017-204

    Google Scholar 

  71. H. Krüger, N. Altobelli, P. Strub, V. Sterken, R. Srama, E. Grün, Interstellar dust in the inner solar system: model versus in-situ spacecraft data. Astron. Astrophys. 626, A37 (2019a)

    ADS  Article  Google Scholar 

  72. H. Krüger, P. Strub, R. Srama, M. Kobayashi, T. Arai, H. Kimura, T. Hirai, G. Moragas-Klostermeyer, N. Altobelli, V. Sterken, J. Agarwal, E. Grün, Modelling DESTINY+ interplanetary and interstellar dust measurements en route to the active asteroid (3200) Phaethon. Planet. Space Sci. 172, 22–42 (2019b)

    ADS  Article  Google Scholar 

  73. W.S. Kurth, T.F. Averkamp, D.A. Gurnett, Z. Wang, Cassini RPWS observations of dust in Saturn’s E ring. Planet. Space Sci. 54, 988–998 (2006). https://doi.org/10.1016/j.pss.2006.05.011

    ADS  Article  Google Scholar 

  74. H. Laakso, R. Grard, A. Pedersen, G. Schwehm, Impacts of large dust particles on the VEGA spacecraft. Adv. Space Res. 9, 269–272 (1989). https://doi.org/10.1016/0273-1177(89)90273-1

    ADS  Article  Google Scholar 

  75. M. Landgraf, PhD thesis. Ruprecht-Karls-Univ, Heidelberg (1998)

  76. M. Landgraf, Modeling the motion and distribution of interstellar dust inside the heliosphere. J. Geophys. Res. 105(10), 10303–10316 (2000)

    ADS  Article  Google Scholar 

  77. M. Landgraf, K. Augustsson, E. Grün, B.A.S. Gustafson, Deflection of the local interstellar dust flow by solar radiation pressure. Science 286, 2319–2322 (1999a)

    ADS  Article  Google Scholar 

  78. M. Landgraf, M. Müller, E. Grün, Prediction of the in-situ dust measurements of the stardust mission to comet 81P/Wild 2. Planet. Space Sci. 47, 1029–1050 (1999b). https://doi.org/10.1016/S0032-0633(99)00031-8. astro-ph/9904204

    ADS  Article  Google Scholar 

  79. M. Landgraf, W.J. Baggaley, E. Grün, H. Krüger, G. Linkert, Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements. J. Geophys. Res. 105(10), 10343–10352 (2000)

    ADS  Article  Google Scholar 

  80. M. Landgraf, H. Krüger, N. Altobelli, E. Grün, Penetration of the heliosphere by the interstellar dust stream during solar maximum. J. Geophys. Res. Space Phys. 108, 8030 (2003). https://doi.org/10.1029/2003JA009872

    ADS  Article  Google Scholar 

  81. J. Leitner, C. Vollmer, P. Hoppe, J. Zipfel, Characterization of presolar material in the CR chondrite Northwest Africa 852. Astrophys. J. 745, 38 (2012). https://doi.org/10.1088/0004-637X/745/1/38

    ADS  Article  Google Scholar 

  82. A.C. Levasseur-Regourd, J. Agarwal, H. Cottin, C. Engrand, G. Flynn, M. Fulle, T. Gombosi, Y. Langevin, J. Lasue, T. Mannel, S. Merouane, O. Poch, N. Thomas, A. Westphal, Cometary dust. Space Sci. Rev. 214(3), 64 (2018). https://doi.org/10.1007/s11214-018-0496-3

    ADS  Article  Google Scholar 

  83. E.H. Levy, J.R. Jokipii, Penetration of interstellar dust into the Solar System. Nature 264, 423–424 (1976)

    ADS  Article  Google Scholar 

  84. T.J. Linde, T.I. Gombosi, Interstellar dust filtration at the heliospheric interface. J. Geophys. Res. 105(10), 10411–10418 (2000). https://doi.org/10.1029/1999JA900149

    ADS  Article  Google Scholar 

  85. Q. Ma, L.S. Matthews, V. Land, T.W. Hyde, Charging of aggregate grains in astrophysical environments. Astrophys. J. 763, 77 (2013). https://doi.org/10.1088/0004-637X/763/2/77. 1210.0459

    ADS  Article  Google Scholar 

  86. D. Malaspina, Coordinated Data Analysis Web: The Wind ISD Database (2017). wi_l3-dustimpact_waves. https://cdaweb.sci.gsfc.nasa.gov/index.html/

  87. D.M. Malaspina, L.B. Wilson, A database of interplanetary and interstellar dust detected by the Wind spacecraft. J. Geophys. Res. Space Phys. 121, 9369–9377 (2016). https://doi.org/10.1002/2016JA023209

    ADS  Article  Google Scholar 

  88. D.M. Malaspina, M. Horányi, A. Zaslavsky, K. Goetz, L.B. Wilson, K. Kersten, Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument. Geophys. Res. Lett. 41, 266–272 (2014). https://doi.org/10.1002/2013GL058786

    ADS  Article  Google Scholar 

  89. M. Masanori, R. Srama, H. Krüger, T. Arai, H. Kimura, DESTINY+ Dust Analyzer, in 49th Lunar and Planetary Science Conference 2018 (2018) (LPI Contrib. No. 2083)

    Google Scholar 

  90. J.S. Mathis, W. Rumpl, K.H. Nordsieck, The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977). https://doi.org/10.1086/155591

    ADS  Article  Google Scholar 

  91. N. McBride, M. Jam, Meteoroid impacts on spacecraft: sporadics, streams, and the 1999 Leonids. Planet. Space Sci. 47, 1005–1013 (1999). https://doi.org/10.1016/S0032-0633(99)00023-9

    ADS  Article  Google Scholar 

  92. D.J. McComas, M. Bzowski, P. Frisch, S.A. Fuselier, M.A. Kubiak, H. Kucharek, T. Leonard, E. Möbius, N.A. Schwadron, J.M. Sokół, P. Swaczyna, M. Witte, Warmer local interstellar medium: a possible resolution of the Ulysses-IBEX enigma. Astrophys. J. 801, 28 (2015). https://doi.org/10.1088/0004-637X/801/1/28

    ADS  Article  Google Scholar 

  93. K.J. Meech, R. Weryk, M. Micheli, J.T. Kleyna, O.R. Hainaut, R. Jedicke, R.J. Wainscoat, K.C. Chambers, J.V. Keane, A. Petric, L. Denneau, E. Magnier, T. Berger, M.E. Huber, H. Flewelling, C. Waters, E. Schunova-Lilly, S. Chastel, A brief visit from a red and extremely elongated interstellar asteroid. Nature 552, 378–381 (2017). https://doi.org/10.1038/nature25020

    ADS  Article  Google Scholar 

  94. N. Meyer-Vernet, M.G. Aubier, B.M. Pedersen, Voyager 2 at Uranus—grain impacts in the ring plane. Geophys. Res. Lett. 13, 617–620 (1986). https://doi.org/10.1029/GL013i007p00617

    ADS  Article  Google Scholar 

  95. N. Meyer-Vernet, A. Lecacheux, M.L. Kaiser, D.A. Gurnett, Detecting nanoparticles at radio frequencies: Jovian dust stream impacts on Cassini/RPWS. Geophys. Res. Lett. 36, L03103 (2009a). https://doi.org/10.1029/2008GL036752

    ADS  Article  Google Scholar 

  96. N. Meyer-Vernet, M. Maksimovic, A. Czechowski, I. Mann, I. Zouganelis, K. Goetz, M.L. Kaiser, O.C. St. Cyr, J.L. Bougeret, S.D. Bale, Dust detection by the Wave Instrument on STEREO: nanoparticles picked up by the solar wind? Sol. Phys. 256, 463 (2009b)

    ADS  Article  Google Scholar 

  97. G.E. Morfill, E. Gruen, The motion of charged dust particles in interplanetary space. I—The zodiacal dust cloud. II—Interstellar grains. Planet. Space Sci. 27, 1269–1292 (1979). https://doi.org/10.1016/0032-0633(79)90105-3

    ADS  Article  Google Scholar 

  98. T. Mukai, On the charge distribution of interplanetary grains. Astron. Astrophys. 99, 1–6 (1981)

    ADS  Google Scholar 

  99. F.M. Neubauer, K.H. Glassmeier, A.J. Coates, R. Goldstein, M.H. Acuna, Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments. Geophys. Res. Lett. 17, 1809–1812 (1990). https://doi.org/10.1029/GL017i011p01809

    ADS  Article  Google Scholar 

  100. P. Oberc, Electric antenna as a dust detector. Adv. Space Res. 17, 105–110 (1996). https://doi.org/10.1016/0273-1177(95)00766-8

    ADS  Article  Google Scholar 

  101. A. Pais, Inward Bound: Of Matter and Forces in the Physical World (Oxford University Press, London, 1986)

    Google Scholar 

  102. F. Pantellini, S. Belheouane, N. Meyer-Vernet, A. Zaslavsky, Nano dust impacts on spacecraft and boom antenna charging. Astrophys. Space Sci. 341, 309–314 (2012). https://doi.org/10.1007/s10509-012-1108-4. 1205.1430

    ADS  Article  Google Scholar 

  103. E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958). https://doi.org/10.1086/146579

    ADS  Article  Google Scholar 

  104. B.M. Pedersen, N. Meyer-Vernet, M.G. Aubier, P. Zarka, Dust distribution around Neptune—grain impacts near the ring plane measured by the Voyager planetary radio astronomy experiment. J. Geophys. Res. 96, 19 (1991). https://doi.org/10.1029/91JA01601

    Article  Google Scholar 

  105. F. Postberg, S. Kempf, J.K. Hillier, R. Srama, S.F. Green, N. McBride, E. Grün, The E-ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193, 438–454 (2008). https://doi.org/10.1016/j.icarus.2007.09.001

    ADS  Article  Google Scholar 

  106. F. Postberg, S. Kempf, D. Rost, T. Stephan, R. Srama, M. Trieloff, A. Mocker, M. Goerlich, Discriminating contamination from particle components in spectra of Cassini’s dust detector CDA. Planet. Space Sci. 57, 1359–1374 (2009a). https://doi.org/10.1016/j.pss.2009.06.027

    ADS  Article  Google Scholar 

  107. F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck, R. Srama, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009b). https://doi.org/10.1038/nature08046

    ADS  Article  Google Scholar 

  108. F. Postberg, J.K. Hillier, S.P. Armes, S. Bugiel, A. Butterworth, D. Dupin, L.A. Fielding, S. Fujii, Z. Gainsforth, E. Grün, Y.W. Li, R. Srama, V. Sterken, J. Stodolna, M. Trieloff, A. Westphal, C. Achilles, C. Allen, A. Ansari, S. Bajt, N. Bassim, R.K. Bastien, H.A. Bechtel, J. Borg, F. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A. Davis, R. Doll, C. Floss, G. Flynn, D. Frank, P.R. Heck, P. Hoppe, G. Huss, J. Huth, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, A. Leonard, H. Leroux, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, M.C. Price, S.A. Sandford, J.A.S. Tressaras, S. Schmitz, T. Schoonjans, K. Schreiber, G. Silversmit, A. Simionovici, V.A. Solé, F. Stadermann, T. Stephan, R.M. Stroud, S. Sutton, P. Tsou, A. Tsuchiyama, T. Tyliczszak, B. Vekemans, L. Vincze, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination IX: high-speed interstellar dust analog capture in Stardust flight-spare aerogel. Meteorit. Planet. Sci. 49, 1666–1679 (2014). https://doi.org/10.1111/maps.12173

    ADS  Article  Google Scholar 

  109. S. Redfield, J.L. Linsky, The three-dimensional structure of the warm local interstellar medium. II. The Colorado model of the local interstellar cloud. Astrophys. J. 534, 825–837 (2000). https://doi.org/10.1086/308769

    ADS  Article  Google Scholar 

  110. S. Redfield, B.E. Wood, J.L. Linsky, Physical structure of the local interstellar medium. Adv. Space Res. 34, 41–45 (2004). https://doi.org/10.1016/j.asr.2003.02.053

    ADS  Article  Google Scholar 

  111. M. Rowan-Robinson, B. May, An improved model for the infrared emission from the zodiacal dust cloud: cometary, asteroidal and interstellar dust. Mon. Not. R. Astron. Soc. 429, 2894–2902 (2013). https://doi.org/10.1093/mnras/sts471. 1212.4759

    ADS  Article  Google Scholar 

  112. F.L. Scarf, D.A. Gurnett, W.S. Kurth, R.L. Poynter, Voyager 2 plasma wave observations at Saturn. Science 215, 587–594 (1982). https://doi.org/10.1126/science.215.4532.587

    ADS  Article  Google Scholar 

  113. N.A. Schwadron, E. Möbius, T. Leonard, S.A. Fuselier, D.J. McComas, D. Heirtzler, H. Kucharek, F. Rahmanifard, M. Bzowski, M.A. Kubiak, J.M. Sokół, P. Swaczyna, P. Frisch, Determination of interstellar He parameters using five years of data from the IBEX: beyond closed form approximations. Astrophys. J. Suppl. Ser. 220, 25 (2015). https://doi.org/10.1088/0067-0049/220/2/25

    ADS  Article  Google Scholar 

  114. G. Schwehm, Radiation pressure on interplanetary dust particles, in Interplanetary Dust and Zodiacal Light, ed. by H. Elsaesser, H. Fechtig. Lecture Notes in Physics, vol. 48 (Springer, Berlin, 1976), pp. 459–463. https://doi.org/10.1007/3-540-07615-8_526

    Chapter  Google Scholar 

  115. K. Silsbee, B.T. Draine, Radiation pressure on fluffy submicron-sized grains. Astrophys. J. 818, 133 (2016). https://doi.org/10.3847/0004-637X/818/2/133. 1508.00646

    ADS  Article  Google Scholar 

  116. A.S. Simionovici, L. Lemelle, P. Cloetens, V.A. Solé, J.A.S. Tresseras, A.L. Butterworth, A.J. Westphal, Z. Gainsforth, J. Stodolna, C. Allen, D. Anderson, A. Ansari, S. Bajt, N. Bassim, R.K. Bastien, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, A.M. Davis, R. Doll, C. Floss, G. Flynn, D.R. Frank, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, A. Leonard, H. Leroux, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, S. Schmitz, T. Schoonjans, G. Silversmit, R. Srama, F.J. Stadermann, T. Stephan, V.J. Sterken, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination VI: quantitative elemental analysis by synchrotron X-ray fluorescence nanoimaging of eight impact features in aerogel. Meteorit. Planet. Sci. 49, 1612–1625 (2014). https://doi.org/10.1111/maps.12208

    ADS  Article  Google Scholar 

  117. J.D. Slavin, P.C. Frisch, The boundary conditions of the heliosphere: photoionization models constrained by interstellar and in situ data. Astron. Astrophys. 491, 53–68 (2008). https://doi.org/10.1051/0004-6361:20078101

    ADS  Article  Google Scholar 

  118. J.D. Slavin, P.C. Frisch, H.R. Müller, J. Heerikhuisen, N.V. Pogorelov, W.T. Reach, G. Zank, Trajectories and distribution of interstellar dust grains in the heliosphere. Astrophys. J. 760, 46 (2012). https://doi.org/10.1088/0004-637X/760/1/46. 1210.1127

    ADS  Article  Google Scholar 

  119. R. Srama, T.J. Ahrens, N. Altobelli, S. Auer, J.G. Bradley, M. Burton, V.V. Dikarev, T. Economou, H. Fechtig, M. Görlich, M. Grande, A. Graps, E. Grün, O. Havnes, S. Helfert, M. Horanyi, E. Igenbergs, E.K. Jessberger, T.V. Johnson, S. Kempf, A.V. Krivov, H. Krüger, A. Mocker-Ahlreep, G. Moragas-Klostermeyer, P. Lamy, M. Landgraf, D. Linkert, G. Linkert, F. Lura, J.A.M. McDonnell, D. Möhlmann, G.E. Morfill, M. Müller, M. Roy, G. Schäfer, G. Schlotzhauer, G.H. Schwehm, F. Spahn, M. Stübig, J. Svestka, V. Tschernjawski, A.J. Tuzzolino, R. Wäsch, H.A. Zook, The Cassini cosmic dust analyzer. Space Sci. Rev. 114, 465–518 (2004). https://doi.org/10.1007/s11214-004-1435-z

    ADS  Article  Google Scholar 

  120. R. Srama, T. Stephan, E. Grün, N. Pailer, A. Kearsley, A. Graps, R. Laufer, P. Ehrenfreund, N. Altobelli, K. Altwegg, S. Auer, J. Baggaley, M.J. Burchell, J. Carpenter, L. Colangeli, F. Esposito, S.F. Green, H. Henkel, M. Horanyi, A. Jäckel, S. Kempf, N. McBride, G. Moragas-Klostermeyer, H. Krüger, P. Palumbo, A. Srowig, M. Trieloff, P. Tsou, Z. Sternovsky, O. Zeile, H.P. Röser, Sample return of interstellar matter (SARIM). Exp. Astron. 23, 303–328 (2009). https://doi.org/10.1007/s10686-008-9088-7

    ADS  Article  Google Scholar 

  121. R. Srama, E. Gruün, A. Krivov, R. Soja, V. Sterken, Z. Sternovsky, S2d2: solar system debris disk (2013). http://www.irs.uni-stuttgart.de/cosmicdust/missions/debrisdisk/

  122. O.C. St. Cyr, M.L. Kaiser, N. Meyer-Vernet, R.A. Howard, R.A. Harrison, S.D. Bale, W.T. Thompson, K. Goetz, M. Maksimovic, J.L. Bougeret, D. Wang, S. Crothers, STEREO SECCHI and S/WAVES observations of spacecraft debris caused by micron-size interplanetary dust impacts. Sol. Phys. 256, 475–488 (2009). https://doi.org/10.1007/s11207-009-9362-5

    ADS  Article  Google Scholar 

  123. V.J. Sterken, N. Altobelli, S. Kempf, G. Schwehm, R. Srama, E. Grün, The flow of interstellar dust into the solar system. Astron. Astrophys. 538, A102 (2012). https://doi.org/10.1051/0004-6361/201117119

    ADS  Article  Google Scholar 

  124. V.J. Sterken, N. Altobelli, S. Kempf, H. Krüger, R. Srama, P. Strub, E. Grün, The filtering of interstellar dust in the solar system. Astron. Astrophys. 552, A130 (2013). https://doi.org/10.1051/0004-6361/201219609

    ADS  Article  Google Scholar 

  125. V.J. Sterken, A.J. Westphal, N. Altobelli, E. Grün, J.K. Hillier, F. Postberg, R. Srama, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.S. Bastien, N. Bassim, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, A.L. Butterworth, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, D. Frank, Z. Gainsforth, P.R. Heck, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A. Simionovici, V.A. Solé, T. Stephan, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. von Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination X: impact speeds and directions of interstellar grains on the Stardust dust collector. Meteorit. Planet. Sci. 49, 1680–1697 (2014). https://doi.org/10.1111/maps.12219

    ADS  Article  Google Scholar 

  126. V.J. Sterken, P. Strub, H. Krüger, R. von Steiger, P. Frisch, Sixteen years of Ulysses interstellar dust measurements in the solar system. III. Simulations and data unveil new insights into local interstellar dust. Astrophys. J. 812, 141 (2015). https://doi.org/10.1088/0004-637X/812/2/141

    ADS  Article  Google Scholar 

  127. V. Sterken, G. Moragas-Klostermeyer, J. Hillier, L. Fielding, J. Lovett, S. Armes, N. Fechler, R. Srama, S. Bugiel, K. Hornung, Impact ionization experiments with porous cosmic dust particle analogs, in EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, vol. 18 (2016), EPSC2016-16018

    Google Scholar 

  128. R.M. Stroud, C. Allen, A. Ansari, D. Anderson, S. Bajt, N. Bassim, R.S. Bastien, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, A.L. Butterworth, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, D.R. Frank, Z. Gainsforth, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, J. Huth, B. Hvide, A. Kearsley, A.J. King, P. Kotula, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, K. Schreiber, G. Silversmit, A.S. Simionovici, V.A. Solé, R. Srama, T. Stephan, V.J. Sterken, J. Stodolna, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, A.J. Westphal, J. von Korff, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination XI: identification and elemental analysis of impact craters on Al foils from the Stardust Interstellar Dust Collector. Meteorit. Planet. Sci. 49, 1698–1719 (2014). https://doi.org/10.1111/maps.12136

    ADS  Article  Google Scholar 

  129. P. Strub, V.J. Sterken, H. Krüger, E. Grün, M. Horanyi, Interstellar dust flow through the solar system, in American Institute of Physics Conference Series, ed. by V.Y. Nosenko, P.K. Shukla, M.H. Thoma, H.M. Thomas. American Institute of Physics Conference Series, vol. 1397 (2011), pp. 385–386. https://doi.org/10.1063/1.3659855

    Chapter  Google Scholar 

  130. P. Strub, H. Krüger, V.J. Sterken, Sixteen years of Ulysses interstellar dust measurements in the solar system. II. Fluctuations in the dust flow from the data. Astrophys. J. 812, 140 (2015). https://doi.org/10.1088/0004-637X/812/2/140. 1508.03242

    ADS  Article  Google Scholar 

  131. P. Strub, V.J. Sterken, R. Soja, H. Krüger, E. Grün, R. Srama, Heliospheric modulation of the interstellar dust flow on to Earth. Astron. Astrophys. 621, A54 (2019). https://doi.org/10.1051/0004-6361/201832644

    ADS  Article  Google Scholar 

  132. F.M. Thayer, D.M. Malaspina, A. Collette, Z. Sternovsky, Variation in relative dust impact charge recollection with antenna to spacecraft potential on STEREO. J. Geophys. Res. Space Phys. 121, 4998–5004 (2016). https://doi.org/10.1002/2015JA021983

    ADS  Article  Google Scholar 

  133. J.I. Thorpe, C. Parvini, J.M. Trigo-Rodríguez, Detection and measurement of micrometeoroids with LISA Pathfinder. Astron. Astrophys. 586, A107 (2016). https://doi.org/10.1051/0004-6361/201527658

    ADS  Article  Google Scholar 

  134. J.I. Thorpe, T.B. Littenberg, J. Baker, J. Slutsky (The LISA Pathfinder Team) LISA Pathfinder as a micrometeoroid instrument. J. Phys. Conf. Ser. 840, 012007 (2017). https://doi.org/10.1088/1742-6596/840/1/012007

    Article  Google Scholar 

  135. D. Tsintikidis, D.A. Gurnett, W.S. Kurth, L.J. Granroth, Micron-sized particles detected in the vicinity of Jupiter by the Voyager plasma wave instruments. Geophys. Res. Lett. 23, 997–1000 (1996). https://doi.org/10.1029/96GL00961

    ADS  Article  Google Scholar 

  136. B.T. Tsurutani, D.R. Clay, L.D. Zhang, B. Dasgupta, D. Brinza, M. Henry, A. Mendis, S. Moses, K.H. Glassmeier, G. Musmann, I. Richter, Dust impacts at comet P/Borrelly. Geophys. Res. Lett. 30, 2134 (2003). https://doi.org/10.1029/2003GL017580

    ADS  Article  Google Scholar 

  137. M.K. Wallis, Penetration of charged interstellar dust into the solar system. Mon. Not. R. Astron. Soc. 227, 331–339 (1987). https://doi.org/10.1093/mnras/227.2.331

    ADS  Article  Google Scholar 

  138. S. Wang, A. Li, B.W. Jiang, Very large interstellar grains as evidenced by the mid-infrared extinction. Astrophys. J. 811, 38 (2015). https://doi.org/10.1088/0004-637X/811/1/38. 1508.03403

    ADS  Article  Google Scholar 

  139. J.C. Weingartner, B.T. Draine, Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296–309 (2001). https://doi.org/10.1086/318651. astro-ph/0008146

    ADS  Article  Google Scholar 

  140. A.J. Westphal, D. Anderson, A.L. Butterworth, D.R. Frank, R. Lettieri, W. Marchant, J. von Korff, D. Zevin, A. Ardizzone, A. Campanile, M. Capraro, K. Courtney, M.N. Criswell, D. Crumpler, R. Cwik, F.J. Gray, B. Hudson, G. Imada, J. Karr, L.L.W. Wah, M. Mazzucato, P.G. Motta, C. Rigamonti, R.C. Spencer, S.B. Woodrough, I.C. Santoni, G. Sperry, J.N. Terry, N. Wordsworth, T. Yahnke, C. Allen, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, Z. Gainsforth, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A.S. Simionovici, V.A. Solé, R. Srama, T. Stephan, V.J. Sterken, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, M.E. Zolensky, Stardust interstellar preliminary examination I: identification of tracks in aerogel. Meteorit. Planet. Sci. 49, 1509–1521 (2014a). https://doi.org/10.1111/maps.12168

    ADS  Article  Google Scholar 

  141. A.J. Westphal, H.A. Bechtel, F.E. Brenker, A.L. Butterworth, G. Flynn, D.R. Frank, Z. Gainsforth, J.K. Hillier, F. Postberg, A.S. Simionovici, V.J. Sterken, R.M. Stroud, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, J. Borg, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, E. Grün, P.R. Heck, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, V.A. Solé, R. Srama, F. Stadermann, T. Stephan, J. Stodolna, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Final reports of the Stardust Interstellar Preliminary Examination. Meteorit. Planet. Sci. 49, 1720–1733 (2014b). https://doi.org/10.1111/maps.12221

    ADS  Article  Google Scholar 

  142. A.J. Westphal, R.M. Stroud, H.A. Bechtel, F.E. Brenker, A.L. Butterworth, G.J. Flynn, D.R. Frank, Z. Gainsforth, J.K. Hillier, F. Postberg, A.S. Simionovici, V.J. Sterken, L.R. Nittler, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, E. Grün, P.R. Heck, P. Hoppe, B. Hudson, J. Huth, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, A. Leonard, H. Leroux, R. Lettieri, W. Marchant, R. Ogliore, W.J. Ong, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, K. Schreiber, G. Silversmit, V.A. Solé, R. Srama, F. Stadermann, T. Stephan, J. Stodolna, S. Sutton, M. Trieloff, P. Tsou, T. Tyliszczak, B. Vekemans, L. Vincze, J. Von Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft. Science 345, 786–791 (2014c). https://doi.org/10.1126/science.1252496

    ADS  Article  Google Scholar 

  143. M. Witte, Kinetic parameters of interstellar neutral helium. Review of results obtained during one solar cycle with the Ulysses/GAS-instrument. Astron. Astrophys. 426, 835–844 (2004). https://doi.org/10.1051/0004-6361:20035956

    ADS  Article  Google Scholar 

  144. S.R. Wood, D.M. Malaspina, L. Andersson, M. Horanyi, Hypervelocity dust impacts on the Wind spacecraft: correlations between Ulysses and Wind interstellar dust detections. J. Geophys. Res. Space Phys. 120, 7121–7129 (2015). https://doi.org/10.1002/2015JA021463

    ADS  Article  Google Scholar 

  145. S.Y. Ye, W.S. Kurth, G.B. Hospodarsky, T.F. Averkamp, D.A. Gurnett, Dust detection in space using the monopole and dipole electric field antennas. J. Geophys. Res. Space Phys. 121, 11 (2016). https://doi.org/10.1002/2016JA023266

    Article  Google Scholar 

  146. A. Zaslavsky, Floating potential perturbations due to micrometeoroid impacts: theory and application to S/WAVES data. J. Geophys. Res. Space Phys. 120, 855–867 (2015). https://doi.org/10.1002/2014JA020635

    ADS  Article  Google Scholar 

  147. A. Zaslavsky, N. Meyer-Vernet, I. Mann, A. Czechowski, K. Issautier, G. Le Chat, F. Pantellini, K. Goetz, M. Maksimovic, S.D. Bale, J.C. Kasper, Interplanetary dust detection by radio antennas: mass calibration and fluxes measured by STEREO/WAVES. J. Geophys. Res. Space Phys. 117, A05102 (2012). https://doi.org/10.1029/2011JA017480

    ADS  Article  Google Scholar 

  148. Q. Zhang, Prospects for backtracing 1I/‘Oumuamua and future interstellar objects. Astrophys. J. Lett. 852, L13 (2018). https://doi.org/10.3847/2041-8213/aaa2f7. 1712.08059

    ADS  Article  Google Scholar 

  149. S. Zhukovska, H.P. Gail, M. Trieloff, Evolution of interstellar dust and stardust in the solar neighbourhood. Astron. Astrophys. 479, 453–480 (2008). https://doi.org/10.1051/0004-6361:20077789. 0706.1155

    ADS  Article  Google Scholar 

  150. E. Zinner, Presolar grains, in Treatise on Geochemistry, Vol. 1. Meteorites and Cosmochemical Processes, 2nd edn. (2014), pp. 181–213

    Chapter  Google Scholar 

  151. E. Zinner, S. Amari, R. Guinness, C. Jennings, A.F. Mertz, A.N. Nguyen, R. Gallino, P. Hoppe, M. Lugaro, L.R. Nittler, R.S. Lewis, NanoSIMS isotopic analysis of small presolar grains: search for \(\mbox{Si}_{3}\mbox{N}_{4}\) grains from AGB stars and Al and Ti isotopic compositions of rare presolar SiC grains. Geochim. Cosmochim. Acta 71, 4786–4813 (2007). https://doi.org/10.1016/j.gca.2007.07.012

    ADS  Article  Google Scholar 

  152. V. Zubko, E. Dwek, R.G. Arendt, Interstellar dust models consistent with extinction, emission, and abundance constraints. Astrophys. J. Suppl. Ser. 152, 211–249 (2004). https://doi.org/10.1086/382351. astro-ph/0312641

    ADS  Article  Google Scholar 

Download references

Acknowledgements

FP received financial support from the German Research Foundation (DFG) projects PO 1015/3-1, /4-1, and ERC Consolidator Grant 724908-Habitat OASIS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Veerle J. Sterken.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cosmic Dust from the Laboratory to the Stars

Edited by Rafael Rodrigo, Jürgen Blum, Hsiang-Wen Hsu, Detlef Koschny, Anny-Chantal Levasseur-Regourd, Jesús Martín-Pintado, Veerle Sterken and Andrew Westphal

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sterken, V.J., Westphal, A.J., Altobelli, N. et al. Interstellar Dust in the Solar System. Space Sci Rev 215, 43 (2019). https://doi.org/10.1007/s11214-019-0607-9

Download citation

Keywords

  • Dust
  • ISM
  • LIC
  • Meteoroids
  • Zodiacal dust
  • Interplanetary medium
  • Interstellar dust