Constraining Gas Motions in the Intra-Cluster Medium

Abstract

The detailed velocity structure of the diffuse X-ray emitting intra-cluster medium (ICM) remains one of the last missing key ingredients in understanding the microphysical properties of these hot baryons and constraining our models of the growth and evolution of structure on the largest scales in the Universe. Direct measurements of the gas velocities from the widths and shifts of X-ray emission lines were recently provided for the central region of the Perseus Cluster of galaxies by Hitomi, and upcoming high-resolution X-ray microcalorimeters onboard XRISM and Athena are expected to extend these studies to many more systems. In the mean time, several other direct and indirect methods have been proposed for estimating the velocity structure in the ICM, ranging from resonant scattering to X-ray surface brightness fluctuation analysis, the kinematic Sunyaev-Zeldovich effect, or using optical line emitting nebulae in the brightest cluster galaxies as tracers of the motions of the ambient plasma. Here, we review and compare the existing estimates of the velocities of the hot baryons, as well as the various overlapping physical processes that drive motions in the ICM, and discuss the implications of these measurements for constraining the viscosity and identifying the source of turbulence in clusters of galaxies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. 1.

    We note here that the gamma-ray and radio-based constraints might be weaker if the energy distribution of relativistic particles is softer than explicitly or implicitly assumed in these studies.

  2. 2.

    These arguments do not exclude though a possibility of having localized regions with supersonic motions, especially in the regions where the AGN-driven outflows/jets interact with the ICM (e.g. Heinz et al. 2010).

  3. 3.

    Such plasma could also appear as the result of ICM heating by strong shocks, if the energy is released by an AGN in the form of short and powerful outbursts.

  4. 4.

    http://heat.tsinghua.edu.cn/~hubs/en/index.html.

References

  1. Z. Abdulla, J.E. Carlstrom, A.B. Mantz, D.P. Marrone, C.H. Greer, et al., Constraints on the thermal contents of the X-ray cavities of cluster MS 0735.6+7421 with Sunyaev-Zel’dovich effect observations (2018). Arxiv e-prints 1806.05050

  2. M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, et al., GeV gamma-ray flux upper limits from clusters of galaxies. Astrophys. J. Lett. 717, 71–78 (2010). https://doi.org/10.1088/2041-8205/717/1/L71

    ADS  Article  Google Scholar 

  3. M. Ackermann, M. Ajello, A. Albert, A. Allafort, W.B. Atwood, et al., Search for cosmic-ray-induced gamma-ray emission in galaxy clusters. Astrophys. J. 787, 18 (2014). https://doi.org/10.1088/0004-637X/787/1/18

    ADS  Article  Google Scholar 

  4. R. Adam, I. Bartalucci, G.W. Pratt, P. Ade, P. André, et al., Mapping the kinetic Sunyaev-Zel’dovich effect toward MACS J0717.5+3745 with NIKA. Astron. Astrophys. 598, 115 (2017). https://doi.org/10.1051/0004-6361/201629182

    Article  Google Scholar 

  5. F. Akimoto, A. Furuzawa, Y. Tawara, K. Yamashita, Iron K-line analysis of clusters of galaxies with the resonance scattering effect. Adv. Space Res. 25, 603–606 (2000). https://doi.org/10.1016/S0273-1177(99)00809-1

    ADS  Article  Google Scholar 

  6. M.E. Anderson, R. Sunyaev, Searching for FUV line emission from 107 K gas in massive elliptical galaxies and galaxy clusters as a tracer of turbulent velocities. Mon. Not. R. Astron. Soc. 459, 2806–2821 (2016). https://doi.org/10.1093/mnras/stw822

    ADS  Article  Google Scholar 

  7. M.E. Anderson, R. Sunyaev, FUV line emission, gas kinematics, and discovery of [Fe XXI] \(\lambda \)1354.1 in the sightline toward a filament in M87. Astron. Astrophys. 617, 123 (2018). https://doi.org/10.1051/0004-6361/201732510

    ADS  Article  Google Scholar 

  8. K. Anton, S. Wagner, I. Appenzeller, Detection of the coronal forbidden line Fe X 6374 A in the cooling flow cluster A 1795. Astron. Astrophys. 246, 51–54 (1991)

    ADS  Google Scholar 

  9. P. Arévalo, E. Churazov, I. Zhuravleva, W.R. Forman, C. Jones, On the nature of X-ray surface brightness fluctuations in M87. Astrophys. J. 818, 14 (2016). https://doi.org/10.3847/0004-637X/818/1/14

    ADS  Article  Google Scholar 

  10. Y. Ascasibar, M. Markevitch, The origin of cold fronts in the cores of relaxed galaxy clusters. Astrophys. J. 650, 102–127 (2006). https://doi.org/10.1086/506508

    ADS  Article  Google Scholar 

  11. S.A. Balbus, Stability, instability, and “backward” transport in stratified fluids. Astrophys. J. 534, 420–427 (2000). https://doi.org/10.1086/308732

    ADS  Article  Google Scholar 

  12. S.A. Balbus, N. Soker, Theory of local thermal instability in spherical systems. Astrophys. J. 341, 611–630 (1989). https://doi.org/10.1086/167521

    ADS  Article  Google Scholar 

  13. S.A. Balbus, N. Soker, Resonant excitation of internal gravity waves in cluster cooling flows. Astrophys. J. 357, 353–366 (1990). https://doi.org/10.1086/168926

    ADS  Article  Google Scholar 

  14. C.J. Bambic, B.J. Morsony, C.S. Reynolds, Suppression of AGN-driven turbulence by magnetic fields in a magnetohydrodynamic model of the intracluster medium. Astrophys. J. 857, 84 (2018). https://doi.org/10.3847/1538-4357/aab558

    ADS  Article  Google Scholar 

  15. P. Barai, G. Murante, S. Borgani, M. Gaspari, G.L. Granato, et al., Kinetic AGN feedback effects on cluster cool cores simulated using SPH. Mon. Not. R. Astron. Soc. 461, 1548–1567 (2016). https://doi.org/10.1093/mnras/stw1389

    ADS  Article  Google Scholar 

  16. D. Barret, T. Lam Trong, J.-W. den Herder, L. Piro, M. Cappi, et al., The ATHENA X-ray integral field unit (X-IFU), in Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699 (2018), p. 106991. https://doi.org/10.1117/12.2312409

    Google Scholar 

  17. N. Battaglia, J.R. Bond, C. Pfrommer, J.L. Sievers, On the cluster physics of Sunyaev-Zel’dovich and X-ray surveys. I. The influence of feedback, non-thermal pressure, and cluster shapes on Y-M scaling relations. Astrophys. J. 758, 74 (2012). https://doi.org/10.1088/0004-637X/758/2/74

    ADS  Article  Google Scholar 

  18. M.C. Begelman, Impact of active galactic nuclei on the surrounding medium, in Gas and Galaxy Evolution, ed. by J.E. Hibbard, M. Rupen, J.H. van Gorkom. Astronomical Society of the Pacific Conference Series, vol. 240 (2001), p. 363

    Google Scholar 

  19. V. Biffi, S. Borgani, G. Murante, E. Rasia, S. Planelles, et al., On the nature of hydrostatic equilibrium in galaxy clusters. Astrophys. J. 827, 112 (2016). https://doi.org/10.3847/0004-637X/827/2/112

    ADS  Article  Google Scholar 

  20. M. Birkinshaw, The Sunyaev-Zel’dovich effect. Phys. Rep. 310, 97–195 (1999). https://doi.org/10.1016/S0370-1573(98)00080-5

    ADS  Article  MATH  Google Scholar 

  21. L. Bîrzan, D.A. Rafferty, B.R. McNamara, M.W. Wise, P.E.J. Nulsen, A systematic study of radio-induced X-ray cavities in clusters, groups, and galaxies. Astrophys. J. 607, 800–809 (2004). https://doi.org/10.1086/383519

    ADS  Article  Google Scholar 

  22. E.L. Blanton, S.W. Randall, T.E. Clarke, C.L. Sarazin, B.R. McNamara, et al., A very deep Chandra observation of A2052: bubbles, shocks, and sloshing. Astrophys. J. 737, 99 (2011). https://doi.org/10.1088/0004-637X/737/2/99

    ADS  Article  Google Scholar 

  23. H. Boehringer, G.E. Morfill, On the dynamical role of cosmic rays in cooling flows in clusters of galaxies. Astrophys. J. 330, 609–619 (1988). https://doi.org/10.1086/166497

    ADS  Article  Google Scholar 

  24. H. Böhringer, W. Voges, A.C. Fabian, A.C. Edge, D.M. Neumann, A ROSAT HRI study of the interaction of the X-ray-emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, 25–28 (1993). https://doi.org/10.1093/mnras/264.1.L25

    ADS  Article  Google Scholar 

  25. A. Bonafede, M. Brüggen, D. Rafferty, I. Zhuravleva, C.J. Riseley, et al., LOFAR discovery of radio emission in MACS J0717.5+3745. Mon. Not. R. Astron. Soc. 478, 2927–2938 (2018). https://doi.org/10.1093/mnras/sty1121

    ADS  Article  Google Scholar 

  26. M.A. Bourne, D. Sijacki, AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence. Mon. Not. R. Astron. Soc. 472, 4707–4735 (2017). https://doi.org/10.1093/mnras/stx2269

    ADS  Article  Google Scholar 

  27. J.N. Bregman, A.C. Fabian, E.D. Miller, J.A. Irwin, On VI observations of galaxy clusters: evidence for modest cooling flows. Astrophys. J. 642, 746–751 (2006). https://doi.org/10.1086/501112

    ADS  Article  Google Scholar 

  28. M. Brüggen, C.R. Kaiser, Hot bubbles from active galactic nuclei as a heat source in cooling-flow clusters. Nature 418, 301–303 (2002). https://doi.org/10.1038/nature00857

    ADS  Article  Google Scholar 

  29. G.E. Bulbul, R.K. Smith, A. Foster, J. Cottam, M. Loewenstein, et al., High-resolution XMM-Newton spectroscopy of the cooling flow cluster A3112. Astrophys. J. 747, 32 (2012). https://doi.org/10.1088/0004-637X/747/1/32

    ADS  Article  Google Scholar 

  30. R.E.A. Canning, A.C. Fabian, R.M. Johnstone, J.S. Sanders, C.S. Crawford, et al., Detection of optical coronal emission from 106-K gas in the core of the Centaurus cluster. Mon. Not. R. Astron. Soc. 411, 411–421 (2011). https://doi.org/10.1111/j.1365-2966.2010.17693.x

    ADS  Article  Google Scholar 

  31. M. Chatzikos, R.J.R. Williams, G.J. Ferland, R.E.A. Canning, A.C. Fabian, et al., Implications of coronal line emission in NGC 4696. Mon. Not. R. Astron. Soc. 446, 1234–1244 (2015). https://doi.org/10.1093/mnras/stu2173

    ADS  Article  Google Scholar 

  32. E. Churazov, W. Forman, C. Jones, H. Böhringer, Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 356, 788–794 (2000)

    ADS  Google Scholar 

  33. E. Churazov, M. Brüggen, C.R. Kaiser, H. Böhringer, W. Forman, Evolution of buoyant bubbles in M87. Astrophys. J. 554, 261–273 (2001). https://doi.org/10.1086/321357

    ADS  Article  Google Scholar 

  34. E. Churazov, R. Sunyaev, W. Forman, H. Böhringer, Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 332, 729–734 (2002). https://doi.org/10.1046/j.1365-8711.2002.05332.x

    ADS  Article  Google Scholar 

  35. E. Churazov, W. Forman, C. Jones, H. Böhringer, XMM-Newton observations of the Perseus cluster. I. The temperature and surface brightness structure. Astrophys. J. 590, 225–237 (2003). https://doi.org/10.1086/374923

    ADS  Article  Google Scholar 

  36. E. Churazov, W. Forman, C. Jones, R. Sunyaev, H. Böhringer, XMM-Newton observations of the Perseus cluster-II. Evidence for gas motions in the core. Mon. Not. R. Astron. Soc. 347, 29–35 (2004). https://doi.org/10.1111/j.1365-2966.2004.07201.x

    ADS  Article  Google Scholar 

  37. E. Churazov, I. Zhuravleva, S. Sazonov, R. Sunyaev, Resonant scattering of X-ray emission lines in the hot intergalactic medium. Space Sci. Rev. 157, 193–209 (2010). https://doi.org/10.1007/s11214-010-9685-4

    ADS  Article  Google Scholar 

  38. E. Churazov, A. Vikhlinin, I. Zhuravleva, A. Schekochihin, I. Parrish, et al., X-ray surface brightness and gas density fluctuations in the Coma cluster. Mon. Not. R. Astron. Soc. 421, 1123–1135 (2012). https://doi.org/10.1111/j.1365-2966.2011.20372.x

    ADS  Article  Google Scholar 

  39. E. Churazov, P. Arevalo, W. Forman, C. Jones, A. Schekochihin, et al., Arithmetic with X-ray images of galaxy clusters: effective equation of state for small-scale perturbations in the ICM. Mon. Not. R. Astron. Soc. 463, 1057–1067 (2016). https://doi.org/10.1093/mnras/stw2044

    ADS  Article  Google Scholar 

  40. L. Ciotti, J.P. Ostriker, Cooling flows and quasars. II. Detailed models of feedback-modulated accretion flows. Astrophys. J. 551, 131–152 (2001). https://doi.org/10.1086/320053

    ADS  Article  Google Scholar 

  41. L.L. Cowie, Theoretical models of X-ray emission from rich clusters of galaxies, in X-Ray Astronomy with the Einstein Satellite, ed. by R. Giacconi. Astrophys. Space Sci. Library, vol. 87, 1981, pp. 227–240. https://doi.org/10.1007/978-94-009-8459-2_13

    Google Scholar 

  42. C.S. Crawford, S.W. Allen, H. Ebeling, A.C. Edge, A.C. Fabian, The ROSAT brightest cluster sample III. Optical spectra of the central cluster galaxies. Mon. Not. R. Astron. Soc. 306, 857–896 (1999). https://doi.org/10.1046/j.1365-8711.1999.02583.x

    ADS  Article  Google Scholar 

  43. L.P. David, J. Lim, W. Forman, J. Vrtilek, F. Combes, et al., Molecular gas in the X-ray bright group NGC 5044 as revealed by ALMA. Astrophys. J. 792, 94 (2014). https://doi.org/10.1088/0004-637X/792/2/94

    ADS  Article  Google Scholar 

  44. S. De Grandi, D. Eckert, S. Molendi, M. Girardi, E. Roediger, et al., A textbook example of ram-pressure stripping in the Hydra A/A780 cluster. Astron. Astrophys. 592, 154 (2016). https://doi.org/10.1051/0004-6361/201526641

    Article  Google Scholar 

  45. J. de Plaa, I. Zhuravleva, N. Werner, J.S. Kaastra, E. Churazov, et al., Estimating turbulent velocities in the elliptical galaxies NGC 5044 and NGC 5813. Astron. Astrophys. 539, 34 (2012). https://doi.org/10.1051/0004-6361/201118404

    Article  Google Scholar 

  46. J. de Plaa, J.S. Kaastra, N. Werner, C. Pinto, P. Kosec, et al., CHEERS: the chemical evolution RGS sample. Astron. Astrophys. 607, 98 (2017). https://doi.org/10.1051/0004-6361/201629926

    Article  Google Scholar 

  47. K. Dolag, F. Vazza, G. Brunetti, G. Tormen, Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity. Mon. Not. R. Astron. Soc. 364, 753–772 (2005)

    ADS  Article  Google Scholar 

  48. M. Donahue, J.T. Stocke, Coronal line emission in cluster cooling flows. Astrophys. J. 422, 459–466 (1994). https://doi.org/10.1086/173741

    ADS  Article  Google Scholar 

  49. J. Donnert, F. Vazza, M. Brüggen, J. ZuHone, Magnetic field amplification in galaxy clusters and its simulation. Space Sci. Rev. 214, 122 (2018). https://doi.org/10.1007/s11214-018-0556-8

    ADS  Article  Google Scholar 

  50. R.A. Dupke, J.N. Bregman, Detection of bulk motions in the intracluster medium of the Centaurus cluster. Astrophys. J. 562, 266–278 (2001a). https://doi.org/10.1086/323433

    ADS  Article  Google Scholar 

  51. R.A. Dupke, J.N. Bregman, Velocity gradients in the intracluster gas of the Perseus cluster. Astrophys. J. 547, 705–713 (2001b). https://doi.org/10.1086/318393

    ADS  Article  Google Scholar 

  52. R.A. Dupke, J.N. Bregman, Direct measurements of gas bulk flows in the intracluster medium of the Centaurus cluster with the Chandra satellite. Astrophys. J. 639, 781–787 (2006). https://doi.org/10.1086/499343

    ADS  Article  Google Scholar 

  53. R.A. Dupke, N. Mirabal, J.N. Bregman, A.E. Evrard, The merger in Abell 576: a line-of-sight bullet cluster? Astrophys. J. 668, 781–795 (2007a). https://doi.org/10.1086/520708

    ADS  Article  Google Scholar 

  54. R. Dupke, R.E. White III, J.N. Bregman, Different methods of forming cold fronts in nonmerging clusters. Astrophys. J. 671, 181–189 (2007b). https://doi.org/10.1086/522194

    ADS  Article  Google Scholar 

  55. D. Eckert, S. Molendi, M. Owers, M. Gaspari, T. Venturi, et al., The stripping of a galaxy group diving into the massive cluster A2142. Astron. Astrophys. 570, 119 (2014). https://doi.org/10.1051/0004-6361/201424259

    Article  Google Scholar 

  56. D. Eckert, M. Gaspari, F. Vazza, F. Gastaldello, A. Tramacere, et al., On the connection between turbulent motions and particle acceleration in galaxy clusters. Astrophys. J. Lett. 843, 29 (2017a). https://doi.org/10.3847/2041-8213/aa7c1a

    ADS  Article  Google Scholar 

  57. D. Eckert, M. Gaspari, M.S. Owers, E. Roediger, S. Molendi, et al., Deep Chandra observations of the stripped galaxy group falling into Abell 2142. Astron. Astrophys. 605, 25 (2017b). https://doi.org/10.1051/0004-6361/201730555

    Article  Google Scholar 

  58. A.C. Edge, The detection of molecular gas in the central galaxies of cooling flow clusters. Mon. Not. R. Astron. Soc. 328, 762–782 (2001). https://doi.org/10.1046/j.1365-8711.2001.04802.x

    ADS  Article  Google Scholar 

  59. S. Ehlert, N. Werner, A. Simionescu, S.W. Allen, J.D.P. Kenney, et al., Ripping apart at the seams: the network of stripped gas surrounding M86. Mon. Not. R. Astron. Soc. 430(3), 2401–2410 (2013). https://doi.org/10.1093/mnras/stt060

    ADS  Article  Google Scholar 

  60. S. Ettori, G.W. Pratt, J. de Plaa, D. Eckert, J. Nevalainen, et al., The hot and energetic Universe: the astrophysics of galaxy groups and clusters (2013). arXiv e-prints 1306.2322

  61. A.C. Fabian, Cooling flows in clusters of galaxies. Annu. Rev. Astron. Astrophys. 32, 277–318 (1994). https://doi.org/10.1146/annurev.aa.32.090194.001425

    ADS  Article  Google Scholar 

  62. A.C. Fabian, Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012). https://doi.org/10.1146/annurev-astro-081811-125521

    ADS  Article  Google Scholar 

  63. A.C. Fabian, P.E.J. Nulsen, Subsonic accretion of cooling gas in clusters of galaxies. Mon. Not. R. Astron. Soc. 180, 479–484 (1977). https://doi.org/10.1093/mnras/180.3.479

    ADS  Article  Google Scholar 

  64. A.C. Fabian, J.S. Sanders, S.W. Allen, C.S. Crawford, K. Iwasawa, et al., A deep Chandra observation of the Perseus cluster: shocks and ripples. Mon. Not. R. Astron. Soc. 344, 43–47 (2003a). https://doi.org/10.1046/j.1365-8711.2003.06902.x

    ADS  Article  Google Scholar 

  65. A.C. Fabian, J.S. Sanders, C.S. Crawford, C.J. Conselice, J.S. Gallagher, R.F.G. Wyse, The relationship between the optical H\(\upalpha \) filaments and the X-ray emission in the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 344, 48–52 (2003b). https://doi.org/10.1046/j.1365-8711.2003.06856.x

    ADS  Article  Google Scholar 

  66. A.C. Fabian, J.S. Sanders, G.B. Taylor, S.W. Allen, C.S. Crawford, et al., A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006). https://doi.org/10.1111/j.1365-2966.2005.09896.x

    ADS  Article  Google Scholar 

  67. A.C. Fabian, J.S. Sanders, S.W. Allen, R.E.A. Canning, E. Churazov, et al., A wide Chandra view of the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 418, 2154–2164 (2011). https://doi.org/10.1111/j.1365-2966.2011.19402.x

    ADS  Article  Google Scholar 

  68. A.C. Fabian, S.A. Walker, H.R. Russell, C. Pinto, J.S. Sanders, C.S. Reynolds, Do sound waves transport the AGN energy in the Perseus cluster? Mon. Not. R. Astron. Soc. 464, 1–5 (2017). https://doi.org/10.1093/mnrasl/slw170

    ADS  Article  Google Scholar 

  69. A. Finoguenov, H. Böhringer, Y.-Y. Zhang, XMM-Newton study of the two-dimensional structure of the REFLEX-DXL galaxy clusters. Astron. Astrophys. 442, 827–839 (2005). https://doi.org/10.1051/0004-6361:20053306

    ADS  Article  Google Scholar 

  70. W. Forman, C. Jones, E. Churazov, M. Markevitch, P. Nulsen, et al., Filaments, bubbles, and weak shocks in the gaseous atmosphere of M87. Astrophys. J. 665, 1057–1066 (2007). https://doi.org/10.1086/519480

    ADS  Article  Google Scholar 

  71. W. Forman, E. Churazov, C. Jones, S. Heinz, R. Kraft, A. Vikhlinin, Partitioning the outburst energy of a low Eddington accretion rate AGN at the center of an elliptical galaxy: the recent 12 myr history of the supermassive black hole in M87. Astrophys. J. 844, 122 (2017). https://doi.org/10.3847/1538-4357/aa70e4

    ADS  Article  Google Scholar 

  72. Y. Fujita, T.H. Reiprich, Can supermassive black holes sufficiently heat cool cores of galaxy clusters? Astrophys. J. 612, 797–804 (2004). https://doi.org/10.1086/422800

    ADS  Article  Google Scholar 

  73. J.A. Gaskin, R. Allured, S.R. Bandler, S. Basso, M.W. Bautz, et al., Lynx mission concept status, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10397 (2017), p. 103970. https://doi.org/10.1117/12.2273911

    Google Scholar 

  74. M. Gaspari, E. Churazov, Constraining turbulence and conduction in the hot ICM through density perturbations. Astron. Astrophys. 559, 78 (2013). https://doi.org/10.1051/0004-6361/201322295

    ADS  Article  Google Scholar 

  75. M. Gaspari, A. Sa̧dowski, Unifying the micro and macro properties of AGN feeding and feedback. Astrophys. J. 837, 149 (2017). https://doi.org/10.3847/1538-4357/aa61a3

    ADS  Article  Google Scholar 

  76. M. Gaspari, C. Melioli, F. Brighenti, A. D’Ercole, The dance of heating and cooling in galaxy clusters: three-dimensional simulations of self-regulated active galactic nuclei outflows. Mon. Not. R. Astron. Soc. 411, 349–372 (2011). https://doi.org/10.1111/j.1365-2966.2010.17688.x

    ADS  Article  Google Scholar 

  77. M. Gaspari, M. Ruszkowski, P. Sharma, Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94 (2012a). https://doi.org/10.1088/0004-637X/746/1/94

    ADS  Article  Google Scholar 

  78. M. Gaspari, F. Brighenti, P. Temi, Mechanical AGN feedback: controlling the thermodynamical evolution of elliptical galaxies. Mon. Not. R. Astron. Soc. 424, 190–209 (2012b). https://doi.org/10.1111/j.1365-2966.2012.21183.x

    ADS  Article  Google Scholar 

  79. M. Gaspari, M. Ruszkowski, S.P. Oh, Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 432, 3401–3422 (2013a). https://doi.org/10.1093/mnras/stt692

    ADS  Article  Google Scholar 

  80. M. Gaspari, F. Brighenti, M. Ruszkowski, Solving the cooling flow problem through mechanical AGN feedback. Astron. Nachr. 334, 394 (2013b). https://doi.org/10.1002/asna.201211865

    ADS  Article  Google Scholar 

  81. M. Gaspari, E. Churazov, D. Nagai, E.T. Lau, I. Zhuravleva, The relation between gas density and velocity power spectra in galaxy clusters: high-resolution hydrodynamic simulations and the role of conduction. Astron. Astrophys. 569, 67 (2014). https://doi.org/10.1051/0004-6361/201424043

    ADS  Article  Google Scholar 

  82. M. Gaspari, F. Brighenti, P. Temi, Chaotic cold accretion on to black holes in rotating atmospheres. Astron. Astrophys. 579, 62 (2015). https://doi.org/10.1051/0004-6361/201526151

    ADS  Article  Google Scholar 

  83. M. Gaspari, P. Temi, F. Brighenti, Raining on black holes and massive galaxies: the top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 466, 677–704 (2017). https://doi.org/10.1093/mnras/stw3108

    ADS  Article  Google Scholar 

  84. M. Gaspari, M. McDonald, S.L. Hamer, F. Brighenti, P. Temi, et al., Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. Astrophys. J. 854, 167 (2018). https://doi.org/10.3847/1538-4357/aaaa1b

    ADS  Article  Google Scholar 

  85. F. Gastaldello, S. Molendi, Ni abundance in the core of the Perseus cluster: an answer to the significance of resonant scattering. Astrophys. J. 600, 670–680 (2004). https://doi.org/10.1086/379970

    ADS  Article  Google Scholar 

  86. M. Gendron-Marsolais, J. Hlavacek-Larrondo, T.B. Martin, L. Drissen, M. McDonald, et al., Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety. Mon. Not. R. Astron. Soc. 479, 28–33 (2018). https://doi.org/10.1093/mnrasl/sly084

    ADS  Article  Google Scholar 

  87. M.R. Gilfanov, R.A. Sunyaev, E.M. Churazov, Radial brightness profiles of resonance X-ray lines in galaxy clusters. Sov. Astron. Lett. 13, 3–7 (1987)

    ADS  Google Scholar 

  88. M. Gitti, P.E.J. Nulsen, L.P. David, B.R. McNamara, M.W. Wise, A Chandra study of the large-scale shock and cool filaments in Hydra A: evidence for substantial gas dredge-up by the central outburst. Astrophys. J. 732, 13 (2011). https://doi.org/10.1088/0004-637X/732/1/13

    ADS  Article  Google Scholar 

  89. C.M. Graney, C.L. Sarazin, Optical coronal emission lines from equilibrium and cooling plasmas. Astrophys. J. 364, 561–567 (1990). https://doi.org/10.1086/169438

    ADS  Article  Google Scholar 

  90. L. Gu, H. Xu, J. Gu, Y. Wang, Z. Zhang, et al., A Chandra study of temperature substructures in intermediate-redshift galaxy clusters. Astrophys. J. 700, 1161–1172 (2009). https://doi.org/10.1088/0004-637X/700/2/1161

    ADS  Article  Google Scholar 

  91. L. Gu, I. Zhuravleva, E. Churazov, F. Paerels, J. Kaastra, H. Yamaguchi, X-ray spectroscopy of galaxy clusters: beyond the CIE modeling. Space Sci. Rev. 214, 108 (2018). https://doi.org/10.1007/s11214-018-0544-z

    ADS  Article  Google Scholar 

  92. S.F. Gull, K.J.E. Northover, Bubble model of extragalactic radio sources. Nature 244, 80–83 (1973). https://doi.org/10.1038/244080a0

    ADS  Article  Google Scholar 

  93. E.J. Hallman, M. Markevitch, Chandra observation of the merging cluster A168: a late stage in the evolution of a cold front. Astrophys. J. Lett. 610, 81–84 (2004). https://doi.org/10.1086/423449

    ADS  Article  Google Scholar 

  94. S.L. Hamer, A.C. Edge, A.M. Swinbank, R.J. Wilman, F. Combes, et al., Optical emission line nebulae in galaxy cluster cores 1: the morphological, kinematic and spectral properties of the sample. Mon. Not. R. Astron. Soc. 460, 1758–1789 (2016). https://doi.org/10.1093/mnras/stw1054

    ADS  Article  Google Scholar 

  95. N.A. Hatch, C.S. Crawford, A.C. Fabian, R.M. Johnstone, Detections of molecular hydrogen in the outer filaments of NGC1275. Mon. Not. R. Astron. Soc. 358, 765–773 (2005). https://doi.org/10.1111/j.1365-2966.2005.08787.x

    ADS  Article  Google Scholar 

  96. T.M. Heckman, S.A. Baum, W.J.M. van Breugel, P. McCarthy, Dynamical, physical, and chemical properties of emission-line nebulae in cooling flows. Astrophys. J. 338, 48–77 (1989). https://doi.org/10.1086/167181

    ADS  Article  Google Scholar 

  97. S. Heinz, C.S. Reynolds, M.C. Begelman, X-ray signatures of evolving radio galaxies. Astrophys. J. 501, 126–136 (1998). https://doi.org/10.1086/305807

    ADS  Article  Google Scholar 

  98. S. Heinz, M. Brüggen, B. Morsony, Prospects of high-resolution X-ray spectroscopy for active galactic nucleus feedback in galaxy clusters. Astrophys. J. 708, 462–468 (2010). https://doi.org/10.1088/0004-637X/708/1/462

    ADS  Article  Google Scholar 

  99. Hitomi Collaboration, The quiescent intracluster medium in the core of the Perseus cluster. Nature 535, 117–121 (2016). https://doi.org/10.1038/nature18627

    ADS  Article  Google Scholar 

  100. Hitomi Collaboration, Atmospheric gas dynamics in the Perseus cluster observed with Hitomi. Publ. Astron. Soc. Jpn. 70, 9 (2018a). https://doi.org/10.1093/pasj/psx138

    ADS  Article  Google Scholar 

  101. Hitomi Collaboration, Measurements of resonant scattering in the Perseus cluster core with Hitomi SXS. Publ. Astron. Soc. Jpn. 70, 10 (2018b). https://doi.org/10.1093/pasj/psx127

    ADS  Article  Google Scholar 

  102. J. Hlavacek-Larrondo, A.C. Fabian, A.C. Edge, H. Ebeling, J.S. Sanders, et al., Extreme AGN feedback in the MAssive cluster survey: a detailed study of X-ray cavities at z>0.3. Mon. Not. R. Astron. Soc. 421, 1360–1384 (2012). https://doi.org/10.1111/j.1365-2966.2011.20405.x

    ADS  Article  Google Scholar 

  103. F. Hofmann, J.S. Sanders, K. Nandra, N. Clerc, M. Gaspari, Thermodynamic perturbations in the X-ray halo of 33 clusters of galaxies observed with Chandra ACIS. Astron. Astrophys. 585, 130 (2016). https://doi.org/10.1051/0004-6361/201526925

    ADS  Article  Google Scholar 

  104. E.M. Hu, L.L. Cowie, Z. Wang, Long-slit spectroscopy of gas in the cores of X-ray luminous clusters. Astrophys. J. Suppl. Ser. 59, 447–498 (1985). https://doi.org/10.1086/191081

    ADS  Article  Google Scholar 

  105. B. Huber, C. Tchernin, D. Eckert, C. Farnier, A. Manalaysay, et al., Probing the cosmic-ray content of galaxy clusters by stacking Fermi-LAT count maps. Astron. Astrophys. 560, 64 (2013). https://doi.org/10.1051/0004-6361/201321947

    ADS  Article  Google Scholar 

  106. L. Iapichino, W. Schmidt, J.C. Niemeyer, J. Merklein, Turbulence production and turbulent pressure support in the intergalactic medium. Mon. Not. R. Astron. Soc. 414, 2297–2308 (2011). https://doi.org/10.1111/j.1365-2966.2011.18550.x

    ADS  Article  Google Scholar 

  107. Y. Ichinohe, N. Werner, A. Simionescu, S.W. Allen, R.E.A. Canning, et al., The growth of the galaxy cluster Abell 85: mergers, shocks, stripping and seeding of clumping. Mon. Not. R. Astron. Soc. 448, 2971–2986 (2015). https://doi.org/10.1093/mnras/stv217

    ADS  Article  Google Scholar 

  108. Y. Ichinohe, A. Simionescu, N. Werner, T. Takahashi, An azimuthally resolved study of the cold front in Abell 3667. Mon. Not. R. Astron. Soc. 467, 3662–3676 (2017). https://doi.org/10.1093/mnras/stx280

    ADS  Article  Google Scholar 

  109. Y. Ichinohe, A. Simionescu, N. Werner, A.C. Fabian, T. Takahashi, Substructures associated with the sloshing cold front in the Perseus cluster. Mon. Not. R. Astron. Soc. 483, 1744–1753 (2019). https://doi.org/10.1093/mnras/sty3257

    ADS  Article  Google Scholar 

  110. N.A. Inogamov, R.A. Sunyaev, Turbulence in clusters of galaxies and X-ray line profiles. Astron. Lett. 29, 791–824 (2003)

    ADS  Article  Google Scholar 

  111. J.S. Kaastra, R. Lieu, J.P.D. Mittaz, J.A.M. Bleeker, R. Mewe, et al., High- and low-energy nonthermal X-ray emission from the Abell 2199 cluster of galaxies. Astrophys. J. Lett. 519, 119–122 (1999). https://doi.org/10.1086/312112

    ADS  Article  Google Scholar 

  112. S.M. Kahn, J.R. Peterson, F.B.S. Paerels, H. Xu, J.S. Kaastra, et al., High resolution X-ray spectroscopic constraints on cooling flow models of clusters of galaxies and gaseous haloes around elliptical galaxies, in Matter and Energy in Clusters of Galaxies, ed. by S. Bowyer, C.-Y. Hwang. Astronomical Society of the Pacific Conference Series, vol. 301 (2003), p. 23

    Google Scholar 

  113. H. Kawahara, E.D. Reese, T. Kitayama, S. Sasaki, Y. Suto, Extracting galaxy cluster gas inhomogeneity from X-ray surface brightness: a statistical approach and application to Abell 3667. Astrophys. J. 687, 936–950 (2008). https://doi.org/10.1086/591930

    ADS  Article  Google Scholar 

  114. R. Khatri, M. Gaspari, Thermal SZ fluctuations in the ICM: probing turbulence and thermodynamics in Coma cluster with Planck. Mon. Not. R. Astron. Soc. 463, 655–669 (2016). https://doi.org/10.1093/mnras/stw2027

    ADS  Article  Google Scholar 

  115. C.C. Kirkpatrick, B.R. McNamara, Hot outflows in galaxy clusters. Mon. Not. R. Astron. Soc. 452, 4361–4376 (2015). https://doi.org/10.1093/mnras/stv1574

    ADS  Article  Google Scholar 

  116. C.C. Kirkpatrick, M. Gitti, K.W. Cavagnolo, B.R. McNamara, L.P. David, et al., Direct evidence for outflow of metal-enriched gas along the radio jets of Hydra A. Astrophys. J. Lett. 707, 69–72 (2009). https://doi.org/10.1088/0004-637X/707/1/L69

    ADS  Article  Google Scholar 

  117. C.C. Kirkpatrick, B.R. McNamara, K.W. Cavagnolo, Anisotropic metal-enriched outflows driven by active galactic nuclei in clusters of galaxies. Astrophys. J. Lett. 731, 23 (2011). https://doi.org/10.1088/2041-8205/731/2/L23

    ADS  Article  Google Scholar 

  118. T. Kitayama, M. Bautz, M. Markevitch, K. Matsushita, S. Allen, et al., ASTRO-H white paper—clusters of galaxies and related science (2014). arXiv e-prints 1412.1176

  119. J. Kormendy, L.C. Ho, Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013). https://doi.org/10.1146/annurev-astro-082708-101811

    ADS  Article  Google Scholar 

  120. R.P. Kraft, W.R. Forman, C. Jones, P.E.J. Nulsen, M.J. Hardcastle, et al., THE GAS DYNAMICS OF NGC 4472 REVEALED BY XMM-NEWTON. Astrophys. J. 727(1), 41 (2011). https://doi.org/10.1088/0004-637X/727/1/41

    ADS  Article  Google Scholar 

  121. R. Kraft, E. Roediger, M. Machacek, W.R. Forman, P.E.J. Nulsen, et al., Stripped elliptical galaxies as probes of ICM physics: III. Deep Chandra observation of NGC 4552-measuring the viscosity of the intracluster medium. Astrophys. J. 848, 27 (2017). https://doi.org/10.3847/1538-4357/aa8a6e

    ADS  Article  Google Scholar 

  122. A.V. Kravtsov, S. Borgani, Formation of galaxy clusters. Annu. Rev. Astron. Astrophys. 50, 353–409 (2012). https://doi.org/10.1146/annurev-astro-081811-125502

    ADS  Article  Google Scholar 

  123. M.W. Kunz, A.A. Schekochihin, S.C. Cowley, J.J. Binney, J.S. Sanders, A thermally stable heating mechanism for the intracluster medium: turbulence, magnetic fields and plasma instabilities. Mon. Not. R. Astron. Soc. 410, 2446–2457 (2011). https://doi.org/10.1111/j.1365-2966.2010.17621.x

    ADS  Article  Google Scholar 

  124. E.T. Lau, A.V. Kravtsov, D. Nagai, Residual gas motions in the intracluster medium and bias in hydrostatic measurements of mass profiles of clusters. Astrophys. J. 705, 1129–1138 (2009). https://doi.org/10.1088/0004-637X/705/2/1129

    ADS  Article  Google Scholar 

  125. E.T. Lau, M. Gaspari, D. Nagai, P. Coppi, Physical origins of gas motions in galaxy cluster cores: interpreting Hitomi observations of the Perseus cluster. Astrophys. J. 849, 54 (2017). https://doi.org/10.3847/1538-4357/aa8c00

    ADS  Article  Google Scholar 

  126. Y. Li, G.L. Bryan, Modeling active galactic nucleus feedback in cool-core clusters: the formation of cold clumps. Astrophys. J. 789, 153 (2014). https://doi.org/10.1088/0004-637X/789/2/153

    ADS  Article  Google Scholar 

  127. Y. Li, M. Ruszkowski, G.L. Bryan, AGN heating in simulated cool-core clusters. Astrophys. J. 847, 106 (2017). https://doi.org/10.3847/1538-4357/aa88c1

    ADS  Article  Google Scholar 

  128. M. Loewenstein, E.G. Zweibel, M.C. Begelman, Cosmic-ray heating of cooling flows—a critical analysis. Astrophys. J. 377, 392–402 (1991). https://doi.org/10.1086/170369

    ADS  Article  Google Scholar 

  129. N. Lyskova, E. Churazov, C. Zhang, W. Forman, C. Jones, et al., Close-up view of an ongoing merger between the NGC 4839 group and the Coma cluster—a post-merger scenario (2018). arXiv e-prints 1811.07944

  130. M. Lyutikov, Dissipation in intercluster plasma. Astrophys. J. Lett. 668, 1–4 (2007). https://doi.org/10.1086/522696

    ADS  Article  Google Scholar 

  131. M. Machacek, A. Dosaj, W. Forman, C. Jones, M. Markevitch, et al., Infall of the elliptical galaxy NGC 1404 into the Fornax cluster. Astrophys. J. 621, 663–672 (2005). https://doi.org/10.1086/427548

    ADS  Article  Google Scholar 

  132. A. Malagoli, R. Rosner, G. Bodo, On the thermal instability of galactic and cluster halos. Astrophys. J. 319, 632–636 (1987). https://doi.org/10.1086/165483

    ADS  Article  Google Scholar 

  133. M. Markevitch, A. Vikhlinin, Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1–53 (2007). https://doi.org/10.1016/j.physrep.2007.01.001

    ADS  Article  Google Scholar 

  134. M. Markevitch, T.J. Ponman, P.E.J. Nulsen, M.W. Bautz, D.J. Burke, et al., Chandra observation of Abell 2142: survival of dense subcluster cores in a merger. Astrophys. J. 541, 542–549 (2000). https://doi.org/10.1086/309470

    ADS  Article  Google Scholar 

  135. M. Markevitch, A. Vikhlinin, P. Mazzotta, Nonhydrostatic gas in the core of the relaxed galaxy cluster A1795. Astrophys. J. Lett. 562, 153–156 (2001). https://doi.org/10.1086/337973

    ADS  Article  Google Scholar 

  136. M. Markevitch, A.H. Gonzalez, L. David, A. Vikhlinin, S. Murray, et al., A textbook example of a bow shock in the merging galaxy cluster 1E 0657-56. Astrophys. J. Lett. 567, 27–31 (2002). https://doi.org/10.1086/339619

    ADS  Article  Google Scholar 

  137. W.G. Mathews, J.N. Bregman, Radiative accretion flow onto giant galaxies in clusters. Astrophys. J. 224, 308–319 (1978). https://doi.org/10.1086/156379

    ADS  Article  Google Scholar 

  138. W.G. Mathews, D.A. Buote, F. Brighenti, Spatial diffusion of X-ray emission lines in the M87 cooling flow; evidence for absorption. Astrophys. J. Lett. 550, 31–34 (2001). https://doi.org/10.1086/319497

    ADS  Article  Google Scholar 

  139. P. Mazzotta, A.C. Edge, M. Markevitch, A Chandra study of the complex structure in the core of 2A 0335+096. Astrophys. J. 596, 190–203 (2003). https://doi.org/10.1086/377633

    ADS  Article  Google Scholar 

  140. M. McCourt, P. Sharma, E. Quataert, I.J. Parrish, Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes. Mon. Not. R. Astron. Soc. 419, 3319–3337 (2012). https://doi.org/10.1111/j.1365-2966.2011.19972.x

    ADS  Article  Google Scholar 

  141. M. McDonald, L.H. Wei, S. Veilleux, Cold molecular gas along the cooling X-ray filament in A1795. Astrophys. J. Lett. 755, 24 (2012). https://doi.org/10.1088/2041-8205/755/2/L24

    ADS  Article  Google Scholar 

  142. M. McDonald, S.W. Allen, M. Bayliss, B.A. Benson, L.E. Bleem, et al., The remarkable similarity of massive galaxy clusters from \(z\sim 0\) to \(z\sim 1.9\). Astrophys. J. 843, 28 (2017). https://doi.org/10.3847/1538-4357/aa7740

    ADS  Article  Google Scholar 

  143. B.R. McNamara, P.E.J. Nulsen, Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14(5), 055023 (2012). https://doi.org/10.1088/1367-2630/14/5/055023

    ADS  Article  Google Scholar 

  144. B.R. McNamara, M. Wise, P.E.J. Nulsen, L.P. David, C.L. Sarazin, et al., Chandra X-ray observations of the Hydra A cluster: an interaction between the radio source and the X-ray-emitting gas. Astrophys. J. Lett. 534, 135–138 (2000). https://doi.org/10.1086/312662

    ADS  Article  Google Scholar 

  145. B.R. McNamara, P.E.J. Nulsen, M.W. Wise, D.A. Rafferty, C. Carilli, et al., The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts. Nature 433, 45–47 (2005). https://doi.org/10.1038/nature03202

    ADS  Article  Google Scholar 

  146. B.R. McNamara, H.R. Russell, P.E.J. Nulsen, A.C. Edge, N.W. Murray, et al., A 1010 solar mass flow of molecular gas in the A1835 brightest cluster galaxy. Astrophys. J. 785, 44 (2014). https://doi.org/10.1088/0004-637X/785/1/44

    ADS  Article  Google Scholar 

  147. B.R. McNamara, H.R. Russell, P.E.J. Nulsen, M.T. Hogan, A.C. Fabian, et al., A mechanism for stimulating AGN feedback by lifting gas in massive galaxies. Astrophys. J. 830, 79 (2016). https://doi.org/10.3847/0004-637X/830/2/79

    ADS  Article  Google Scholar 

  148. J. Merten, D. Coe, R. Dupke, R. Massey, A. Zitrin, et al., Creation of cosmic structure in the complex galaxy cluster merger Abell 2744. Mon. Not. R. Astron. Soc. 417, 333–347 (2011). https://doi.org/10.1111/j.1365-2966.2011.19266.x

    ADS  Article  Google Scholar 

  149. F. Miniati, The matryoshka run: a Eulerian refinement strategy to study the statistics of turbulence in virialized cosmic structures. Astrophys. J. 782, 21 (2014). https://doi.org/10.1088/0004-637X/782/1/21

    ADS  Article  Google Scholar 

  150. R. Mittal, C.P. O’Dea, G. Ferland, J.B.R. Oonk, A.C. Edge, et al., Herschel observations of the Centaurus cluster—the dynamics of cold gas in a cool core. Mon. Not. R. Astron. Soc. 418, 2386–2402 (2011). https://doi.org/10.1111/j.1365-2966.2011.19634.x

    ADS  Article  Google Scholar 

  151. R. Mittal, J.B.R. Oonk, G.J. Ferland, A.C. Edge, C.P. O’Dea, et al., Herschel observations of extended atomic gas in the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 426, 2957–2977 (2012). https://doi.org/10.1111/j.1365-2966.2012.21891.x

    ADS  Article  Google Scholar 

  152. T. Mroczkowski, S. Dicker, J. Sayers, E.D. Reese, B. Mason, et al., A multi-wavelength study of the Sunyaev–Zel’dovich effect in the triple-merger cluster MACS J0717.5+3745 with MUSTANG and Bolocam. Astrophys. J. 761, 47 (2012). https://doi.org/10.1088/0004-637X/761/1/47

    ADS  Article  Google Scholar 

  153. T. Mroczkowski, D. Nagai, K. Basu, J. Chluba, J. Sayers, et al., Astrophysics with the spatially and spectrally resolved Sunyaev-Zeldovich effects: a millimetre/submillimetre probe of the warm and hot Universe (2018). arXiv e-prints 1811.02310

  154. D. Nagai, A. Vikhlinin, A.V. Kravtsov, Testing X-ray measurements of galaxy clusters with cosmological simulations. Astrophys. J. 655, 98–108 (2007). https://doi.org/10.1086/509868

    ADS  Article  Google Scholar 

  155. D. Nagai, E.T. Lau, C. Avestruz, K. Nelson, D.H. Rudd, Predicting merger-induced gas motions in \(\varLambda \)CDM galaxy clusters. Astrophys. J. 777, 137 (2013). https://doi.org/10.1088/0004-637X/777/2/137

    ADS  Article  Google Scholar 

  156. K. Nandra, D. Barret, X. Barcons, A. Fabian, J.-W. den Herder, et al., The hot and energetic Universe: a white paper presenting the science theme motivating the Athena + mission (2013). arXiv e-prints 1306.2307

  157. K. Nelson, D.H. Rudd, L. Shaw, D. Nagai, Evolution of the merger-induced hydrostatic mass bias in galaxy clusters. Astrophys. J. 751, 121 (2012). https://doi.org/10.1088/0004-637X/751/2/121

    ADS  Article  Google Scholar 

  158. K. Nelson, E.T. Lau, D. Nagai, D.H. Rudd, L. Yu, Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in \(\varLambda \)CDM galaxy clusters. Astrophys. J. 782, 107 (2014a). https://doi.org/10.1088/0004-637X/782/2/107

    ADS  Article  Google Scholar 

  159. K. Nelson, E.T. Lau, D. Nagai, Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters. Astrophys. J. 792, 25 (2014b). https://doi.org/10.1088/0004-637X/792/1/25

    ADS  Article  Google Scholar 

  160. D.M. Neumann, M. Arnaud, R. Gastaud, N. Aghanim, D. Lumb, et al., The NGC 4839 group falling into the Coma cluster observed by XMM-Newton. Astron. Astrophys. 365(1), 74–79 (2001). https://doi.org/10.1051/0004-6361:20000182

    ADS  Article  Google Scholar 

  161. M.L. Norman, G.L. Bryan, Cluster turbulence, in The Radio Galaxy Messier 87, ed. by H.-J. Röser, K. Meisenheimer. Lecture Notes in Physics, Berlin Springer Verlag, vol. 530 (1999), p. 106. https://doi.org/10.1007/BFb0106425

    Google Scholar 

  162. A. Ogorzalek, I. Zhuravleva, S.W. Allen, C. Pinto, N. Werner, et al., Improved measurements of turbulence in the hot gaseous atmospheres of nearby giant elliptical galaxies. Mon. Not. R. Astron. Soc. 472, 1659–1676 (2017). https://doi.org/10.1093/mnras/stx2030

    ADS  Article  Google Scholar 

  163. T.B. O’Hara, J.J. Mohr, M.A. Guerrero, A Chandra study of the effects of a major merger on the structure of A2319. Astrophys. J. 604, 604–613 (2004). https://doi.org/10.1086/382063

    ADS  Article  Google Scholar 

  164. H. Omma, J. Binney, Structural stability of cooling flows. Mon. Not. R. Astron. Soc. 350, 13–16 (2004). https://doi.org/10.1111/j.1365-2966.2004.07809.x

    ADS  Article  Google Scholar 

  165. N. Ota, H. Yoshida, Search for gas bulk motions in eight nearby clusters of galaxies with Suzaku. Publ. Astron. Soc. Jpn. 68, 19 (2016). https://doi.org/10.1093/pasj/psv128

    ADS  Article  Google Scholar 

  166. N. Ota, Y. Fukazawa, A.C. Fabian, T. Kanemaru, M. Kawaharada, et al., Suzaku observations of the Centaurus cluster: absence of bulk motions in the intracluster medium. Publ. Astron. Soc. Jpn. 59, 351–359 (2007). https://doi.org/10.1093/pasj/59.sp1.S351

    Article  Google Scholar 

  167. N. Ota, D. Nagai, E.T. Lau, Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy. Publ. Astron. Soc. Jpn. 70, 51 (2018). https://doi.org/10.1093/pasj/psy040

    ADS  Article  Google Scholar 

  168. M.S. Owers, S.W. Randall, P.E.J. Nulsen, W.J. Couch, L.P. David, J.C. Kempner, The dissection of Abell 2744: a rich cluster growing through major and minor mergers. Astrophys. J. 728, 27 (2011). https://doi.org/10.1088/0004-637X/728/1/27

    ADS  Article  Google Scholar 

  169. M. Ozawa, H. Uchiyama, H. Matsumoto, H. Nakajima, K. Koyama, et al., Energy-scale calibration of the Suzaku X-ray imaging spectrometer using the checker flag charge-injection technique in orbit. Publ. Astron. Soc. Jpn. 61, 1–7 (2009). https://doi.org/10.1093/pasj/61.sp1.S1

    Article  Google Scholar 

  170. I.J. Parrish, J.M. Stone, Nonlinear evolution of the magnetothermal instability in two dimensions. Astrophys. J. 633, 334–348 (2005). https://doi.org/10.1086/444589

    ADS  Article  Google Scholar 

  171. I.J. Parrish, M. McCourt, E. Quataert, P. Sharma, Turbulent pressure support in the outer parts of galaxy clusters. Mon. Not. R. Astron. Soc. 419, 29–33 (2012). https://doi.org/10.1111/j.1745-3933.2011.01171.x

    ADS  Article  Google Scholar 

  172. R. Paterno-Mahler, E.L. Blanton, S.W. Randall, T.E. Clarke, Deep Chandra observations of the extended gas sloshing spiral in A2029. Astrophys. J. 773, 114 (2013). https://doi.org/10.1088/0004-637X/773/2/114

    ADS  Article  Google Scholar 

  173. J.R. Peterson, A.C. Fabian, X-ray spectroscopy of cooling clusters. Phys. Rep. 427, 1–39 (2006). https://doi.org/10.1016/j.physrep.2005.12.007

    ADS  Article  Google Scholar 

  174. C. Pinto, A.C. Fabian, N. Werner, P. Kosec, J. Ahoranta, et al., Discovery of O VII line emitting gas in elliptical galaxies. Astron. Astrophys. 572, 8 (2014). https://doi.org/10.1051/0004-6361/201425270

    ADS  Article  Google Scholar 

  175. C. Pinto, J.S. Sanders, N. Werner, J. de Plaa, A.C. Fabian, et al., Chemical enrichment RGS cluster sample (CHEERS): constraints on turbulence. Astron. Astrophys. 575, 38 (2015). https://doi.org/10.1051/0004-6361/201425278

    Article  Google Scholar 

  176. F. Pizzolato, N. Soker, On the nature of feedback heating in cooling flow clusters. Astrophys. J. 632, 821–830 (2005). https://doi.org/10.1086/444344

    ADS  Article  Google Scholar 

  177. D. Prasad, P. Sharma, A. Babul, AGN jet-driven stochastic cold accretion in cluster cores. Mon. Not. R. Astron. Soc. 471, 1531–1542 (2017). https://doi.org/10.1093/mnras/stx1698

    ADS  Article  Google Scholar 

  178. G.W. Pratt, et al., Space Sci. Rev. (2019, this issue). https://doi.org/10.1007/s11214-019-0591-0

    Article  Google Scholar 

  179. D.A. Prokhorov, E.M. Churazov, Counting gamma rays in the directions of galaxy clusters. Astron. Astrophys. 567, 93 (2014). https://doi.org/10.1051/0004-6361/201322454

    ADS  Article  Google Scholar 

  180. F.A. Pulido, B.R. McNamara, A.C. Edge, M.T. Hogan, A.N. Vantyghem, et al., The origin of molecular clouds in central galaxies. Astrophys. J. 853, 177 (2018). https://doi.org/10.3847/1538-4357/aaa54b

    ADS  Article  Google Scholar 

  181. E. Quataert, Buoyancy instabilities in weakly magnetized low-collisionality plasmas. Astrophys. J. 673, 758–762 (2008). https://doi.org/10.1086/525248

    ADS  Article  Google Scholar 

  182. S.W. Randall, C. Jones, M. Markevitch, E.L. Blanton, P.E.J. Nulsen, W.R. Forman, Gas sloshing and bubbles in the galaxy group NGC 5098. Astrophys. J. 700, 1404–1414 (2009). https://doi.org/10.1088/0004-637X/700/2/1404

    ADS  Article  Google Scholar 

  183. S.W. Randall, P.E.J. Nulsen, C. Jones, W.R. Forman, E. Bulbul, et al., A very deep Chandra observation of the galaxy group NGC 5813: AGN shocks, feedback, and outburst history. Astrophys. J. 805, 112 (2015). https://doi.org/10.1088/0004-637X/805/2/112

    ADS  Article  Google Scholar 

  184. E. Rasia, S. Ettori, L. Moscardini, P. Mazzotta, S. Borgani, et al., Systematics in the X-ray cluster mass estimators. Mon. Not. R. Astron. Soc. 369, 2013–2024 (2006)

    ADS  Article  Google Scholar 

  185. P. Rebusco, E. Churazov, R. Sunyaev, H. Böhringer, W. Forman, Width of X-ray lines as a diagnostic of gas motions in cooling flows. Mon. Not. R. Astron. Soc. 384, 1511–1518 (2008). https://doi.org/10.1111/j.1365-2966.2007.12770.x

    ADS  Article  Google Scholar 

  186. Y. Revaz, F. Combes, P. Salomé, Formation of cold filaments in cooling flow clusters. Astron. Astrophys. 477, 33–36 (2008). https://doi.org/10.1051/0004-6361:20078915

    ADS  Article  Google Scholar 

  187. C.S. Reynolds, S. Heinz, M.C. Begelman, The hydrodynamics of dead radio galaxies. Mon. Not. R. Astron. Soc. 332, 271–282 (2002). https://doi.org/10.1046/j.1365-8711.2002.04724.x

    ADS  Article  Google Scholar 

  188. C.S. Reynolds, S.A. Balbus, A.A. Schekochihin, Inefficient driving of bulk turbulence by active galactic nuclei in a hydrodynamic model of the intracluster medium. Astrophys. J. 815, 41 (2015). https://doi.org/10.1088/0004-637X/815/1/41

    ADS  Article  Google Scholar 

  189. E. Roediger, M. Brüggen, A. Simionescu, H. Böhringer, E. Churazov, W.R. Forman, Gas sloshing, cold front formation, and metal redistribution: the Virgo cluster as a quantitative test case. Mon. Not. R. Astron. Soc. 413, 2057–2077 (2011)

    ADS  Article  Google Scholar 

  190. E. Roediger, R.P. Kraft, M.E. Machacek, W.R. Forman, P.E.J. Nulsen, et al., Irregular sloshing cold fronts in the nearby merging groups NGC 7618 and UGC 12491: evidence for Kelvin-Helmholtz instabilities. Astrophys. J. 754, 147 (2012a). https://doi.org/10.1088/0004-637X/754/2/147

    ADS  Article  Google Scholar 

  191. E. Roediger, L. Lovisari, R. Dupke, S. Ghizzardi, M. Brüggen, et al., Gas sloshing, cold fronts, Kelvin-Helmholtz instabilities and the merger history of the cluster of galaxies Abell 496. Mon. Not. R. Astron. Soc. 420, 3632–3648 (2012b). https://doi.org/10.1111/j.1365-2966.2011.20287.x

    ADS  Article  Google Scholar 

  192. E. Roediger, R.P. Kraft, P. Nulsen, E. Churazov, W. Forman, et al., Viscous Kelvin-Helmholtz instabilities in highly ionized plasmas. Mon. Not. R. Astron. Soc. 436, 1721–1740 (2013). https://doi.org/10.1093/mnras/stt1691

    ADS  Article  Google Scholar 

  193. E. Roediger, R.P. Kraft, P.E.J. Nulsen, W.R. Forman, M. Machacek, et al., Stripped elliptical galaxies as probes of ICM physics: I. Tails, wakes, and flow patterns in and around stripped ellipticals. Astrophys. J. 806, 103 (2015a). https://doi.org/10.1088/0004-637X/806/1/103

    ADS  Article  Google Scholar 

  194. E. Roediger, R.P. Kraft, P.E.J. Nulsen, W.R. Forman, M. Machacek, et al., STRIPPED ELLIPTICAL GALAXIES AS PROBES OF ICM PHYSICS. II. STIRRED, BUT MIXED? VISCOUS AND INVISCID GAS STRIPPING OF THE VIRGO ELLIPTICAL M89. Astrophys. J. 806(1), 104 (2015b). https://doi.org/10.1088/0004-637X/806/1/104

    ADS  Article  Google Scholar 

  195. M. Roncarelli, M. Gaspari, S. Ettori, V. Biffi, F. Brighenti, et al., Measuring turbulence and gas motions in galaxy clusters via synthetic Athena X-IFU observations. Astron. Astrophys. 618, 39 (2018). https://doi.org/10.1051/0004-6361/201833371

    Article  Google Scholar 

  196. M. Rossetti, D. Eckert, S. De Grandi, F. Gastaldello, S. Ghizzardi, et al., Abell 2142 at large scales: an extreme case for sloshing? Astron. Astrophys. 556, 44 (2013). https://doi.org/10.1051/0004-6361/201321319

    Article  Google Scholar 

  197. H.R. Russell, B.R. McNamara, A.C. Fabian, P.E.J. Nulsen, A.C. Edge, et al., ALMA observations of cold molecular gas filaments trailing rising radio bubbles in PKS 0745-191. Mon. Not. R. Astron. Soc. 458, 3134–3149 (2016). https://doi.org/10.1093/mnras/stw409

    ADS  Article  Google Scholar 

  198. H.R. Russell, M. McDonald, B.R. McNamara, A.C. Fabian, P.E.J. Nulsen, et al., Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster. Astrophys. J. 836, 130 (2017a). https://doi.org/10.3847/1538-4357/836/1/130

    ADS  Article  Google Scholar 

  199. H.R. Russell, B.R. McNamara, A.C. Fabian, P.E.J. Nulsen, F. Combes, et al., Close entrainment of massive molecular gas flows by radio bubbles in the central galaxy of Abell 1795. Mon. Not. R. Astron. Soc. 472, 4024–4037 (2017b). https://doi.org/10.1093/mnras/stx2255

    ADS  Article  Google Scholar 

  200. M. Ruszkowski, S.P. Oh, Shaken and stirred: conduction and turbulence in clusters of galaxies. Astrophys. J. 713, 1332–1342 (2010). https://doi.org/10.1088/0004-637X/713/2/1332

    ADS  Article  Google Scholar 

  201. M. Ruszkowski, S.P. Oh, Galaxy motions, turbulence and conduction in clusters of galaxies. Mon. Not. R. Astron. Soc. 414, 1493–1507 (2011). https://doi.org/10.1111/j.1365-2966.2011.18482.x

    ADS  Article  Google Scholar 

  202. M. Ruszkowski, M. Brüggen, M.C. Begelman, Cluster heating by viscous dissipation of sound waves. Astrophys. J. 611, 158–163 (2004). https://doi.org/10.1086/422158

    ADS  Article  Google Scholar 

  203. M. Ruszkowski, H.-Y.K. Yang, C.S. Reynolds, Cosmic-ray feedback heating of the intracluster medium. Astrophys. J. 844, 13 (2017a). https://doi.org/10.3847/1538-4357/aa79f8

    ADS  Article  Google Scholar 

  204. M. Ruszkowski, H.-Y.K. Yang, E. Zweibel, Global simulations of galactic winds including cosmic-ray streaming. Astrophys. J. 834, 208 (2017b). https://doi.org/10.3847/1538-4357/834/2/208

    ADS  Article  Google Scholar 

  205. D. Ryu, H. Kang, E. Hallman, T.W. Jones, Cosmological shock waves and their role in the large-scale structure of the universe. Astrophys. J. 593, 599–610 (2003). https://doi.org/10.1086/376723

    ADS  Article  Google Scholar 

  206. A. Sa̧dowski, M. Gaspari, Kinetic and radiative power from optically thin accretion flows. Mon. Not. R. Astron. Soc. 468, 1398–1404 (2017). https://doi.org/10.1093/mnras/stx543

    ADS  Article  Google Scholar 

  207. I. Sakelliou, J.R. Peterson, T. Tamura, F.B.S. Paerels, J.S. Kaastra, et al., High resolution soft X-ray spectroscopy of M 87 with the reflection grating spectrometers on XMM-Newton. Astron. Astrophys. 391, 903–909 (2002). https://doi.org/10.1051/0004-6361:20020900

    ADS  Article  Google Scholar 

  208. P. Salomé, F. Combes, A.C. Edge, C. Crawford, M. Erlund, et al., Cold molecular gas in the Perseus cluster core. Association with X-ray cavity, H\(\upalpha \) filaments and cooling flow. Astron. Astrophys. 454, 437–445 (2006). https://doi.org/10.1051/0004-6361:20054745

    ADS  Article  Google Scholar 

  209. P. Salomé, F. Combes, Y. Revaz, D. Downes, A.C. Edge, A.C. Fabian, A very extended molecular web around NGC 1275. Astron. Astrophys. 531, 85 (2011). https://doi.org/10.1051/0004-6361/200811333

    ADS  Article  Google Scholar 

  210. J.S. Sanders, A.C. Fabian, Resonance scattering, absorption and off-centre abundance peaks in clusters of galaxies. Mon. Not. R. Astron. Soc. 370, 63–73 (2006). https://doi.org/10.1111/j.1365-2966.2006.10497.x

    ADS  Article  Google Scholar 

  211. J.S. Sanders, A.C. Fabian, Deep Chandra and XMM-Newton X-ray observations of AWM 7 I. investigating X-ray surface brightness fluctuations. Mon. Not. R. Astron. Soc. 421, 726–742 (2012). https://doi.org/10.1111/j.1365-2966.2011.20348.x

    ADS  Article  Google Scholar 

  212. J.S. Sanders, A.C. Fabian, Velocity width measurements of the coolest X-ray emitting material in the cores of clusters, groups and elliptical galaxies. Mon. Not. R. Astron. Soc. 429, 2727–2738 (2013). https://doi.org/10.1093/mnras/sts543

    ADS  Article  Google Scholar 

  213. J.S. Sanders, A.C. Fabian, R.K. Smith, J.R. Peterson, A direct limit on the turbulent velocity of the intracluster medium in the core of Abell 1835 from XMM-Newton. Mon. Not. R. Astron. Soc. 402, 11–15 (2010a). https://doi.org/10.1111/j.1745-3933.2009.00789.x

    ADS  Article  Google Scholar 

  214. J.S. Sanders, A.C. Fabian, K.A. Frank, J.R. Peterson, H.R. Russell, Deep high-resolution X-ray spectra from cool-core clusters. Mon. Not. R. Astron. Soc. 402, 127–144 (2010b). https://doi.org/10.1111/j.1365-2966.2009.15902.x

    ADS  Article  Google Scholar 

  215. C.L. Sarazin, C.M. Graney, Optical coronal emission lines from cooling flows in elliptical galaxies and galaxy clusters. Astrophys. J. 375, 532–543 (1991). https://doi.org/10.1086/170215

    ADS  Article  Google Scholar 

  216. J. Sayers, T. Mroczkowski, M. Zemcov, P.M. Korngut, J. Bock, et al., A measurement of the kinetic Sunyaev-Zel’dovich signal toward MACS J0717.5+3745. Astrophys. J. 778, 52 (2013). https://doi.org/10.1088/0004-637X/778/1/52

    ADS  Article  Google Scholar 

  217. A.A. Schekochihin, S.C. Cowley, Turbulence, magnetic fields, and plasma physics in clusters of galaxies. Phys. Plasmas 13(5), 056501 (2006). https://doi.org/10.1063/1.2179053

    ADS  Article  Google Scholar 

  218. A.A. Schekochihin, S.C. Cowley, R.M. Kulsrud, G.W. Hammett, P. Sharma, Plasma instabilities and magnetic field growth in clusters of galaxies. Astrophys. J. 629, 139–142 (2005). https://doi.org/10.1086/431202

    ADS  Article  Google Scholar 

  219. A.A. Schekochihin, S.C. Cowley, F. Rincon, M.S. Rosin, Magnetofluid dynamics of magnetized cosmic plasma: firehose and gyrothermal instabilities. Mon. Not. R. Astron. Soc. 405, 291–300 (2010). https://doi.org/10.1111/j.1365-2966.2010.16493.x

    ADS  Article  Google Scholar 

  220. P. Schuecker, A. Finoguenov, F. Miniati, H. Böhringer, U.G. Briel, Probing turbulence in the Coma galaxy cluster. Astron. Astrophys. 426, 387–397 (2004). https://doi.org/10.1051/0004-6361:20041039

    ADS  Article  Google Scholar 

  221. C. Shang, S.P. Oh, Probing gas motions in the intra-cluster medium: a mixture model approach. Mon. Not. R. Astron. Soc. 426, 3435–3454 (2012). https://doi.org/10.1111/j.1365-2966.2012.21897.x

    ADS  Article  Google Scholar 

  222. C. Shang, S.P. Oh, Disentangling resonant scattering and gas motions in galaxy cluster emission line profiles. Mon. Not. R. Astron. Soc. 433, 1172–1184 (2013). https://doi.org/10.1093/mnras/stt790

    ADS  Article  Google Scholar 

  223. P. Sharma, M. McCourt, E. Quataert, I.J. Parrish, Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies. Mon. Not. R. Astron. Soc. 420, 3174–3194 (2012). https://doi.org/10.1111/j.1365-2966.2011.20246.x

    ADS  Article  Google Scholar 

  224. A. Sheardown, E. Roediger, Y. Su, R.P. Kraft, T. Fish, et al., The recent growth history of the Fornax cluster derived from simultaneous sloshing and gas stripping: simulating the infall of NGC 1404. Astrophys. J. 865, 118 (2018). https://doi.org/10.3847/1538-4357/aadc0f

    ADS  Article  Google Scholar 

  225. A. Sheardown et al., Astrophys. J. (2019, submitted)

  226. X. Shi, E. Komatsu, K. Nelson, D. Nagai, Analytical model for non-thermal pressure in galaxy clusters II. comparison with cosmological hydrodynamics simulation. Mon. Not. R. Astron. Soc. 448, 1020–1029 (2015). https://doi.org/10.1093/mnras/stv036

    ADS  Article  Google Scholar 

  227. X. Shi, E. Komatsu, D. Nagai, E.T. Lau, Analytical model for non-thermal pressure in galaxy clusters III. removing the hydrostatic mass bias. Mon. Not. R. Astron. Soc. 455, 2936–2944 (2016). https://doi.org/10.1093/mnras/stv2504

    ADS  Article  Google Scholar 

  228. X. Shi, D. Nagai, E.T. Lau, Multiscale analysis of turbulence evolution in the density-stratified intracluster medium. Mon. Not. R. Astron. Soc. 481, 1075–1082 (2018). https://doi.org/10.1093/mnras/sty2340

    ADS  Article  Google Scholar 

  229. R. Shibata, M. Ishida, N.Y. Yamasaki, T. Ohashi, K. Matsushita, et al., Distributions of the temperature and metal abundance in the Virgo cluster of galaxies, in X-Ray Astronomy 2000, ed. by R. Giacconi, S. Serio, L. Stella. Astronomical Society of the Pacific Conference Series, vol. 234 (2001), p. 357

    Google Scholar 

  230. D. Sijacki, V. Springel, Hydrodynamical simulations of cluster formation with central AGN heating. Mon. Not. R. Astron. Soc. 366, 397–416 (2006). https://doi.org/10.1111/j.1365-2966.2005.09860.x

    ADS  Article  Google Scholar 

  231. J. Silk, M.J. Rees, Quasars and galaxy formation. Astron. Astrophys. 331, 1–4 (1998)

    ADS  Google Scholar 

  232. A. Simionescu, N. Werner, A. Finoguenov, H. Böhringer, M. Brüggen, Metal-rich multi-phase gas in M 87. AGN-driven metal transport, magnetic-field supported multi-temperature gas, and constraints on non-thermal emission observed with XMM-Newton. Astron. Astrophys. 482, 97–112 (2008). https://doi.org/10.1051/0004-6361:20078749

    ADS  Article  Google Scholar 

  233. A. Simionescu, N. Werner, H. Böhringer, J.S. Kaastra, A. Finoguenov, et al., Chemical enrichment in the cluster of galaxies Hydra A. Astron. Astrophys. 493, 409–424 (2009). https://doi.org/10.1051/0004-6361:200810225

    ADS  Article  Google Scholar 

  234. A. Simionescu, N. Werner, O. Urban, S.W. Allen, A.C. Fabian, et al., Large-scale motions in the Perseus galaxy cluster. Astrophys. J. 757, 182 (2012). https://doi.org/10.1088/0004-637X/757/2/182

    ADS  Article  Google Scholar 

  235. A. Simionescu, N. Werner, A. Mantz, S.W. Allen, O. Urban, Witnessing the growth of the nearest galaxy cluster: thermodynamics of the Virgo cluster outskirts. Mon. Not. R. Astron. Soc. 469, 1476–1495 (2017). https://doi.org/10.1093/mnras/stx919

    ADS  Article  Google Scholar 

  236. A. Simionescu, G. Tremblay, N. Werner, R.E.A. Canning, S.W. Allen, J.B.R. Oonk, ALMA observation of the disruption of molecular gas in M87. Mon. Not. R. Astron. Soc. 475, 3004–3009 (2018). https://doi.org/10.1093/mnras/sty047

    ADS  Article  Google Scholar 

  237. W.B. Sparks, J.E. Pringle, M. Donahue, R. Carswell, M. Voit, et al., Discovery of C IV emission filaments in M87. Astrophys. J. Lett. 704, 20–24 (2009). https://doi.org/10.1088/0004-637X/704/1/L20

    ADS  Article  Google Scholar 

  238. Y. Su, R.P. Kraft, P.E.J. Nulsen, E. Roediger, W.R. Forman, et al., Capturing the 3D motion of an infalling galaxy via fluid dynamics. Astrophys. J. 835, 19 (2017a). https://doi.org/10.3847/1538-4357/835/1/19

    ADS  Article  Google Scholar 

  239. Y. Su, R.P. Kraft, E. Roediger, P.E.J. Nulsen, W.R. Forman, et al., Deep Chandra observations of NGC 1404: cluster plasma physics revealed by an infalling early-type galaxy. Astrophys. J. 834, 74 (2017b). https://doi.org/10.3847/1538-4357/834/1/74

    ADS  Article  Google Scholar 

  240. C. Sugawara, M. Takizawa, K. Nakazawa, Suzaku observation of the radio halo cluster Abell 2319: gas dynamics and hard X-ray properties. Publ. Astron. Soc. Jpn. 61, 1293–1303 (2009). https://doi.org/10.1093/pasj/61.6.1293

    ADS  Article  Google Scholar 

  241. M. Sun, M. Donahue, E. Roediger, P.E.J. Nulsen, G.M. Voit, et al., Spectacular X-ray tails, intracluster star formation, and ULXs in A3627. Astrophys. J. 708, 946–964 (2010). https://doi.org/10.1088/0004-637X/708/2/946

    ADS  Article  Google Scholar 

  242. R.A. Sunyaev, E.M. Churazov, Millimeter-wavelength lines of heavy elements predicted from the hot gas in supernova remnants and galaxy clusters. Pisma Astron. Zh. 10, 483–493 (1984)

    ADS  Google Scholar 

  243. R.A. Sunyaev, I.B. Zeldovich, The velocity of clusters of galaxies relative to the microwave background—the possibility of its measurement. Mon. Not. R. Astron. Soc. 190, 413–420 (1980). https://doi.org/10.1093/mnras/190.3.413

    ADS  Article  Google Scholar 

  244. T. Tamura, K. Hayashida, S. Ueda, M. Nagai, Discovery of gas bulk motion in the galaxy cluster Abell 2256 with Suzaku. Publ. Astron. Soc. Jpn. 63, 1009–1017 (2011). https://doi.org/10.1093/pasj/63.sp3.S1009

    ADS  Article  Google Scholar 

  245. T. Tamura, N.Y. Yamasaki, R. Iizuka, Y. Fukazawa, K. Hayashida, et al., Gas bulk motion in the Perseus cluster measured with Suzaku. Astrophys. J. 782, 38 (2014). https://doi.org/10.1088/0004-637X/782/1/38

    ADS  Article  Google Scholar 

  246. T. Tanaka, H. Kunieda, M. Hudaverdi, A. Furuzawa, Y. Tawara, Non-uniform temperature distribution in the galaxy clusters 2A 0335+096 and Abell 496 observed by XMM-Newton. Publ. Astron. Soc. Jpn. 58, 703–718 (2006). https://doi.org/10.1093/pasj/58.4.703

    ADS  Article  Google Scholar 

  247. X. Tang, E. Churazov, Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters. Mon. Not. R. Astron. Soc. 468, 3516–3532 (2017). https://doi.org/10.1093/mnras/stx590

    ADS  Article  Google Scholar 

  248. M. Tashiro, H. Maejima, K. Toda, R. Kelley, L. Reichenthal, et al., Concept of the X-ray Astronomy Recovery mission, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, 2018, p. 1069922. https://doi.org/10.1117/12.2309455

    Google Scholar 

  249. P. Temi, A. Amblard, M. Gitti, F. Brighenti, M. Gaspari, et al., ALMA observations of molecular clouds in three group-centered elliptical galaxies: NGC 5846, NGC 4636, and NGC 5044. Astrophys. J. 858, 17 (2018). https://doi.org/10.3847/1538-4357/aab9b0

    ADS  Article  Google Scholar 

  250. G.R. Tremblay, C.P. O’Dea, S.A. Baum, R. Mittal, M.A. McDonald, et al., Far-ultraviolet morphology of star-forming filaments in cool core brightest cluster galaxies. Mon. Not. R. Astron. Soc. 451, 3768–3800 (2015). https://doi.org/10.1093/mnras/stv1151

    ADS  Article  Google Scholar 

  251. G.R. Tremblay, F. Combes, J.B.R. Oonk, H.R. Russell, M.A. McDonald, et al., A galaxy-scale fountain of cold molecular gas pumped by a black hole. Astrophys. J. 865, 13 (2018). https://doi.org/10.3847/1538-4357/aad6dd

    ADS  Article  Google Scholar 

  252. M. Valentini, F. Brighenti, AGN-stimulated cooling of hot gas in elliptical galaxies. Mon. Not. R. Astron. Soc. 448, 1979–1998 (2015). https://doi.org/10.1093/mnras/stv090

    ADS  Article  Google Scholar 

  253. M. van Dyke, An Album of Fluid Motion (Parabolic Press, Stanford, 1982)

    Google Scholar 

  254. R.J. van Weeren, F. de Gasperin, H. Akamatsu, M. Brüggen, L. Feretti, et al., Diffuse radio emission from galaxy clusters (2019). arXiv e-prints 1901.04496

  255. A.N. Vantyghem, B.R. McNamara, H.R. Russell, M.T. Hogan, A.C. Edge, et al., Molecular gas along a bright H\(\upalpha \) filament in 2A 0335+096 revealed by ALMA. Astrophys. J. 832, 148 (2016). https://doi.org/10.3847/0004-637X/832/2/148

    ADS  Article  Google Scholar 

  256. F. Vazza, G. Brunetti, A. Kritsuk, R. Wagner, C. Gheller, M. Norman, Turbulent motions and shocks waves in galaxy clusters simulated with adaptive mesh refinement. Astron. Astrophys. 504, 33–43 (2009). https://doi.org/10.1051/0004-6361/200912535

    ADS  Article  Google Scholar 

  257. F. Vazza, G. Brunetti, C. Gheller, R. Brunino, M. Brüggen, Massive and refined. II. The statistical properties of turbulent motions in massive galaxy clusters with high spatial resolution. Astron. Astrophys. 529, 17 (2011). https://doi.org/10.1051/0004-6361/201016015

    ADS  Article  Google Scholar 

  258. J.C. Vernaleo, C.S. Reynolds, AGN feedback and cooling flows: problems with simple hydrodynamic models. Astrophys. J. 645, 83–94 (2006). https://doi.org/10.1086/504029

    ADS  Article  Google Scholar 

  259. R. Vijayaraghavan, C. Sarazin, The evaporation and survival of cluster galaxies’ coronae. II. The effectiveness of anisotropic thermal conduction and survival of stripped galactic tails. Astrophys. J. 848, 63 (2017a). https://doi.org/10.3847/1538-4357/aa8bb3

    ADS  Article  Google Scholar 

  260. R. Vijayaraghavan, C. Sarazin, The evaporation and survival of cluster galaxy coronae. I. The effectiveness of isotropic thermal conduction including saturation. Astrophys. J. 841, 22 (2017b). https://doi.org/10.3847/1538-4357/aa706d

    ADS  Article  Google Scholar 

  261. A. Vikhlinin, M. Markevitch, S.S. Murray, A moving cold front in the intergalactic medium of A3667. Astrophys. J. 551, 160–171 (2001a). https://doi.org/10.1086/320078

    ADS  Article  Google Scholar 

  262. A. Vikhlinin, M. Markevitch, S.S. Murray, Chandra estimate of the magnetic field strength near the cold front in A3667. Astrophys. J. Lett. 549, 47–50 (2001b). https://doi.org/10.1086/319126

    ADS  Article  Google Scholar 

  263. G.M. Voit, A role for turbulence in circumgalactic precipitation. Astrophys. J. 868, 102 (2018). https://doi.org/10.3847/1538-4357/aae8e2

    ADS  Article  Google Scholar 

  264. G.M. Voit, M. Donahue, J.D. Slavin, Emission lines from condensing intracluster gas. Astrophys. J. Suppl. Ser. 95, 87–105 (1994). https://doi.org/10.1086/192095

    ADS  Article  Google Scholar 

  265. G.M. Voit, M. Donahue, G.L. Bryan, M. McDonald, Regulation of star formation in giant galaxies by precipitation, feedback and conduction. Nature 519, 203–206 (2015). https://doi.org/10.1038/nature14167

    ADS  Article  Google Scholar 

  266. S.A. Walker, A.C. Fabian, J.S. Sanders, Large-scale gas sloshing out to half the virial radius in the strongest cool core REXCESS galaxy cluster, RXJ2014.8-2430. Mon. Not. R. Astron. Soc. 441, 31–35 (2014). https://doi.org/10.1093/mnrasl/slu040

    ADS  Article  Google Scholar 

  267. S.A. Walker, J.S. Sanders, A.C. Fabian, Constraining gas motions in the Centaurus cluster using X-ray surface brightness fluctuations and metal diffusion. Mon. Not. R. Astron. Soc. 453, 3699–3705 (2015). https://doi.org/10.1093/mnras/stv1929

    ADS  Article  Google Scholar 

  268. S.A. Walker, J. Hlavacek-Larrondo, M. Gendron-Marsolais, A.C. Fabian, H. Intema, et al., Is there a giant Kelvin-Helmholtz instability in the sloshing cold front of the Perseus cluster? Mon. Not. R. Astron. Soc. 468, 2506–2516 (2017). https://doi.org/10.1093/mnras/stx640

    ADS  Article  Google Scholar 

  269. S.A. Walker, J. ZuHone, A. Fabian, J. Sanders, The split in the ancient cold front in the Perseus cluster. Nat. Astron. 2, 292–296 (2018a). https://doi.org/10.1038/s41550-018-0401-8

    ADS  Article  Google Scholar 

  270. S.A. Walker, J.S. Sanders, A.C. Fabian, What fraction of the density fluctuations in the Perseus cluster core is due to gas sloshing rather than AGN feedback? Mon. Not. R. Astron. Soc. 481, 1718–1725 (2018b). https://doi.org/10.1093/mnras/sty2390

    ADS  Article  Google Scholar 

  271. S. Walker, A. Simionescu, D. Nagai, N. Okabe, D. Eckert, et al., The physics of galaxy cluster outskirts. Space Sci. Rev. 215, 7 (2019). https://doi.org/10.1007/s11214-018-0572-8

    ADS  Article  Google Scholar 

  272. N. Werner, I. Zhuravleva, E. Churazov, A. Simionescu, S.W. Allen, et al., Constraints on turbulent pressure in the X-ray haloes of giant elliptical galaxies from resonant scattering. Mon. Not. R. Astron. Soc. 398, 23–32 (2009). https://doi.org/10.1111/j.1365-2966.2009.14860.x

    ADS  Article  Google Scholar 

  273. N. Werner, J.B.R. Oonk, M. Sun, P.E.J. Nulsen, S.W. Allen, et al., The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback. Mon. Not. R. Astron. Soc. 439, 2291–2306 (2014). https://doi.org/10.1093/mnras/stu006

    ADS  Article  Google Scholar 

  274. N. Werner, J.A. ZuHone, I. Zhuravleva, Y. Ichinohe, A. Simionescu, et al., Deep Chandra observation and numerical studies of the nearest cluster cold front in the sky. Mon. Not. R. Astron. Soc. 455, 846–858 (2016). https://doi.org/10.1093/mnras/stv2358

    ADS  Article  Google Scholar 

  275. N. Werner, B.R. McNamara, E. Churazov, E. Scannapieco, Hot atmospheres, cold gas, AGN feedback and the evolution of early type galaxies: a topical perspective. Space Sci. Rev. 215, 5 (2019). https://doi.org/10.1007/s11214-018-0571-9

    ADS  Article  Google Scholar 

  276. J. Wiener, C. Pfrommer, S.P. Oh, Cosmic ray-driven galactic winds: streaming or diffusion? Mon. Not. R. Astron. Soc. 467, 906–921 (2017). https://doi.org/10.1093/mnras/stx127

    ADS  Article  Google Scholar 

  277. J. Wilms, T. Brand, D. Barret, T. Beuchert, J.-W. den Herder, et al., ATHENA end-to-end simulations, in Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray. Proc. SPIE, vol. 9144, 2014, p. 91445. https://doi.org/10.1117/12.2056347

    Google Scholar 

  278. R.A. Wood, C. Jones, M.E. Machacek, W.R. Forman, A. Bogdan, et al., The infall of the Virgo elliptical galaxy M60 toward M87 and the gaseous structures produced by Kelvin-Helmholtz instabilities. Astrophys. J. 847(1) (2017). https://doi.org/10.3847/1538-4357/aa8723

  279. H. Xu, S.M. Kahn, J.R. Peterson, E. Behar, F.B.S. Paerels, et al., High-resolution observations of the elliptical galaxy NGC 4636 with the reflection grating spectrometer on board XMM-Newton. Astrophys. J. 579, 600–606 (2002). https://doi.org/10.1086/342828

    ADS  Article  Google Scholar 

  280. L. Yan, J.G. Cohen, Search for coronal emission lines in cooling flow clusters with the Keck 10 meter telescope. Astrophys. J. 454, 44 (1995). https://doi.org/10.1086/176462

    ADS  Article  Google Scholar 

  281. C. Zhang, E. Churazov, A.A. Schekochihin, Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. Mon. Not. R. Astron. Soc. 478, 4785–4798 (2018). https://doi.org/10.1093/mnras/sty1269

    ADS  Article  Google Scholar 

  282. I.V. Zhuravleva, E.M. Churazov, S.Y. Sazonov, R.A. Sunyaev, K. Dolag, Resonant scattering in galaxy clusters for anisotropic gas motions on various spatial scales. Astron. Lett. 37, 141–153 (2011). https://doi.org/10.1134/S1063773711010087

    ADS  Article  Google Scholar 

  283. I. Zhuravleva, E. Churazov, A. Kravtsov, R. Sunyaev, Constraints on the ICM velocity power spectrum from the X-ray lines width and shift. Mon. Not. R. Astron. Soc. 422, 2712–2724 (2012). https://doi.org/10.1111/j.1365-2966.2012.20844.x

    ADS  Article  Google Scholar 

  284. I. Zhuravleva, E. Churazov, A. Kravtsov, E.T. Lau, D. Nagai, R. Sunyaev, Quantifying properties of ICM inhomogeneities. Mon. Not. R. Astron. Soc. 428, 3274–3287 (2013a). https://doi.org/10.1093/mnras/sts275

    ADS  Article  Google Scholar 

  285. I. Zhuravleva, E. Churazov, R. Sunyaev, S. Sazonov, S.W. Allen, et al., Resonant scattering in the Perseus cluster: spectral model for constraining gas motions with Astro-H. Mon. Not. R. Astron. Soc. 435, 3111–3121 (2013b). https://doi.org/10.1093/mnras/stt1506

    ADS  Article  Google Scholar 

  286. I. Zhuravleva, E.M. Churazov, A.A. Schekochihin, E.T. Lau, D. Nagai, et al., The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations. Astrophys. J. Lett. 788, 13 (2014a). https://doi.org/10.1088/2041-8205/788/1/L13

    ADS  Article  Google Scholar 

  287. I. Zhuravleva, E. Churazov, A.A. Schekochihin, S.W. Allen, P. Arévalo, et al., Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014b). https://doi.org/10.1038/nature13830

    ADS  Article  Google Scholar 

  288. I. Zhuravleva, E. Churazov, P. Arévalo, A.A. Schekochihin, S.W. Allen, et al., Gas density fluctuations in the Perseus cluster: clumping factor and velocity power spectrum. Mon. Not. R. Astron. Soc. 450, 4184–4197 (2015). https://doi.org/10.1093/mnras/stv900

    ADS  Article  Google Scholar 

  289. I. Zhuravleva, E. Churazov, P. Arévalo, A.A. Schekochihin, W.R. Forman, et al., The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus cluster. Mon. Not. R. Astron. Soc. 458, 2902–2915 (2016). https://doi.org/10.1093/mnras/stw520

    ADS  Article  Google Scholar 

  290. I. Zhuravleva, S.W. Allen, A. Mantz, N. Werner, Gas perturbations in the cool cores of galaxy clusters: effective equation of state, velocity power spectra, and turbulent heating. Astrophys. J. 865, 53 (2018). https://doi.org/10.3847/1538-4357/aadae3

    ADS  Article  Google Scholar 

  291. E. Zinger, A. Dekel, Y. Birnboim, D. Nagai, E. Lau, A.V. Kravtsov, Cold fronts and shocks formed by gas streams in galaxy clusters. Mon. Not. R. Astron. Soc. 476, 56–70 (2018). https://doi.org/10.1093/mnras/sty136

    ADS  Article  Google Scholar 

  292. J.A. Zuhone, E. Roediger, Cold fronts: probes of plasma astrophysics in galaxy clusters. J. Plasma Phys. 82(3), 535820301 (2016). https://doi.org/10.1017/S0022377816000544

    Article  Google Scholar 

  293. J.A. ZuHone, M. Markevitch, M. Ruszkowski, D. Lee, Cold fronts and gas sloshing in galaxy clusters with anisotropic thermal conduction. Astrophys. J. 762, 69 (2013). https://doi.org/10.1088/0004-637X/762/2/69

    ADS  Article  Google Scholar 

  294. J.A. ZuHone, E.D. Miller, A. Simionescu, M.W. Bautz, Simulating Astro-H observations of sloshing gas motions in the cores of galaxy clusters. Astrophys. J. 821, 6 (2016). https://doi.org/10.3847/0004-637X/821/1/6

    ADS  Article  Google Scholar 

  295. J.A. ZuHone, E.D. Miller, E. Bulbul, I. Zhuravleva, What do the Hitomi observations tell us about the turbulent velocities in the Perseus cluster? Probing the velocity field with mock observations. Astrophys. J. 853, 180 (2018). https://doi.org/10.3847/1538-4357/aaa4b3

    ADS  Article  Google Scholar 

Download references

Acknowledgements

A.S. gratefully acknowledges support by the Women In Science Excel (WISE) programme of the Netherlands Organisation for Scientific Research (NWO). M.G. is supported by NASA through Einstein Postdoctoral Fellowship Award Number PF5-160137 issued by the Chandra X-ray Observatory Center, which is operated by the SAO for and on behalf of NASA under contract NAS8-03060. Support for this work was also provided by Chandra grant GO7-18121X. D.N. acknowledges Yale University for granting a triennial leave and the Max-Planck-Institut für Astrophysik for hospitality when this work was carried out. N.W. is supported by the Lendület LP2016-11 grant awarded by the Hungarian Academy of Sciences. E.R. acknowledges the support of STFC, through the University of Hull’s Consolidated Grant ST/R000840/1 and access to viper, the University of Hull High Performance Computing Facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aurora Simionescu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Clusters of Galaxies: Physics and Cosmology

Edited by Andrei Bykov, Jelle Kaastra, Marcus Brüggen, Maxim Markevitch, Maurizio Falanga and Frederik Bernard Stefan Paerels

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simionescu, A., ZuHone, J., Zhuravleva, I. et al. Constraining Gas Motions in the Intra-Cluster Medium. Space Sci Rev 215, 24 (2019). https://doi.org/10.1007/s11214-019-0590-1

Download citation

Keywords

  • Clusters of galaxies
  • Intracluster medium
  • X-ray spectroscopy
  • Large-scale structure