Skip to main content

Accretion of Water in Carbonaceous Chondrites: Current Evidence and Implications for the Delivery of Water to Early Earth

Abstract

Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending on the heliocentric distance of formation. The chondritic meteorites are fragments of relatively small and undifferentiated bodies, and the minerals that they contain carry chemical signatures providing information about the early environment available for planetesimal formation. A current hot topic of debate is the delivery of volatiles to terrestrial planets, understanding that they were built from planetesimals formed under far more reducing conditions than the primordial carbonaceous chondritic bodies. In this review, we describe significant evidence for the accretion of ices and hydrated minerals in the outer protoplanetary disk. In that distant region highly porous and fragile carbon and water-rich transitional asteroids formed, being the parent bodies of the carbonaceous chondrites (CCs). CCs are undifferentiated meteorites that never melted but experienced other physical processes including thermal and aqueous alteration. Recent evidence indicates that few of them have escaped significant alteration, retaining unique features that can be interpreted as evidence of wet accretion. Some examples of carbonaceous chondrite parent body aqueous alteration will be presented. Finally, atomistic interpretations of the first steps leading to water-mediated alteration during the accretion of CCs are provided and discussed. From these new insights into the water retained in CCs we can decipher the pathways of delivery of volatiles to the terrestrial planets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. N.M. Abreu, A.J. Brearley, Geochim. Cosmochim. Acta 74, 1146 (2010)

    ADS  Google Scholar 

  2. C.M.O’D. Alexander, C.M. Cody, G.D. Cody, B.T. De Gregorio, L.R. Nittler, R.M. Stroud, Chem. Erde 77, 227 (2017)

    Google Scholar 

  3. C.M.O’D. Alexander, K.D. McKeegan, K. Altwegg, Space Sci. Rev. 214, 36 (2018)

    ADS  Google Scholar 

  4. Y. Amelin, A.N. Krot, I.D. Hutcheon, A.A. Ulyanov, Science 297, 1678 (2002)

    ADS  Google Scholar 

  5. E. Anders, N. Grevese, Geochim. Cosmochim. Acta 53, 197 (1989)

    ADS  Google Scholar 

  6. P.J. Armitage, Annu. Rev. Astron. Astrophys. 49, 195 (2011)

    ADS  Google Scholar 

  7. E. Beitz, C. Güttler, A.M. Nakamura, A. Tsuchiyama, J. Blum, Icarus 225, 558 (2013)

    ADS  Google Scholar 

  8. E. Beitz, J. Blum, M.G. Parisi, J. Trigo-Rodriguez, Astrophys. J. 824, 12 (2016)

    ADS  Google Scholar 

  9. A. Bischoff, Meteorit. Planet. Sci. 33, 1113 (1998)

    ADS  Google Scholar 

  10. A. Bischoff, E.R.D. Scott, K. Metzler, C.A. Goodrich, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 679–712

    Google Scholar 

  11. P.A. Bland, G.S. Collins, T.M. Davison, N.M. Abreu, F.J. Ciesla, A.R. Muxworthy, J. Moore, Nat. Commun. 5, id, 5451 (2014)

    ADS  Google Scholar 

  12. J. Blum, R. Schräpler, B.J.R. Davidson, J.M. Trigo-Rodríguez, Astrophys. J. 652, 1768 (2006)

    ADS  Google Scholar 

  13. A.P. Boss, Astrophys. J. 764, 194 (2013)

    ADS  Google Scholar 

  14. A.J. Brearley, Science 276, 1103–1105 (1997)

    ADS  Google Scholar 

  15. A.J. Brearley, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 587–624

    Google Scholar 

  16. A.J. Brearley, R.H. Jones, in Planetary Materials, ed. by J.J. Papike. Reviews in Mineralogy, vol. 36 (Mineralogical Society of America, Washington, 1998), pp. 1–398

    Google Scholar 

  17. G. Briani, A. Morbidelli, M. Gounelle, D. Nesvorný, Meteorit. Planet. Sci. 46, 1863 (2011)

    ADS  Google Scholar 

  18. L. Browning, H. McSween, M. Zolensky, Geochim. Cosmochim. Acta 60, 2621 (1996)

    ADS  Google Scholar 

  19. D.E. Brownlee, in Accretion of Extraterrestrial Matter Throughout Earth’s History, ed. by B. Peucker-Ehrenbrink, B. Schmitz (Kluwer Academic/Plenum, New York, 2001), pp. 1–12

    Google Scholar 

  20. D. Brownlee et al., Science 314, 1711 (2006)

    ADS  Google Scholar 

  21. H. Busemann, A.F. Young, C.O’D. Alexander, P. Hoppe, S. Mukhopadhyay, L.R. Nittler, Science 312, 727 (2006)

    ADS  Google Scholar 

  22. L. Carporzen, B.P. Weiss, L.T. Elkins-Tanton, D.L. Shuster, D. Ebel, J. Gattacceca, Proc. Natl. Acad. Sci. 108, 6386 (2011)

    ADS  Google Scholar 

  23. G. Cliff, G.W. Lorimer, J. Microsc. 103, 203 (1975)

    Google Scholar 

  24. E. Dobricǎ, A.J. Brearley, Meteorit. Planet. Sci. 49, 1323 (2014)

    ADS  Google Scholar 

  25. P.M. Doyle, K. Jogo, K. Nagashima, A.N. Krot, S. Wakita, F.J. Ciesl, I.D. Hutcheon, Nat. Commun. (2015). https://doi.org/10.1038/ncomms8444

    Article  Google Scholar 

  26. K.A. Dyl, A. Bischoff, K. Ziegler, E.D. Young, K. Wimmer, P.A. Bland, Proc. Natl. Acad. Sci. 109, 18306 (2012)

    ADS  Google Scholar 

  27. N.Y. Dzade, A. Roldan, N.H. de Leeuw, J. Phys. Chem. C 120, 21441–21450 (2016)

    Google Scholar 

  28. D.S. Ebel, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween Jr. (University of Arizona Press, Tucson, 2006), pp. 253–277

    Google Scholar 

  29. M. Endreß, A. Bischoff, Geochim. Cosmochim. Acta 60, 489 (1996)

    ADS  Google Scholar 

  30. B. Fegley Jr., R.G. Prinn, in The Formation and Evolution of Planetary Systems, ed. by H.A. Weaver, L. Danly. Space Telescope Science Institute Symposium Series (1989)

    Google Scholar 

  31. L.H. Fuchs, E. Olsen, K.J. Jensen, Smithson. Contrib. Earth Sci. 10, 39 (1973)

    Google Scholar 

  32. A. Fuente, J. Cernicharo, E. Roueff, M. Gerin, J. Pety, N. Marcelino, R. Bachiller, B. Lefloch, O. Roncero, A. Aguado, Astron. Astrophys. 593, A94 (2016)

    ADS  Google Scholar 

  33. A. Garenne, P. Beck, G. Montes-Hernandez, R. Chiriac, F. Toche, E. Quirico, L. Bonal, B. Schmitt, Geochim. Cosmochim. Acta 137, 93 (2014)

    ADS  Google Scholar 

  34. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466 (2005)

    ADS  Google Scholar 

  35. R.D. Hanna, R.A. Ketcham, M. Zolensky, W.M. Behr, Geochim. Cosmochim. Acta 171, 256 (2015)

    ADS  Google Scholar 

  36. N.P. Hanowski, A. Brearley, Meteorit. Planet. Sci. 35, 1291 (2000)

    ADS  Google Scholar 

  37. K.T. Howard, C.M.O’D. Alexander, D.L. Schrader, K.A. Dyl, Geochim. Cosmochim. Acta 149, 206 (2015)

    ADS  Google Scholar 

  38. R. Hutchison, Meteorites (Cambridge University Press, Cambridge, 2004), 506 pp.

    Google Scholar 

  39. D. Jewitt, L. Chizmadia, R. Grimm, D. Prialnik, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (University of Arizona Press, Tucson, 2007), pp. 863–867

    Google Scholar 

  40. A.J. King, P.F. Schofield, S.S. Russell, Meteorit. Planet. Sci. 52, 1197 (2017)

    ADS  Google Scholar 

  41. T. Kunihiro, A.E. Rubin, K.D. McKeegan, J.T. Wasson, Geochim. Cosmochim. Acta 68, 3599 (2004)

    ADS  Google Scholar 

  42. C. Le Guillou, A.J. Brearley, Geochim. Cosmochim. Acta 131, 344 (2014)

    ADS  Google Scholar 

  43. C. Le Guillou, H.G. Changela, A.J. Brearley, Earth Planet. Sci. Lett. 420, 162 (2015)

    ADS  Google Scholar 

  44. M.R. Lee, P. Lindgren, Meteorit. Planet. Sci. 51, 1003 (2016)

    ADS  Google Scholar 

  45. M.R. Lee, P. Lindgren, M.R. Sofe, C.M.O’D. Alexander, J. Wang, Geochim. Cosmochim. Acta 92, 148 (2012)

    ADS  Google Scholar 

  46. M.R. Lee, M.R. Sofe, P. Lindgren, N.A. Starkey, I.A. Franchi, Geochim. Cosmochim. Acta 121, 452 (2013)

    ADS  Google Scholar 

  47. M.R. Lee, P. Lindgren, M.R. Sofe, Geochim. Cosmochim. Acta 144, 126 (2014)

    ADS  Google Scholar 

  48. P. Lindgren, R.D. Hanna, K.J. Dobson, T. Tomkinson, M.R. Lee, Geochim. Cosmochim. Acta 148, 159–178 (2015)

    ADS  Google Scholar 

  49. K. Lodders, Astrophys. J. 591, 1220 (2003)

    ADS  Google Scholar 

  50. K. Lodders, S. Amari, Chem. Erde 65, 93–166 (2005)

    Google Scholar 

  51. K. Lodders, B. Fegley, in Chemistry of the Solar System (Royal Society of Chemistry, London, 2011). ISBN 978-0-85404-128-2, 496 pp.

    Google Scholar 

  52. G.W. Lorimer, G. Cliff, in Electron Microscopy in Mineralogy, vol. 506, ed. by H.R. Wenk, (Springer, Berlin, (1976)

    Google Scholar 

  53. S. Marchi, M. Delbó, A. Morbidelli, P. Paolicchi, M. Lazzarin, Mon. Not. R. Astron. Soc. 400, 147 (2009)

    ADS  Google Scholar 

  54. M. Martínez-Jiménez, C.E. Moyano-Cambero, J.M. Trigo-Rodríguez, J. Alonso-Azcárate, J. Llorca, in Assessment and Mitigation of Asteroid Impact Hazards, ed. by J.M. Trigo-Rodríguez, M. Gritsevich, H. Palme (Springer, Cham, 2017), pp. 73–101. ISBN 978-3-319-46178-6

    Google Scholar 

  55. Y. Marrocchi, D.V. Bekaert, L. Piani, Earth Planet. Sci. Lett. 482, 23 (2018)

    ADS  Google Scholar 

  56. Z. Martins, C.M.O’D. Alexander, G.E. Orzechowska, M.L. Fogel, P. Ehrenfreund, Meteorit. Planet. Sci. 42, 2125 (2007)

    ADS  Google Scholar 

  57. P. Mignon, P. Ugliengo, M. Sodupe, E.R. Hernandez, Ab initio molecular dynamics study of the hydration of Li+, Na+ and K+ in a montmorillonite model. Influence of isomorphic substitution. Phys. Chem. Chem. Phys. 12, 688–697 (2010)

    Google Scholar 

  58. E. Molina-Montes, D. Donadio, A. Hernández-Laguna, C.I. Sainz-Díaz, M. Parrinello, DFT research on the dehydroxylation reaction of pyrophyllite 1. First-principle molecular dynamics simulations. J. Phys. Chem. B 112, 7051–7060 (2008a)

    Google Scholar 

  59. E. Molina-Montes, D. Donadio, A. Hernández-Laguna, C.I. Sainz-Díaz, DFT research on the dehydroxylation reaction of pyrophyllite 2. Characterization of reactants, intermediates, and transition states along the reaction path. J. Phys. Chem. A 112, 6373–6383 (2008b)

    Google Scholar 

  60. E. Molina-Montes, D. Donadio, A. Hernández-Laguna, C.I. Sainz-Díaz, Exploring the rehydroxylation reaction of pyrophyllite by ab initio molecular dynamics. J. Phys. Chem. B 114, 7593–7601 (2010)

    Google Scholar 

  61. C.E. Moyano-Cambero, L.R. Nittler, J.M. Trigo-Rodríguez, C.M.O’D. Alexander, J. Davidson, R.M. Stroud, in 47th Lunar and Planetary Science Conference, LPI Contribution, No. 1903 (2016), p. 2537

    Google Scholar 

  62. D. Muñoz-Santiburcio, M. Kosa, A. Hernández-Laguna, C.I. Sainz-Díaz, M. Parrinello, Ab initio molecular dynamics study of the dehydroxylation reaction in a smectite model. J. Phys. Chem. C 116, 12203–12211 (2012)

    Google Scholar 

  63. D. Muñoz-Santiburcio, A. Hernández-Laguna, C.I. Sainz-Díaz, Simulating the dehydroxylation reaction in smectite models by Car–Parrinello-like-Born–Oppenheimer molecular dynamics and metadynamics. J. Phys. Chem. C 120, 28186–28192 (2016)

    Google Scholar 

  64. L.R. Nittler, R.M. Stroud, J.M. Trigo-Rodríguez, B.T. De Gregorio, C.M.O’D. Alexander, J. Davidson, C.E. Moyano-Cambero, S. Tanbakouei, Nat. Commun. (2019, submitted)

  65. E.E. Palmer, D.S. Lauretta, Meteorit. Planet. Sci. 46, 1587 (2011)

    ADS  Google Scholar 

  66. L. Piani, H. Yurimoto, L. Remusat, Nat. Astron. 2, 317 (2018)

    ADS  Google Scholar 

  67. V. Prigiobbe, A. Suarez Negreira, J. Wilcox, Interaction between olivine and water based on density functional theory calculations. J. Phys. Chem. C 117, 21203–21216 (2013)

    Google Scholar 

  68. A. Rimola, J.M. Trigo-Rodríguez, Atomistic simulations of aqueous alteration processes of mafic silicates in carbonaceous chondrites, in Assessment and Mitigation of Asteroid Impact Hazards, ed. by J.M. Trigo-Rodríguez, M. Gritsevich, H. Palme. Astrophysics and Space Science Proceedings, vol. 46 (Springer, Cham, 2017), pp. 103–127

    Google Scholar 

  69. L. Rotelli, J.M. Trigo-Rodríguez, C.E. Moyano-Cambero, E. Carota, L. Botta, E. Di Mauro, R. Saladino, The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Nature Sci. Rep. 6, 38888 (2016)

    ADS  Google Scholar 

  70. A.E. Rubin, Meteorit. Planet. Sci. 32, 231 (1997)

    ADS  Google Scholar 

  71. A.E. Rubin, Geochim. Cosmochim. Acta 68, 673 (2004)

    ADS  Google Scholar 

  72. A.E. Rubin, Geochim. Cosmochim. Acta 90, 181 (2012)

    ADS  Google Scholar 

  73. A. Rubin, J.M. Trigo-Rodríguez, H. Huber, J.T. Wasson, Geochim. Cosmochim. Acta 71, 2361 (2007)

    ADS  Google Scholar 

  74. D.L. Schrader, H.C. Connolly Jr., D.S. Lauretta, K. Nagashima, G.S. Huss, J. Davidson, K.J. Domanik, Geochim. Cosmochim. Acta 101, 302 (2013)

    ADS  Google Scholar 

  75. R. Schulz, M. Hilchenbach, Y. Langevin, J. Kissel, J. Silen et al., Nature 518, 216 (2015)

    ADS  Google Scholar 

  76. J. Shah, H.C. Bates, A.R. Muxworthy, D.C. Hezel, S.S. Russell, M.J. Genge, Earth Planet. Sci. Lett. 475, 106 (2017)

    ADS  Google Scholar 

  77. S.A. Singerling, A.J. Brearley, Meteorit. Planet. Sci. (2018). https://doi.org/10.1111/maps.13108. 29 pp.

    Article  Google Scholar 

  78. A. Stirling, M. Bernasconi, M. Parrinello, J. Chem. Phys. 118, 8917 (2003)

    ADS  Google Scholar 

  79. R.M. Stroud, L.R. Nittler, C.E. Moyano-Cambero, J.M. Trigo-Rodriguez, J. Davidson, B.T. De Gregorio, C.M.O’D. Alexander, in 79th Annual Meeting of the Meteoritical Society. LPI Contribution No. 1921, id. 6360, (2016)

    Google Scholar 

  80. D. Takir, J.P. Emery, H.Y. McSween, C.A. Hibbitts, R.N. Clark, N. Pearson, A. Wang, Meteorit. Planet. Sci. 48, 1618 (2013)

    ADS  Google Scholar 

  81. J.M. Trigo-Rodríguez, in Planetary Materials, ed. by M.R. Lee, H. Leroux (European Mineralogical Union/Mineralogical Society of Great Britain and Ireland, London, 2015), p. 67 ISBN 978-0903056-55-7, 301 pp.

    Google Scholar 

  82. J.M. Trigo-Rodríguez, J. Blum, Planet. Space Sci. 57, 243 (2009)

    ADS  Google Scholar 

  83. J.M. Trigo-Rodríguez, J. Llorca, J. Oró, in Life in the Universe: From the Miller Experiment to the Search for Life on Other Worlds, ed. by J. Seckbach, J. Chela-Flores, T. Owen, F. Raulin (Springer, Berlin, 2004), p. 201). ISBN 1-4020-2371-5, 387 pp.

    Google Scholar 

  84. J.M. Trigo-Rodríguez, A.E. Rubin, J.T. Wasson, Geochim. Cosmochim. Acta 70, 1271 (2006)

    ADS  Google Scholar 

  85. J.M. Trigo-Rodríguez, M. Delbó, J. Blum, in European Planetary Science Congress 2009, 14–18 September, Potsdam, Germany (2009a), p. 520

    Google Scholar 

  86. J.M. Trigo-Rodríguez, D.A. García-Hernández, M. Lugaro, A.I. Karakas, M. van Raai, P. García Lario, A. Manchado, Meteorit. Planet. Sci. 44, 627 (2009b)

    ADS  Google Scholar 

  87. J.M. Trigo-Rodríguez, C.E. Moyano-Cambero, N. Mestres, J. Fraxedas, M.E. Zolensky, T. Nakamura, Z. Martins, in 44th Lunar and Planetary Sciences Conference (2013), abstract #1929

    Google Scholar 

  88. J.M. Trigo-Rodríguez, A. Vila-Ruaix, J. Alonso-Azcárate, M.M. Abad, Highlights on Spanish astrophysics IX, in Proceedings of the XII Scientific Meeting of the SEA, ed. by S. Arribas et al.(2017), pp. 531–542

    Google Scholar 

  89. M.A. Velbel, E.E. Palmer, Clays Clay Miner. 59, 416 (2011)

    ADS  Google Scholar 

  90. M.A. Velbel, E.K. Tonui, M.E. Zolensky, Geochim. Cosmochim. Acta 87, 117 (2012)

    ADS  Google Scholar 

  91. J.T. Wasson, A.E. Rubin, Geochim. Cosmochim. Acta 74, 2212 (2010)

    ADS  Google Scholar 

  92. M.K. Weisberg, T.J. McCoy, A.N. Krot, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 19–52

    Google Scholar 

  93. K. Zhang, G.A. Blake, E.A. Bergin, Astrophys. J. Lett. 806, L7 (2015)

    ADS  Google Scholar 

  94. E. Zinner, in Treatise on Geochemistry, vol. 1, ed. by A.M. Davis, Executive Editors: H.D. Holland, K.K. Turekian (Elsevier, Amsterdam, 2003), pp. 17–39. ISBN 0-08-043751-6

    Google Scholar 

  95. M.E. Zolensky, A. Ivanov, Chem. Erde 63, 185 (2003)

    Google Scholar 

  96. M.E. Zolensky, H. McSween Jr., in Meteorites and the Early Solar System, ed. by J.F. Kerridge, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 114–143

    Google Scholar 

  97. M.E. Zolensky, T. Barret, L. Browning, Geochim. Cosmochim. Acta 57, 3123 (1993)

    ADS  Google Scholar 

  98. M.E. Zolensky, A.N. Krot, G. Benedix, Record of low-temperature alteration in asteroids, in Oxygen in the Solar System, ed. by G.J. MacPherson, D.W. Mittlefehldt, J.H. Jones, S.B. Simon. Reviews in Mineralogy and Geochemistry, vol. 68 (Mineralogical Society of America, Washington, 2008), pp. 429–462

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers that improved significantly this manuscript. Spanish Ministry of Science and Innovation under research projects AYA2015-67175-P and CTQ2017-89132-P are acknowledged, and we also thank the UK Science and Technology Facilities Council for funding through project ST/N000846/1. Mike Zolensky is acknowledged for kindly providing the Murchison and Renazzo pristine sections studied in this work. AR is indebted to “Ramón y Cajal” program. ST made this study in the frame of a PhD. on Physics at the Autonomous University of Barcelona (UAB). M. del Mar Abad is acknowledged by her interpretation of the data obtained of Murchison CM2 using the HR-TEM image (Fig. 4) obtained by JMTR at Centro de Instrumentación Científica (CIC), Universidad de Granada. US Antarctic meteorite samples are recovered by the Antarctic Search for Meteorites (ANSMET) program which has been funded by NSF and NASA, and characterized and curated by the Department of Mineral Sciences of the Smithsonian Institution and Astromaterials Acquisition and Curation Office at NASA Johnson Space Center. We thank these institutions for kindly providing the Antarctic meteorites studied here.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josep M. Trigo-Rodríguez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ices in the Solar System

Edited by Nicolas Altobelli, Sebastien Besse and Claire Vallat

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trigo-Rodríguez, J.M., Rimola, A., Tanbakouei, S. et al. Accretion of Water in Carbonaceous Chondrites: Current Evidence and Implications for the Delivery of Water to Early Earth. Space Sci Rev 215, 18 (2019). https://doi.org/10.1007/s11214-019-0583-0

Download citation

Keywords

  • Comet
  • Asteroid
  • Meteoroid
  • Meteorite
  • Minor bodies
  • Primitive
  • Tensile strength