Skip to main content

Advertisement

Log in

Geologic Constraints on Early Mars Climate

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Early Mars climate research has well-defined goals (MEPAG 2018). Achieving these goals requires geologists and climate modelers to coordinate. Coordination is easier if results are expressed in terms of well-defined parameters. Key parameters include the following quantitative geologic constraints. (1) Cumulative post-3.4 Ga precipitation-sourced water runoff in some places exceeded \(1~\mbox{km}\) column. (2) There is no single Early Mars climate problem: the traces of ≥2 river-forming periods are seen. Relative to rivers that formed earlier in Mars history, rivers that formed later in Mars history are found preferentially at lower elevations, and show a stronger dependence on latitude. (3) The duration of the longest individual river-forming climate was \({>}(10^{2}\mbox{--}10^{3})~\mbox{yr}\), based on paleolake hydrology. (4) Peak runoff production was \({>}0.1~\mbox{mm}/\mbox{hr}\). However, (5) peak runoff production was intermittent, sustained (in a given catchment) for only <10% of the duration of river-forming climates. (6) The cumulative number of wet years during the valley-network-forming period was \({>}10^{5}~\mbox{yr}\). (7) Post-Noachian light-toned, layered sedimentary rocks took \({>}10^{7}~\mbox{yr}\) to accumulate. However, (8) an “average” place on Mars saw water for \({<}10^{7}~\mbox{yr}\) after the Noachian, suggesting that the river-forming climates were interspersed with long globally-dry intervals. (9) Geologic proxies for Early Mars atmospheric pressure indicate pressure was not less than 0.012 bar but not much more than 1 bar. A truth table of these geologic constraints versus currently published climate models shows that the late persistence of river-forming climates, combined with the long duration of individual lake-forming climates, is a challenge for most models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Absolute date estimates in this paper are given in the Appendix. That chronology is based on radiometrically-dated Lunar samples, extrapolated using crater counts to Mars. But these ages have big error bars (e.g. Robbins 2014; Robbins et al. 2018). In-situ radiometric ages for Mars samples are now being acquired using the Curiosity rover (Farley et al. 2014). However, so far, these ages have not been securely correlated to the crater-density age of any terrain.

  2. We take the start point for Mars’ legible-from-orbit record of climate change to be the Hellas impact (Smith et al. 1999). Pre-Hellas climate history may be found in megabreccia, rare chunks of uplifted ancient crust, and possibly in meteorites (Humayun et al. 2013; Cannon et al. 2017).

  3. Although tilting by planetary tectonics has little effect on Mars river slopes, within some sedimentary basins differential compaction and subsidence has tilted layers substantially (e.g. Lefort et al. 2012; Gabasova and Kite 2018).

  4. Much more water is indicated by the acid-titration calculations of Hurowitz et al. (2010). Applied to the \(8\ {}^{\circ}\mbox{S}\) \(66\ {}^{\circ}\mbox{W}\) site, they give water columns of 2000 km (for pH = 2) or 200000 km (for pH = 4).

  5. This suggests that most of the 3-Gyr-integrated O loss inferred from MAVEN (Lillis et al. 2017) was “paired” with H, and therefore that CO2 escape from Mars over the last 3.5 Gyr was ≪0.8 bar.

  6. Research aimed at Goal I is focused on surface life. That is because the search for ancient microbial fossils of Earth’s surface biosphere has a >50 year record of developing techniques that may be applied to Mars sediments (McMahon et al. 2018), whereas techniques for finding fossils of deep subsurface life are less well-developed (Onstott et al. 2018).

References

  • J.B. Adler, J.F. Bell III, P. Fawdon, J. Davis, N.H. Warner, E. Sefton-Nash, T.N. Harrison, Hypotheses for the origin of the Hypanis fan-shaped deposit at the edge of the Chryse escarpment, Mars: is it a delta? Icarus 319, 885–908 (2019)

    ADS  Google Scholar 

  • O. Aharonson, M.T. Zuber, D.H. Rothman, N. Schorghofer, K.X. Whipple, Drainage basins and channel incision on Mars. Proc. Natl. Acad. Sci. 99(4), 1780–1783 (2002)

    ADS  Google Scholar 

  • R. Amundson, Meteoric water alteration of soil and landscapes at Meridiani Planum, Mars. Earth Planet. Sci. Lett. 488, 155–167 (2018)

    ADS  Google Scholar 

  • R. Amundson, W. Dietrich, D. Bellugi, S. Ewing, K. Nishiizumi, G. Chong, J. Owen, R. Finkel, A. Heimsath, B. Stewart, M. Caffee, Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert. Geol. Soc. Am. Bull. 124(7–8), 1048–1070 (2012)

    ADS  Google Scholar 

  • D.T. Andersen, W.H. Pollard, C.P. McKay, J. Heldmann, Cold springs in permafrost on Earth and Mars. J. Geophys. Res., Planets 107(E3), 5015 (2002). https://doi.org/10.1029/2000JE001436

    Article  ADS  Google Scholar 

  • R. Anderson, S.P. Anderson, Geomorphology: The Mechanics and Chemistry of Landscapes (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  • J.C. Andrews-Hanna, K.W. Lewis, Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J. Geophys. Res. 116(E2), E02007 (2011)

    ADS  Google Scholar 

  • J.C. Andrews-Hanna, M.T. Zuber, R.E. Arvidson, S.M. Wiseman, Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res. 115(E6), E06002 (2010)

    ADS  Google Scholar 

  • V. Ansan, N. Mangold, 3D morphometry of valley networks on Mars from HRSC/MEX DEMs: implications for climatic evolution through time. J. Geophys. Res., Planets 118(9), 1873–1894 (2013)

    ADS  Google Scholar 

  • J.C. Armstrong, C.B. Leovy, T. Quinn, A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes. Icarus 171, 255–271 (2004)

    ADS  Google Scholar 

  • R.E. Arvidson, J.F. Bell, P. Bellutta, N.A. Cabrol, J.G. Catalano, J. Cohen, L.S. Crumpler, D.J. Des Marais, T.A. Estlin, W.H. Farrand, R. Gellert, J.A. Grant, R.N. Greenberger, E.A. Guinness, K.E. Herkenhoff, J.A. Herman, K.D. Iagnemma, J.R. Johnson, G. Klingelhöfer, R. Li, K.A. Lichtenberg, S.A. Maxwell, D.W. Ming, R.V. Morris, M.S. Rice, S.W. Ruff, A. Shaw, K.L. Siebach, A. de Souza, A.W. Stroupe, S.W. Squyres, R.J. Sullivan, K.P. Talley, J.A. Townsend, A. Wang, J.R. Wright, A.S. Yen, Spirit Mars Rover Mission: overview and selected results from the northern home plate winter haven to the side of Scamander Crater. J. Geophys. Res. 115(E12), E00F03 (2010)

    Google Scholar 

  • J.N. Bahcall, M.H. Pinsonneault, S. Basu, Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555(2), 990–1012 (2001)

    ADS  Google Scholar 

  • V.R. Baker, V.S. Kale, The role of extreme floods in shaping bedrock channels, in Rivers over Rock: Fluvial Processes in Bedrock Channels, ed. by K.J. Tinkler, E.E. Wohl. AGU Geophysical Monograph, vol. 107 (1998), pp. 153–166

    Google Scholar 

  • V.R. Baker, R.G. Strom, V.C. Gulick, J.S. Kargel, G. Komatsu, Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352, 589–594 (1991)

    ADS  Google Scholar 

  • J.L. Bandfield, Rover observations in Gusev Crater: evidence for a style of weathering unique to Mars? Am. Mineral. 102(2), 233–234 (2017)

    ADS  Google Scholar 

  • S.G. Banham, S. Gupta, D.M. Rubin, J.A. Watkins, D.Y. Sumner, K.S. Edgett, J.P. Grotzinger, K.W. Lewis, L.A. Edgar, K.M. Stack-Morgan, R. Barnes, J.F. Bell III, M.D. Day, R.C. Ewing, M.G.A. Lapotre, N.T. Stein, F. Rivera-Hernandez, A.R. Vasavada, Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale Crater, Mars. Sedimentology 65, 993–1042 (2018)

    Google Scholar 

  • S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315(5811), 501 (2007)

    ADS  Google Scholar 

  • E. Baratti, M. Pajola, S. Rossato, C. Mangili, M. Coradini, A. Montanari, K. McBride, Hydraulic modeling of the tributary and the outlet of a Martian paleolake located in the Memnonia quadrangle. J. Geophys. Res., Planets 120(10), 1597–1619 (2015)

    ADS  Google Scholar 

  • C.J. Barnhart, A.D. Howard, J.M. Moore, Long-term precipitation and late-stage valley network formation: landform simulations of Parana basin, Mars. J. Geophys. Res. 114(E1), E01003 (2009)

    ADS  Google Scholar 

  • N.E. Batalha, R.K. Kopparapu, J. Haqq-Misra, J.F. Kasting, Climate cycling on early Mars caused by the carbonate-silicate cycle. Earth Planet. Sci. Lett. 455, 7–13 (2016)

    ADS  Google Scholar 

  • C.C. Bedford, J.C. Bridges, S.P. Schwenzer, R.C. Wiens, E.B. Rampe, J. Frydenvang, P.J. Gasda, Alteration trends and geochemical source region characteristics preserved in the fluviolacustrine sedimentary record of Gale crater, Mars. Geoch. Cosmoch. Acta 246, 234–266 (2019)

    ADS  Google Scholar 

  • G. Berger et al., Evidence in favor of small amounts of ephemeral and transient water during alteration at Meridiani Planum, Mars. Am. Mineral. 94, 1279–1282 (2009)

    ADS  Google Scholar 

  • J.A. Berger, M.E. Schmidt, R. Gellert, N.I. Boyd, E.D. Desouza, R.L. Flemming, M.R.M. Izawa, D.W. Ming, G.M. Perrett, E.B. Rampe, L.M. Thompson, S.J.V. VanBommel, A.S. Yen, Zinc and germanium in the sedimentary rocks of Gale Crater on Mars indicate hydrothermal enrichment followed by diagenetic fractionation. J. Geophys. Res., Planets 122(8), 1747–1772 (2017)

    ADS  Google Scholar 

  • J.-P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312(5772), 400–404 (2006)

    ADS  Google Scholar 

  • J.-P. Bibring, R.E. Arvidson, A. Gendrin, B. Gondet, Y. Langevin, S. Le Mouelic, N. Mangold, R.V. Morris, J.F. Mustard, F. Poulet, C. Quantin, C. Sotin, Coupled ferric oxides and sulfates on the Martian surface. Science 317(5842), 1206 (2007)

    ADS  Google Scholar 

  • C.J. Bierson, R.J. Phillips, I.B. Smith, S.E. Wood, N.E. Putzig, D. Nunes, S. Byrne, Stratigraphy and evolution of the buried CO2 deposit in the Martian south polar cap. Geophys. Res. Lett. 43(9), 4172–4179 (2016)

    ADS  Google Scholar 

  • J.L. Bishop, E.B. Rampe, Evidence for a changing Martian climate from the mineralogy at Mawrth Vallis. Earth Planet. Sci. Lett. 448, 42–48 (2016)

    ADS  Google Scholar 

  • J.L. Bishop, D. Loizeau, N.K. McKeown, L. Saper, M.D. Dyar, D.J. Des Marais, M. Parente, S.L. Murchie, What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planet. Space Sci. 86, 130–149 (2013)

    ADS  Google Scholar 

  • J.L. Bishop, A.G. Fairén, J.R. Michalski, L. Gago-Duport, L.L. Baker, M.A. Velbel, C. Gross, E.B. Rampe, Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars. Nat. Astron. 2, 206–213 (2018)

    ADS  Google Scholar 

  • L. Borg, M.J. Drake, A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars. J. Geophys. Res. 110(E12), E12S03 (2005)

    ADS  Google Scholar 

  • C.S. Borlina, B.L. Ehlmann, E.S. Kite, Modeling the thermal and physical evolution of Mount Sharp’s sedimentary rocks, Gale Crater, Mars: implications for diagenesis on the MSL Curiosity rover traverse. J. Geophys. Res., Planets 120(8), 1396–1414 (2015)

    ADS  Google Scholar 

  • W.F. Bottke, J.C. Andrews-Hanna, A post-accretionary lull in large impacts on early Mars. Nat. Geosci. 10(5), 344–348 (2017)

    ADS  Google Scholar 

  • S. Bouley, D. Baratoux, I. Matsuyama, F. Forget, A. Séjourné, M. Turbet, F. Costard, Late Tharsis formation and implications for early Mars. Nature 531(7594), 344–347 (2016)

    ADS  Google Scholar 

  • J.C. Bridges, D.C. Catling, J.M. Saxton, T.D. Swindle, I.C. Lyon, M.M. Grady, Alteration assemblages in Martian meteorites: implications for near-surface processes. Space Sci. Rev. 96(1–4), 365–392 (2001)

    ADS  Google Scholar 

  • T.F. Bristow, R.M. Haberle, D.F. Blake et al., Low Hesperian P-CO2 constrained from in situ mineralogical analysis at Gale Crater, Mars. Proc. Natl. Acad. Sci. 114(9), 2166–2170 (2017)

    ADS  Google Scholar 

  • T.F. Bristow, E.B. Rampe, C.N. Achilles, D.F. Blake, S.J. Chipera, P. Craig, J.A. Crisp, D.J. Des Marais et al., Clay mineral diversity and abundance in sedimentary rocks of Gale Crater, Mars. Sci. Adv. 4(6), eaar3330 (2018). https://doi.org/10.1126/sciadv.aar3330

    Article  Google Scholar 

  • P.B. Buhler, C.I. Fassett, J.W. Head, M.P. Lamb, Timescales of fluvial activity and intermittency in Milna Crater, Mars. Icarus 241, 130–147 (2014)

    ADS  Google Scholar 

  • D.M. Burr, P.A. Carling, V.R. Baker, Megaflooding on Earth and Mars (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  • J. Buz, B.L. Ehlmann, L. Pan, J.P. Grotzinger, Mineralogy and stratigraphy of the Gale Crater rim, wall, and floor units. J. Geophys. Res., Planets 122(5), 1090–1118 (2017)

    ADS  Google Scholar 

  • K.M. Cannon, S.W. Parman, J.F. Mustard, Primordial clays on Mars formed beneath a steam or supercritical atmosphere. Nature 552, 88 (2017)

    ADS  Google Scholar 

  • B.T. Cardenas, D. Mohrig, T.A. Goudge, Fluvial stratigraphy of valley fills at Aeolis Dorsa, Mars: evidence for base-level fluctuations controlled by a downstream water body. Geol. Soc. Am. Bull. 130(3–4), 484–498 (2018)

    ADS  Google Scholar 

  • M.H. Carr, The Surface of Mars (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  • M.H. Carr, J.W. Head, Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res., Planets 108(E5), 5042 (2003). https://doi.org/10.1029/2002JE001963

    Article  ADS  Google Scholar 

  • M.H. Carr, J.W. Head, Martian surface/near-surface water inventory: sources, sinks, and changes with time. Geophys. Res. Lett. 42(3), 726–732 (2015)

    ADS  Google Scholar 

  • M.H. Carr, M.C. Malin, Meter-scale characteristics of Martian channels and valleys. Icarus 146(2), 366–386 (2000)

    ADS  Google Scholar 

  • J. Carter, D. Loizeau, N. Mangold, F. Poulet, J.-P. Bibring, Widespread surface weathering on early Mars: a case for a warmer and wetter climate. Icarus 248, 373–382 (2015)

    ADS  Google Scholar 

  • W.S. Cassata, Meteorite constraints on Martian atmospheric loss and paleoclimate. Earth Planet. Sci. Lett. 479, 322–329 (2017)

    ADS  Google Scholar 

  • W.S. Cassata, D.L. Shuster, P.R. Renne, B.P. Weiss, Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/39Ar thermochronometry of Martian meteorites. Geochim. Cosmochim. Acta 74(23), 6900–6920 (2010)

    ADS  Google Scholar 

  • W.S. Cassata, D.L. Shuster, P.R. Renne, B.P. Weiss, Trapped Ar isotopes in meteorite ALH 84001 indicate Mars did not have a thick ancient atmosphere. Icarus 221(1), 461–465 (2012)

    ADS  Google Scholar 

  • D.C. Catling, Atmospheric evolution of Mars, in Encyclopedia of Paleoclimatology and Ancient Environments, ed. by V. Gornitz (Springer, Dordrecht, 2009), pp. 66–75

    Google Scholar 

  • D.C. Catling, J.F. Kasting, Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge University Press, Cambridge, 2017)

    Google Scholar 

  • J.E. Chappelow, M.P. Golombek, F.J. Calef, Does the Littleton meteorite require a past, denser Martian atmosphere? in 47th Lunar and Planetary Science Conference, March 21–25, 2016, The Woodlands, Texas. LPI Contribution, vol. 1903 (2016), p. 1662

    Google Scholar 

  • P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Sci. Rev. 110(1), 85–130 (2004)

    ADS  Google Scholar 

  • R.I. Citron, M. Manga, D.J. Hemingway, Timing of oceans on Mars from shoreline deformation. Nature 555(7698), 643–646 (2018)

    ADS  Google Scholar 

  • S.M. Clifford, T.J. Parker, The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154(1), 40–79 (2001)

    ADS  Google Scholar 

  • G.D. Clow, Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus 72, 95–127 (1987)

    ADS  Google Scholar 

  • C.S. Cockell, Habitable worlds with no signs of life. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 372, 20130082 (2014)

    ADS  Google Scholar 

  • A. Cousin, P.Y. Meslin, R.C. Wiens, W. Rapin, N. Mangold, C. Fabre, O. Gasnault, O. Forni, R. Tokar, A. Ollila, S. Schröder, J. Lasue, S. Maurice, V. Sautter, H. Newsom, D. Vaniman, S. Le Mouélic, D. Dyar, G. Berger, D. Blaney, M. Nachon, G. Dromart, N. Lanza, B. Clark, S. Clegg, W. Goetz, J. Berger, B. Barraclough, D. Delapp, Compositions of coarse and fine particles in Martian soils at Gale: a window into the production of soils. Icarus 249, 22–42 (2015)

    ADS  Google Scholar 

  • R.A. Craddock, A.D. Howard, The case for rainfall on a warm, wet early Mars. J. Geophys. Res., Planets 107(E11), 5111 (2002). https://doi.org/10.1029/2001JE001505

    Article  ADS  Google Scholar 

  • R.A. Craddock, R.D. Lorenz, The changing nature of rainfall during the early history of Mars. Icarus 293, 172–179 (2017)

    ADS  Google Scholar 

  • R.A. Craddock, T.A. Maxwell, Geomorphic evolution of the Martian highlands through ancient fluvial processes. J. Geophys. Res., Planets 98, 3453–3468 (1993)

    ADS  Google Scholar 

  • L.S. Crumpler, R.E. Arvidson, S.W. Squyres, T. McCoy, A. Yingst, S. Ruff, W. Farrand, Y. McSween, M. Powell, D.W. Ming, R.V. Morris, J.F. Bell III, J. Grant, R. Greeley, D. DesMarais, M. Schmidt, N.A. Cabrol, A. Haldemann, K.W. Lewis, A.E. Wang, C. Schröder, D. Blaney, B. Cohen, A. Yen, J. Farmer, R. Gellert, E.A. Guinness, K.E. Herkenhoff, J.R. Johnson, G. Klingelhöfer, A. McEwen, J.W. Rice Jr., M. Rice, P. deSouza, J. Hurowitz, Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations. J. Geophys. Res., Planets 116, E7, E00F24 (2011)

    Google Scholar 

  • A. Darling, K. Whipple, Geomorphic constraints on the age of the western Grand Canyon. Geosphere 11(4), 958–976 (2015)

    ADS  Google Scholar 

  • J.M. Davis, M. Balme, M. Grindrod, R.M.E. Williams, S. Gupta, Extensive Noachian fluvial systems in Arabia Terra: implications for early Martian climate. Geology 44(10), 847–850 (2016)

    ADS  Google Scholar 

  • M. Day, W. Anderson, G. Kocurek, D. Mohrig, Carving intracrater layered deposits with wind on Mars. Geophys. Res. Lett. 43, 2473–2479 (2016)

    ADS  Google Scholar 

  • G. de Villiers, M.G. Kleinhans, G. Postma, Experimental delta formation in crater lakes and implications for interpretation of Martian deltas. J. Geophys. Res., Planets 118, 651–670 (2013)

    ADS  Google Scholar 

  • E. Dehouck, S.M. McLennan, E.C. Sklute, M.D. Dyar, Stability and fate of ferrihydrite during episodes of water/rock interactions on early Mars: an experimental approach. J. Geophys. Res., Planets 122(2), 358–382 (2017)

    ADS  Google Scholar 

  • D.P. Dethier, Pleistocene incision rates in the western United States calibrated using Lava Creek B tephra. Geology 29(9), 783 (2001)

    ADS  Google Scholar 

  • G. di Achille, B.M. Hynek, Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3(7), 459–463 (2010)

    ADS  Google Scholar 

  • R.A. DiBiase, A.B. Limaye, J.S. Scheingross, W.W. Fischer, M.P. Lamb, Deltaic deposits at Aeolis Dorsa: sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res., Planets 118(6), 1285–1302 (2013)

    ADS  Google Scholar 

  • J.L. Dickson, C.I. Fassett, J.W. Head, Amazonian-aged fluvial valley systems in a climatic microenvironment on Mars: melting of ice deposits on the interior of Lyot Crater. Geophys. Res. Lett. 36(8), L08201 (2009)

    ADS  Google Scholar 

  • W.E. Dietrich, M.C. Palucis, R.M.E. Williams, K.W. Lewis, F. Rivera-Hernandez, D.Y. Sumner, Fluvial gravels on Mars: analysis and implications, in Gravel Bed Rivers: Processes and Disasters, ed. by D. Tsutsumi, J.B. Laronne (Wiley, New York, 2017), pp. 755–783

    Google Scholar 

  • S.L. Dingman, Physical Hydrology, 3rd edn. (2014)

    Google Scholar 

  • S. Diniega, C.J. Hansen, J.N. McElwaine, C.H. Hugenholtz, C.M. Dundas, A.S. McEwen, M.C. Bourke, A new dry hypothesis for the formation of Martian linear gullies. Icarus 225(1), 526–537 (2013)

    ADS  Google Scholar 

  • P.T. Doran, C.P. McKay, G.D. Clow, G.L. Dana, A.G. Fountain, T. Nylen, W.B. Lyons, Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. J. Geophys. Res., Atmos. 107(D24), 4772 (2002). https://doi.org/10.1029/2001JD002045

    Article  ADS  Google Scholar 

  • H.A. Dugan, M.K. Obryk, P.T. Doran, Lake ice ablation rates from permanently ice-covered Antarctic lakes. J. Glaciol. 59(215), 491–498 (2013)

    ADS  Google Scholar 

  • C.M. Dundas, A.S. McEwen, S. Diniega, C.J. Hansen, S. Byrne, J.N. McElwaine, The Formation of Gullies on Mars Today. Special Publications, vol. 467 (Geological Society, London, 2017a). https://doi.org/10.1144/SP467.5

    Book  Google Scholar 

  • C.M. Dundas, A.S. McEwen, M. Chojnacki et al., Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nat. Geosci. 10, 903 (2017b)

    ADS  Google Scholar 

  • T. Dunne, D.V. Malmon, K.B.J. Dunne, Limits on the morphogenetic role of rain splash transport in hillslope evolution. J. Geophys. Res., Earth Surf. 121(3), 609–622 (2016)

    ADS  Google Scholar 

  • J.R. Eagleman, Pan evaporation, potential and actual evapotranspiration. J. Appl. Meteorol. 6(3), 482–488 (1967)

    ADS  Google Scholar 

  • B.C. Eaton, Chap. 9.18: hydraulic geometry, in Treatise on Geomorphology, 9, Fluvial Geomorphology, ed. by E.E. Wohl (Elsevier, Oxford, 2013)

    Google Scholar 

  • K.S. Edgett, M.C. Malin, Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett. 29(24), 2179 (2002). https://doi.org/10.1029/2002GL016515

    Article  ADS  Google Scholar 

  • C.S. Edwards, K.J. Nowicki, P.R. Christensen, J. Hill, N. Gorelick, K. Murray, Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116(E10), E10008 (2011)

    ADS  Google Scholar 

  • B.L. Ehlmann, C.S. Edwards, Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42(1), 291–315 (2014)

    ADS  Google Scholar 

  • B.L. Ehlmann, J.F. Mustard, S.L. Murchie et al., Subsurface water and clay mineral formation during the early history of Mars. Nature 479(7371), 53–60 (2011a)

    ADS  Google Scholar 

  • B.L. Ehlmann, J.F. Mustard, R.N. Clark, G.A. Swayze, S.L. Murchie, Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays Clay Miner. 59(4), 359–377 (2011b)

    ADS  Google Scholar 

  • B.L. Ehlmann, F.S. Anderson, J. Andrews-Hanna, D.C. Catling, R. Christensen, B.A. Cohen, C.D. Dressing, C.S. Edwards, L.T. Elkins-Tanton, K.A. Farley, C.I. Fassett, W.W. Fischer, A.A. Fraeman, M.P. Golombek, V.E. Hamilton, A.G. Hayes, C.D.K. Herd, B. Horgan, R. Hu, B.M. Jakosky, J.R. Johnson, J.F. Kasting, L. Kerber, K.M. Kinch, E.S. Kite, H.A. Knutson, J.I. Lunine, R. Mahaffy, N. Mangold, F.M. McCubbin, J.F. Mustard, B. Niles, C. Quantin-Nataf, M.S. Rice, K.M. Stack, D.J. Stevenson, S.T. Stewart, M.J. Toplis, T. Usui, B.P. Weiss, S.C. Werner, R.D. Wordsworth, J.J. Wray, R.A. Yingst, Y.L. Yung, K.J. Zahnle, The sustainability of habitability on terrestrial planets: insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds. J. Geophys. Res., Planets 121(10), 1927–1961 (2016)

    ADS  Google Scholar 

  • M.R. El-Maarry, J.M. Dohm, G. Michael, N. Thomas, S. Maruyama, Morphology and evolution of the ejecta of Hale Crater in Argyre basin, Mars: results from high resolution mapping. Icarus 226, 905–922 (2013)

    ADS  Google Scholar 

  • M.E. Elwood Madden, A.S. Madden, J.D. Rimstidt, How long was Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration of aqueous diagenesis. Geology 37(7), 635–638 (2009)

    ADS  Google Scholar 

  • A.G. Fairén, A cold and wet Mars. Icarus 208(1), 165–175 (2010)

    ADS  Google Scholar 

  • A.G. Fairén, A.F. Davila, L. Gago-Duport, R. Amils, C.P. McKay, Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009)

    ADS  Google Scholar 

  • A.G. Fairén, J.D. Haqq-Misra, C.P. McKay, Reduced albedo on early Mars does not solve the climate paradox under a faint young Sun. Astron. Astrophys. 540, A13 (2012)

    ADS  Google Scholar 

  • K.A. Farley, C. Malespin, P. Mahaffy, J.P. Grotzinger, P.M. Vasconcelos, R.E. Milliken, M. Malin, K.S. Edgett, A.A. Pavlov, J.A. Hurowitz, J.A. Grant et al., In situ radiometric and exposure age dating of the Martian surface. Science 343(6169), 1247166 (2014)

    Google Scholar 

  • C.I. Fassett, J.W. Head, Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 32(14), L14201 (2005)

    ADS  Google Scholar 

  • C.I. Fassett, J.W. Head, The timing of Martian valley network activity: constraints from buffered crater counting. Icarus 195(1), 61–89 (2008a)

    ADS  Google Scholar 

  • C.I. Fassett, J.W. Head, Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198(1), 37–56 (2008b)

    ADS  Google Scholar 

  • C.I. Fassett, J.W. Head, Sequence and timing of conditions on early Mars. Icarus 211(2), 1204–1214 (2011)

    ADS  Google Scholar 

  • C.I. Fassett, J.L. Dickson, J.W. Head, J.S. Levy, D.R. Marchant, Supraglacial and proglacial valleys on Amazonian Mars. Icarus 208(1), 86–100 (2010)

    ADS  Google Scholar 

  • J.L. Fastook, J.W. Head, Glaciation in the late Noachian icy highlands: ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet. Space Sci. 106, 82–98 (2015)

    ADS  Google Scholar 

  • J.L. Fastook, J.W. Head, D.R. Marchant, F. Forget, J.-B. Madeleine, Early Mars climate near the Noachian-Hesperian boundary: independent evidence for cold conditions from basal melting of the south polar ice sheet (Dorsa Argentea formation) and implications for valley network formation. Icarus 219(1), 25–40 (2012)

    ADS  Google Scholar 

  • C.M. Fedo, J.P. Grotzinger, S. Gupta, N.T. Stein, J. Watkins, S. Banham, K.S. Edgett, M. Minitti, J. Schieber, K. Siebach, K. Stack-Morgan, H. Newsom, K.W. Lewis, C. House, A.R. Vasavada, Facies analysis and basin architecture of the upper part of the Murray formation, Gale Crater, Mars, in 48th Lunar and Planetary Science Conference. 20–24 March 2017, The Woodlands, Texas. LPI Contribution, vol. 1964 (2017), p. 1689

    Google Scholar 

  • R.M. Flowers, K.A. Farley, Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon. Science 338(6114), 1616 (2012)

    ADS  Google Scholar 

  • F. Forget, R. Wordsworth, E. Millour, J.-B. Madeleine, L. Kerber, J. Leconte, E. Marcq, R.M. Haberle, 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222(1), 81–99 (2013)

    ADS  Google Scholar 

  • N.K. Forsberg-Taylor, A.D. Howard, R.A. Craddock, Crater degradation in the Martian highlands: morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes. J. Geophys. Res. 109(E5), E05002 (2004)

    ADS  Google Scholar 

  • J. Frydenvang, P.J. Gasda, J.A. Hurowitz, J.P. Grotzinger, R.C. Wiens, H.E. Newsom, K.S. Edgett, J. Watkins, J.C. Bridges, S. Maurice, M.R. Fisk, J.R. Johnson, W. Rapin, N.T. Stein, S.M. Clegg, S.P. Schwenzer, C.C. Bedford, P. Edwards, N. Mangold, A. Cousin, R.B. Anderson, V. Payré, D. Vaniman, D.F. Blake, N.L. Lanza, S. Gupta, J. Van Beek, V. Sautter, P.-Y. Meslin, M. Rice, R. Milliken, R. Gellert, L. Thompson, B.C. Clark, D.Y. Sumner, A.A. Fraeman, K.M. Kinch, M.B. Madsen, I.G. Mitrofanov, I. Jun, F. Calef, A.R. Vasavada, Diagenetic silica enrichment and late-stage groundwater activity in Gale Crater, Mars. Geophys. Res. Lett. 44(10), 4716–4724 (2017). https://doi.org/10.1002/2017GL073323

    Article  ADS  Google Scholar 

  • L.R. Gabasova, E.S. Kite, Compaction and sedimentary basin analysis on Mars. Planet. Space Sci. 152, 86–106 (2018)

    ADS  Google Scholar 

  • S.F. Gallen, F.J. Pazzaglia, K.W. Wegmann, J.L. Pederson, T.W. Gardner, The dynamic reference frame of rivers and apparent transience in incision rates. Geology 43(7), 623–626 (2015)

    ADS  Google Scholar 

  • A. Gaudin, E. Dehouck, O. Grauby, N. Mangold, Formation of clay minerals on Mars: insights from long-term experimental weathering of olivine. Icarus 311, 210–223 (2018)

    ADS  Google Scholar 

  • A. Gendrin, N. Mangold, J.-P. Bibring, Y. Langevin, B. Gondet, F. Poulet, G. Bonello, C. Quantin, J. Mustard, R. Arvidson, S. Le Mouélic, Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science 307(5715), 1587–1591 (2005)

    ADS  Google Scholar 

  • G.L. Ghatan, J.R. Zimbelman, Paucity of candidate coastal constructional landforms along proposed shorelines on Mars—implications for a northern lowlands-filling ocean. Icarus 185(1), 171–196 (2006). https://doi.org/10.1016/j.icarus.2006.06.007

    Article  ADS  Google Scholar 

  • T.D. Glotch, J.L. Bandfield, P.R. Christensen, W.M. Calvin, S.M. McLennan, B.C. Clark, A.D. Rogers, S.W. Squyres, Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the miniature thermal emission spectrometer and implications for its formation. J. Geophys. Res. 111, E12, E12S03 (2006)

    Google Scholar 

  • K. Goddard, N.H. Warner, S. Gupta, J.-R. Kim, Mechanisms and timescales of fluvial activity at Mojave and other young Martian craters. J. Geophys. Res., Planets 119(3), 604–634 (2014)

    ADS  Google Scholar 

  • W. Goetz, P. Bertelsen, C.S. Binau, H.P. Gunnlaugsson, S.F. Hviid, K.M. Kinch, D.E. Madsen, M.B. Madsen, M. Olsen, R. Gellert, G. Klingelhöfer, D.W. Ming, R.V. Morris, R. Rieder, D.S. Rodionov, P.A. de Souza, C. Schröder, S.W. Squyres, T. Wdowiak, A. Yen, Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature 436(7047), 62–65 (2005)

    ADS  Google Scholar 

  • M.P. Golombek, J.A. Grant, L.S. Crumpler, R. Greeley, R.E. Arvidson, J.F. Bell, C.M. Weitz, R. Sullivan, R. Christensen, L.A. Soderblom, S.W. Squyres, Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. 111(E12), E12S10 (2006)

    ADS  Google Scholar 

  • M.P. Golombek, N.H. Warner, V. Ganti, M.P. Lamb, T.J. Parker, R.L. Fergason, R. Sullivan, Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res., Planets 119(12), 2522–2547 (2014)

    ADS  Google Scholar 

  • T.A. Goudge, C.I. Fassett, Incision of Licus Vallis, Mars, from multiple lake overflow floods. J. Geophys. Res., Planets 123(2), 405–420 (2018)

    ADS  Google Scholar 

  • T.A. Goudge, J.W. Head, J.F. Mustard, C.I. Fassett, An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219(1), 211–229 (2012)

    ADS  Google Scholar 

  • T.A. Goudge, C.I. Fassett, J.W. Head, J.F. Mustard, K.L. Aureli, Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44(6), 419–422 (2016)

    ADS  Google Scholar 

  • T.A. Goudge, R.E. Milliken, J.W. Head, J.F. Mustard, C.I. Fassett, Sedimentological evidence for a deltaic origin of the western fan deposit in Jezero Crater, Mars and implications for future exploration. Earth Planet. Sci. Lett. 458, 357–365 (2017)

    ADS  Google Scholar 

  • T.A. Goudge, D. Mohrig, B.T. Cardenas, C.M. Hughes, C.I. Fassett, Stratigraphy and paleohydrology of delta channel deposits, Jezero Crater, Mars. Icarus 301, 58–75 (2018)

    ADS  Google Scholar 

  • J.A. Grant, S.A. Wilson, Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophys. Res. Lett. 38, L08201 (2011). https://doi.org/10.1029/2011GL046844

    Article  ADS  Google Scholar 

  • J.A. Grant, S.A. Wilson, A possible synoptic source of water for alluvial fan formation in southern Margaritifer Terra, Mars. Planet. Space Sci. 72(44), 52 (2012)

    ADS  Google Scholar 

  • J.A. Grant, S.A. Wilson, The nature and emplacement of distal aqueous-rich ejecta deposits from Hale crater, Mars. Meteorit. Planet. Sci., 839–856 (2018). https://doi.org/10.1111/maps.1284353

  • J.A. Grant, R.P. Irwin III, J.P. Grotzinger et al., HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars. Geology 36, 195–198 (2008)

    ADS  Google Scholar 

  • J.A. Grant, R.P. Irwin, S.A. Wilson, D. Buczkowski, K. Siebach, A lake in Uzboi Vallis and implications for late Noachian-early Hesperian climate on Mars. Icarus 212(1), 110–122 (2011)

    ADS  Google Scholar 

  • S.E. Grasby, B.C. Proemse, B. Beauchamp, Deep groundwater circulation through the High Arctic cryosphere forms Mars-like gullies. Geology 42(8), 651–654 (2014)

    ADS  Google Scholar 

  • J.P. Grotzinger, R.E. Milliken, The sedimentary rock record of Mars: distribution, origins, and global stratigraphy, in Sedimentary Geology of Mars. SEPM Special Publication, vol. 102 (2012), pp. 1–48. ISBN 978-1-56576-312-8

    Google Scholar 

  • J.P. Grotzinger, R.E. Arvidson, J.F. Bell, W. Calvin, B.C. Clark, D.A. Fike, M. Golombek, R. Greeley, A. Haldemann, K.E. Herkenhoff, B.L. Jolliff, A.H. Knoll, M. Malin, S.M. McLennan, T. Parker, L. Soderblom, J.N. Sohl-Dickstein, S.W. Squyres, N.J. Tosca, W.A. Watters, Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240(1), 11–72 (2005)

    ADS  Google Scholar 

  • J.P. Grotzinger, D.Y. Sumner, L.C. Kah, K. Stack, S. Gupta, L. Edgar, D. Rubin, K. Lewis, J. Schieber, N. Mangold, R. Milliken, G. Conrad, D. DesMarais, J. Farmer, K. Siebach, F. Calef, J. Hurowitz, S.M. McLennan et al., A Habitable Fluvio-Lacustrine environment at Yellowknife bay, Gale Crater, Mars. Science 343(6169), 1242777 (2014)

    Google Scholar 

  • J.P. Grotzinger, S. Gupta, M.C. Malin, D.M. Rubin, J. Schieber, K. Siebach, D.Y. Sumner, K. Stack et al., Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350, 6257 (2015)

    Google Scholar 

  • V. Gulick, Origin of the valley networks on Mars: a hydrological perspective. Geomorphology 37(3–4), 241–268 (2001)

    ADS  Google Scholar 

  • V.C. Gulick, V.R. Baker, Fluvial valleys and Martian palaeoclimates. Nature 341, 514–516 (1989). https://doi.org/10.1038/341514a0

    Article  ADS  Google Scholar 

  • R.M. Haberle, Early Mars climate models. J. Geophys. Res. 103(E12), 28467–28480 (1998)

    ADS  Google Scholar 

  • R.M. Haberle, D.C. Catling, M.H. Carr, K.J. Zahnle, The early Mars climate system, in The Atmosphere and Climate of Mars, ed. by R.M. Haberle et al.(Cambridge University Press, Cambridge, 2017), pp. 497–525. ISBN 9781139060172

    Google Scholar 

  • R.M. Haberle, K. Zahnle, N.G. Barlow, Warming early Mars by impact degassing of reduced greenhouse gases, in 49th Lunar and Planetary Science Conference, 19–23 March, 2018, The Woodlands, Texas. LPI Contribution, vol. 2083 (2018), p. 1682

    Google Scholar 

  • E.A. Hajek, M.A. Wolinsky, Simplified process modeling of river avulsion and alluvial architecture: connecting models and field data. Sediment. Geol. 257–260, 1–30 (2012)

    ADS  Google Scholar 

  • I. Halevy, J.W. Head III, Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7(12), 865–868 (2014)

    ADS  Google Scholar 

  • I. Halevy, W.W. Fischer, J.M. Eiler, Carbonates in the Martian meteorite Allan Hills 84001 formed at 18±4 degrees C in a near-surface aqueous environment. Proc. Natl. Acad. Sci. 108(41), 16895–16899 (2011)

    ADS  Google Scholar 

  • V.E. Hamilton, P.R. Christensen, Evidence for extensive, olivine-rich bedrock on Mars. Geology 33, 433–436 (2005)

    ADS  Google Scholar 

  • K.R. Harrison, M.G. Chapman, Evidence for ponding and catastrophic flood in central Valles Marineris. Icarus 198, 351–364 (2008). https://doi.org/10.1016/j.icarus.2008.08.003

    Article  ADS  Google Scholar 

  • W.K. Hartmann, Geological observations of Martian arroyos. J. Geophys. Res. 79, 3951–3957 (1974)

    ADS  Google Scholar 

  • W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005)

    ADS  Google Scholar 

  • E. Hauber, T. Platz, D. Reiss, L. Le Deit, M.G. Kleinhans, W.A. Marra, T. Haas, P. Carbonneau, Asynchronous formation of Hesperian and Amazonian-aged deltas on Mars and implications for climate. J. Geophys. Res., Planets 118, 1529–1544 (2013)

    ADS  Google Scholar 

  • E.M. Hausrath, A.K. Navarre-Sitchler, P.B. Sak et al., Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars. Geology 36(1), 67–70 (2008)

    ADS  Google Scholar 

  • J.W. Head, Mars planetary hydrology: was the Martian hydrological cycle and system ever globally vertically integrated? in 43rd Lunar and Planetary Science Conference, March 19–23, 2012, The Woodlands, Texas. LPI Contribution, vol. 1659 (2012), p. 2137

    Google Scholar 

  • J.W. Head, Mars climate history: a geological perspective, in The Sixth International Workshop on the Mars Atmosphere: Modelling and Observation, January 17–20, 2017, Granada, Spain. Scientific committee: F. Forget, M.A. Lopez-Valverde, S. Amiri, M.-C. Desjean, F. Gonzalez-Galindo, J. Hollingsworth, B. Jakosky, S.R. Lewis, D. McCleese, E. Millour, H. Svedhem, D. Titov, M. Wolff (2017), p. 4301

    Google Scholar 

  • J.W. Head, D.R. Marchant, The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarct. Sci. 26(06), 774–800 (2014)

    ADS  Google Scholar 

  • J.W. Head, R. Wordsworth, F. Forget, M. Turbet, Deciphering the Noachian geological and climate history of Mars: part 2: a Noachian stratigraphic view of major geologic processes and their climatic consequences, in Fourth International Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life, Proceedings of the Conference. 2–6 October, 2017, Flagstaff, Arizona. LPI Contribution, vol. 2014 (2017), p. 3047

    Google Scholar 

  • M.H. Hecht, Metastability of liquid water on Mars. Icarus 156(2), 373–386 (2002)

    ADS  Google Scholar 

  • W. Hildreth, J. Fierstein, The Novarupta-Katmai eruption of 1912—largest eruption of the twentieth century, centennial perspectives. U. S. Geol. Surv. Prof. Pap. 1791, 259 (2012)

    Google Scholar 

  • M.R.T. Hoke, B.M. Hynek, Roaming zones of precipitation on ancient Mars as recorded in valley networks. J. Geophys. Res. 114(E8), E08002 (2009)

    ADS  Google Scholar 

  • M.R.T. Hoke, B.M. Hynek, G.E. Tucker, Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312(1), 1–12 (2011)

    ADS  Google Scholar 

  • A. Howard, Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing. Geomorphology 91, 332–363 (2007)

    ADS  Google Scholar 

  • A.D. Howard, J.M. Moore, Late Hesperian to early Amazonian midlatitude Martian valleys: evidence from Newton and Gorgonum basins. J. Geophys. Res. 116(E5), E05003 (2011)

    ADS  Google Scholar 

  • A.D. Howard, J.M. Moore, R.P. Irwin, An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110(E12), E12S14 (2005)

    ADS  Google Scholar 

  • R. Hu, D.M. Kass, B.L. Ehlmann, Y.L. Yung, Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Commun. 6, 10003 (2015)

    ADS  Google Scholar 

  • C.M. Hughes, B.T. Cardenas, T.A. Goudge, D. Mohrig, Deltaic deposits indicative of a paleo-coastline at Aeolis Dorsa, Mars. Icarus 317, 442–453 (2019)

    ADS  Google Scholar 

  • M. Humayun, A. Nemchin, B. Zanda, R.H. Hewins, M. Grange, A. Kennedy, J.-P. Lorand, C. Göpel, C. Fieni, S. Pont, D. Deldicque, Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503, 513–516 (2013)

    ADS  Google Scholar 

  • J.A. Hurowitz, W.W. Fischer, Contrasting styles of water-rock interaction at the Mars Exploration Rover landing sites. Geochim. Cosmochim. Acta 127, 25–38 (2014)

    ADS  Google Scholar 

  • J.A. Hurowitz, S.M. McLennan, A \(\sim 3.5~\mbox{Ga}\) record of water-limited, acidic weathering conditions on Mars. Earth Planet. Sci. Lett. 260(3–4), 432–443 (2007)

    ADS  Google Scholar 

  • J.A. Hurowitz, S.M. McLennan, N.J. Tosca, R.E. Arvidson, J.R. Michalski, D.W. Ming, C. Schröder, S.W. Squyres, In situ and experimental evidence for acidic weathering of rocks and soils on Mars. J. Geophys. Res. 111, E2, E02S19 (2006)

    Google Scholar 

  • J.A. Hurowitz, W. Fischer, N.J. Tosca et al., Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 3: 5, 323–326 (2010)

    ADS  Google Scholar 

  • J.A. Hurowitz, J.P. Grotzinger, W.W. Fischer, S.M. McLennan, R.E. Milliken, N. Stein, A.R. Vasavada, D.F. Blake, E. Dehouck, J.L. Eigenbrode, A.G. Fairén, J. Frydenvang, R. Gellert, J.A. Grant, S. Gupta, K.E. Herkenhoff, D.W. Ming, E.B. Rampe, M.E. Schmidt, K.L. Siebach, K. Stack-Morgan, D.Y. Sumner, R.C. Wiens, Redox stratification of an ancient lake in Gale Crater, Mars. Science 356(6341), aah6849 (2017)

    ADS  Google Scholar 

  • B.M. Hynek, G. Di Achille, Geologic map of Meridiani Planum, Mars (ver. 1.1, April 2017): U.S. Geological Survey Scientific Investigations Map 3356, pamphlet 9 pp., scale 1:2,000,000 (2017). https://doi.org/10.3133/sim3356

  • B.M. Hynek, R.J. Phillips, New data reveal mature, integrated drainage systems on Mars indicative of past precipitation. Geology 31(9), 757 (2003)

    ADS  Google Scholar 

  • B.M. Hynek, M. Beach, M.R.T. Hoke, Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115(E9), E09008 (2010)

    ADS  Google Scholar 

  • R.P. Irwin, Testing links between impacts and fluvial erosion on post-Noachian Mars, in 44th Lunar and Planetary Science Conference, March 18–22, 2013, The Woodlands, Texas. LPI Contribution, vol. 1719, (2013), p. 2958

    Google Scholar 

  • R.P. Irwin, T.A. Maxwell, A.D. Howard, R.A. Craddock, D.W. Leverington, A large paleolake basin at the head of Ma’adim Vallis, Mars. Science 296(5576), 2209–2212 (2002)

    ADS  Google Scholar 

  • R.P. Irwin, A.D. Howard, T.A. Maxwell, Geomorphology of Ma’adim Vallis, Mars, and associated paleolake basins. J. Geophys. Res. 109(E12), E12009 (2004)

    ADS  Google Scholar 

  • R.P. Irwin, A.D. Howard, R.A. Craddock, J.M. Moore, An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110(E12), E12S15 (2005a)

    ADS  Google Scholar 

  • R.P. Irwin, R.A. Craddock, A.D. Howard, Interior channels in Martian valley networks: discharge and runoff production. Geology 33(6), 489–492 (2005b)

    ADS  Google Scholar 

  • R.P. Irwin, K.L. Tanaka, S.J. Robbins, Distribution of early, middle, and late Noachian cratered surfaces in the Martian highlands: implications for resurfacing events and processes. J. Geophys. Res., Planets 118(2), 278–291 (2013)

    ADS  Google Scholar 

  • R.P. Irwin, K.W. Lewis, A.D. Howard, J.A. Grant, Paleohydrology of Eberswalde crater, Mars. Geomorphology (2015). https://doi.org/10.1016/j.geomorph.2014.10.012

    Article  Google Scholar 

  • M.A. Ivanov, G. Erkeling, H. Hiesinger, H. Bernhardt, D. Reiss, Topography of the Deuteronilus contact on Mars: evidence for an ancient water/mud ocean and long-wavelength topographic readjustments. Planet. Space Sci. 144, 49–70 (2017)

    ADS  Google Scholar 

  • R.E. Jacobsen, D.M. Burr, Greater contrast in Martian hydrological history from more accurate estimates of paleodischarge. Geophys. Res. Lett. 43(17), 8903–8911 (2016)

    ADS  Google Scholar 

  • B.M. Jakosky, J.H. Jones, The history of Martian volatiles. Rev. Geophys. 35(1), 1–16 (1997)

    ADS  Google Scholar 

  • B.M. Jakosky, R.J. Phillips, Mars’ volatile and climate history. Nature 412(6843), 237–244 (2001)

    ADS  Google Scholar 

  • B.M. Jakosky, M. Slipski, M. Benna et al., Mars’ atmospheric history derived from upper-atmosphere measurements of Ar-38/Ar-36. Science 355, 1408 (2017)

    ADS  MathSciNet  Google Scholar 

  • B.M. Jakosky et al., Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315, 146–157 (2018). https://doi.org/10.1016/j.icarus.2018.05.030

    Article  ADS  Google Scholar 

  • R. Jaumann, D. Reiss, S. Frei, G. Neukum, F. Scholten, K. Gwinner, T. Roatsch, K.-D. Matz, V. Mertens, E. Hauber, H. Hoffmann, U. Köhler, J.W. Head, H. Hiesinger, M.H. Carr, Interior channels in Martian valleys: constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera. Geophys. Res. Lett. 32(16), L16203 (2005)

    ADS  Google Scholar 

  • L.C. Kah, K.M. Stack, J.L. Eigenbrode, R.A. Yingst, K.S. Edgett, Syndepositional precipitation of calcium sulfate in Gale Crater, Mars. Terra Nova 30(6), 431–439 (2018). https://doi.org/10.1111/ter.12359

    Article  ADS  Google Scholar 

  • J.F. Kasting, D.P. Whitmire, R.T. Reynolds, Habitable zones around main sequence stars. Icarus 101(1), 108–128 (1993)

    ADS  Google Scholar 

  • S.V. Kaufman, J.F. Mustard, J.W. Head, Characterization of the alteration of Antarctic ash: the products of a cold and icy environment, in 49th Lunar and Planetary Science Conference, 19–23 March, 2018, The Woodlands, Texas. LPI Contribution, vol. 2083 (2018), p. 2375

    Google Scholar 

  • L. Kerber, J.W. Head, The age of the Medusae Fossae formation: evidence of Hesperian emplacement from crater morphology, stratigraphy, and ancient lava contacts. Icarus 206(2), 669–684 (2010)

    ADS  Google Scholar 

  • L. Kerber, F. Forget, R. Wordsworth, Sulfur in the early Martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261, 133–148 (2015)

    ADS  Google Scholar 

  • E.S. Kite, An ice-and-snow hypothesis for early Mars, and the runoff-production test, in Fourth International Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life, Proceedings of the Conference. 2–6 October, 2017, Flagstaff, Arizona. LPI Contribution, vol. 2014 (2017), p. 3044

    Google Scholar 

  • E.S. Kite, R.C.A. Hindmarsh, Did ice streams shape the largest channels on Mars? Geophys. Res. Lett. 34, L19202 (2007). https://doi.org/10.1029/2007GL030530

    Article  ADS  Google Scholar 

  • E.S. Kite, I. Matsuyama, M. Manga, J.T. Perron, J.X. Mitrovica, True Polar Wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars. Earth Planet. Sci. Lett. 280, 254–267 (2009)

    ADS  Google Scholar 

  • E.S. Kite, T.I. Michaels, S.C.R. Rafkin, M. Manga, W.E. Dietrich, Localized precipitation and runoff on Mars. J. Geophys. Res., Planets 116, E07002, 20 (2011a). https://doi.org/10.1029/2010JE003783

    Article  ADS  Google Scholar 

  • E.S. Kite, S. Rafkin, T.I. Michaels, W.E. Dietrich, M. Manga, Chaos terrain, storms, and past climate on Mars. J. Geophys. Res. 116(E10), E10002 (2011b)

    ADS  Google Scholar 

  • E.S. Kite, I. Halevy, M.A. Kahre, M.J. Wolff, M. Manga, Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223(1), 181–210 (2013a)

    ADS  Google Scholar 

  • E.S. Kite, A. Lucas, C.I. Fassett, Pacing Early Mars river activity: embedded craters in the Aeolis Dorsa region imply river activity spanned \(\gtrsim(1\mbox{--}20)~\mbox{Myr}\). Icarus 225, 850–855 (2013b)

    ADS  Google Scholar 

  • E.S. Kite, J.-P. Williams, A. Lucas, O. Aharonson, Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nat. Geosci. 7(5), 335–339 (2014)

    ADS  Google Scholar 

  • E.S. Kite, A.D. Howard, A.S. Lucas, J.C. Armstrong, O. Aharonson, M.P. Lamb, Stratigraphy of Aeolis Dorsa, Mars: stratigraphic context of the great river deposits. Icarus 253, 223–242 (2015)

    ADS  Google Scholar 

  • E.S. Kite, P. Gao, C. Goldblatt, M.A. Mischna, D.P. Mayer, Y.L. Yung, Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars. Nat. Geosci. 10, 737–740 (2017a)

    ADS  Google Scholar 

  • E.S. Kite, J. Sneed, D.P. Mayer, S.A. Wilson, Persistent or repeated surface habitability on Mars during the late Hesperian–Amazonian. Geophys. Res. Lett. 44(9), 3991–3999 (2017b)

    ADS  Google Scholar 

  • E.S. Kite, L.J. Steele, M.A. Mischna, The cirrus cloud greenhouse on Early Mars: an explanation, the explanation, or no explanation for rivers and lakes? in AGU Fall Meeting (2018), P51F-2942

    Google Scholar 

  • E.S. Kite, D.P. Mayer, S.A. Wilson, J.M. Davis, A.S. Lucas, G. Stucky de Quay, Persistence of intense, climate-driven runoff late in Mars history. Sci. Adv. (2019, in press)

  • M.G. Kleinhans, Flow discharge and sediment transport models for estimating a minimum timescale of hydrological activity and channel and delta formation on Mars. J. Geophys. Res. 110(E12), E12003 (2005)

    ADS  Google Scholar 

  • M.G. Kleinhans, H.E. van de Kasteele, E. Hauber, Palaeoflow reconstruction from fan delta morphology on Mars. Earth Planet. Sci. Lett. 294(3–4), 378–392 (2010)

    ADS  Google Scholar 

  • A.H. Knoll, M. Carr, B. Clark, D.J. Des Marais, J.D. Farmer, W.W. Fischer, J.P. Grotzinger, S.M. McLennan, M. Malin, C. Schröder, S. Squyres, N.J. Tosca, T. Wdowiak, An astrobiological perspective on Meridiani Planum. Earth Planet. Sci. Lett. 240(1), 179–189 (2005)

    ADS  Google Scholar 

  • A.H. Knoll, B.L. Jolliff, W.H. Farrand, J.F. Bell III, B.C. Clark, R. Gellert, M.P. Golombek, J.P. Grotzinger, K.E. Herkenhoff, J.R. Johnson, S.M. McLennan, R. Morris, S.W. Squyres, R. Sullivan, N.J. Tosca, A. Yen, Z. Learner, Veneers, rinds, and fracture fills: relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. J. Geophys. Res. 113(E6), E06S16 (2008)

    Google Scholar 

  • W.C. Koeppen, V.E. Hamilton, Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J. Geophys. Res. 113, E05001 (2008)

    ADS  Google Scholar 

  • R.K. Kopparapu, R. Ramirez, J.F. Kasting, V. Eymet, T.D. Robinson, S. Mahadevan, R.C. Terrien, S. Domagal-Goldman, V. Meadows, R. Deshpande, Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765(2), 131 (2013)

    ADS  Google Scholar 

  • E.R. Kraal, E. Asphaug, J.M. Moore, A. Howard, A. Bredt, Catalogue of large alluvial fans in Martian impact craters. Icarus 194(1), 101–110 (2008a)

    ADS  Google Scholar 

  • E.R. Kraal, M. van Dijk, G. Postma, M.G. Kleinhans, Martian stepped-delta formation by rapid water release. Nature 451(7181), 973–976 (2008b)

    ADS  Google Scholar 

  • T. Kurahashi-Nakamura, E. Tajika, Atmospheric collapse and transport of carbon dioxide into the subsurface on early Mars. Geophys. Res. Lett. 33(18), L18205 (2006)

    ADS  Google Scholar 

  • H. Kurokawa, K. Kurosawa, T. Usui, A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus 299, 443–459 (2018)

    ADS  Google Scholar 

  • M.P. Lamb, W.E. Dietrich, S.M. Aciego, D.J. DePaolo, M. Manga, Formation of Box Canyon, Idaho, by megaflood: implications for Seepage Erosion on Earth and Mars. Science 320(5879), 1067 (2008)

    ADS  Google Scholar 

  • M.P. Lamb, N.J. Finnegan, J.S. Scheingross, L.S. Sklar, New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory. Geomorphology 244, 33–55 (2015)

    ADS  Google Scholar 

  • H. Lammer, E. Chassefière, Ö. Karatekin, A. Morschhauser, P.B. Niles, O. Mousis, P. Odert, U.V. Möstl, D. Breuer, V. Dehant, M. Grott, H. Gröller, E. Hauber, L.B.S. Pham, Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174(1–4), 113–154 (2013)

    ADS  Google Scholar 

  • M.G.A. Lapôtre, M.P. Lamb, Substrate controls on valley formation by groundwater on Earth and Mars. Geology 46(6), 531–534 (2018)

    ADS  Google Scholar 

  • M.G.A. Lapôtre, R.C. Ewing, M.P. Lamb et al., Large wind ripples on Mars: a record of atmospheric evolution. Science 353(6294), 55–58 (2016)

    ADS  Google Scholar 

  • L. Le Deit, J. Flahaut, C. Quantin, E. Hauber, D. Mège, O. Bourgeois, J. Gurgurewicz, M. Massé, R. Jaumann, Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. J. Geophys. Res. 117, E00J05 (2012)

    Google Scholar 

  • H.J. Leask, L. Wilson, K.L. Mitchell, Formation of Mangala Valles outflow channel, Mars: morphological development and water discharge and duration estimates. J. Geophys. Res. 112(E8), E08003 (2007)

    ADS  Google Scholar 

  • E.K. Leask, B.L. Ehlmann, M.M. Dundar, S.L. Murchie, F.P. Seelos, Challenges in the search for perchlorate and other hydrated minerals with 2.1-μm absorptions on Mars. Geophys. Res. Lett. 45, 12180–12189 (2018)

    ADS  Google Scholar 

  • C.O. Lee, B.M. Jakosky, J.G. Luhmann, D.A. Brain, M.L. Mays, D.M. Hassler, M. Holmström, D.E. Larson, D.L. Mitchell, C. Mazelle, J.S. Halekas, Observations and impacts of the 10 September 2017 solar events at Mars: an overview and synthesis of the initial results. Geophys. Res. Lett. 45, 8871–8885 (2018)

    ADS  Google Scholar 

  • A. Lefort, D.M. Burr, R.A. Beyer, A.D. Howard, Inverted fluvial features in the Aeolis-Zephyria plana, western Medusae Fossae formation, Mars: evidence for post-formation modification. J. Geophys. Res. 117(E3), E03007 (2012)

    ADS  Google Scholar 

  • K.W. Lewis, O. Aharonson, Stratigraphic analysis of the distributary fan in Eberswalde Crater using stereo imagery. J. Geophys. Res. 111(E6), E06001 (2006)

    ADS  Google Scholar 

  • K.W. Lewis, O. Aharonson, Occurrence and origin of rhythmic sedimentary rocks on Mars. J. Geophys. Res., Planets 119(6), 1432–1457 (2014)

    ADS  Google Scholar 

  • K.W. Lewis, O. Aharonson, J.P. Grotzinger et al., Quasi-periodic bedding in the sedimentary rock record of Mars. Science 322(5907), 1532–1535 (2008)

    ADS  Google Scholar 

  • C. Li, M.J. Czapiga, E.C. Eke, E. Viparelli, G. Parker, Variable shields number model for river bankfull geometry: bankfull shear velocity is viscosity-dependent but grain size-independent. J. Hydraul. Res. 53, 36–48 (2015)

    Google Scholar 

  • R.J. Lillis, S. Robbins, M. Manga, J.S. Halekas, H.V. Frey, Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res., Planets 118(7), 1488–1511 (2013)

    ADS  Google Scholar 

  • R.J. Lillis, D.A. Brain, S.W. Bougher, F. Leblanc, J.G. Luhmann, B.M. Jakosky, R. Modolo, J. Fox, J. Deighan, X. Fang, Y.C. Wang, Y. Lee, C. Dong, Y. Ma, T. Cravens, L. Andersson, S.M. Curry, N. Schneider, M. Combi, I. Stewart, J. Clarke, J. Grebowsky, D.L. Mitchell, R. Yelle, A.F. Nagy, D. Baker, R.P. Lin, Characterizing atmospheric escape from Mars today and through time, with MAVEN. Space Sci. Rev. 195(1–4), 357–422 (2015)

    ADS  Google Scholar 

  • R.J. Lillis, J. Deighan, J.L. Fox, S.W. Bougher, Y. Lee, M.R. Combi, T.E. Cravens, A. Rahmati, P.R. Mahaffy, M. Benna, M.K. Elrod, J.P. McFadden, R.E. Ergun, L. Andersson, C.M. Fowler, B.M. Jakosky, E. Thiemann, F. Eparvier, J.S. Halekas, F. Leblanc, J.-Y. Chaufray, Photochemical escape of oxygen from Mars: first results from MAVEN in situ data. J. Geophys. Res. Space Phys. 122, 3815–3836 (2017)

    ADS  Google Scholar 

  • D. Loizeau, S.C. Werner, N. Mangold, J.-P. Bibring, J.L. Vago, Chronology of deposition and alteration in the Mawrth Vallis region, Mars. Planet. Space Sci. 72(1), 31–43 (2012)

    ADS  Google Scholar 

  • D. Loizeau, C. Quantin-Nataf, J. Carter, J. Flahaut, P. Thollot, L. Lozac’h, C. Millot, Quantifying widespread aqueous surface weathering on Mars: the plateaus south of Coprates Chasma. Icarus 302, 451–469 (2018)

    ADS  Google Scholar 

  • J. Longhi, Phase equilibrium in the system CO2-H2O: application to Mars. J. Geophys. Res. 111(E6), E06011 (2006)

    ADS  Google Scholar 

  • R. Lundin, S. Barabash, M. Holmström, H. Nilsson, Y. Futaana, R. Ramstad, M. Yamauchi, E. Dubinin, M. Fraenz, Solar cycle effects on the ion escape from Mars. Geophys. Res. Lett. 40, 6028–6032r (2013)

    ADS  Google Scholar 

  • W. Luo, X. Cang, A.D. Howard, New Martian valley network estimate consistent with ancient ocean and warm and wet climate. Nat. Commun. 8, 15766 (2017)

    ADS  Google Scholar 

  • R. Mahaffy, C.R. Webster, J.C. Stern et al., The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347(6220), 412–414 (2015)

    ADS  Google Scholar 

  • M.C. Malin, 1. Comparison of volcanic features of Elysium (Mars) and Tibesti (Earth). 2. Age of Martian channels. 3. Nature and origin of intercrater plains on Mars. Ph.D. Thesis, Caltech (1976)

  • M.C. Malin, K.S. Edgett, Oceans or seas in the Martian northern lowlands: high resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26(19), 3049–3052 (1999)

    ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, Sedimentary rocks of early Mars. Science 290(5498), 1927–1937 (2000)

    ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302(5652), 1931–1934 (2003)

    ADS  Google Scholar 

  • M.C. Malin, J.F. Bell, B.A. Cantor, M.A. Caplinger, W.M. Calvin, R.T. Clancy, K.S. Edgett, L. Edwards, R.M. Haberle, P.B. James, S.W. Lee, M.A. Ravine, P.C. Thomas, M.J. Wolff, Context camera investigation on board the Mars reconnaissance orbiter. J. Geophys. Res. 112, E5, E05S04 (2007)

    Google Scholar 

  • M.C. Malin, K.S. Edgett, B.A. Cantor, M.A. Caplinger, G.E. Danielson, E.H. Jensen, M.A. Ravine, J.L. Sandoval, K.D. Supulver, An overview of the 1985–2006 Mars orbiter camera science investigation. Mars Int. J. Mars Sci. Explor. 4, 1–60 (2010)

    Google Scholar 

  • M. Manga, A. Patel, J. Dufek, E.S. Kite, Wet surface and dense atmosphere on early Mars suggested by the bomb sag at Home Plate, Mars. Geophys. Res. Lett. 39(1), L01202 (2012)

    ADS  Google Scholar 

  • N. Mangold, Fluvial landforms on fresh impact ejecta on Mars. Planet. Space Sci. 62(1), 69–85 (2012)

    ADS  Google Scholar 

  • N. Mangold, C. Quantin, V. Ansan, C. Delacourt, P. Allemand, Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris Area. Science 305(5680), 78–81 (2004)

    ADS  Google Scholar 

  • N. Mangold, V. Ansan, Ph. Masson, C. Quantin, G. Neukum, Geomorphic study of fluvial landforms on the northern Valles Marineris plateau, Mars. J. Geophys. Res. 113(E8), E08009 (2008)

    ADS  Google Scholar 

  • N. Mangold, S. Adeli, S. Conway, V. Ansan, B. Langlais, A chronology of early Mars climatic evolution from impact crater degradation. J. Geophys. Res. 117(E4), E04003 (2012)

    ADS  Google Scholar 

  • N. Mangold et al., Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus 321, 619–631 (2019)

    ADS  Google Scholar 

  • C.V. Manning, C.P. McKay, K.J. Zahnle, Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180(1), 38–59 (2006)

    ADS  Google Scholar 

  • C.V. Manning, C. Bierson, N.E. Putzig, C.P. McKay, The formation and stability of buried polar CO2 deposits on Mars. Icarus 317, 509–517 (2019)

    ADS  Google Scholar 

  • M. Mansfield, E.S. Kite, M.A. Mischna, Effect of Mars atmospheric loss on snow melt potential in a 3.5 Gyr Mars climate evolution model. J. Geophys. Res., Planets 123(4), 794–806 (2018)

    ADS  Google Scholar 

  • P.E. Marcelo Garcia, Sedimentation Engineering: Processes, Measurements, Modeling, and Practice. MOP, vol. 110 (American Society of Civil Engineers, Reston, 2008). ISBN 978-0-7844-0814-8

    Google Scholar 

  • E. Martin, K.A. Farley, M.B. Baker, C.A. Malespin, S. Schwenzer, B.A. Cohen, R. Mahaffy, A.C. McAdam, D.W. Ming, M. Vasconcelos, R. Navarro-González, A two-step K-Ar experiment on Mars: dating the diagenetic formation of jarosite from Amazonian groundwaters. J. Geophys. Res., Planets (2017). https://doi.org/10.1002/2017JE005445

    Article  Google Scholar 

  • H. Masursky, An overview of geological results from Mariner 9. J. Geophys. Res. 78, 4009–4030 (1973)

    ADS  Google Scholar 

  • Y. Matsubara, A.D. Howard, S.A. Drummond, Hydrology of early Mars: lake basins. J. Geophys. Res. 116(E4), E04001 (2011)

    ADS  Google Scholar 

  • Y. Matsubara, A.D. Howard, R.P. Irwin, Constraints on the Noachian paleoclimate of the Martian highlands from landscape evolution modeling. J. Geophys. Res. 123(11) (2018). https://doi.org/10.1029/2018JE005572

  • T.J. McCoy, M. Sims, M.E. Schmidt, L. Edwards, L.L. Tornabene, L.S. Crumpler, B.A. Cohen, L.A. Soderblom, D.L. Blaney, S.W. Squyres, R.E. Arvidson, J.W. Rice, E. Tréguier, C. d’Uston, J.A. Grant, H.Y. McSween, M.P. Golombek, A.F.C. Haldemann, P.A. de Souza, Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars. J. Geophys. Res. 113, E6, E06S03 (2008)

    Google Scholar 

  • F.M. McCubbin, J.W. Boyce, T. Novák-Szabó, A.R. Santos, R. Tartèse, N. Muttik, G. Domokos, J. Vazquez, L.P. Keller, D.E. Moser, D.J. Jerolmack, C.K. Shearer, A. Steele, S.M. Elardo, Z. Rahman, M. Anand, T. Delhaye, C.B. Agee, Geologic history of Martian regolith breccia northwest Africa 7034: evidence for hydrothermal activity and lithologic diversity in the Martian crust. J. Geophys. Res., Planets 121(10), 2120–2149 (2016)

    ADS  Google Scholar 

  • A.S. McEwen, E.M. Eliason, J.W. Bergstrom, N.T. Bridges, C.J. Hansen, W.A. Delamere, J.A. Grant, V.C. Gulick, K.E. Herkenhoff, L. Keszthelyi, R.L. Kirk, M.T. Mellon, S.W. Squyres, N. Thomas, C.M. Weitz, Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E5, E05S02 (2007)

    Google Scholar 

  • A. McEwen, J. Grant, J. Mustard, J. Wray, L. Tornabene, Early Noachian rocks in megabreccia deposits on Mars, in European Planetary Science Congress, 14–18 September, 2009, Potsdam, Germany (2009), p. 504. http://meetings.copernicus.org/epsc2009

    Google Scholar 

  • I.O. McGlynn, C.M. Fedo, H.Y. McSween Jr., Soil mineralogy at the Mars Exploration Rover landing sites: an assessment of the competing roles of physical sorting and chemical weathering. J. Geophys. Res. 117(E1), E01006 (2012)

    ADS  Google Scholar 

  • C.P. McKay, R.A. Wharton Jr., S.W. Squyres, G.D. Clow, Thickness of ice on perennially frozen lakes. Nature 313, 561–562 (1985)

    ADS  Google Scholar 

  • C.P. McKay, D.T. Andersen, W.H. Pollard, J.L. Heldmann, P.T. Doran, C.H. Fritsen, J.C. Priscu, Polar lakes, streams, and springs as analogs for the hydrological cycle on Mars, in Water on Mars and Life (Springer, Berlin, 2005), pp. 219–233

    Google Scholar 

  • S.M. McLennan, Geochemistry of sedimentary processes on Mars, in Sedimentary Geology of Mars, ed. by Grotzinger, Milliken. SEPM Special Publication, vol. 102 (SEPM, McLean, 2012), pp. 119–138. ISBN 978-1-56576-312-8

    Google Scholar 

  • S.M. McLennan, J.P. Grotzinger, The sedimentary rock cycle of Mars, in The Martian Surface—Composition, Mineralogy, and Physical Properties, ed. by J Bell III (Cambridge University Press, Cambridge, 2008), p. 541. ISBN 9780521866989

    Google Scholar 

  • S.M. McLennan, J.F. Bell, W.M. Calvin, P.R. Christensen, B.C. Clark, P.A. de Souza, J. Farmer, W.H. Farrand, D.A. Fike, R. Gellert, A. Ghosh, T.D. Glotch, J.P. Grotzinger, B. Hahn, K.E. Herkenhoff, J.A. Hurowitz, J.R. Johnson, S.S. Johnson, B. Jolliff, G. Klingelhöfer, A.H. Knoll, Z. Learner, M.C. Malin, H.Y. McSween, J. Pocock, S.W. Ruff, L.A. Soderblom, S.W. Squyres, N.J. Tosca, W.A. Watters, M.B. Wyatt, A. Yen, Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95–121 (2005)

    ADS  Google Scholar 

  • S.M. McLennan, R.B. Anderson, J.F. Bell III et al., Elemental geochemistry of sedimentary rocks at Yellowknife bay, Gale Crater, Mars. Science 343(6169), 1244734 (2014)

    Google Scholar 

  • S.M. McLennan, J.P. Grotzinger, J.A. Hurowitz, N.J. Tosca, The sedimentary cycle on Early Mars. Annu. Rev. Earth Planet. Sci. 47 (2019). https://doi.org/10.1146/annurev-earth-053018-060332

  • S. McMahon, T. Bosak, J.P. Grotzinger, R.E. Milliken, R.E. Summons, M. Daye, S.A. Newman, A. Fraeman, K.H. Williford, D.E.G. Briggs, A field guide to finding fossils on Mars. J. Geophys. Res., Planets (2018). https://doi.org/10.1029/2017JE005478

    Article  Google Scholar 

  • M.T. Mellon, R.J. Phillips, Recent gullies on Mars and the source of liquid water. J. Geophys. Res. 106(E10), 23165–23180 (2001)

    ADS  Google Scholar 

  • J. Melosh, Planetary Surface Processes (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  • M. Melwani Daswani, E.S. Kite, Paleohydrology on Mars constrained by mass balance and minerology of pre-Amazonian sodium chloride lakes: deep groundwater not required. J. Geophys. Res., Planets 122, 1802–1823 (2017). https://doi.org/10.1002/2017JE005319

    Article  ADS  Google Scholar 

  • MEPAG, Mars Scientific Goals, Objectives, Investigations, and Priorities: 2018. D. Banfield, ed., 81 p. white paper posted October, 2018 by the Mars Exploration Program Analysis Group (MEPAG) at https://mepag.jpl.nasa.gov/reports.cfm (2018)

  • J.M. Metz, J.P. Grotzinger, D.M. Rubin, K.W. Lewis, S.W. Squyres, J.F. Bell, Sulfate-rich Eolian and wet interdune deposits, Erebus Crater, Mars. J. Sediment. Res. 79, 247–264 (2009a)

    ADS  Google Scholar 

  • J. Metz, J. Grotzinger, D. Mohrig, R. Milliken, B. Prather, C. Pirmez, A.S. McEwen, C. Weitz, Sublacustrine depositional fans in southwest Melas Chasma. J. Geophys. Res. 114(E10), E10002 (2009b)

    ADS  Google Scholar 

  • G.G. Michael, Planetary surface dating from crater size-frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting. Icarus 226(1), 885–890 (2013)

    ADS  Google Scholar 

  • J.R. Michalski, J. Cuadros, J.L. Bishop, M. Darby Dyar, V. Dekov, S. Fiore, Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars and links to global alteration trends. Earth Planet. Sci. Lett. 427, 215–225 (2015)

    ADS  Google Scholar 

  • J.A. Mikucki, E. Auken, S. Tulaczyk, R.A. Virginia, C. Schamper, K.I. Sørensen, P.T. Doran, H. Dugan, N. Foley, Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat. Commun. 6, 6831 (2015)

    ADS  Google Scholar 

  • R.E. Milliken, D.L. Bish, Sources and sinks of clay minerals on Mars. Philos. Mag. 90(17), 2293–2308 (2010)

    ADS  Google Scholar 

  • R.E. Milliken, R.C. Ewing, W.W. Fischer, J. Hurowitz, Wind-blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars. Geophys. Res. Lett. 41(4), 1149–1154 (2014)

    ADS  Google Scholar 

  • J.D. Milliman, J.P.M. Syvitski, Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992)

    ADS  Google Scholar 

  • D.W. Ming, D.W. Mittlefehldt, R.V. Morris, D.C. Golden, R. Gellert, A. Yen, B.C. Clark, S.W. Squyres, W.H. Farrand, S.W. Ruff, R.E. Arvidson, G. Klingelhöfer, H.Y. McSween, D.S. Rodionov, C. Schröder, P.A. de Souza, A. Wang, Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev Crater, Mars. J. Geophys. Res. 111, E2, E02S12 (2006)

    Google Scholar 

  • M.A. Mischna, M.I. Richardson, A reanalysis of water abundances in the Martian atmosphere at high obliquity. Geophys. Res. Lett. 32(3), L03201 (2005)

    ADS  Google Scholar 

  • M.A. Mischna, V. Baker, R. Milliken, M. Richardson, C. Lee, Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J. Geophys. Res., Planets 118(3), 560–576 (2013)

    ADS  Google Scholar 

  • Z.M. Moratto, M.J. Broxton, R.A. Beyer, M. Lundy, K. Husmann, Ames stereo pipeline, NASA’s open source automated stereogrammetry software, in 41st Lunar and Planetary Science Conference, March 1–5, 2010, The Woodlands, Texas. LPI Contribution, vol. 1533 (2010), p. 2364

    Google Scholar 

  • A.M. Morgan, A.D. Howard, D.E.J. Hobley, J.M. Moore, W.E. Dietrich, R.M.E. Williams, D.M. Burr, J.A. Grant, S.A. Wilson, Y. Matsubara, Sedimentology and climatic environment of alluvial fans in the Martian Saheki Crater and a comparison with terrestrial fans in the Atacama Desert. Icarus 229, 131–156 (2014)

    ADS  Google Scholar 

  • A.M. Morgan, S.A. Wilson, A.D. Howard, R.A. Craddock, J.A. Grant, Global distribution of alluvial fans and deltas on Mars, in 49th Lunar and Planetary Science Conference, 19–23 March, 2018, The Woodlands, Texas. LPI Contribution, vol. 2083 (2018), p. 2219

    Google Scholar 

  • S. Murchie, L. Roach, F. Seelos, R. Milliken, J. Mustard, R. Arvidson, S. Wiseman, K. Lichtenberg, J. Andrews-Hanna, J. Bishop, J.-P. Bibring, M. Parente, R. Morris, Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. J. Geophys. Res. 114(E12), E00D05 (2009)

    Google Scholar 

  • J.F. Mustard, M. Adler, A. Allwood, D.S. Bass, D.W. Beaty, J.F. Bell III, W.B. Brinckerhoff, M. Carr, D.J. Des Marais, B. Drake, K.S. Edgett, J. Eigenbrode, L.T. Elkins-Tanton, J.A. Grant, S.M. Milkovich, D. Ming, C. Moore, S. Murchie, T.C. Onstott, S.W. Ruff, M.A. Sephton, A. Steele, A. Treiman, Report of the Mars 2020 Science Definition Team, 154, posted July, 2013, by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.jpl.nasa.gov/reports/MEP/Mars_2020_SDT_Report_Final.pdf

  • M. Nachon, N. Mangold, O. Forni, L.C. Kah, A. Cousin, R.C. Wiens, R. Anderson, D. Blaney, J.G. Blank, F. Calef, S.M. Clegg, C. Fabre, M.R. Fisk, O. Gasnault, J.P. Grotzinger, R. Kronyak, N.L. Lanza, J. Lasue, L. Le Deit, S. Le Mouélic, S. Maurice, P.-Y. Meslin, D.Z. Oehler, V. Payré, W. Rapin, S. Schröder, K. Stack, D. Sumner, Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale Crater, Mars. Icarus 281, 121–136 (2017). https://doi.org/10.1016/j.icarus.2016.08.026

    Article  ADS  Google Scholar 

  • A.A. Nemchin, M. Humayun, M.J. Whitehouse et al., Record of the ancient Martian hydrosphere and atmosphere preserved in zircon from a Martian meteorite. Nat. Geosci. 7(9), 638–642 (2014)

    ADS  Google Scholar 

  • B. Niles, J. Michalski, Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat. Geosci. 2(3), 215–220 (2009)

    ADS  Google Scholar 

  • P.B. Niles, M.Y. Zolotov, L.A. Leshin, Insights into the formation of Fe- and Mg-rich aqueous solutions on early Mars provided by the ALH 84001 carbonates. Earth Planet. Sci. Lett. 286(1–2), 122–130 (2009)

    ADS  Google Scholar 

  • P.B. Niles, D.C. Catling, G. Berger, E. Chassefière, B.L. Ehlmann, J.R. Michalski, R. Morris, S.W. Ruff, B. Sutter, Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. 174(1–4), 301–328 (2013)

    ADS  Google Scholar 

  • B. Niles, J. Michalski, D.W. Ming, D.C. Golden, Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars. Nat. Commun. 8, 998 (2017)

    ADS  Google Scholar 

  • A. Ody et al., Global investigation of olivine on Mars. J. Geophys. Res. 118, 234–262 (2013)

    Google Scholar 

  • C.H. Okubo, A.S. McEwen, Fracture-controlled paleo-fluid flow in Candor Chasma, Mars. Science 315(5814), 983 (2007)

    ADS  Google Scholar 

  • A.A. Olsen, J.D. Rimstidt, Using a mineral lifetime diagram to evaluate the persistence of olivine on Mars. Am. Mineral. 92(4), 598–602 (2007)

    ADS  Google Scholar 

  • T.C. Onstott, B.L. Ehlmann, H. Sapers, M. Coleman, M. Ivarsson, J.J. Marlow, A. Neubeck, P. Niles, Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration (2018). arXiv:1809.08266

  • V. Orofino, G. Alemanno, G. Di Achille, F. Mancarella, Estimate of the water flow duration in large Martian fluvial systems. Planet. Space Sci. (2018). https://doi.org/10.1016/j.pss.2018.06.001

    Article  Google Scholar 

  • M.M. Osterloo, F.S. Anderson, V.E. Hamilton, B.M. Hynek, Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115(E10), E10012 (2010)

    ADS  Google Scholar 

  • M.C. Palucis, W.E. Dietrich, A.G. Hayes, R.M.E. Williams, S. Gupta, N. Mangold, H. Newsom, C. Hardgrove, F. Calef, D.Y. Sumner, The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars. J. Geophys. Res., Planets 119(4), 705–728 (2014)

    ADS  Google Scholar 

  • M.C. Palucis, W.E. Dietrich, R.M.E. Williams, A.G. Hayes, T. Parker, D.Y. Sumner, N. Mangold, K. Lewis, H. Newsom, Sequence and relative timing of large lakes in Gale Crater (Mars) after the formation of Mount Sharp. J. Geophys. Res., Planets 121(3), 472–496 (2016)

    ADS  Google Scholar 

  • A.M. Palumbo, J.W. Head, Early Mars climate history: characterizing a “warm and wet” martian climate with a 3-D global climate model and testing geological predictions. Geophys. Res. Lett. 45, 10,249–10,258 (2018). https://doi.org/10.1029/2018GL079767

    Article  Google Scholar 

  • T.J. Parker, D.S. Gorsline, R.S. Saunders, D.C. Pieri, D.M. Schneeberger, Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98(E6), 11,061–11,078 (1993)

    ADS  Google Scholar 

  • G. Parker, P. Wilcock, C. Paola, W.E. Dietrich, J. Pitlick, Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers. J. Geophys. Res., Earth Surf. 112(F4), F04005 (2007)

    ADS  Google Scholar 

  • J.C. Penido, C.I. Fassett, S.M. Som, Scaling relationships and concavity of small valley networks on Mars. Planet. Space Sci. 75, 105–116 (2013)

    ADS  Google Scholar 

  • T.S. Peretyazhko, B. Niles, B. Sutter, R.V. Morris, D.G. Agresti, L. Le, D.W. Ming, Smectite formation in the presence of sulfuric acid: implications for acidic smectite formation on early Mars. Geochim. Cosmochim. Acta 220, 248–260 (2018)

    ADS  Google Scholar 

  • J.T. Perron, J.X. Mitrovica, M. Manga, I. Matsuyama, M.A. Richards, Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature 447(7146), 840–843 (2007)

    ADS  Google Scholar 

  • G.H. Peters, E.M. Carey, R.C. Anderson, W.J. Abbey, R. Kinnett, J.A. Watkins, M. Schemel, M.O. Lashore, M.D. Chasek, W. Green, L.W. Beegle, A.R. Vasavada, Uniaxial compressive strengths of rocks drilled at Gale Crater, Mars. Geophys. Res. Lett. 45(1), 108–116 (2018)

    ADS  Google Scholar 

  • R.C. Peterson, W. Nelson, B. Madu, H.F. Shurvell, Meridianiite: a new mineral species observed on Earth and predicted to exist on Mars. Am. Mineral. 92, 1756–1759 (2007)

    ADS  Google Scholar 

  • A.M. Pfeiffer, N.J. Finnegan, J.K. Willenbring, Sediment supply controls equilibrium channel geometry in gravel rivers. Proc. Natl. Acad. Sci. 114(13), 3346–3351 (2017)

    ADS  Google Scholar 

  • L.B.S. Pham, Ö. Karatekin, Scenarios of atmospheric mass evolution on Mars influenced by asteroid and comet impacts since the late Noachian. Planet. Space Sci. 125, 1–11 (2016)

    ADS  Google Scholar 

  • R.J. Phillips, B.J. Davis, K.L. Tanaka et al., Massive CO2 ice deposits sequestered in the South polar layered deposits of Mars. Science 332, 838–841 (2011)

    ADS  Google Scholar 

  • W.T. Pike, U. Staufer, M.H. Hecht, W. Goetz, D. Parrat, H. Sykulska-Lawrence, S. Vijendran, M.B. Madsen, Quantification of the dry history of the Martian soil inferred from in situ microscopy. Geophys. Res. Lett. 38(24), L24201 (2011)

    ADS  Google Scholar 

  • J.T. Pitman et al., Remote sensing space science enabled by the multiple instrument distributed aperture sensor (MIDAS) concept, in Proceedings 5555, Instruments, Methods, and Missions for Astrobiology VIII, Optical Science and Technology, the SPIE 49th Annual Meeting 2004, Denver, Colorado, United States (2004). https://doi.org/10.1117/12.560290

    Chapter  Google Scholar 

  • J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987)

    ADS  Google Scholar 

  • C. Quantin-Nataf, R.A. Craddock, F. Dubuffet, L. Lozac’h, M. Martinot, Decline of crater obliteration rates during early Martian history. Icarus 317, 427–433 (2019)

    ADS  Google Scholar 

  • R.M. Ramirez, A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297, 71–82 (2017)

    ADS  Google Scholar 

  • R.M. Ramirez, R.A. Craddock, The geological and climatological case for a warmer and wetter early Mars. Nat. Geosci. 11(4), 230–237 (2018)

    ADS  Google Scholar 

  • R.M. Ramirez, J.F. Kasting, Could cirrus clouds have warmed early Mars? Icarus 281, 248–261 (2017)

    ADS  Google Scholar 

  • R.M. Ramirez, R. Kopparapu, M.E. Zugger, T.D. Robinson, R. Freedman, J.F. Kasting, Warming early Mars with CO2 and H2. Nat. Geosci. 7(1), 59–63 (2014)

    ADS  Google Scholar 

  • E.B. Rampe, D.W. Ming, D.F. Blake, T.F. Bristow, S.J. Chipera, J.P. Grotzinger, R.V. Morris, S.M. Morrison, D.T. Vaniman, A.S. Yen, C.N. Achilles, P.I. Craig, D.J. Des Marais, R.T. Downs, J.D. Farmer, K.V. Fendrich, R. Gellert, R.M. Hazen, L.C. Kah, J.M. Morookian, T.S. Peretyazhko, P. Sarrazin, A.H. Treiman, J.A. Berger, J. Eigenbrode, A.G. Fairén, O. Forni, S. Gupta, J.A. Hurowitz, N.L. Lanza, M.E. Schmidt, K. Siebach, B. Sutter, L.M. Thompson, Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale Crater, Mars. Earth Planet. Sci. Lett. 471, 172–185 (2017)

    ADS  Google Scholar 

  • R. Ramstad, S. Barabash, Y. Futaana, H. Nilsson, M. Holmström, Ion escape from mars through time: an extrapolation of atmospheric loss based on 10 years of Mars Express measurements. J. Geophys. Res., Planets 123, 3051–3060 (2018)

    ADS  Google Scholar 

  • M.H. Reed, Hydrothermal alteration and its relationship to ore fluid composition, in Geochemistry of Hydrothermal Ore Deposits, vol. 3 (1997), pp. 303–365

    Google Scholar 

  • F. Rivera-Hernandez, D.Y. Sumner, T.J. Mackey, I. Hawes, D.T. Andersen, In a PICL: the sedimentary deposits and facies of perennially ice-covered lakes. Sedimentology (2018). https://doi.org/10.1111/sed.12522

    Article  Google Scholar 

  • S.J. Robbins, New crater calibrations for the lunar crater-age chronology. Earth Planet. Sci. Lett. 403, 188–198 (2014)

    ADS  Google Scholar 

  • S.J. Robbins, B.M. Hynek, R.J. Lillis, W.F. Bottke, Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus 225(1), 173–184 (2013)

    ADS  Google Scholar 

  • S.J. Robbins et al., Revised recommended methods for analyzing crater size-frequency distributions. Meteorit. Planet. Sci. 53, 891–931 (2018)

    ADS  Google Scholar 

  • J.A.P. Rodriguez, A.G. Fairén, K.L. Tanaka, M. Zarroca, R. Linares, T. Platz, G. Komatsu, H. Miyamoto, J.S. Kargel, J. Yan, V. Gulick, K. Higuchi, V.R. Baker, N. Glines, Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Sci. Rep. 6, 25106 (2016)

    ADS  Google Scholar 

  • E.N. Rosenberg, J.W. Head III, Late Noachian fluvial erosion on Mars: cumulative water s required to carve the valley networks and grain size of bed-sediment. Planet. Space Sci. 117, 429–435 (2015)

    ADS  Google Scholar 

  • E.N. Rosenberg, A.M. Palumbo, J.P. Cassanelli, J.W. Head, D.K. Weiss, Icarus 317, 379–387 (2019)

    ADS  Google Scholar 

  • S.W. Ruff, V.E. Hamilton, Wishstone to watchtower: amorphous alteration of plagioclase-rich rocks in Gusev Crater, Mars. Am. Mineral. 102(2), 235–251 (2017)

    ADS  Google Scholar 

  • S.W. Ruff, P.B. Niles, F. Alfano, A.B. Clarke, Evidence for a Noachian-aged ephemeral lake in Gusev Crater, Mars. Geology 42(4), 359–362 (2014)

    ADS  Google Scholar 

  • M.R. Salvatore, R. Christensen, On the origin of the Vastitas Borealis formation in Chryse and Acidalia Planitiae, Mars. J. Geophys. Res. 119, 2437–2456 (2014). https://doi.org/10.1029/2014JE004682

    Article  Google Scholar 

  • M.R. Salvatore, J.F. Mustard, J.W. Head, A.D. Rogers, R.F. Cooper, The dominance of cold and dry alteration processes on recent Mars, as revealed through pan-spectral orbital analyses. Earth Planet. Sci. Lett. 404, 261–272 (2014)

    ADS  Google Scholar 

  • K.E. Scanlon, J.W. Head III, J.L. Fastook, R.D. Wordsworth, The Dorsa Argentea formation and the Noachian-Hesperian climate transition. Icarus 299, 339–363 (2018)

    ADS  Google Scholar 

  • J.M. Scheidegger, V.F. Bense, Impacts of glacially recharged groundwater flow systems on talik evolution. J. Geophys. Res., Earth Surf. 119(4), 758–778 (2014)

    ADS  Google Scholar 

  • J. Schieber, D. Bish, M. Coleman, M. Reed, E.M. Hausrath, J. Cosgrove, S. Gupta, M.E. Minitti, K.S. Edgett, M. Malin, Encounters with an unearthly mudstone: understanding the first mudstone found on Mars. Sedimentology 64(2), 311–358 (2017)

    Google Scholar 

  • T.L. Segura, O.B. Toon, A. Colaprete, Modeling the environmental effects of moderate-sized impacts on Mars. J. Geophys. Res. 113(E11), E11007 (2008)

    ADS  Google Scholar 

  • T.L. Segura, K. Zahnle, O.B. Toon, C.P. McKay, The effects of impacts on the climates of terrestrial planets, in Comparative Climatology of Terrestrial Planets, vol. 610, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (University of Arizona Press, Tucson, 2013), pp. 417–437

    Google Scholar 

  • R. Shaheen, B. Niles, K. Chong et al., Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere. Proc. Natl. Acad. Sci. 112, 336–341 (2015)

    ADS  Google Scholar 

  • K.L. Siebach, J.P. Grotzinger, L.C. Kah, K.M. Stack, M. Malin, R. Léveillé, D.Y. Sumner, Subaqueous shrinkage cracks in the Sheepbed mudstone: implications for early fluid diagenesis, Gale Crater, Mars. J. Geophys. Res., Planets 119(7), 1597–1613 (2014)

    ADS  Google Scholar 

  • K.L. Siebach, M.B. Baker, J.P. Grotzinger, S.M. McLennan, R. Gellert, L.M. Thompson, J.A. Hurowitz, Sorting out compositional trends in sedimentary rocks of the Bradbury group (Aeolis Palus), Gale Crater, Mars. J. Geophys. Res., Planets 122(2), 295–328 (2017)

    ADS  Google Scholar 

  • M.D. Smith, The annual cycle of water vapor as observed by the thermal emission spectrometer. J. Geophys. Res. 107, 1–19 (2002). https://doi.org/10.1029/2001JE001522

    Article  ADS  Google Scholar 

  • D.E. Smith, M.T. Zuber, S.C. Solomon, R.J. Phillips, J.W. Head, J.B. Garvin, W.B. Banerdt, D.O. Muhleman, G.H. Pettengill, G.A. Neumann et al., The global topography of Mars and implications for surface evolution. Science 284, Iss. 5419, 1495 (1999)

    Google Scholar 

  • D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106(E10), 23689–23722 (2001)

    ADS  Google Scholar 

  • S.M. Som, D.R. Montgomery, H.M. Greenberg, Scaling relations for large Martian valleys. J. Geophys. Res. 114(E2), E02005 (2009)

    ADS  Google Scholar 

  • A. Soto, M. Mischna, T. Schneider, C. Lee, M.I. Richardson, Martian atmospheric collapse: idealized GCM studies. Icarus 250, 553–569 (2015)

    ADS  Google Scholar 

  • S.W. Squyres, Urey prize lecture—water on Mars. Icarus 79, 229–288 (1989)

    ADS  Google Scholar 

  • S.W. Squyres, R.E. Arvidson, D.L. Blaney, B.C. Clark, L. Crumpler, W.H. Farrand, S. Gorevan, K.E. Herkenhoff, J. Hurowitz, A. Kusack, H.Y. McSween, D.W. Ming, R.V. Morris, S.W. Ruff, A. Wang, A. Yen, Rocks of the Columbia Hills. J. Geophys. Res. 111, E2, E02S11 (2006)

    Google Scholar 

  • S.W. Squyres, R.E. Arvidson, S. Ruff, R. Gellert, R.V. Morris, D.W. Ming, L. Crumpler, J.D. Farmer, D.J. Des Marais, A. Yen, S.M. McLennan, W. Calvin, J.F. Bell, B.C. Clark, A. Wang, T.J. McCoy, M.E. Schmidt, P.A. de Souza, Detection of silica-rich deposits on Mars. Science 320(5879), 1063 (2008)

    ADS  Google Scholar 

  • S.W. Squyres, A.H. Knoll, R.E. Arvidson, J.W. Ashley, J.F. Bell, W.M. Calvin, P.R. Christensen, B.C. Clark, B.A. Cohen, P.A. de Souza, L. Edgar, W.H. Farrand, I. Fleischer, R. Gellert, M.P. Golombek, J. Grant, J. Grotzinger, A. Hayes, K.E. Herkenhoff, J.R. Johnson, B. Jolliff, G. Klingelhöfer, A. Knudson, R. Li, T.J. McCoy, S.M. McLennan, D.W. Ming, D.W. Mittlefehldt, R.V. Morris, J.W. Rice, C. Schröder, R.J. Sullivan, A. Yen, R.A. Yingst, Exploration of Victoria Crater by the Mars Rover Opportunity. Science 324(5930), 1058 (2009)

    ADS  Google Scholar 

  • K.M. Stack, C.S. Edwards, J.P. Grotzinger, S. Gupta, D.Y. Sumner, F.J. Calef, L.A. Edgar, K.S. Edgett, A.A. Fraeman, S.R. Jacob, L. Le Deit, K.W. Lewis, M.S. Rice, D. Rubin, R.M.E. Williams, K.H. Williford, Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars. Icarus 280, 3–21 (2016)

    ADS  Google Scholar 

  • K.E. Steakley, M.A. Kahre, J.R. Murphy, R.M. Haberle, A. Kling, Revisiting the impact heating hypothesis for early Mars with a 3D GCM, in Fourth International Conference on Early Mars, Proceedings of the Conference, 2–6 October, 2017, Flagstaff, Arizona. LPI Contribution, vol. 2014 (2017), p. 3074

    Google Scholar 

  • L. Steele, E.S. Kite, T.I. Michaels, Crater mound formation by wind erosion on Mars. J. Geophys. Res., Planets 123, 113–130 (2018)

    ADS  Google Scholar 

  • N. Stein, J.P. Grotzinger, J. Schieber, N. Mangold, B. Hallet, H. Newsom, K.M. Stack, J.A. Berger, L. Thompson, K.L. Siebach, A. Cousin, S. Le Mouélic, M. Minitti, D.Y. Sumner, C. Fedo, C.H. House, S. Gupta, A.R. Vasavada, R. Gellert, R.C. Wiens, J. Frydenvang, O. Forni, P.Y.M.V. Payré, E. Dehouck, Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale Crater. Geology 46(6), 515–518 (2018)

    ADS  Google Scholar 

  • J.D. Stopar, G.J. Taylor, V.E. Hamilton, L. Browning, Kinetic model of olivine dissolution and extent of aqueous alteration on Mars. Geochim. Cosmochim. Acta 70(24), 6136–6152 (2006)

    ADS  Google Scholar 

  • T. Swindle, A. Treiman, D. Lindstrom, M. Burkland, B. Cohen, J. Grier, B. Li, E. Olson, Noble gases in iddingsite from the lafayette meteorite: evidence for liquid water on Mars in the last few hundred million years. Meteorit. Planet. Sci. 35(1), 107–115 (2000)

    ADS  Google Scholar 

  • K.L. Tanaka, S.J. Robbins, C.M. Fortezzo, J.A. Skinner, T.M. Hare, The digital global geologic map of Mars. Planet. Space Sci. 95, 11–24 (2014)

    ADS  Google Scholar 

  • S.R. Taylor, S. McLennan, Planetary Crusts: Their Composition, Origin and Evolution (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  • G.J. Taylor et al., Causes of variations in K/Th on Mars. J. Geophys. Res. 111, E03S06 (2006). https://doi.org/10.1029/2006JE002676

    Article  Google Scholar 

  • L.M. Thompson, M.E. Schmidt, J.G. Spray, J.A. Berger, A.G. Fairén, J.L. Campbell, G.M. Perrett, N. Boyd, R. Gellert, I. Pradler, S.J. VanBommel, Potassium-rich sandstones within the Gale impact crater, Mars: the APXS perspective. J. Geophys. Res., Planets 121(10), 1981–2003 (2016)

    ADS  Google Scholar 

  • B.J. Thomson, N.T. Bridges, J. Cohen, J.A. Hurowitz, A. Lennon, G. Paulsen, K. Zacny, Estimating rock compressive strength from Rock Abrasion Tool (RAT) grinds. J. Geophys. Res., Planets 118(6), 1233–1244 (2013)

    ADS  Google Scholar 

  • F. Tian, M.W. Claire, J.D. Haqq-Misra, M. Smith, D.C. Crisp, D. Catling, K. Zahnle, J.F. Kasting, Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet. Sci. Lett. 295, 412–418 (2010)

    ADS  Google Scholar 

  • J.D. Toner, D.C. Catling, R.S. Sletten, The geochemistry of Don Juan Pond: evidence for a deep groundwater flow system in Wright Valley, Antarctica. Earth Planet. Sci. Lett. 474, 190–197 (2017)

    ADS  Google Scholar 

  • O.B. Toon, J.B. Pollack, W. Ward, J.A. Burns, K. Bilski, The astronomical theory of climatic change on Mars. Icarus 44(3), 552–607 (1980). https://doi.org/10.1016/0019-1035(80)90130-X

    Article  ADS  Google Scholar 

  • O.B. Toon, T. Segura, K. Zahnle, The formation of Martian river valleys by impacts. Annu. Rev. Earth Planet. Sci. 38, 303–322 (2010)

    ADS  Google Scholar 

  • N.J. Tosca, A.H. Knoll, Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth Planet. Sci. Lett. 286(3–4), 379–386 (2009)

    ADS  Google Scholar 

  • N.J. Tosca, A.H. Knoll, S.M. McLennan, Water activity and the challenge for life on early Mars. Science 320(5880), 1204 (2008)

    ADS  Google Scholar 

  • N.J. Tosca, I.A.M. Ahmed, B.M. Tutolo, A. Ashpitel, J.A. Hurowitz, Magnetite authigenesis and the warming of early Mars. Nat. Geosci. 11, 635–639 (2018)

    ADS  Google Scholar 

  • N.J. Tosca, I.A.M. Ahmed, B.M. Tutolo, A. Ashpitel, J.A. Hurowitz, Magnetite authigenesis and the warming of early Mars. Nat. Geosci. 11, 635–639 (2018)

    ADS  Google Scholar 

  • M. Turbet, H. Tran, Comment on “Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars”. J. Geophys. Res., Planets 122(11), 2362–2365 (2017)

    ADS  Google Scholar 

  • M. Turbet, J. Leconte, F. Selsis, E. Bolmont, F. Forget, I. Ribas, S.N. Raymond, G. Anglada-Escudé, The habitability of Proxima Centauri b. II. Possible climates and observability. Astron. Astrophys. 596, A112 (2016)

    ADS  Google Scholar 

  • M. Turbet, F. Forget, V. Svetsov, H. Tran, J.-M. Hartmann, O. Karatekin, C. Gillmann, O. Popova, J. Head, The environmental effect of meteoritic impacts on early Mars with a versatile 3-D global climate model, in Fourth International Conference on Early Mars, Proceedings of the Conference, 2–6 October, 2017, Flagstaff, Arizona. LPI Contribution, vol. 2014, (2017a), p. 3062

    Google Scholar 

  • M. Turbet, F. Forget, J.W. Head, R. Wordsworth, 3D modelling of the climatic impact of outflow channel formation events on early Mars. Icarus 288, 10–36 (2017b)

    ADS  Google Scholar 

  • R.A. Urata, O.B. Toon, Simulations of the Martian hydrologic cycle with a general circulation model: implications for the ancient Martian climate. Icarus 226(1), 229–250 (2013)

    ADS  Google Scholar 

  • W. Van Berk, Y. Fu, J-M. Ilger, Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg–Fe–Ca carbonate identified in the Comanche rock outcrops on Mars. J. Geophys. Res. 117, E10008 (2012)

    Google Scholar 

  • D.T. Vaniman, G.M. MartÃ-nez, E.B. Rampe, T.F. Bristow, D.F. Blake, A.S. Yen, D.W. Ming, W. Rapin, P.-Y. Meslin, J.M. Morookian, R.T. Downs, S.J. Chipera, R.V. Morris, S.M. Morrison, A.H. Treiman, C.H. Achilles, K. Robertson, J.P. Grotzinger, R.M. Hazen, R.C. Wiens, D.Y. Sumner, Gypsum, basanite, and anhydrite at Gale Crater, Mars. Am. Mineral. 103(7), 1011–1020 (2018). https://doi.org/10.2138/am-2018-6346

    Article  ADS  Google Scholar 

  • A.R. Vasavada, Our changing view of Mars. Phys. Today 70(3), 34–41 (2017)

    Google Scholar 

  • A.R. Vasavada, T.J. Milavec, D.A. Paige, Microcraters on Mars—evidence for past climate variations. J. Geophys. Res. 98(E2), 3469–3476 (1993)

    ADS  Google Scholar 

  • P. von Paris, A. Petau, J.L. Grenfell, E. Hauber, D. Breuer, R. Jaumann, H. Rauer, D. Tirsch, Estimating precipitation on early Mars using a radiative-convective model of the atmosphere and comparison with inferred runoff from geomorphology. Planet. Space Sci. 105, 133–147 (2015)

    ADS  Google Scholar 

  • A. Wang, L.A. Haskin, S.W. Squyres, B.L. Jolliff, L. Crumpler, R. Gellert, C. Schröder, K. Herkenhoff, J. Hurowitz, N.J. Tosca, W.H. Farrand, R. Anderson, A.T. Knudson, Sulfate deposition in subsurface regolith in Gusev Crater, Mars. J. Geophys. Res. 111, E2, E02S17 (2006)

    Google Scholar 

  • A. Wang, B.L. Jolliff, Y. Liu, K. Connor, Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: monohydrated and polyhydrated sulfates. J. Geophys. Res., Planets 121, 678–694 (2016)

    ADS  Google Scholar 

  • M.K. Ward, W.H. Pollard, A hydrohalite spring deposit in the Canadian high Arctic: a potential Mars analogue. Earth Planet. Sci. Lett. 504, 126–138 (2018)

    ADS  Google Scholar 

  • N.H. Warner, M. Sowe, S. Gupta et al., Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41, 675–678 (2013)

    ADS  Google Scholar 

  • N.H. Warner, S. Gupta, F. Calef, P. Grindrod, N. Boll, K. Goddard, Minimum effective area for high resolution crater counting of Martian terrains. Icarus 245, 198–240 (2015)

    ADS  Google Scholar 

  • C.R. Webster, R. Mahaffy, G.J. Flesch et al., Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341(6143), 260–263 (2013)

    ADS  Google Scholar 

  • B.P. Weiss, J.L. Kirschvink, F.J. Baudenbacher, H. Vali, N.T. Peters, F.A. Macdonald, J.P. Wikswo, A low temperature transfer of ALH84001 from Mars to Earth. Science 290(5492), 791–795 (2000)

    ADS  Google Scholar 

  • B.P. Weiss, E. Scheller, Z. Gallegos, B.L. Ehlmann, N. Lanza, H. Newsom, Megabreccia at Northeast Syrtis major and its importance for Mars science, in 49th Lunar and Planetary Science Conference, 19–23 March, 2018, The Woodlands, Texas. LPI Contribution, vol. 2083 (2018), p. 1385

    Google Scholar 

  • C.M. Weitz, R.E. Milliken, J.A. Grant, A.S. McEwen, R.M.E. Williams, J.L. Bishop, B.J. Thomson, Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris. Icarus 205, 73–102 (2010)

    ADS  Google Scholar 

  • F. Westall, F. Foucher, N. Bost, M. Bertrand, D. Loizeau, J.L. Vago, G. Kminek, G. Frédéric, K.A. Campbell, J.-G. Bréhéret, P. Gautret, C.S. Cockell, Biosignatures on Mars: what, where, and how? Implications for the search for Martian life. Astrobiology 15(11), 998–1029 (2015)

    ADS  Google Scholar 

  • K.X. Whipple, N.P. Snyder, K. Dollenmayer, Rates and processes of bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow in the Valley of Ten Thousand Smokes, Alaska. Geology 28(9), 835 (2000)

    ADS  Google Scholar 

  • R.M.E. Williams, M.C. Malin, Sub-kilometer fans in Mojave Crater, Mars. Icarus 198(2), 365–383 (2008)

    ADS  Google Scholar 

  • R.M.E. Williams, R.J. Phillips, Morphometric measurements of Martian valley networks from Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res. 106(E10), 23737–23752 (2001)

    ADS  Google Scholar 

  • R.M.E. Williams, C.M. Weitz, Reconstructing the aqueous history within the southwestern Melas basin, Mars: clues from stratigraphic and morphometric analyses of fans. Icarus 242, 19–37 (2014)

    ADS  Google Scholar 

  • K.E. Williams, O.B. Toon, J.L. Heldmann, M.T. Mellon, Ancient melting of mid-latitude snowpacks on Mars as a water source for gullies. Icarus 200(2), 418–425 (2009)

    ADS  Google Scholar 

  • R.M.E. Williams, D.A. Rogers, M. Chojnacki, J. Boyce, K.D. Seelos, C. Hardgrove, F. Chuang, Evidence for episodic alluvial fan formation in far western Terra Tyrrhena, Mars. Icarus 211, 222–237 (2011)

    ADS  Google Scholar 

  • R.M.E. Williams, J.P. Grotzinger, W.E. Dietrich, S. Gupta, D.Y. Sumner, R.C. Wiens, N. Mangold, M.C. Malin, K.S. Edgett et al., Martian fluvial conglomerates at Gale Crater. Science 340(6136), 1068–1072 (2013)

    ADS  Google Scholar 

  • J.-P. Williams, A.V. Pathare, O. Aharonson, The production of small primary craters on Mars and the Moon. Icarus 235, 23–36 (2014)

    ADS  Google Scholar 

  • R.M.E. Williams, F.C. Chuang, D.C. Berman, Multiple surface wetting events in the greater Meridiani Planum region, Mars: evidence from valley networks within ancient cratered highlands. Geophys. Res. Lett. 44(4), 1669–1678 (2017)

    ADS  Google Scholar 

  • R.M.E. Williams, M.C. Malin, K.M. Stack, D.M. Rubin, Assessment of Aeolis Palus stratigraphic relationships based on bench-forming strata in the Kylie and the Kimberley regions of Gale Crater, Mars. Icarus 309, 84–104 (2018)

    ADS  Google Scholar 

  • S.A. Wilson, A.D. Howard, J.M. Moore, J.A. Grant, A cold-wet middle-latitude environment on Mars during the Hesperian-Amazonian transition: evidence from northern Arabia valleys and paleolakes. J. Geophys. Res., Planets 121, 1667–1694 (2016)

    ADS  Google Scholar 

  • M.-K. Woo, Permafrost Hydrology (Springer, Berlin, 2012)

    Google Scholar 

  • R.D. Wordsworth, The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016)

    ADS  Google Scholar 

  • R. Wordsworth, F. Forget, E. Millour, J.W. Head, J.-B. Madeleine, B. Charnay, Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013)

    ADS  Google Scholar 

  • R.D. Wordsworth, L. Kerber, R.T. Pierrehumbert, F. Forget, J.W. Head, Comparison of ”warm and wet” and ”cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res., Planets 120(6), 1201–1219 (2015)

    ADS  Google Scholar 

  • R. Wordsworth, Y. Kalugina, S. Lokshtanov, A. Vigasin, B. Ehlmann, J. Head, C. Sanders, H. Wang, Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44(2), 665–671 (2017)

    ADS  Google Scholar 

  • J.J. Wray, S.L. Murchie, J.L. Bishop, B.L. Ehlmann, R.E. Milliken, M.B. Wilhelm, K.D. Seelos, M. Chojnacki, Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res., Planets 121(4), 652–677 (2016)

    ADS  Google Scholar 

  • A.S. Yen, R. Gellert, C. Schröder, R.V. Morris, J.F. Bell, A.T. Knudson, B.C. Clark, D.W. Ming, J.A. Crisp, R.E. Arvidson et al., An integrated view of the chemistry and mineralogy of Martian soils. Nature 436(7047), 49–54 (2005)

    ADS  Google Scholar 

  • A.S. Yen, D.W. Ming, D.T. Vaniman, R. Gellert, D.F. Blake, R.V. Morris, S.M. Morrison, T.F. Bristow, S.J. Chipera, K.S. Edgett, A.H. Treiman, B.C. Clark, R.T. Downs, J.D. Farmer, J.P. Grotzinger, E.B. Rampe, M.E. Schmidt, B. Sutter, L.M. Thompson (MSL Science Team), Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. Earth Planet. Sci. Lett. 471, 186–198 (2017)

    ADS  Google Scholar 

  • K. Zabrusky, J.C. Andrews-Hanna, S.M. Wiseman, Reconstructing the distribution and depositional history of the sedimentary deposits of arabia terra, Mars. Icarus 220(2), 311–330 (2012)

    ADS  Google Scholar 

  • J.R. Zimbelman, S.P. Scheidt, Hesperian age for Western Medusae fossae formation, Mars. Science 336(6089), 1683 (2012)

    ADS  Google Scholar 

  • M.Y. Zolotov, M.V. Mironenko, Timing of acid weathering on Mars: a kinetic-thermodynamic assessment. J. Geophys. Res. 112(E7), E07006 (2007)

    ADS  Google Scholar 

  • M.Y. Zolotov, M.V. Mironenko, Chemical models for Martian weathering profiles: insights into formation of layered phyllosilicate and sulfate deposits. Icarus 275, 203–220 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

The results listed above sum up the work of thousands of engineers and scientists. Many great papers are omitted from this review for concision. I am grateful to Chris McKay and Caleb Fassett for formal reviews, and to Tim Goudge, Paul Niles, and Brian Hynek for informal read-throughs. I thank David P. Mayer for generating the CTX DTM used in Fig. 2, and Jack Mustard for sharing a preprint. This paper was stimulated by the Fourth International Conference on Early Mars, and I thank the organizers and participants for that meeting. This work was funded in part by the U.S. taxpayer, via NASA grant NNX16AJ38G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin S. Kite.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 3 and Fig. 12.

Table 3 Absolute date estimates used in this paper, reproduced from Table 1 of Michael (2013) which in turn follows the Hartmann (2005) chronology
Fig. 12
figure 12

Latitude-elevation plots of climate-relevant geologic activity for the Late Noachian/Early Hesperian and the Hesperian/Early Amazonian. The black regions have no data, and the gray regions correspond to terrain that was geologically reset after the time slice in question. Vertical black lines highlight latitudes ±15° and ±30°. (a) Late Noachian/Early Hesperian time slice: Black dots correspond to individual valleys from the catalog of Hynek et al. (2010). Only every 10th valley is plotted, for legibility. The density of black dots reflects the nonuniform distribution of elevation as a function of latitude (for example, there is not much Noachian terrain S of \(30\ {}^{\circ}\mbox{S}\) above +3 km elevation). To correct for this effect, and get the latitude-and-elevation dependent density of valleys, we used a kernel density estimator. The resulting blue zone corresponds to the latitude/elevation zones that have the highest density of valleys, and is drawn to contain \(\frac{2}{3}\) of the valleys. Blue dashed line is the same, but for 9/10 of the valleys. (b) Late Hesperian/Amazonian time slice: Blue disks mark large alluvial fans (combining catalogs of Howard et al. 2005 and Kraal et al. 2008a). Pale blue stripes mark latitude range of Fresh Shallow Valleys (Wilson et al. 2016). Black dots correspond to the sedimentary rocks from the catalog of Malin et al. (2010). The density of black dots reflects the nonuniform distribution of elevation as a function of latitude. To correct for this effect, and get the latitude-and-elevation dependent density of sedimentary rocks from Malin et al.’s (2010) catalog, we used a kernel density estimator. The resulting orange zone corresponds to the latitude/elevation zones that have the highest density of sedimentary rocks, and is drawn to contain \(\frac{2}{3}\) of the sedimentary rocks. Orange dashed line is the same, but for 9/10 of the sedimentary rocks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kite, E.S. Geologic Constraints on Early Mars Climate. Space Sci Rev 215, 10 (2019). https://doi.org/10.1007/s11214-018-0575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0575-5

Keywords

Navigation