Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: A Topical Perspective

Abstract

Most galaxies comparable to or larger than the mass of the Milky Way host hot, X-ray emitting atmospheres, and many such galaxies are radio sources. Hot atmospheres and radio jets and lobes are the ingredients of radio-mechanical active galactic nucleus (AGN) feedback. While a consensus has emerged that such feedback suppresses cooling of hot cluster atmospheres, less attention has been paid to massive galaxies where similar mechanisms are at play. Observation indicates that the atmospheres of elliptical and S0 galaxies were accreted externally during the process of galaxy assembly and augmented significantly by stellar mass loss. Their atmospheres have entropy and cooling time profiles that are remarkably similar to those of central cluster galaxies. About half display filamentary or disky nebulae of cool and cold gas, much of which has likely cooled from the hot atmospheres. We review the observational and theoretical perspectives on thermal instabilities in galactic atmospheres and the evidence that AGN heating is able to roughly balance the atmospheric cooling. Such heating and cooling may be regulating star formation in all massive spheroids at late times.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. 1.

    It matters only when one needs to estimate the thermal energy inside the bubble, which for a given volume and pressure depends on the adiabatic index of the gas.

References

  1. Z. Abdulla, J.E. Carlstrom, A.B. Mantz, D.P. Marrone, C.H. Greer, J.W. Lamb, E.M. Leitch, S. Muchovej, C. O’Donnell, T.J. Plagge, D. Woody, Constraints on the thermal contents of the X-ray cavities of cluster MS 0735.6+7421 with Sunyaev-Zel’dovich effect observations (2018). arXiv:1806.05050

  2. M. Ackermann, M. Ajello, A. Albert, et al., Search for cosmic-ray-induced gamma-ray emission in galaxy clusters. Astrophys. J. 787, 18 (2014). https://doi.org/10.1088/0004-637X/787/1/18

    Article  ADS  Google Scholar 

  3. Planck Collaboration, P.A.R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. Balbi, A.J. Banday, et al., Planck intermediate results. XI. The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies. Astron. Astrophys. 557, 52 (2013). https://doi.org/10.1051/0004-6361/201220941

    Article  Google Scholar 

  4. S.W. Allen, G.B. Taylor, P.E.J. Nulsen, R.M. Johnstone, L.P. David, S. Ettori, A.C. Fabian, W. Forman, C. Jones, B. McNamara, Chandra X-ray observations of the 3C 295 cluster core. Mon. Not. R. Astron. Soc. 324, 842–858 (2001). https://doi.org/10.1046/j.1365-8711.2001.04315.x

    Article  ADS  Google Scholar 

  5. S.W. Allen, R.J.H. Dunn, A.C. Fabian, G.B. Taylor, C.S. Reynolds, The relation between accretion rate and jet power in X-ray luminous elliptical galaxies. Mon. Not. R. Astron. Soc. 372, 21–30 (2006). https://doi.org/10.1111/j.1365-2966.2006.10778.x

    Article  ADS  Google Scholar 

  6. M.E. Anderson, J.N. Bregman, Detection of a hot gaseous halo around the Giant Spiral Galaxy NGC 1961. Astrophys. J. 737, 22 (2011). https://doi.org/10.1088/0004-637X/737/1/22

    Article  ADS  Google Scholar 

  7. M.E. Anderson, R. Sunyaev, FUV line emission, gas kinematics, and discovery of [Fe XXI] \(\lambda\)1354.1 in the sightline toward a filament in M87. Astron. Astrophys. 617, 123 (2018). https://doi.org/10.1051/0004-6361/201732510

    Article  Google Scholar 

  8. M.E. Anderson, E. Churazov, J.N. Bregman, A deep XMM-Newton study of the hot gaseous halo around NGC 1961. Mon. Not. R. Astron. Soc. 455, 227–243 (2016). https://doi.org/10.1093/mnras/stv2314

    Article  ADS  Google Scholar 

  9. M. Arnaud, A.E. Evrard, The L_X-T relation and intracluster gas fractions of X-ray clusters. Mon. Not. R. Astron. Soc. 305, 631–640 (1999). https://doi.org/10.1046/j.1365-8711.1999.02442.x

    Article  ADS  Google Scholar 

  10. S. Arnouts, D. Schiminovich, O. Ilbert, L. Tresse, B. Milliard, M. Treyer, S. Bardelli, T. Budavari, T.K. Wyder, E. Zucca, O. Le Fèvre, D.C. Martin, G. Vettolani, C. Adami, M. Arnaboldi, T. Barlow, L. Bianchi, M. Bolzonella, D. Bottini, Y.-I. Byun, A. Cappi, S. Charlot, T. Contini, J. Donas, K. Forster, S. Foucaud, P. Franzetti, P.G. Friedman, B. Garilli, I. Gavignaud, L. Guzzo, T.M. Heckman, C. Hoopes, A. Iovino, P. Jelinsky, V. Le Brun, Y.-W. Lee, D. Maccagni, B.F. Madore, R. Malina, B. Marano, C. Marinoni, H.J. McCracken, A. Mazure, B. Meneux, R. Merighi, P. Morrissey, S. Neff, S. Paltani, R. Pellò, J.P. Picat, A. Pollo, L. Pozzetti, M. Radovich, R.M. Rich, R. Scaramella, M. Scodeggio, M. Seibert, O. Siegmund, T. Small, A.S. Szalay, B. Welsh, C.K. Xu, G. Zamorani, A. Zanichelli, The GALEX VIMOS-VLT deep survey measurement of the evolution of the 1500 Å luminosity function. Astrophys. J. Lett. 619, 43–46 (2005). https://doi.org/10.1086/426733

    Article  ADS  Google Scholar 

  11. A. Babul, M.L. Balogh, G.F. Lewis, G.B. Poole, Physical implications of the X-ray properties of galaxy groups and clusters. Mon. Not. R. Astron. Soc. 330, 329–343 (2002). https://doi.org/10.1046/j.1365-8711.2002.05044.x

    Article  ADS  Google Scholar 

  12. I.V. Babyk, B.R. McNamara, P.E.J. Nulsen, H.R. Russell, A.N. Vantyghem, M.T. Hogan, F.A. Pulido, A universal entropy profile for the hot atmospheres of galaxies and clusters within R 2500. Astrophys. J. 862, 39 (2018a). https://doi.org/10.3847/1538-4357/aacce5

    Article  ADS  Google Scholar 

  13. I.V. Babyk, B.R. McNamara, P.D. Tamhane, P.E.J. Nulsen, H.R. Russell, A.C. Edge, Origins of molecular clouds in early-type galaxies (2018b). arXiv:1810.11465

  14. I.V. Babyk, B.R. McNamara, P.E.J. Nulsen, M.T. Hogan, A.N. Vantyghem, H.R. Russell, F.A. Pulido, A.C. Edge, X-ray scaling relations of early-type galaxies. Astrophys. J. 857, 32 (2018c). https://doi.org/10.3847/1538-4357/aab3c9

    Article  ADS  Google Scholar 

  15. S.A. Balbus, N. Soker, Theory of local thermal instability in spherical systems. Astrophys. J. 341, 611–630 (1989). https://doi.org/10.1086/167521

    Article  ADS  Google Scholar 

  16. S.A. Balbus, N. Soker, Resonant excitation of internal gravity waves in cluster cooling flows. Astrophys. J. 357, 353–366 (1990). https://doi.org/10.1086/168926

    Article  ADS  Google Scholar 

  17. A. Baldi, W. Forman, C. Jones, R. Kraft, P. Nulsen, E. Churazov, L. David, S. Giacintucci, The unusual X-ray morphology of NGC 4636 revealed by deep Chandra observations: cavities and shocks created by past active galactic nucleus outbursts. Astrophys. J. 707, 1034–1043 (2009). https://doi.org/10.1088/0004-637X/707/2/1034

    Article  ADS  Google Scholar 

  18. M.L. Balogh, A. Babul, D.R. Patton, Pre-heated isentropic gas in groups of galaxies. Mon. Not. R. Astron. Soc. 307, 463–479 (1999). https://doi.org/10.1046/j.1365-8711.1999.02608.x

    Article  ADS  Google Scholar 

  19. C.J. Bambic, B.J. Morsony, C.S. Reynolds, Suppression of AGN-driven turbulence by magnetic fields in a magnetohydrodynamic model of the intracluster medium. Astrophys. J. 857, 84 (2018). https://doi.org/10.3847/1538-4357/aab558

    Article  ADS  Google Scholar 

  20. M.C. Begelman, Impact of active galactic nuclei on the surrounding medium, in Gas and Galaxy Evolution, ed. by J.E. Hibbard, M. Rupen, J.H. van Gorkom. Astronomical Society of the Pacific Conference Series, vol. 240 (2001), p. 363

    Google Scholar 

  21. J. Bergeron, G. Stasińska, Absorption line systems in QSO spectra—properties derived from observations and from photoionization models. Astron. Astrophys. 169, 1–13 (1986)

    ADS  Google Scholar 

  22. P.N. Best, C.R. Kaiser, T.M. Heckman, G. Kauffmann, AGN-controlled cooling in elliptical galaxies. Mon. Not. R. Astron. Soc. 368, 67–71 (2006). https://doi.org/10.1111/j.1745-3933.2006.00159.x

    Article  ADS  Google Scholar 

  23. G.V. Bicknell, M.C. Begelman, Understanding the kiloparsec-scale structure of M87. Astrophys. J. 467, 597 (1996). https://doi.org/10.1086/177636

    Article  ADS  Google Scholar 

  24. V. Biffi, F. Mernier, P. Medvedev, Enrichment of the hot intracluster medium: numerical simulations. Space Sci. Rev. 214(8), 123 (2018). https://doi.org/10.1007/s11214-018-0557-7

    Article  ADS  Google Scholar 

  25. J. Binney, The physics of dissipational galaxy formation. Astrophys. J. 215, 483–491 (1977). https://doi.org/10.1086/155378

    Article  ADS  Google Scholar 

  26. J. Binney, On the origin of the galaxy luminosity function. Mon. Not. R. Astron. Soc. 347, 1093–1096 (2004). https://doi.org/10.1111/j.1365-2966.2004.07277.x

    Article  ADS  Google Scholar 

  27. J. Binney, G. Tabor, Evolving cooling flows. Mon. Not. R. Astron. Soc. 276, 663 (1995). https://doi.org/10.1093/mnras/276.2.663

    Article  ADS  Google Scholar 

  28. L. Bîrzan, D.A. Rafferty, B.R. McNamara, M.W. Wise, P.E.J. Nulsen, A systematic study of radio-induced X-ray cavities in clusters, groups, and galaxies. Astrophys. J. 607, 800–809 (2004). https://doi.org/10.1086/383519

    Article  ADS  Google Scholar 

  29. J. Bland-Hawthorn, O. Gerhard, The galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016). https://doi.org/10.1146/annurev-astro-081915-023441

    Article  ADS  Google Scholar 

  30. H. Boehringer, G.E. Morfill, On the dynamical role of cosmic rays in cooling flows in clusters of galaxies. Astrophys. J. 330, 609–619 (1988). https://doi.org/10.1086/166497

    Article  ADS  Google Scholar 

  31. H. Boehringer, W. Voges, A.C. Fabian, A.C. Edge, D.M. Neumann, A ROSAT HRI study of the interaction of the X-ray-emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, 25–28 (1993). https://doi.org/10.1093/mnras/264.1.L25

    Article  ADS  Google Scholar 

  32. Á. Bogdán, W.R. Forman, R.P. Kraft, C. Jones, Detection of a luminous hot X-ray corona around the massive spiral galaxy NGC 266. Astrophys. J. 772, 98 (2013a). https://doi.org/10.1088/0004-637X/772/2/98

    Article  ADS  Google Scholar 

  33. Á. Bogdán, W.R. Forman, M. Vogelsberger, H. Bourdin, D. Sijacki, P. Mazzotta, R.P. Kraft, C. Jones, M. Gilfanov, E. Churazov, L.P. David, Hot X-ray coronae around massive spiral galaxies: a unique probe of structure formation models. Astrophys. J. 772, 97 (2013b). https://doi.org/10.1088/0004-637X/772/2/97

    Article  ADS  Google Scholar 

  34. Á. Bogdán, H. Bourdin, W.R. Forman, R.P. Kraft, M. Vogelsberger, L. Hernquist, V. Springel, Probing the hot X-ray corona around the massive spiral galaxy, NGC 6753, using deep XMM-Newton observations. Astrophys. J. 850, 98 (2017). https://doi.org/10.3847/1538-4357/aa9523

    Article  ADS  Google Scholar 

  35. H. Bohringer, P.E.J. Nulsen, R. Braun, A.C. Fabian, The interaction of the radio halo of M87 with the cooling intracluster medium of the Virgo cluster. Mon. Not. R. Astron. Soc. 274, 67–71 (1995). https://doi.org/10.1093/mnras/274.1.L67

    Article  ADS  Google Scholar 

  36. H. Böhringer, K. Matsushita, E. Churazov, Y. Ikebe, Y. Chen, The new emerging model for the structure of cooling cores in clusters of galaxies. Astron. Astrophys. 382, 804–820 (2002). https://doi.org/10.1051/0004-6361:20011708

    Article  ADS  Google Scholar 

  37. H. Bondi, On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195 (1952)

    MathSciNet  Article  ADS  Google Scholar 

  38. B.C.J. Borguet, N. Arav, D. Edmonds, C. Chamberlain, C. Benn, Major contributor to AGN feedback: VLT X-shooter observations of S IV BALQSO outflows. Astrophys. J. 762, 49 (2013). https://doi.org/10.1088/0004-637X/762/1/49

    Article  ADS  Google Scholar 

  39. B. Boroson, D.-W. Kim, G. Fabbiano, Revisiting with Chandra the scaling relations of the X-ray emission components (binaries, nuclei, and hot gas) of early-type galaxies. Astrophys. J. 729, 12 (2011). https://doi.org/10.1088/0004-637X/729/1/12

    Article  ADS  Google Scholar 

  40. S. Borthakur, T. Heckman, J. Tumlinson, R. Bordoloi, G. Kauffmann, B. Catinella, D. Schiminovich, R. Davé, S.M. Moran, A. Saintonge, The properties of the circumgalactic medium in red and blue galaxies: results from the COS-GASS+COS-halos surveys. Astrophys. J. 833, 259 (2016). https://doi.org/10.3847/1538-4357/833/2/259

    Article  ADS  Google Scholar 

  41. A. Boselli, M. Fossati, A. Longobardi, G. Consolandi, P. Amram, M. Sun, P. Andreani, M. Boquien, J. Braine, F. Combes, P. Cote, J.C. Cuillandre, P.A. Duc, E. Emsellem, L. Ferrarese, G. Gavazzi, S. Gwyn, G. Hensler, E.W. Peng, H. Plana, J. Roediger, R. Sanchez-Janssen, M. Sarzi, P. Serra, G. Trinchieri, A Virgo environmental survey tracing ionised gas emission (VESTIGE).V. Properties of the ionised gas filament of M87 (2018). arXiv:1810.09804

  42. J.N. Bregman, E.D. Miller, A.E. Athey, J.A. Irwin, On VI in elliptical galaxies: indicators of cooling flows. Astrophys. J. 635, 1031–1043 (2005). https://doi.org/10.1086/497421

    Article  ADS  Google Scholar 

  43. J.N. Bregman, M.E. Anderson, X. Dai, Metal production in galaxy clusters: the non-galactic component. Astrophys. J. Lett. 716, 63–67 (2010). https://doi.org/10.1088/2041-8205/716/1/L63

    Article  ADS  Google Scholar 

  44. J.N. Bregman, M.E. Anderson, M.J. Miller, E. Hodges-Kluck, X. Dai, J.-T. Li, Y. Li, Z. Qu, The extended distribution of baryons around galaxies. Astrophys. J. 862, 3 (2018). https://doi.org/10.3847/1538-4357/aacafe

    Article  ADS  Google Scholar 

  45. F. Brighenti, W.G. Mathews, Entropy evolution in galaxy groups and clusters: a comparison of external and internal heating. Astrophys. J. 553, 103–120 (2001). https://doi.org/10.1086/320664

    Article  ADS  Google Scholar 

  46. F. Brighenti, W.G. Mathews, Stopping cooling flows with jets. Astrophys. J. 643, 120–127 (2006). https://doi.org/10.1086/502645

    Article  ADS  Google Scholar 

  47. M. Brüggen, C.R. Kaiser, Hot bubbles from active galactic nuclei as a heat source in cooling-flow clusters. Nature 418, 301–303 (2002). https://doi.org/10.1038/nature00857

    Article  ADS  Google Scholar 

  48. D.A. Buote, A.J. Barth, The luminous X-ray halos of two compact elliptical galaxies. Astrophys. J. 854, 143 (2018). https://doi.org/10.3847/1538-4357/aaa971

    Article  ADS  Google Scholar 

  49. R.E.A. Canning, G.J. Ferland, A.C. Fabian, R.M. Johnstone, P.A.M. van Hoof, R.L. Porter, N. Werner, R.J.R. Williams, Collisional excitation of [C II], [O I] and CO in massive galaxies. Mon. Not. R. Astron. Soc. 455, 3042–3057 (2016). https://doi.org/10.1093/mnras/stv2390

    Article  ADS  Google Scholar 

  50. A. Cattaneo, S.M. Faber, J. Binney, A. Dekel, J. Kormendy, R. Mushotzky, A. Babul, P.N. Best, M. Brüggen, A.C. Fabian, C.S. Frenk, A. Khalatyan, H. Netzer, A. Mahdavi, J. Silk, M. Steinmetz, L. Wisotzki, The role of black holes in galaxy formation and evolution. Nature 460, 213–219 (2009). https://doi.org/10.1038/nature08135

    Article  ADS  Google Scholar 

  51. K.W. Cavagnolo, M. Donahue, G.M. Voit, M. Sun, An entropy threshold for strong H\(\upalpha\) and radio emission in the cores of galaxy clusters. Astrophys. J. Lett. 683, 107–110 (2008). https://doi.org/10.1086/591665

    Article  Google Scholar 

  52. A. Cavaliere, N. Menci, P. Tozzi, Diffuse baryons in groups and clusters of galaxies. Astrophys. J. 501, 493–508 (1998). https://doi.org/10.1086/305839

    Article  ADS  Google Scholar 

  53. G. Chartas, W.N. Brandt, S.C. Gallagher, D. Proga, XMM-Newton and Chandra spectroscopy of the variable high-energy absorption of PG 1115+080: refined outflow constraints. Astron. J. 133, 1849–1860 (2007). https://doi.org/10.1086/512364

    Article  ADS  Google Scholar 

  54. H.-W. Chen, F.S. Zahedy, S.D. Johnson, R.M. Pierce, Y.-H. Huang, B.J. Weiner, J.-R. Gauthier, Characterizing circumgalactic gas around massive ellipticals at \(z\sim0.4\) - I. Initial results. Mon. Not. R. Astron. Soc. 479, 2547–2563 (2018). https://doi.org/10.1093/mnras/sty1541

    Article  Google Scholar 

  55. N.E. Chisari, M.L.A. Richardson, J. Devriendt, Y. Dubois, A. Schneider, A.M.C. Le Brun, R.S. Beckmann, S. Peirani, A. Slyz, C. Pichon, The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation. Mon. Not. R. Astron. Soc. 480, 3962–3977 (2018). https://doi.org/10.1093/mnras/sty2093

    Article  ADS  Google Scholar 

  56. J. Chisholm, C.A. Tremonti, C. Leitherer, Y. Chen, The mass and momentum outflow rates of photoionized galactic outflows. Mon. Not. R. Astron. Soc. 469, 4831–4849 (2017). https://doi.org/10.1093/mnras/stx1164

    Article  ADS  Google Scholar 

  57. E. Choi, J.P. Ostriker, T. Naab, L. Oser, B.P. Moster, The impact of mechanical AGN feedback on the formation of massive early-type galaxies. Mon. Not. R. Astron. Soc. 449, 4105–4116 (2015). https://doi.org/10.1093/mnras/stv575

    Article  ADS  Google Scholar 

  58. P.P. Choudhury, P. Sharma, Cold gas in cluster cores: global stability analysis and non-linear simulations of thermal instability. Mon. Not. R. Astron. Soc. 457, 2554–2568 (2016). https://doi.org/10.1093/mnras/stw152

    Article  ADS  Google Scholar 

  59. E. Churazov, W. Forman, C. Jones, H. Böhringer, Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 356, 788–794 (2000)

    ADS  Google Scholar 

  60. E. Churazov, M. Brüggen, C.R. Kaiser, H. Böhringer, W. Forman, Evolution of buoyant bubbles in M87. Astrophys. J. 554, 261–273 (2001). https://doi.org/10.1086/321357

    Article  ADS  Google Scholar 

  61. E. Churazov, R. Sunyaev, W. Forman, H. Böhringer, Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 332, 729–734 (2002). https://doi.org/10.1046/j.1365-8711.2002.05332.x

    Article  ADS  Google Scholar 

  62. E. Churazov, S. Sazonov, R. Sunyaev, W. Forman, C. Jones, H. Böhringer, Supermassive black holes in elliptical galaxies: switching from very bright to very dim. Mon. Not. R. Astron. Soc. 363, 91–95 (2005). https://doi.org/10.1111/j.1745-3933.2005.00093.x

    Article  ADS  Google Scholar 

  63. E. Churazov, S. Tremaine, W. Forman, O. Gerhard, P. Das, A. Vikhlinin, C. Jones, H. Böhringer, K. Gebhardt, Comparison of approximately isothermal gravitational potentials of elliptical galaxies based on X-ray and optical data. Mon. Not. R. Astron. Soc. 404, 1165–1185 (2010a). https://doi.org/10.1111/j.1365-2966.2010.16377.x

    Article  ADS  Google Scholar 

  64. E. Churazov, I. Zhuravleva, S. Sazonov, R. Sunyaev, Resonant scattering of X-ray emission lines in the hot intergalactic medium. Space Sci. Rev. 157, 193–209 (2010b). https://doi.org/10.1007/s11214-010-9685-4

    Article  ADS  Google Scholar 

  65. E. Churazov, M. Ruszkowski, A. Schekochihin, Powering of cool filaments in cluster cores by buoyant bubbles—I. Qualitative model. Mon. Not. R. Astron. Soc. 436, 526–530 (2013). https://doi.org/10.1093/mnras/stt1594

    Article  ADS  Google Scholar 

  66. L. Ciotti, J.P. Ostriker, Radiative feedback from massive black holes in elliptical galaxies: AGN flaring and central starburst fueled by recycled gas. Astrophys. J. 665, 1038–1056 (2007). https://doi.org/10.1086/519833

    Article  ADS  Google Scholar 

  67. L. Ciotti, S. Pellegrini, A. Negri, J.P. Ostriker, The effect of the AGN feedback on the interstellar medium of early-type galaxies:2D hydrodynamical simulations of the low-rotation case. Astrophys. J. 835, 15 (2017). https://doi.org/10.3847/1538-4357/835/1/15

    Article  ADS  Google Scholar 

  68. C. Conroy, G.J. Graves, P.G. van Dokkum, Early-type galaxy archeology: ages, abundance ratios, and effective temperatures from full-spectrum fitting. Astrophys. J. 780, 33 (2014). https://doi.org/10.1088/0004-637X/780/1/33

    Article  ADS  Google Scholar 

  69. C.A. Correa, J. Schaye, J.S.B. Wyithe, A.R. Duffy, T. Theuns, R.A. Crain, R.G. Bower, The formation of hot gaseous haloes around galaxies. Mon. Not. R. Astron. Soc. 473, 538–559 (2018). https://doi.org/10.1093/mnras/stx2332

    Article  ADS  Google Scholar 

  70. D.J. Croton, V. Springel, S.D.M. White, G. De Lucia, C.S. Frenk, L. Gao, A. Jenkins, G. Kauffmann, J.F. Navarro, N. Yoshida, The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006). https://doi.org/10.1111/j.1365-2966.2005.09675.x

    Article  ADS  Google Scholar 

  71. E. Daddi, A. Renzini, N. Pirzkal, A. Cimatti, S. Malhotra, M. Stiavelli, C. Xu, A. Pasquali, J.E. Rhoads, M. Brusa, S. di Serego Alighieri, H.C. Ferguson, A.M. Koekemoer, L.A. Moustakas, N. Panagia, R.A. Windhorst, Passively evolving early-type galaxies at \(1.4< z<2.5\) in the Hubble ultra deep field. Astrophys. J. 626, 680–697 (2005). https://doi.org/10.1086/430104

    Article  Google Scholar 

  72. X. Dai, M.E. Anderson, J.N. Bregman, J.M. Miller, XMM-Newton detects a hot gaseous halo in the fastest rotating spiral galaxy UGC 12591. Astrophys. J. 755, 107 (2012). https://doi.org/10.1088/0004-637X/755/2/107

    Article  ADS  Google Scholar 

  73. R. Davé, R. Cen, J.P. Ostriker, G.L. Bryan, L. Hernquist, N. Katz, D.H. Weinberg, M.L. Norman, B. O’Shea, Baryons in the warm-hot intergalactic medium. Astrophys. J. 552, 473–483 (2001)

    Article  ADS  Google Scholar 

  74. L.P. David, A. Slyz, C. Jones, W. Forman, S.D. Vrtilek, K.A. Arnaud, A catalog of intracluster gas temperatures. Astrophys. J. 412, 479–488 (1993). https://doi.org/10.1086/172936

    Article  ADS  Google Scholar 

  75. L.P. David, J. Lim, W. Forman, J. Vrtilek, F. Combes, P. Salome, A. Edge, S. Hamer, C. Jones, M. Sun, E. O’Sullivan, F. Gastaldello, S. Bardelli, P. Temi, H. Schmitt, Y. Ohyama, W. Mathews, F. Brighenti, S. Giacintucci, D.-V. Trung, Molecular gas in the X-ray bright group NGC 5044 as revealed by ALMA. Astrophys. J. 792, 94 (2014). https://doi.org/10.1088/0004-637X/792/2/94

    Article  ADS  Google Scholar 

  76. M. de Kool, N. Arav, R.H. Becker, M.D. Gregg, R.L. White, S.A. Laurent-Muehleisen, T. Price, K.T. Korista, Keck HIRES observations of the QSO FIRST J104459.6+365605: evidence for a large-scale outflow. Astrophys. J. 548, 609–623 (2001). https://doi.org/10.1086/318996

    Article  ADS  Google Scholar 

  77. J. de Plaa, I. Zhuravleva, N. Werner, J.S. Kaastra, E. Churazov, R.K. Smith, A.J.J. Raassen, Y.G. Grange, Estimating turbulent velocities in the elliptical galaxies NGC 5044 and NGC 5813. Astron. Astrophys. 539, 34 (2012). https://doi.org/10.1051/0004-6361/201118404

    Article  Google Scholar 

  78. J. de Plaa, J.S. Kaastra, N. Werner, C. Pinto, P. Kosec, Y.-Y. Zhang, F. Mernier, L. Lovisari, H. Akamatsu, G. Schellenberger, F. Hofmann, T.H. Reiprich, A. Finoguenov, J. Ahoranta, J.S. Sanders, A.C. Fabian, O. Pols, A. Simionescu, J. Vink, H. Böhringer, CHEERS: the chemical evolution RGS sample. Astron. Astrophys. 607, 98 (2017). https://doi.org/10.1051/0004-6361/201629926

    Article  Google Scholar 

  79. T.J. Dennis, B.D.G. Chandran, Turbulent heating of galaxy-cluster plasmas. Astrophys. J. 622, 205–216 (2005). https://doi.org/10.1086/427424

    Article  ADS  Google Scholar 

  80. T. Di Matteo, S.W. Allen, A.C. Fabian, A.S. Wilson, A.J. Young, Accretion onto the supermassive black hole in M87. Astrophys. J. 582, 133–140 (2003). https://doi.org/10.1086/344504

    Article  ADS  Google Scholar 

  81. T. Di Matteo, J. Colberg, V. Springel, L. Hernquist, D. Sijacki, Direct cosmological simulations of the growth of black holes and galaxies. Astrophys. J. 676, 33–53 (2008). https://doi.org/10.1086/524921

    Article  ADS  Google Scholar 

  82. R.J.H. Dunn, S.W. Allen, G.B. Taylor, K.F. Shurkin, G. Gentile, A.C. Fabian, C.S. Reynolds, The radio properties of a complete, X-ray selected sample of nearby, massive elliptical galaxies. Mon. Not. R. Astron. Soc. 6404(1), 180–197 (2010)

    ADS  Google Scholar 

  83. L.J. Dursi, C. Pfrommer, Draping of cluster magnetic fields over bullets and bubbles-morphology and dynamic effects. Astrophys. J. 677, 993–1018 (2008). https://doi.org/10.1086/529371

    Article  ADS  Google Scholar 

  84. A.C. Edge, R.J. Wilman, R.M. Johnstone, C.S. Crawford, A.C. Fabian, S.W. Allen, A survey of molecular hydrogen in the central galaxies of cooling flows. Mon. Not. R. Astron. Soc. 337, 49–62 (2002). https://doi.org/10.1046/j.1365-8711.2002.05790.x

    Article  ADS  Google Scholar 

  85. D.J. Eisenstein, J. Annis, J.E. Gunn, A.S. Szalay, A.J. Connolly, R.C. Nichol, N.A. Bahcall, M. Bernardi, S. Burles, F.J. Castander, M. Fukugita, D.W. Hogg, Ž. Ivezić, G.R. Knapp, R.H. Lupton, V. Narayanan, M. Postman, D.E. Reichart, M. Richmond, D.P. Schneider, D.J. Schlegel, M.A. Strauss, M. SubbaRao, D.L. Tucker, D. Vanden Berk, M.S. Vogeley, D.H. Weinberg, B. Yanny, Spectroscopic target selection for the sloan digital sky survey: the luminous red galaxy sample. Astron. J. 122, 2267–2280 (2001). https://doi.org/10.1086/323717

    Article  ADS  Google Scholar 

  86. T.A. Enßlin, On the escape of cosmic rays from radio galaxy cocoons. Astron. Astrophys. 399, 409–420 (2003). https://doi.org/10.1051/0004-6361:20021827

    Article  ADS  Google Scholar 

  87. P.B. Eskridge, G. Fabbiano, D.-W. Kim, A multiparametric analysis of the Einstein sample of early-type galaxies. 2: Galaxy formation history and properties of the interstellar medium. Astrophys. J. 442, 523–537 (1995). https://doi.org/10.1086/175458

    Article  ADS  Google Scholar 

  88. A.E. Evrard, J.P. Henry, Expectations for X-ray cluster observations by the ROSAT satellite. Astrophys. J. 383, 95–103 (1991). https://doi.org/10.1086/170767

    Article  ADS  Google Scholar 

  89. A.C. Fabian, Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012). https://doi.org/10.1146/annurev-astro-081811-125521

    Article  ADS  Google Scholar 

  90. A.C. Fabian, P.E.J. Nulsen, Subsonic accretion of cooling gas in clusters of galaxies. Mon. Not. R. Astron. Soc. 180, 479–484 (1977). https://doi.org/10.1093/mnras/180.3.479

    Article  ADS  Google Scholar 

  91. A.C. Fabian, J.S. Sanders, S.W. Allen, C.S. Crawford, K. Iwasawa, R.M. Johnstone, R.W. Schmidt, G.B. Taylor, A deep Chandra observation of the Perseus cluster: shocks and ripples. Mon. Not. R. Astron. Soc. 344, 43–47 (2003). https://doi.org/10.1046/j.1365-8711.2003.06902.x

    Article  ADS  Google Scholar 

  92. A.C. Fabian, J.S. Sanders, G.B. Taylor, S.W. Allen, C.S. Crawford, R.M. Johnstone, K. Iwasawa, A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006). https://doi.org/10.1111/j.1365-2966.2005.09896.x

    Article  ADS  Google Scholar 

  93. A.C. Fabian, R.M. Johnstone, J.S. Sanders, C.J. Conselice, C.S. Crawford, J.S. Gallagher III, E. Zweibel, Magnetic support of the optical emission line filaments in NGC 1275. Nature 454, 968–970 (2008). https://doi.org/10.1038/nature07169

    Article  ADS  Google Scholar 

  94. A.C. Fabian, J.S. Sanders, R.J.R. Williams, A. Lazarian, G.J. Ferland, R.M. Johnstone, The energy source of the filaments around the giant galaxy NGC 1275. Mon. Not. R. Astron. Soc. 417, 172–177 (2011). https://doi.org/10.1111/j.1365-2966.2011.19034.x

    Article  ADS  Google Scholar 

  95. A.C. Fabian, S.A. Walker, H.R. Russell, C. Pinto, J.S. Sanders, C.S. Reynolds, Do sound waves transport the AGN energy in the Perseus cluster? Mon. Not. R. Astron. Soc. 464, 1–5 (2017). https://doi.org/10.1093/mnrasl/slw170

    Article  ADS  Google Scholar 

  96. L. Feretti, D. Dallacasa, F. Govoni, G. Giovannini, G.B. Taylor, U. Klein, The radio galaxies and the magnetic field in Abell 119. Astron. Astrophys. 344, 472–482 (1999)

    ADS  Google Scholar 

  97. G.J. Ferland, A.C. Fabian, N.A. Hatch, R.M. Johnstone, R.L. Porter, P.A.M. van Hoof, R.J.R. Williams, The origin of molecular hydrogen emission in cooling-flow filaments. Mon. Not. R. Astron. Soc. 386, 72–76 (2008). https://doi.org/10.1111/j.1745-3933.2008.00463.x

    Article  ADS  Google Scholar 

  98. G.J. Ferland, A.C. Fabian, N.A. Hatch, R.M. Johnstone, R.L. Porter, P.A.M. van Hoof, R.J.R. Williams, Collisional heating as the origin of filament emission in galaxy clusters. Mon. Not. R. Astron. Soc. 392, 1475–1502 (2009). https://doi.org/10.1111/j.1365-2966.2008.14153.x

    Article  ADS  Google Scholar 

  99. A. Ferré-Mateu, I. Trujillo, I. Martín-Navarro, A. Vazdekis, M. Mezcua, M. Balcells, L. Domínguez, Two new confirmed massive relic galaxies: red nuggets in the present-day Universe. Mon. Not. R. Astron. Soc. 467, 1929–1939 (2017). https://doi.org/10.1093/mnras/stx171

    Article  ADS  Google Scholar 

  100. A. Finoguenov, C. Jones, Chandra observation of M84, a radio lobe elliptical galaxy in the Virgo cluster. Astrophys. J. Lett. 547, 107–110 (2001). https://doi.org/10.1086/318910

    Article  ADS  Google Scholar 

  101. A. Finoguenov, M. Ruszkowski, C. Jones, M. Brüggen, A. Vikhlinin, E. Mandel, In-depth Chandra study of the AGN feedback in Virgo elliptical galaxy M84. Astrophys. J. 686, 911–917 (2008). https://doi.org/10.1086/591662

    Article  ADS  Google Scholar 

  102. A. Fontana, L. Pozzetti, I. Donnarumma, A. Renzini, A. Cimatti, G. Zamorani, N. Menci, E. Daddi, E. Giallongo, M. Mignoli, C. Perna, S. Salimbeni, P. Saracco, T. Broadhurst, S. Cristiani, S. D’Odorico, R. Gilmozzi, The K20 survey. VI. The distribution of the stellar masses in galaxies up to z ≈ 2. Astron. Astrophys. 424, 23–42 (2004). https://doi.org/10.1051/0004-6361:20035626

    Article  ADS  Google Scholar 

  103. D.A. Forbes, A. Alabi, A.J. Romanowsky, D.-W. Kim, J.P. Brodie, G. Fabbiano, The SLUGGS survey: revisiting the correlation between X-ray luminosity and total mass of massive early-type galaxies. Mon. Not. R. Astron. Soc. 464, 26–30 (2017). https://doi.org/10.1093/mnrasl/slw176

    Article  ADS  Google Scholar 

  104. H.A. Ford, J.N. Bregman, Direct detections of young stars in nearby elliptical galaxies. Astrophys. J. 770, 137 (2013). https://doi.org/10.1088/0004-637X/770/2/137

    Article  ADS  Google Scholar 

  105. H.C. Ford, H. Butcher, The system of filaments in M87—evidence for matter falling into an active nucleus. Astrophys. J. Suppl. Ser. 41, 147–172 (1979). https://doi.org/10.1086/190613

    Article  ADS  Google Scholar 

  106. H.C. Ford, R.J. Harms, Z.I. Tsvetanov, G.F. Hartig, L.L. Dressel, G.A. Kriss, R.C. Bohlin, A.F. Davidsen, B. Margon, A.K. Kochhar, Narrowband HST images of M87: evidence for a disk of ionized gas around a massive black hole. Astrophys. J. Lett. 435, 27–30 (1994). https://doi.org/10.1086/187586

    Article  ADS  Google Scholar 

  107. W. Forman, C. Jones, W. Tucker, Hot coronae around early-type galaxies. Astrophys. J. 293, 102–119 (1985). https://doi.org/10.1086/163218

    Article  ADS  Google Scholar 

  108. W. Forman, C. Jones, E. Churazov, M. Markevitch, P. Nulsen, A. Vikhlinin, M. Begelman, H. Böhringer, J. Eilek, S. Heinz, R. Kraft, F. Owen, M. Pahre, Filaments, bubbles, and weak shocks in the gaseous atmosphere of M87. Astrophys. J. 665, 1057–1066 (2007). https://doi.org/10.1086/519480

    Article  ADS  Google Scholar 

  109. W. Forman, E. Churazov, C. Jones, S. Heinz, R. Kraft, A. Vikhlinin, Partitioning the outburst energy of a low eddington accretion rate AGN at the center of an elliptical galaxy: the recent 12 myr history of the supermassive black hole in M87. Astrophys. J. 844, 122 (2017). https://doi.org/10.3847/1538-4357/aa70e4

    Article  ADS  Google Scholar 

  110. A. Franceschini, V. Braito, M. Persic, R. Della Ceca, L. Bassani, M. Cappi, P. Malaguti, G.G.C. Palumbo, G. Risaliti, M. Salvati, P. Severgnini, An XMM-Newton hard X-ray survey of ultraluminous infrared galaxies. Mon. Not. R. Astron. Soc. 343, 1181–1194 (2003). https://doi.org/10.1046/j.1365-8711.2003.06744.x

    Article  ADS  Google Scholar 

  111. Y. Fujita, Y. Ohira, Stable heating of cluster cooling flows by cosmic-ray streaming. Astrophys. J. 738, 182 (2011). https://doi.org/10.1088/0004-637X/738/2/182

    Article  ADS  Google Scholar 

  112. M. Fukugita, P.J.E. Peebles, Massive coronae of galaxies. Astrophys. J. 639, 590–599 (2006). https://doi.org/10.1086/499556

    Article  ADS  Google Scholar 

  113. M. Fukugita, C.J. Hogan, P.J.E. Peebles, The cosmic baryon budget. Astrophys. J. 503, 518–530 (1998). https://doi.org/10.1086/306025

    Article  ADS  Google Scholar 

  114. M. Gaspari, F. Brighenti, P. Temi, Mechanical AGN feedback: controlling the thermodynamical evolution of elliptical galaxies. Mon. Not. R. Astron. Soc. 424, 190–209 (2012a). https://doi.org/10.1111/j.1365-2966.2012.21183.x

    Article  ADS  Google Scholar 

  115. M. Gaspari, M. Ruszkowski, P. Sharma, Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94 (2012b). https://doi.org/10.1088/0004-637X/746/1/94

    Article  ADS  Google Scholar 

  116. M. Gaspari, M. Ruszkowski, S.P. Oh, Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 432, 3401–3422 (2013). https://doi.org/10.1093/mnras/stt692

    Article  ADS  Google Scholar 

  117. M. Gaspari, M. McDonald, S.L. Hamer, F. Brighenti, P. Temi, M. Gendron-Marsolais, J. Hlavacek-Larrondo, A.C. Edge, N. Werner, P. Tozzi, M. Sun, J.M. Stone, G.R. Tremblay, M.T. Hogan, D. Eckert, S. Ettori, H. Yu, V. Biffi, S. Planelles, Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. Astrophys. J. 854, 167 (2018). https://doi.org/10.3847/1538-4357/aaaa1b

    Article  ADS  Google Scholar 

  118. J.-R. Gauthier, H.-W. Chen, J.L. Tinker, The clustering of Mg ii absorption systems at ∼0.5 and detection of cold gas in massive halos. Astrophys. J. 702, 50–62 (2009). https://doi.org/10.1088/0004-637X/702/1/50

    Article  ADS  Google Scholar 

  119. J.-R. Gauthier, H.-W. Chen, J.L. Tinker, The incidence of cool gas in \(\sim10^{13}~\mbox{m}^{13}~M_{\odot}\) halos. Astrophys. J. 716, 1263–1268 (2010). https://doi.org/10.1088/0004-637X/716/2/1263

    Article  Google Scholar 

  120. K. Gebhardt, J. Adams, D. Richstone, T.R. Lauer, S.M. Faber, K. Gültekin, J. Murphy, S. Tremaine, The black hole mass in M87 from Gemini/NIFS adaptive optics observations. Astrophys. J. 729, 119 (2011). https://doi.org/10.1088/0004-637X/729/2/119

    Article  ADS  Google Scholar 

  121. R. Genzel, L.J. Tacconi, D. Rigopoulou, D. Lutz, M. Tecza, Ultraluminous infrared mergers: elliptical galaxies in formation? Astrophys. J. 563, 527–545 (2001). https://doi.org/10.1086/323772

    Article  ADS  Google Scholar 

  122. M.R. Gilfanov, R.A. Sunyaev, E.M. Churazov, Radial brightness profiles of resonance X-ray lines in galaxy clusters. Sov. Astron. Lett. 13, 3–7 (1987)

    ADS  Google Scholar 

  123. K. Glazebrook, R.G. Abraham, P.J. McCarthy, S. Savaglio, H.-W. Chen, D. Crampton, R. Murowinski, I. Jørgensen, K. Roth, I. Hook, R.O. Marzke, R.G. Carlberg, A high abundance of massive galaxies 3-6 billion years after the Big Bang. Nature 430, 181–184 (2004). https://doi.org/10.1038/nature02667

    Article  ADS  Google Scholar 

  124. P. Goudfrooij, L. Hansen, H.E. Jorgensen, H.U. Norgaard-Nielsen, Interstellar matter in Shapley-Ames elliptical galaxies. II. The distribution of dust and ionized gas. Astron. Astrophys. Suppl. Ser. 105, 341–383 (1994)

    ADS  Google Scholar 

  125. A.D. Goulding, J.E. Greene, C.-P. Ma, M. Veale, A. Bogdan, K. Nyland, J.P. Blakeslee, N.J. McConnell, J. Thomas, The MASSIVE survey. IV. The X-ray halos of the most massive early-type galaxies in the nearby Universe. Astrophys. J. 826, 167 (2016). https://doi.org/10.3847/0004-637X/826/2/167

    Article  ADS  Google Scholar 

  126. G.L. Granato, G. De Zotti, L. Silva, A. Bressan, L. Danese, A physical model for the coevolution of QSOs and their spheroidal hosts. Astrophys. J. 600, 580–594 (2004). https://doi.org/10.1086/379875

    Article  ADS  Google Scholar 

  127. J.P. Greco, J.C. Hill, D.N. Spergel, N. Battaglia, The stacked thermal Sunyaev-Zel’dovich signal of locally brightest galaxies in Planck full mission data: evidence for galaxy feedback? Astrophys. J. 808, 151 (2015). https://doi.org/10.1088/0004-637X/808/2/151

    Article  ADS  Google Scholar 

  128. S.F. Gull, K.J.E. Northover, Bubble model of extragalactic radio sources. Nature 244, 80–83 (1973). https://doi.org/10.1038/244080a0

    Article  ADS  Google Scholar 

  129. F. Guo, S.P. Oh, Feedback heating by cosmic rays in clusters of galaxies. Mon. Not. R. Astron. Soc. 384, 251–266 (2008). https://doi.org/10.1111/j.1365-2966.2007.12692.x

    Article  ADS  Google Scholar 

  130. A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, M. Galeazzi, A huge reservoir of ionized gas around the Milky Way: accounting for the missing mass? Astrophys. J. Lett. 756, 8 (2012). https://doi.org/10.1088/2041-8205/756/1/L8

    Article  ADS  Google Scholar 

  131. S.L. Hamer, A.C. Edge, A.M. Swinbank, R.J. Wilman, F. Combes, P. Salomé, A.C. Fabian, C.S. Crawford, H.R. Russell, J. Hlavacek-Larrondo, B.R. McNamara, M.N. Bremer, Optical emission line nebulae in galaxy cluster cores 1: the morphological, kinematic and spectral properties of the sample. Mon. Not. R. Astron. Soc. 460, 1758–1789 (2016). https://doi.org/10.1093/mnras/stw1054

    Article  ADS  Google Scholar 

  132. C.M. Harrison, Impact of supermassive black hole growth on star formation. Nat. Astron. 1, 0165 (2017). https://doi.org/10.1038/s41550-017-0165

    Article  ADS  Google Scholar 

  133. T.M. Heckman, S.A. Baum, W.J.M. van Breugel, P. McCarthy, Dynamical, physical, and chemical properties of emission-line nebulae in cooling flows. Astrophys. J. 338, 48–77 (1989). https://doi.org/10.1086/167181

    Article  ADS  Google Scholar 

  134. S. Heinz, C.S. Reynolds, M.C. Begelman, X-ray signatures of evolving radio galaxies. Astrophys. J. 501, 126–136 (1998). https://doi.org/10.1086/305807

    Article  ADS  Google Scholar 

  135. S.F. Helsdon, T.J. Ponman, The intragroup medium in loose groups of galaxies. Mon. Not. R. Astron. Soc. 315, 356–370 (2000). https://doi.org/10.1046/j.1365-8711.2000.03396.x

    Article  ADS  Google Scholar 

  136. D.B. Henley, R.L. Shelton, An XMM-Newton survey of the soft X-ray background. I. The O vii and O viii lines between \(l = 120\) and \(l = 240\). Astrophys. J. Suppl. Ser. 187, 388–408 (2010). https://doi.org/10.1088/0067-0049/187/2/388

    Article  Google Scholar 

  137. D.B. Henley, R.L. Shelton, An XMM-Newton survey of the soft X-ray background. II. An all-sky catalog of diffuse O vii and O viii emission intensities. Astrophys. J. Suppl. Ser. 202, 14 (2012). https://doi.org/10.1088/0067-0049/202/2/14

    Article  ADS  Google Scholar 

  138. S. Hillel, N. Soker, Heating the intracluster medium by jet-inflated bubbles. Mon. Not. R. Astron. Soc. 455, 2139–2148 (2016). https://doi.org/10.1093/mnras/stv2483

    Article  ADS  Google Scholar 

  139. J. Hlavacek-Larrondo, A.C. Fabian, A.C. Edge, H. Ebeling, J.S. Sanders, M.T. Hogan, G.B. Taylor, Extreme AGN feedback in the MAssive cluster survey: a detailed study of X-ray cavities at \(z>0.3\). Mon. Not. R. Astron. Soc. 421, 1360–1384 (2012). https://doi.org/10.1111/j.1365-2966.2011.20405.x

    Article  Google Scholar 

  140. J. Hlavacek-Larrondo, M. McDonald, B.A. Benson, W.R. Forman, S.W. Allen, L.E. Bleem, M.L.N. Ashby, S. Bocquet, M. Brodwin, J.P. Dietrich, C. Jones, J. Liu, C.L. Reichardt, B.R. Saliwanchik, A. Saro, T. Schrabback, J. Song, B. Stalder, A. Vikhlinin, A. Zenteno, X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out to \(z=1.2\). Astrophys. J. 805, 35 (2015). https://doi.org/10.1088/0004-637X/805/1/35

    Article  Google Scholar 

  141. M.T. Hogan, B.R. McNamara, F. Pulido, P.E.J. Nulsen, H.R. Russell, A.N. Vantyghem, A.C. Edge, R.A. Main, Mass distribution in galaxy cluster cores. Astrophys. J. 837, 51 (2017a). https://doi.org/10.3847/1538-4357/aa5f56

    Article  ADS  Google Scholar 

  142. M.T. Hogan, B.R. McNamara, F.A. Pulido, P.E.J. Nulsen, A.N. Vantyghem, H.R. Russell, A.C. Edge, I. Babyk, R.A. Main, M. McDonald, The onset of thermally unstable cooling from the hot atmospheres of giant galaxies in clusters: constraints on feedback models. Astrophys. J. 851, 66 (2017b). https://doi.org/10.3847/1538-4357/aa9af3

    Article  ADS  Google Scholar 

  143. P.F. Hopkins, K. Bundy, N. Murray, E. Quataert, T.R. Lauer, C.-P. Ma, Compact high-redshift galaxies are the cores of the most massive present-day spheroids. Mon. Not. R. Astron. Soc. 398, 898–910 (2009). https://doi.org/10.1111/j.1365-2966.2009.15062.x

    Article  ADS  Google Scholar 

  144. Y.-H. Huang, H.-W. Chen, S.D. Johnson, B.J. Weiner, Characterizing the chemically enriched circumgalactic medium of ∼38 000 luminous red galaxies in SDSS DR12. Mon. Not. R. Astron. Soc. 455, 1713–1727 (2016). https://doi.org/10.1093/mnras/stv2327

    Article  ADS  Google Scholar 

  145. P.J. Humphrey, D.A. Buote, C.R. Canizares, A.C. Fabian, J.M. Miller, A census of baryons and dark matter in an isolated, Milky Way sized elliptical galaxy. Astrophys. J. 729, 53 (2011). https://doi.org/10.1088/0004-637X/729/1/53

    Article  ADS  Google Scholar 

  146. P.J. Humphrey, D.A. Buote, E. O’Sullivan, T.J. Ponman, The ElIXr galaxy survey. II. Baryons and dark matter in an isolated elliptical galaxy. Astrophys. J. 755, 166 (2012a). https://doi.org/10.1088/0004-637X/755/2/166

    Article  ADS  Google Scholar 

  147. P.J. Humphrey, D.A. Buote, F. Brighenti, H.M.L.G. Flohic, F. Gastaldello, W.G. Mathews, Tracing the gas to the virial radius (R 100) in a fossil group. Astrophys. J. 748, 11 (2012b). https://doi.org/10.1088/0004-637X/748/1/11

    Article  ADS  Google Scholar 

  148. S. Ichimaru, Bimodal behavior of accretion disks— theory and application to Cygnus X-1 transitions. Astrophys. J. 214, 840–855 (1977). https://doi.org/10.1086/155314

    Article  ADS  Google Scholar 

  149. N. James, D.-W. Kim, G. Fabbiano, D. Forbes, A. Alabi, The mass of the globular cluster systems of early type galaxies as proxy for the total galaxy mass (2018). arXiv:1810.09475

  150. R.M. Johnstone, A.C. Fabian, P.E.J. Nulsen, The optical spectra of central galaxies in southern clusters evidence for star formation. Mon. Not. R. Astron. Soc. 224, 75–91 (1987)

    Article  ADS  Google Scholar 

  151. C. Jones, W. Forman, A. Vikhlinin, M. Markevitch, L. David, A. Warmflash, S. Murray, P.E.J. Nulsen, Chandra observations of NGC 4636-an elliptical galaxy in turmoil. Astrophys. J. Lett. 567, 115–118 (2002). https://doi.org/10.1086/340114

    Article  ADS  Google Scholar 

  152. N. Kaiser, Evolution of clusters of galaxies. Astrophys. J. 383, 104–111 (1991). https://doi.org/10.1086/170768

    Article  ADS  Google Scholar 

  153. G. Kauffmann, S.D.M. White, B. Guiderdoni, The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201 (1993). https://doi.org/10.1093/mnras/264.1.201

    Article  ADS  Google Scholar 

  154. D. Kereš, N. Katz, D.H. Weinberg, R. Davé, How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005). https://doi.org/10.1111/j.1365-2966.2005.09451.x

    Article  ADS  Google Scholar 

  155. A. Khalatyan, A. Cattaneo, M. Schramm, S. Gottlöber, M. Steinmetz, L. Wisotzki, Is AGN feedback necessary to form red elliptical galaxies? Mon. Not. R. Astron. Soc. 387, 13–30 (2008). https://doi.org/10.1111/j.1365-2966.2008.13093.x

    Article  ADS  Google Scholar 

  156. D.-W. Kim, G. Fabbiano, X-ray scaling relation in early-type galaxies: dark matter as a primary factor in retaining hot gas. Astrophys. J. 776, 116 (2013). https://doi.org/10.1088/0004-637X/776/2/116

    Article  ADS  Google Scholar 

  157. D.-W. Kim, G. Fabbiano, X-ray scaling relations of ‘core’ and ‘coreless’ E and S0 galaxies. Astrophys. J. 812, 127 (2015). https://doi.org/10.1088/0004-637X/812/2/127

    Article  ADS  Google Scholar 

  158. A. King, Black holes, galaxy formation, and the \(\text{m}_{\text{BH}}\mbox{-}{\sigma}\) relation. Astrophys. J. Lett. 596, 27–29 (2003). https://doi.org/10.1086/379143

    Article  Google Scholar 

  159. G.R. Knapp, M.P. Rupen, Molecular gas in elliptical galaxies: CO observations of an IRAS flux-limited sample. Astrophys. J. 460, 271 (1996). https://doi.org/10.1086/176967

    Article  ADS  Google Scholar 

  160. G.R. Knapp, E.L. Turner, P.E. Cunniffe, The statistical distribution of the neutral-hydrogen content of elliptical galaxies. Astron. J. 90, 454–468 (1985). https://doi.org/10.1086/113751

    Article  ADS  Google Scholar 

  161. G.R. Knapp, P. Guhathakurta, D.-W. Kim, M.A. Jura, Interstellar matter in early-type galaxies. I—IRAS flux densities. Astrophys. J. Suppl. Ser. 70, 329–387 (1989). https://doi.org/10.1086/191342

    Article  ADS  Google Scholar 

  162. J. Kormendy, L.C. Ho, Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013). https://doi.org/10.1146/annurev-astro-082708-101811

    Article  ADS  Google Scholar 

  163. J. Kormendy, D.B. Fisher, M.E. Cornell, R. Bender, Structure and formation of elliptical and spheroidal galaxies. Astrophys. J. Suppl. Ser. 182, 216–309 (2009). https://doi.org/10.1088/0067-0049/182/1/216

    Article  ADS  Google Scholar 

  164. C. Lacey, S. Cole, Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc. 262, 627–649 (1993). https://doi.org/10.1093/mnras/262.3.627

    Article  ADS  Google Scholar 

  165. K. Lakhchaura, N. Werner, M. Sun, R.E.A. Canning, M. Gaspari, S.W. Allen, T. Connor, M. Donahue, C. Sarazin, Thermodynamic properties, multiphase gas and AGN feedback in a large sample of giant ellipticals. Mon. Not. R. Astron. Soc. 481(4), 4472–4504 (2018). https://doi.org/10.1093/mnras/sty2565

    Article  ADS  Google Scholar 

  166. J.-T. Li, J.N. Bregman, Q.D. Wang, R.A. Crain, M.E. Anderson, S. Zhang, The circum-galactic medium of massive spirals. II. Probing the nature of hot gaseous halo around the most massive isolated spiral galaxies. Astrophys. J. Suppl. Ser. 233, 20 (2017). https://doi.org/10.3847/1538-4365/aa96fc

    Article  ADS  Google Scholar 

  167. J.-T. Li, J.N. Bregman, Q.D. Wang, R.A. Crain, M.E. Anderson, Baryon budget of the hot circumgalactic medium of massive spiral galaxies. Astrophys. J. Lett. 855, 24 (2018). https://doi.org/10.3847/2041-8213/aab2af

    Article  ADS  Google Scholar 

  168. M. Loewenstein, E.G. Zweibel, M.C. Begelman, Cosmic-ray heating of cooling flows—a critical analysis. Astrophys. J. 377, 392–402 (1991). https://doi.org/10.1086/170369

    Article  ADS  Google Scholar 

  169. C.J. Lonsdale, D. Farrah, H.E. Smith, in Ultraluminous Infrared Galaxies, ed. by J.W. Mason (2006), p. 285. https://doi.org/10.1007/3-540-30313-8_9

    Google Scholar 

  170. N. Lyskova, E. Churazov, A. Moiseev, O. Sil’chenko, I. Zhuravleva, Stellar kinematics of X-ray bright massive elliptical galaxies. Mon. Not. R. Astron. Soc. 441, 2013–2033 (2014). https://doi.org/10.1093/mnras/stu717

    Article  ADS  Google Scholar 

  171. M. Lyutikov, Magnetic draping of merging cores and radio bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 373, 73–78 (2006). https://doi.org/10.1111/j.1365-2966.2006.10835.x

    Article  ADS  Google Scholar 

  172. C.-P. Ma, J.E. Greene, N. McConnell, R. Janish, J.P. Blakeslee, J. Thomas, J.D. Murphy, The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 mpc. Astrophys. J. 795, 158 (2014). https://doi.org/10.1088/0004-637X/795/2/158

    Article  ADS  Google Scholar 

  173. F. Macchetto, M. Pastoriza, N. Caon, W.B. Sparks, M. Giavalisco, R. Bender, M. Capaccioli, A survey of the ISM in early-type galaxies. I. The ionized gas. Astron. Astrophys. Suppl. Ser. 120, 463–488 (1996)

    Article  ADS  Google Scholar 

  174. M. Machacek, P.E.J. Nulsen, C. Jones, W.R. Forman, Chandra observations of nuclear outflows in the elliptical galaxy NGC 4552 in the Virgo cluster. Astrophys. J. 648, 947–955 (2006). https://doi.org/10.1086/505963

    Article  ADS  Google Scholar 

  175. J. Magorrian, S. Tremaine, D. Richstone, R. Bender, G. Bower, A. Dressler, S.M. Faber, K. Gebhardt, R. Green, C. Grillmair, J. Kormendy, T. Lauer, The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998). https://doi.org/10.1086/300353

    Article  ADS  Google Scholar 

  176. A. Malagoli, R. Rosner, G. Bodo, On the thermal instability of galactic and cluster halos. Astrophys. J. 319, 632–636 (1987). https://doi.org/10.1086/165483

    Article  ADS  Google Scholar 

  177. C.L. Martin, A.E. Shapley, A.L. Coil, K.A. Kornei, N. Murray, A. Pancoast, Scattered emission from \(z \sim 1\) galactic outflows. Astrophys. J. 770, 41 (2013). https://doi.org/10.1088/0004-637X/770/1/41

    Article  Google Scholar 

  178. W.G. Mathews, J.N. Bregman, Radiative accretion flow onto giant galaxies in clusters. Astrophys. J. 224, 308–319 (1978). https://doi.org/10.1086/156379

    Article  ADS  Google Scholar 

  179. W.G. Mathews, F. Brighenti, Hot gas in and around elliptical galaxies. Annu. Rev. Astron. Astrophys. 41, 191–239 (2003). https://doi.org/10.1146/annurev.astro.41.090401.094542

    Article  ADS  Google Scholar 

  180. W.G. Mathews, A. Faltenbacher, F. Brighenti, Heating cooling flows with weak shock waves. Astrophys. J. 638, 659–667 (2006). https://doi.org/10.1086/499119

    Article  ADS  Google Scholar 

  181. M. McCourt, I.J. Parrish, P. Sharma, E. Quataert, Can conduction induce convection? On the non-linear saturation of buoyancy instabilities in dilute plasmas. Mon. Not. R. Astron. Soc. 413, 1295–1310 (2011). https://doi.org/10.1111/j.1365-2966.2011.18216.x

    Article  ADS  Google Scholar 

  182. M. McCourt, P. Sharma, E. Quataert, I.J. Parrish, Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes. Mon. Not. R. Astron. Soc. 419, 3319–3337 (2012). https://doi.org/10.1111/j.1365-2966.2011.19972.x

    Article  ADS  Google Scholar 

  183. M. McDonald, L.H. Wei, S. Veilleux, Cold molecular gas along the cooling X-ray filament in A1795. Astrophys. J. Lett. 755, 24 (2012). https://doi.org/10.1088/2041-8205/755/2/L24

    Article  ADS  Google Scholar 

  184. B.R. McNamara, P.E.J. Nulsen, Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14(5), 055023 (2012). https://doi.org/10.1088/1367-2630/14/5/055023

    Article  ADS  Google Scholar 

  185. B.R. McNamara, R.W. O’Connell, Star formation in cooling flows in clusters of galaxies. Astron. J. 98, 2018–2043 (1989). https://doi.org/10.1086/115275

    Article  ADS  Google Scholar 

  186. B.R. McNamara, M. Wise, P.E.J. Nulsen, L.P. David, C.L. Sarazin, M. Bautz, M. Markevitch, A. Vikhlinin, W.R. Forman, C. Jones, D.E. Harris, Chandra X-ray observations of the hydra a cluster: an interaction between the radio source and the X-ray-emitting gas. Astrophys. J. Lett. 534, 135–138 (2000). https://doi.org/10.1086/312662

    Article  ADS  Google Scholar 

  187. B.R. McNamara, M. Rohanizadegan, P.E.J. Nulsen, Are radio active galactic nuclei powered by accretion or black hole spin? Astrophys. J. 727, 39 (2011). https://doi.org/10.1088/0004-637X/727/1/39

    Article  ADS  Google Scholar 

  188. B.R. McNamara, H.R. Russell, P.E.J. Nulsen, M.T. Hogan, A.C. Fabian, F. Pulido, A.C. Edge, A mechanism for stimulating AGN feedback by lifting gas in massive galaxies. Astrophys. J. 830, 79 (2016). https://doi.org/10.3847/0004-637X/830/2/79

    Article  ADS  Google Scholar 

  189. A. Merloni, S. Heinz, T. di Matteo, A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003). https://doi.org/10.1046/j.1365-2966.2003.07017.x

    Article  ADS  Google Scholar 

  190. F. Mernier, V. Biffi, H. Yamaguchi, P. Medvedev, A. Simionescu, S. Ettori, N. Werner, J.S. Kaastra, J. de Plaa, L. Gu, Enrichment of the hot intracluster medium: observations. Space Sci. Rev. 214(8), 129 (2018a). https://doi.org/10.1007/s11214-018-0565-7

    Article  ADS  Google Scholar 

  191. F. Mernier, J. de Plaa, N. Werner, J.S. Kaastra, A.J.J. Raassen, L. Gu, J. Mao, I. Urdampilleta, N. Truong, A. Simionescu, Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies. Mon. Not. R. Astron. Soc. 478, 116–121 (2018b). https://doi.org/10.1093/mnrasl/sly080

    Article  ADS  Google Scholar 

  192. M.J. Miller, J.N. Bregman, The structure of the Milky Way’s hot gas halo. Astrophys. J. 770, 118 (2013). https://doi.org/10.1088/0004-637X/770/2/118

    Article  ADS  Google Scholar 

  193. M.J. Miller, J.N. Bregman, Constraining the Milky Way’s hot gas halo with O VII and O VIII emission lines. Astrophys. J. 800, 14 (2015). https://doi.org/10.1088/0004-637X/800/1/14

    Article  ADS  Google Scholar 

  194. B.P. Moster, T. Naab, S.D.M. White, Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121–3138 (2013). https://doi.org/10.1093/mnras/sts261

    Article  ADS  Google Scholar 

  195. T. Naab, J.P. Ostriker, Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 55, 59–109 (2017). https://doi.org/10.1146/annurev-astro-081913-040019

    Article  ADS  Google Scholar 

  196. R. Narayan, I. Yi, Advection-dominated accretion: a self-similar solution. Astrophys. J. Lett. 428, 13–16 (1994). https://doi.org/10.1086/187381

    Article  ADS  Google Scholar 

  197. J.F. Navarro, C.S. Frenk, S.D.M. White, A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997). https://doi.org/10.1086/304888

    Article  ADS  Google Scholar 

  198. A. Negri, L. Ciotti, S. Pellegrini, The effects of stellar dynamics on the X-ray emission of flat early-type galaxies. Mon. Not. R. Astron. Soc. 439, 823–844 (2014a). https://doi.org/10.1093/mnras/stt2505

    Article  ADS  Google Scholar 

  199. A. Negri, S. Posacki, S. Pellegrini, L. Ciotti, The effects of galaxy shape and rotation on the X-ray haloes of early-type galaxies - II. Numerical simulations. Mon. Not. R. Astron. Soc. 445, 1351–1369 (2014b). https://doi.org/10.1093/mnras/stu1834

    Article  ADS  Google Scholar 

  200. R.S. Nemmen, A. Tchekhovskoy, On the efficiency of jet production in radio galaxies. Mon. Not. R. Astron. Soc. 449, 316–327 (2015). https://doi.org/10.1093/mnras/stv260

    Article  ADS  Google Scholar 

  201. P.E.J. Nulsen, Thermal instability in cooling flows. Mon. Not. R. Astron. Soc. 221, 377–392 (1986)

    Article  ADS  Google Scholar 

  202. P. Nulsen, C. Jones, W. Forman, E. Churazov, B. McNamara, L. David, S. Murray, Radio mode outbursts in giant elliptical galaxies, in American Institute of Physics Conference Series, ed. by S. Heinz, E. Wilcots. American Institute of Physics Conference Series, vol. 1201 (2009), pp. 198–201. https://doi.org/10.1063/1.3293033

    Google Scholar 

  203. R.W. O’Connell, Far-ultraviolet radiation from elliptical galaxies. Annu. Rev. Astron. Astrophys. 37, 603–648 (1999). https://doi.org/10.1146/annurev.astro.37.1.603

    Article  ADS  Google Scholar 

  204. A. Ogorzalek, I. Zhuravleva, S.W. Allen, C. Pinto, N. Werner, A.B. Mantz, R.E.A. Canning, A.C. Fabian, J.S. Kaastra, J. de Plaa, Improved measurements of turbulence in the hot gaseous atmospheres of nearby giant elliptical galaxies. Mon. Not. R. Astron. Soc. 472, 1659–1676 (2017). https://doi.org/10.1093/mnras/stx2030

    Article  ADS  Google Scholar 

  205. H. Omma, J. Binney, G. Bryan, A. Slyz, Heating cooling flows with jets. Mon. Not. R. Astron. Soc. 348, 1105–1119 (2004). https://doi.org/10.1111/j.1365-2966.2004.07382.x

    Article  ADS  Google Scholar 

  206. L. Oser, T. Naab, J.P. Ostriker, P.H. Johansson, The cosmological size and velocity dispersion evolution of massive early-type galaxies. Astrophys. J. 744, 63 (2012). https://doi.org/10.1088/0004-637X/744/1/63

    Article  ADS  Google Scholar 

  207. E. O’Sullivan, T.J. Ponman, The isolated elliptical NGC 4555 observed with Chandra. Mon. Not. R. Astron. Soc. 354, 935–944 (2004). https://doi.org/10.1111/j.1365-2966.2004.08257.x

    Article  ADS  Google Scholar 

  208. E. O’Sullivan, A.J.R. Sanderson, T.J. Ponman, The dark haloes of early-type galaxies in low-density environments: XMM-Newton and Chandra observations of NGC 57, 7796 and IC 1531. Mon. Not. R. Astron. Soc. 380, 1409–1421 (2007). https://doi.org/10.1111/j.1365-2966.2007.12229.x

    Article  ADS  Google Scholar 

  209. F. Paerels, A. Rasmussen, S. Kahn, J.W. Herder, C. Vries, X-ray absorption and emission spectroscopy of the intergalactic medium at small redshift, in XEUS—Studying the Evolution of the Hot Universe, ed. by G. Hasinger, T. Boller, A.N. Parmer (2003), p. 57

    Google Scholar 

  210. E.K. Panagoulia, A.C. Fabian, J.S. Sanders, A volume-limited sample of X-ray galaxy groups and clusters—I. Radial entropy and cooling time profiles. Mon. Not. R. Astron. Soc. 438, 2341–2354 (2014). https://doi.org/10.1093/mnras/stt2349

    Article  ADS  Google Scholar 

  211. P. Panuzzo, R. Rampazzo, A. Bressan, O. Vega, F. Annibali, L.M. Buson, M.S. Clemens, W.W. Zeilinger, Nearby early-type galaxies with ionized gas. VI. The spitzer-IRS view. Basic data set analysis and empirical spectral classification. Astron. Astrophys. 528, 10 (2011). https://doi.org/10.1051/0004-6361/201015908

    Article  ADS  Google Scholar 

  212. A. Pedlar, H.S. Ghataure, R.D. Davies, B.A. Harrison, R. Perley, P.C. Crane, S.W. Unger, The radio structure of NGC1275. Mon. Not. R. Astron. Soc. 246, 477 (1990)

    ADS  Google Scholar 

  213. S. Pellegrini, Hot gas flows on global and nuclear galactic scales, in Astrophys. Space Sci. Library, ed. by D.-W. Kim, S. Pellegrini. Astrophys. Space Sci. Library, vol. 378 (2012), p. 21. https://doi.org/10.1007/978-1-4614-0580-1_2

    Google Scholar 

  214. S. Pellegrini, L. Ciotti, A. Negri, J.P. Ostriker, Active galactic nuclei feedback and the origin and fate of the hot gas in early-type galaxies. Astrophys. J. 856, 115 (2018). https://doi.org/10.3847/1538-4357/aaae07

    Article  ADS  Google Scholar 

  215. M. Pettini, A.E. Shapley, C.C. Steidel, J.-G. Cuby, M. Dickinson, A.F.M. Moorwood, K.L. Adelberger, M. Giavalisco, The rest-frame optical spectra of Lyman break galaxies: star formation, extinction, abundances, and kinematics. Astrophys. J. 554, 981–1000 (2001). https://doi.org/10.1086/321403

    Article  ADS  Google Scholar 

  216. C. Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi, and H.E.S.S. Astrophys. J. 779, 10 (2013). https://doi.org/10.1088/0004-637X/779/1/10

    Article  ADS  Google Scholar 

  217. C. Pfrommer, T.A. Enßlin, C.L. Sarazin, Unveiling the composition of radio plasma bubbles in galaxy clusters with the Sunyaev-Zel’dovich effect. Astron. Astrophys. 430, 799–810 (2005). https://doi.org/10.1051/0004-6361:20041576

    Article  ADS  Google Scholar 

  218. C. Pinto, J.S. Sanders, N. Werner, J. de Plaa, A.C. Fabian, Y.-Y. Zhang, J.S. Kaastra, A. Finoguenov, J. Ahoranta, Chemical enrichment RGS cluster sample (CHEERS): constraints on turbulence. Astron. Astrophys. 575, 38 (2015). https://doi.org/10.1051/0004-6361/201425278

    Article  Google Scholar 

  219. F. Pizzolato, N. Soker, On the nature of feedback heating in cooling flow clusters. Astrophys. J. 632, 821–830 (2005). https://doi.org/10.1086/444344

    Article  ADS  Google Scholar 

  220. D. Prasad, P. Sharma, A. Babul, Cool core cycles: cold gas and AGN jet feedback in cluster cores. Astrophys. J. 811, 108 (2015). https://doi.org/10.1088/0004-637X/811/2/108

    Article  ADS  Google Scholar 

  221. D. Prasad, P. Sharma, A. Babul, AGN jet-driven stochastic cold accretion in cluster cores. Mon. Not. R. Astron. Soc. 471, 1531–1542 (2017). https://doi.org/10.1093/mnras/stx1698

    Article  ADS  Google Scholar 

  222. M.A. Prieto, J.A. Fernández-Ontiveros, S. Markoff, D. Espada, O. González-Martín, The central parsecs of M87: jet emission and an elusive accretion disc. Mon. Not. R. Astron. Soc. 457, 3801–3816 (2016). https://doi.org/10.1093/mnras/stw166

    Article  ADS  Google Scholar 

  223. D.A. Prokhorov, E.M. Churazov, Counting gamma rays in the directions of galaxy clusters. Astron. Astrophys. 567, 93 (2014). https://doi.org/10.1051/0004-6361/201322454

    Article  ADS  Google Scholar 

  224. D.A. Prokhorov, E.M. Churazov, Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles. Mon. Not. R. Astron. Soc. 470, 3388–3394 (2017). https://doi.org/10.1093/mnras/stx1404

    Article  ADS  Google Scholar 

  225. D.A. Prokhorov, V. Antonuccio-Delogu, J. Silk, Comptonization of the cosmic microwave background by high energy particles residing in AGN cocoons. Astron. Astrophys. 520, 106 (2010). https://doi.org/10.1051/0004-6361/200913920

    Article  ADS  Google Scholar 

  226. F.A. Pulido, B.R. McNamara, A.C. Edge, M.T. Hogan, A.N. Vantyghem, H.R. Russell, P.E.J. Nulsen, I. Babyk, P. Salomé, The origin of molecular clouds in central galaxies. Astrophys. J. 853, 177 (2018). https://doi.org/10.3847/1538-4357/aaa54b

    Article  ADS  Google Scholar 

  227. V. Quilis, I. Trujillo, Expected number of massive galaxy relics in the present day Universe. Astrophys. J. Lett. 773, 8 (2013). https://doi.org/10.1088/2041-8205/773/1/L8

    Article  ADS  Google Scholar 

  228. D.A. Rafferty, B.R. McNamara, P.E.J. Nulsen, M.W. Wise, The feedback-regulated growth of black holes and bulges through gas accretion and starbursts in cluster central dominant galaxies. Astrophys. J. 652, 216–231 (2006). https://doi.org/10.1086/507672

    Article  ADS  Google Scholar 

  229. D.A. Rafferty, B.R. McNamara, P.E.J. Nulsen, The regulation of cooling and star formation in luminous galaxies by active galactic nucleus feedback and the cooling-time/entropy threshold for the onset of star formation. Astrophys. J. 687, 899–918 (2008). https://doi.org/10.1086/591240

    Article  ADS  Google Scholar 

  230. S.W. Randall, W.R. Forman, S. Giacintucci, P.E.J. Nulsen, M. Sun, C. Jones, E. Churazov, L.P. David, R. Kraft, M. Donahue, E.L. Blanton, A. Simionescu, N. Werner, Shocks and cavities from multiple outbursts in the galaxy group NGC 5813: a window to active galactic nucleus feedback. Astrophys. J. 726, 86 (2011). https://doi.org/10.1088/0004-637X/726/2/86

    Article  ADS  Google Scholar 

  231. S.W. Randall, P.E.J. Nulsen, C. Jones, W.R. Forman, E. Bulbul, T.E. Clarke, R. Kraft, E.L. Blanton, L. David, N. Werner, M. Sun, M. Donahue, S. Giacintucci, A. Simionescu, A very deep Chandra observation of the galaxy group NGC 5813: AGN shocks, feedback, and outburst history. Astrophys. J. 805, 112 (2015). https://doi.org/10.1088/0004-637X/805/2/112

    Article  ADS  Google Scholar 

  232. S.M. Rao, D.A. Turnshek, D.B. Nestor, Damped Ly\(\upalpha\) systems at \(z<1.65\): the expanded Sloan Digital Sky Survey Hubble Space Telescope sample. Astrophys. J. 636, 610–630 (2006). https://doi.org/10.1086/498132

    Article  Google Scholar 

  233. J. Rasmussen, T.J. Ponman, Temperature and abundance profiles of hot gas in galaxy groups—II. Implications for feedback and ICM enrichment. Mon. Not. R. Astron. Soc. 399, 239–263 (2009). https://doi.org/10.1111/j.1365-2966.2009.15244.x

    Article  ADS  Google Scholar 

  234. M.J. Rees, J.P. Ostriker, Cooling, dynamics and fragmentation of massive gas clouds—clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 179, 541–559 (1977). https://doi.org/10.1093/mnras/179.4.541

    Article  ADS  Google Scholar 

  235. M.J. Rees, M.C. Begelman, R.D. Blandford, E.S. Phinney, Ion-supported tori and the origin of radio jets. Nature 295, 17–21 (1982). https://doi.org/10.1038/295017a0

    Article  ADS  Google Scholar 

  236. C.S. Reynolds, A.C. Fabian, A. Celotti, M.J. Rees, The matter content of the jet in M87: evidence for an electron-positron jet. Mon. Not. R. Astron. Soc. 283, 873–880 (1996). https://doi.org/10.1093/mnras/283.3.873

    Article  ADS  Google Scholar 

  237. C.S. Reynolds, B. McKernan, A.C. Fabian, J.M. Stone, J.C. Vernaleo, Buoyant radio lobes in a viscous intracluster medium. Mon. Not. R. Astron. Soc. 357, 242–250 (2005). https://doi.org/10.1111/j.1365-2966.2005.08643.x

    Article  ADS  Google Scholar 

  238. C.S. Reynolds, S.A. Balbus, A.A. Schekochihin, Inefficient driving of bulk turbulence by active galactic nuclei in a hydrodynamic model of the intracluster medium. Astrophys. J. 815, 41 (2015). https://doi.org/10.1088/0004-637X/815/1/41

    Article  ADS  Google Scholar 

  239. H.R. Russell, A.C. Fabian, J.S. Sanders, R.M. Johnstone, K.M. Blundell, W.N. Brandt, C.S. Crawford, The X-ray luminous cluster underlying the bright radio-quiet quasar H1821+643. Mon. Not. R. Astron. Soc. 402, 1561–1579 (2010). https://doi.org/10.1111/j.1365-2966.2009.16027.x

    Article  ADS  Google Scholar 

  240. H.R. Russell, B.R. McNamara, A.C. Edge, M.T. Hogan, R.A. Main, A.N. Vantyghem, Radiative efficiency, variability and Bondi accretion on to massive black holes: the transition from radio AGN to quasars in brightest cluster galaxies. Mon. Not. R. Astron. Soc. 432, 530–553 (2013). https://doi.org/10.1093/mnras/stt490

    Article  ADS  Google Scholar 

  241. H.R. Russell, A.C. Fabian, B.R. McNamara, A.E. Broderick, Inside the Bondi radius of M87. Mon. Not. R. Astron. Soc. 451, 588–600 (2015). https://doi.org/10.1093/mnras/stv954

    Article  ADS  Google Scholar 

  242. H.R. Russell, M. McDonald, B.R. McNamara, A.C. Fabian, P.E.J. Nulsen, M.B. Bayliss, B.A. Benson, M. Brodwin, J.E. Carlstrom, A.C. Edge, J. Hlavacek-Larrondo, D.P. Marrone, C.L. Reichardt, J.D. Vieira, Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster. Astrophys. J. 836, 130 (2017). https://doi.org/10.3847/1538-4357/836/1/130

    Article  ADS  Google Scholar 

  243. H.R. Russell, A.C. Fabian, B.R. McNamara, J.M. Miller, P.E.J. Nulsen, J.M. Piotrowska, C.S. Reynolds, The imprints of AGN feedback within a supermassive black hole’s sphere of influence. Mon. Not. R. Astron. Soc. (2018). https://doi.org/10.1093/mnras/sty835

    Article  Google Scholar 

  244. M. Ruszkowski, M. Brüggen, M.C. Begelman, Cluster heating by viscous dissipation of sound waves. Astrophys. J. 611, 158–163 (2004). https://doi.org/10.1086/422158

    Article  ADS  Google Scholar 

  245. M. Ruszkowski, T.A. Enßlin, M. Brüggen, S. Heinz, C. Pfrommer, Impact of tangled magnetic fields on fossil radio bubbles. Mon. Not. R. Astron. Soc. 378, 662–672 (2007). https://doi.org/10.1111/j.1365-2966.2007.11801.x

    Article  ADS  Google Scholar 

  246. M. Ruszkowski, T.A. Enßlin, M. Brüggen, M.C. Begelman, E. Churazov, Cosmic ray confinement in fossil cluster bubbles. Mon. Not. R. Astron. Soc. 383, 1359–1365 (2008). https://doi.org/10.1111/j.1365-2966.2007.12659.x

    Article  ADS  Google Scholar 

  247. M. Ruszkowski, H.-Y.K. Yang, C.S. Reynolds, Cosmic-ray feedback heating of the intracluster medium. Astrophys. J. 844, 13 (2017). https://doi.org/10.3847/1538-4357/aa79f8

    Article  ADS  Google Scholar 

  248. E.M. Sadler, O.E. Gerhard, How common are ‘dust-lanes’ in early-type galaxies? Mon. Not. R. Astron. Soc. 214, 177–187 (1985). https://doi.org/10.1093/mnras/214.2.177

    Article  ADS  Google Scholar 

  249. P. Salomé, F. Combes, Y. Revaz, D. Downes, A.C. Edge, A.C. Fabian, A very extended molecular web around NGC 1275. Astron. Astrophys. 531, 85 (2011). https://doi.org/10.1051/0004-6361/200811333

    Article  ADS  Google Scholar 

  250. J.S. Sanders, A.C. Fabian, A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 381, 1381–1399 (2007). https://doi.org/10.1111/j.1365-2966.2007.12347.x

    Article  ADS  Google Scholar 

  251. J.S. Sanders, A.C. Fabian, Velocity width measurements of the coolest X-ray emitting material in the cores of clusters, groups and elliptical galaxies. Mon. Not. R. Astron. Soc. 429, 2727–2738 (2013). https://doi.org/10.1093/mnras/sts543

    Article  ADS  Google Scholar 

  252. J.S. Sanders, A.C. Fabian, K.A. Frank, J.R. Peterson, H.R. Russell, Deep high-resolution X-ray spectra from cool-core clusters. Mon. Not. R. Astron. Soc. 402, 127–144 (2010). https://doi.org/10.1111/j.1365-2966.2009.15902.x

    Article  ADS  Google Scholar 

  253. J.S. Sanders, A.C. Fabian, R.K. Smith, Constraints on turbulent velocity broadening for a sample of clusters, groups and elliptical galaxies using XMM-Newton. Mon. Not. R. Astron. Soc. 410, 1797–1812 (2011). https://doi.org/10.1111/j.1365-2966.2010.17561.x

    Article  ADS  Google Scholar 

  254. C.L. Sarazin, J.O. Burns, K. Roettiger, B.R. McNamara, Comparison of the radio, optical, and X-ray structures of the cD galaxy in Abell 2597. Astrophys. J. 447, 559 (1995). https://doi.org/10.1086/175899

    Article  ADS  Google Scholar 

  255. M. Sarzi, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Bureau, M. Cappellari, A. Crocker, R.L. Davies, T.A. Davis, P.T. de Zeeuw, P.-A. Duc, E. Emsellem, S. Khochfar, D. Krajnović, H. Kuntschner, P.-Y. Lablanche, R.M. McDermid, R. Morganti, T. Naab, T. Oosterloo, N. Scott, P. Serra, L.M. Young, A.-M. Weijmans, The ATLAS\(^{3D}\) project —XIX. The hot gas content of early-type galaxies: fast versus slow rotators. Mon. Not. R. Astron. Soc. 432, 1845–1861 (2013). https://doi.org/10.1093/mnras/stt062

    Article  Google Scholar 

  256. S.Y. Sazonov, J.P. Ostriker, R.A. Sunyaev, Quasars: the characteristic spectrum and the induced radiative heating. Mon. Not. R. Astron. Soc. 347, 144–156 (2004). https://doi.org/10.1111/j.1365-2966.2004.07184.x

    Article  ADS  Google Scholar 

  257. S.Y. Sazonov, J.P. Ostriker, L. Ciotti, R.A. Sunyaev, Radiative feedback from quasars and the growth of massive black holes in stellar spheroids. Mon. Not. R. Astron. Soc. 358, 168–180 (2005). https://doi.org/10.1111/j.1365-2966.2005.08763.x

    Article  ADS  Google Scholar 

  258. E. Scannapieco, S.P. Oh, Quasar feedback: the missing link in structure formation. Astrophys. J. 608, 62–79 (2004). https://doi.org/10.1086/386542

    Article  ADS  Google Scholar 

  259. E. Scannapieco, J. Silk, R. Bouwens, AGN feedback causes downsizing. Astrophys. J. Lett. 635, 13–16 (2005). https://doi.org/10.1086/499271

    Article  ADS  Google Scholar 

  260. P. Sharma, M. McCourt, E. Quataert, I.J. Parrish, Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies. Mon. Not. R. Astron. Soc. 420, 3174–3194 (2012). https://doi.org/10.1111/j.1365-2966.2011.20246.x

    Article  ADS  Google Scholar 

  261. A. Siemiginowska, C.C. Cheung, S. LaMassa, D.J. Burke, T.L. Aldcroft, J. Bechtold, M. Elvis, D.M. Worrall, X-ray cluster associated with the \(z = 1.063\) CSS quasar 3C 186: the jet is not frustrated. Astrophys. J. 632, 110–121 (2005). https://doi.org/10.1086/432871

    Article  Google Scholar 

  262. A. Siemiginowska, D.J. Burke, T.L. Aldcroft, D.M. Worrall, S. Allen, J. Bechtold, T. Clarke, C.C. Cheung, High-redshift X-ray cooling-core cluster associated with the luminous radio-loud quasar 3C 186. Astrophys. J. 722, 102–111 (2010). https://doi.org/10.1088/0004-637X/722/1/102

    Article  ADS  Google Scholar 

  263. J. Silk, On the fragmentation of cosmic gas clouds. I—The formation of galaxies and the first generation of stars. Astrophys. J. 211, 638–648 (1977). https://doi.org/10.1086/154972

    Article  ADS  Google Scholar 

  264. J. Silk, M.J. Rees, Quasars and galaxy formation. Astron. Astrophys. 331, 1–4 (1998)

    ADS  Google Scholar 

  265. A. Simionescu, G. Tremblay, N. Werner, R.E.A. Canning, S.W. Allen, J.B.R. Oonk, ALMA observation of the disruption of molecular gas in M87. Mon. Not. R. Astron. Soc. 475, 3004–3009 (2018). https://doi.org/10.1093/mnras/sty047

    Article  ADS  Google Scholar 

  266. S.L. Snowden, R. Egger, M.J. Freyberg, D. McCammon, P.P. Plucinsky, W.T. Sanders, J.H.M.M. Schmitt, J. Trümper, W. Voges, ROSAT survey diffuse X-ray background maps. II. Astrophys. J. 485, 125–135 (1997). https://doi.org/10.1086/304399

    Article  ADS  Google Scholar 

  267. N. Soker, The jet feedback mechanism (JFM) in stars, galaxies and clusters. New Astron. Rev. 75, 1–23 (2016). https://doi.org/10.1016/j.newar.2016.08.002

    Article  ADS  Google Scholar 

  268. N. Soker, F. Pizzolato, Feedback heating with slow jets in cooling flow clusters. Astrophys. J. 622, 847–852 (2005). https://doi.org/10.1086/428112

    Article  ADS  Google Scholar 

  269. A. Soltan, Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115–122 (1982). https://doi.org/10.1093/mnras/200.1.115

    Article  ADS  Google Scholar 

  270. R.S. Somerville, P.F. Hopkins, T.J. Cox, B.E. Robertson, L. Hernquist, A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 391, 481–506 (2008). https://doi.org/10.1111/j.1365-2966.2008.13805.x

    Article  ADS  Google Scholar 

  271. A. Spacek, E. Scannapieco, S. Cohen, B. Joshi, P. Mauskopf, Constraining AGN feedback in massive ellipticals with South Pole Telescope measurements of the thermal Sunyaev–Zel’dovich effect. Astrophys. J. 819, 128 (2016). https://doi.org/10.3847/0004-637X/819/2/128

    Article  ADS  Google Scholar 

  272. A. Spacek, E. Scannapieco, S. Cohen, B. Joshi, P. Mauskopf, Searching for fossil evidence of AGN feedback in WISE-selected stripe-82 galaxies by measuring the thermal Sunyaev-Zeldovich effect with the Atacama Cosmology Telescope. Astrophys. J. 834, 102 (2017). https://doi.org/10.3847/1538-4357/834/2/102

    Article  ADS  Google Scholar 

  273. A. Spacek, M.L.A. Richardson, E. Scannapieco, J. Devriendt, Y. Dubois, S. Peirani, C. Pichon, Using real and simulated measurements of the thermal Sunyaev Zeldovich effect to constrain models of AGN feedback. Astrophys. J. 865, 109 (2018). https://doi.org/10.3847/1538-4357/aada01

    Article  ADS  Google Scholar 

  274. W.B. Sparks, H.C. Ford, A.L. Kinney, The dusty emission filaments of M87. Astrophys. J. 413, 531–541 (1993). https://doi.org/10.1086/173022

    Article  ADS  Google Scholar 

  275. W.B. Sparks, J.E. Pringle, M. Donahue, R. Carswell, M. Voit, M. Cracraft, R.G. Martin, Discovery of C IV emission filaments in M87. Astrophys. J. Lett. 704, 20–24 (2009). https://doi.org/10.1088/0004-637X/704/1/L20

    Article  ADS  Google Scholar 

  276. W.B. Sparks, J.E. Pringle, R.F. Carswell, M. Donahue, R. Martin, M. Voit, M. Cracraft, N. Manset, J.H. Hough, Hundred thousand degree gas in the Virgo cluster of galaxies. Astrophys. J. Lett. 750, 5 (2012). https://doi.org/10.1088/2041-8205/750/1/L5

    Article  ADS  Google Scholar 

  277. D.K. Strickland, T.M. Heckman, Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M82. Astrophys. J. 697, 2030–2056 (2009). https://doi.org/10.1088/0004-637X/697/2/2030

    Article  ADS  Google Scholar 

  278. Y. Su, J.A. Irwin, R.E. White III, M.C. Cooper, The scatter in the hot gas content of early-type galaxies. Astrophys. J. 806, 156 (2015). https://doi.org/10.1088/0004-637X/806/2/156

    Article  ADS  Google Scholar 

  279. T. Suginohara, J.P. Ostriker, The effect of cooling on the density profile of hot gas in clusters of galaxies: is additional physics needed? Astrophys. J. 507, 16–23 (1998). https://doi.org/10.1086/306326

    Article  ADS  Google Scholar 

  280. M. Sun, Hot gas in galaxy groups: recent observations. New J. Phys. 14(4), 045004 (2012). https://doi.org/10.1088/1367-2630/14/4/045004

    Article  ADS  Google Scholar 

  281. M. Sun, C. Jones, W. Forman, A. Vikhlinin, M. Donahue, M. Voit, X-ray thermal coronae of galaxies in hot clusters: ubiquity of embedded mini-cooling cores. Astrophys. J. 657, 197–231 (2007). https://doi.org/10.1086/510895

    Article  ADS  Google Scholar 

  282. X. Tang, E. Churazov, Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters. Mon. Not. R. Astron. Soc. 468, 3516–3532 (2017). https://doi.org/10.1093/mnras/stx590

    Article  ADS  Google Scholar 

  283. G.B. Taylor, F. Govoni, S.W. Allen, A.C. Fabian, Magnetic fields in the 3C 129 cluster. Mon. Not. R. Astron. Soc. 326, 2–10 (2001). https://doi.org/10.1046/j.1365-8711.2001.04587.x

    Article  ADS  Google Scholar 

  284. G.B. Taylor, A.C. Fabian, G. Gentile, S.W. Allen, C. Crawford, J.S. Sanders, Fields and filaments in the core of the Centaurus cluster. Mon. Not. R. Astron. Soc. 382, 67–72 (2007). https://doi.org/10.1111/j.1365-2966.2007.12368.x

    Article  ADS  Google Scholar 

  285. P. Temi, F. Brighenti, W.G. Mathews, Far-infrared spitzer observations of elliptical galaxies: evidence for extended diffuse dust. Astrophys. J. 660, 1215–1231 (2007a). https://doi.org/10.1086/513690

    Article  ADS  Google Scholar 

  286. P. Temi, F. Brighenti, W.G. Mathews, Spitzer observations of transient, extended dust in two elliptical galaxies: new evidence of recent feedback energy release in galactic cores. Astrophys. J. 666, 222–230 (2007b). https://doi.org/10.1086/520123

    Article  ADS  Google Scholar 

  287. P. Temi, A. Amblard, M. Gitti, F. Brighenti, M. Gaspari, W.G. Mathews, L. David, ALMA observations of molecular clouds in three group-centered elliptical galaxies: NGC 5846, NGC 4636, and NGC 5044. Astrophys. J. 858, 17 (2018). https://doi.org/10.3847/1538-4357/aab9b0

    Article  ADS  Google Scholar 

  288. T. Tepper-García, J. Bland-Hawthorn, R.S. Sutherland, The Magellanic stream: break-up and accretion onto the hot galactic corona. Astrophys. J. 813, 94 (2015). https://doi.org/10.1088/0004-637X/813/2/94

    Article  ADS  Google Scholar 

  289. R.J. Thacker, E. Scannapieco, H.M.P. Couchman, Quasars: what turns them off? Astrophys. J. 653, 86–100 (2006). https://doi.org/10.1086/508650

    Article  ADS  Google Scholar 

  290. C. Thom, J. Tumlinson, J.K. Werk, J.X. Prochaska, B.D. Oppenheimer, M.S. Peeples, T.M. Tripp, N.S. Katz, J.M. O’Meara, A.B. Ford, R. Davé, K.R. Sembach, D.H. Weinberg, Not dead yet: cool circumgalactic gas in the halos of early-type galaxies. Astrophys. J. Lett. 758, 41 (2012). https://doi.org/10.1088/2041-8205/758/2/L41

    Article  ADS  Google Scholar 

  291. D. Thomas, C. Maraston, R. Bender, C. Mendes de Oliveira, The epochs of early-type galaxy formation as a function of environment. Astrophys. J. 621, 673–694 (2005). https://doi.org/10.1086/426932

    Article  ADS  Google Scholar 

  292. R. Tojeiro, W.J. Percival, A.F. Heavens, R. Jimenez, The stellar evolution of luminous red galaxies, and its dependence on colour, redshift, luminosity and modelling. Mon. Not. R. Astron. Soc. 413, 434–460 (2011). https://doi.org/10.1111/j.1365-2966.2010.18148.x

    Article  ADS  Google Scholar 

  293. P. Tozzi, C. Norman, The evolution of X-ray clusters and the entropy of the intracluster medium. Astrophys. J. 546, 63–84 (2001). https://doi.org/10.1086/318237

    Article  ADS  Google Scholar 

  294. G.R. Tremblay, J.B.R. Oonk, F. Combes, P. Salomé, C.P. O’Dea, S.A. Baum, G.M. Voit, M. Donahue, B.R. McNamara, T.A. Davis, M.A. McDonald, A.C. Edge, T.E. Clarke, R. Galván-Madrid, M.N. Bremer, L.O.V. Edwards, A.C. Fabian, S. Hamer, Y. Li, A. Maury, H.R. Russell, A.C. Quillen, C.M. Urry, J.S. Sanders, M.W. Wise, Cold, clumpy accretion onto an active supermassive black hole. Nature 534, 218–221 (2016). https://doi.org/10.1038/nature17969

    Article  ADS  Google Scholar 

  295. T. Treu, R.S. Ellis, T.X. Liao, P.G. van Dokkum, Keck spectroscopy of distant GOODS spheroidal galaxies: downsizing in a hierarchical universe. Astrophys. J. Lett. 622, 5–8 (2005). https://doi.org/10.1086/429374

    Article  ADS  Google Scholar 

  296. I. Trujillo, N.M. Förster Schreiber, G. Rudnick, M. Barden, M. Franx, H.-W. Rix, J.A.R. Caldwell, D.H. McIntosh, S. Toft, B. Häussler, A. Zirm, P.G. van Dokkum, I. Labbé, A. Moorwood, H. Röttgering, A. van der Wel, P. van der Werf, L. van Starkenburg, The size evolution of galaxies since \(z \sim 3\): combining SDSS, GEMS, and FIRES. Astrophys. J. 650, 18–41 (2006). https://doi.org/10.1086/506464

    Article  Google Scholar 

  297. I. Trujillo, C.J. Conselice, K. Bundy, M.C. Cooper, P. Eisenhardt, R.S. Ellis, Strong size evolution of the most massive galaxies since \(z\sim2\). Mon. Not. R. Astron. Soc. 382, 109–120 (2007). https://doi.org/10.1111/j.1365-2966.2007.12388.x

    Article  Google Scholar 

  298. I. Trujillo, A. Ferré-Mateu, M. Balcells, A. Vazdekis, P. Sánchez-Blázquez, NGC 1277: a massive compact relic galaxy in the nearby Universe. Astrophys. J. Lett. 780, 20 (2014). https://doi.org/10.1088/2041-8205/780/2/L20

    Article  ADS  Google Scholar 

  299. J. Tumlinson, C. Thom, J.K. Werk, J.X. Prochaska, T.M. Tripp, N. Katz, R. Davé, B.D. Oppenheimer, J.D. Meiring, A.B. Ford, J.M. O’Meara, M.S. Peeples, K.R. Sembach, D.H. Weinberg, The COS-halos survey: rationale, design, and a census of circumgalactic neutral hydrogen. Astrophys. J. 777, 59 (2013). https://doi.org/10.1088/0004-637X/777/1/59

    Article  ADS  Google Scholar 

  300. P.G. van Dokkum, M. Franx, N.M. Förster Schreiber, G.D. Illingworth, E. Daddi, K.K. Knudsen, I. Labbé, A. Moorwood, H.-W. Rix, H. Röttgering, G. Rudnick, I. Trujillo, P. van der Werf, A. van der Wel, L. van Starkenburg, S. Wuyts, Stellar populations and kinematics of red galaxies at z > 2: implications for the formation of massive galaxies. Astrophys. J. 611, 703–724 (2004). https://doi.org/10.1086/422308

    Article  ADS  Google Scholar 

  301. S. Veilleux, G. Cecil, J. Bland-Hawthorn, Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005). https://doi.org/10.1146/annurev.astro.43.072103.150610

    Article  ADS  Google Scholar 

  302. S. Veilleux, D.-C. Kim, C.Y. Peng, L.C. Ho, L.J. Tacconi, K.M. Dasyra, R. Genzel, D. Lutz, D.B. Sanders, A deep Hubble Space Telescope H-band imaging survey of massive gas-rich mergers. Astrophys. J. 643, 707–723 (2006). https://doi.org/10.1086/503188

    Article  ADS  Google Scholar 

  303. A.A. Vikhlinin, A.V. Kravtsov, M.L. Markevich, R.A. Sunyaev, E.M. Churazov, Clusters of galaxies. Phys. Usp. 57, 317–341 (2014). https://doi.org/10.3367/UFNe.0184.201404a.0339

    Article  ADS  Google Scholar 

  304. G.M. Voit, A role for turbulence in circumgalactic precipitation. ArXiv e-prints (2018)

  305. G.M. Voit, M. Donahue, Cooling time, freefall time, and precipitation in the cores of ACCEPT galaxy clusters. Astrophys. J. Lett. 799, 1 (2015). https://doi.org/10.1088/2041-8205/799/1/L1

    Article  ADS  Google Scholar 

  306. G.M. Voit, S.T. Kay, G.L. Bryan, The baseline intracluster entropy profile from gravitational structure formation. Mon. Not. R. Astron. Soc. 364, 909–916 (2005). https://doi.org/10.1111/j.1365-2966.2005.09621.x

    Article  ADS  Google Scholar 

  307. G.M. Voit, G.L. Bryan, B.W. O’Shea, M. Donahue, Precipitation-regulated star formation in galaxies. Astrophys. J. Lett. 808, 30 (2015a). https://doi.org/10.1088/2041-8205/808/1/L30

    Article  ADS  Google Scholar 

  308. G.M. Voit, M. Donahue, G.L. Bryan, M. McDonald, Regulation of star formation in giant galaxies by precipitation, feedback and conduction. Nature 519, 203–206 (2015b). https://doi.org/10.1038/nature14167

    Article  ADS  Google Scholar 

  309. G.M. Voit, M. Donahue, B.W. O’Shea, G.L. Bryan, M. Sun, N. Werner, Supernova sweeping and black hole feedback in elliptical galaxies. Astrophys. J. Lett. 803, 21 (2015c). https://doi.org/10.1088/2041-8205/803/2/L21

    Article  ADS  Google Scholar 

  310. H.J. Völk, F.A. Aharonian, D. Breitschwerdt, The nonthermal energy content and gamma-ray emission of starburst galaxies and clusters of galaxies. Space Sci. Rev. 75, 279–297 (1996). https://doi.org/10.1007/BF00195040

    Article  ADS  Google Scholar 

  311. J.L. Walsh, A.J. Barth, L.C. Ho, M. Sarzi, The M87 black hole mass from gas-dynamical models of space telescope imaging spectrograph observations. Astrophys. J. 770, 86 (2013). https://doi.org/10.1088/0004-637X/770/2/86

    Article  ADS  Google Scholar 

  312. B.J. Weiner, A.L. Coil, J.X. Prochaska, J.A. Newman, M.C. Cooper, K. Bundy, C.J. Conselice, A.A. Dutton, S.M. Faber, D.C. Koo, J.M. Lotz, G.H. Rieke, K.H.R. Rubin, Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at \(z = 1.4\). Astrophys. J. 692, 187–211 (2009). https://doi.org/10.1088/0004-637X/692/1/187

    Article  Google Scholar 

  313. N. Werner, I. Zhuravleva, E. Churazov, A. Simionescu, S.W. Allen, W. Forman, C. Jones, J.S. Kaastra, Constraints on turbulent pressure in the X-ray haloes of giant elliptical galaxies from resonant scattering. Mon. Not. R. Astron. Soc. 398, 23–32 (2009). https://doi.org/10.1111/j.1365-2966.2009.14860.x

    Article  ADS  Google Scholar 

  314. N. Werner, A. Simionescu, E.T. Million, S.W. Allen, P.E.J. Nulsen, A. von der Linden, S.M. Hansen, H. Böhringer, E. Churazov, A.C. Fabian, W.R. Forman, C. Jones, J.S. Sanders, G.B. Taylor, Feedback under the microscope-II. Heating, gas uplift and mixing in the nearest cluster core. Mon. Not. R. Astron. Soc. 407, 2063–2074 (2010). https://doi.org/10.1111/j.1365-2966.2010.16755.x

    Article  ADS  Google Scholar 

  315. N. Werner, S.W. Allen, A. Simionescu, On the thermodynamic self-similarity of the nearest, most relaxed, giant ellipticals. Mon. Not. R. Astron. Soc. 425, 2731–2740 (2012). https://doi.org/10.1111/j.1365-2966.2012.21245.x

    Article  ADS  Google Scholar 

  316. N. Werner, J.B.R. Oonk, R.E.A. Canning, S.W. Allen, A. Simionescu, J. Kos, R.J. van Weeren, A.C. Edge, A.C. Fabian, A. von der Linden, P.E.J. Nulsen, C.S. Reynolds, M. Ruszkowski, The nature of filamentary cold gas in the core of the Virgo cluster. Astrophys. J. 767, 153 (2013). https://doi.org/10.1088/0004-637X/767/2/153

    Article  ADS  Google Scholar 

  317. N. Werner, J.B.R. Oonk, M. Sun, P.E.J. Nulsen, S.W. Allen, R.E.A. Canning, A. Simionescu, A. Hoffer, T. Connor, M. Donahue, A.C. Edge, A.C. Fabian, A. von der Linden, C.S. Reynolds, M. Ruszkowski, The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback. Mon. Not. R. Astron. Soc. 439, 2291–2306 (2014). https://doi.org/10.1093/mnras/stu006

    Article  ADS  Google Scholar 

  318. N. Werner, K. Lakhchaura, R.E.A. Canning, M. Gaspari, A. Simionescu, Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies. Mon. Not. R. Astron. Soc. (2018). https://doi.org/10.1093/mnras/sty862

    Article  Google Scholar 

  319. S.D.M. White, C.S. Frenk, Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991). https://doi.org/10.1086/170483

    Article  ADS  Google Scholar 

  320. S.D.M. White, M.J. Rees, Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978). https://doi.org/10.1093/mnras/183.3.341

    Article  ADS  Google Scholar 

  321. J. Wiener, S.P. Oh, F. Guo, Cosmic ray streaming in clusters of galaxies. Mon. Not. R. Astron. Soc. 434, 2209–2228 (2013). https://doi.org/10.1093/mnras/stt1163

    Article  ADS  Google Scholar 

  322. K.-W. Wong, J.A. Irwin, M. Yukita, E.T. Million, W.G. Mathews, J.N. Bregman, Resolving the Bondi accretion flow toward the supermassive black hole of NGC 3115 with Chandra. Astrophys. J. Lett. 736, 23 (2011). https://doi.org/10.1088/2041-8205/736/1/L23

    Article  ADS  Google Scholar 

  323. K.-W. Wong, J.A. Irwin, R.V. Shcherbakov, M. Yukita, E.T. Million, J.N. Bregman, The megasecond Chandra X-ray visionary project observation of NGC 3115: witnessing the flow of hot gas within the Bondi radius. Astrophys. J. 780, 9 (2014). https://doi.org/10.1088/0004-637X/780/1/9

    Article  ADS  Google Scholar 

  324. H.-Y.K. Yang, C.S. Reynolds, How AGN jets heat the intracluster medium—insights from hydrodynamic simulations. Astrophys. J. 829, 90 (2016). https://doi.org/10.3847/0004-637X/829/2/90

    Article  ADS  Google Scholar 

  325. R.M. Yates, P.A. Thomas, B.M.B. Henriques, Iron in galaxy groups and clusters: confronting galaxy evolution models with a newly homogenized data set. Mon. Not. R. Astron. Soc. 464, 3169–3193 (2017). https://doi.org/10.1093/mnras/stw2361

    Article  ADS  Google Scholar 

  326. A. Yıldırım, R.C.E. van den Bosch, G. van de Ven, I. Martín-Navarro, J.L. Walsh, B. Husemann, K. Gültekin, K. Gebhardt, The structural and dynamical properties of compact elliptical galaxies. Mon. Not. R. Astron. Soc. 468, 4216–4245 (2017). https://doi.org/10.1093/mnras/stx732

    Article  ADS  Google Scholar 

  327. L.M. Young, M. Bureau, T.A. Davis, F. Combes, R.M. McDermid, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Cappellari, R.L. Davies, P.T. de Zeeuw, E. Emsellem, S. Khochfar, D. Krajnović, H. Kuntschner, P.-Y. Lablanche, R. Morganti, T. Naab, T. Oosterloo, M. Sarzi, N. Scott, P. Serra, A.-M. Weijmans, The ATLAS\(^{3D}\) project—IV. The molecular gas content of early-type galaxies. Mon. Not. R. Astron. Soc. 414, 940–967 (2011). https://doi.org/10.1111/j.1365-2966.2011.18561.x

    Article  Google Scholar 

  328. F. Yuan, R. Narayan, Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529–588 (2014). https://doi.org/10.1146/annurev-astro-082812-141003

    Article  ADS  Google Scholar 

  329. F.S. Zahedy, H.-W. Chen, M. Rauch, A. Zabludoff, HST detection of extended neutral hydrogen in a massive elliptical at \(z = 0.4\). Astrophys. J. Lett. 846, 29 (2017). https://doi.org/10.3847/2041-8213/aa88a2

    Article  Google Scholar 

  330. C. Zhang, E. Churazov, A.A. Schekochihin, Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. Mon. Not. R. Astron. Soc. (2018). https://doi.org/10.1093/mnras/sty1269

    Article  Google Scholar 

  331. Z. Zheng, A.L. Coil, I. Zehavi, Galaxy evolution from halo occupation distribution modeling of DEEP2 and SDSS galaxy clustering. Astrophys. J. 667, 760–779 (2007). https://doi.org/10.1086/521074

    Article  ADS  Google Scholar 

  332. I. Zhuravleva, E. Churazov, A.A. Schekochihin, S.W. Allen, P. Arévalo, A.C. Fabian, W.R. Forman, J.S. Sanders, A. Simionescu, R. Sunyaev, A. Vikhlinin, N. Werner, Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014). https://doi.org/10.1038/nature13830

    Article  ADS  Google Scholar 

  333. E.G. Zweibel, V.V. Mirnov, M. Ruszkowski, C.S. Reynolds, H.-Y.K. Yang, A.C. Fabian, Acoustic disturbances in galaxy clusters. Astrophys. J. 858, 5 (2018). https://doi.org/10.3847/1538-4357/aab9ae

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NW was supported by the Lendület LP2016-11 grant awarded by the Hungarian Academy of Sciences. BRM thanks the Natural Sciences and Engineering Research Council of Canada and the Canadian Space Agency for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Werner.

Additional information

Clusters of Galaxies: Physics and Cosmology

Edited by Andrei Bykov, Jelle Kaastra, Marcus Brüggen, Maxim Markevitch, Maurizio Falanga and Frederik Bernard Stefan Paerels

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Werner, N., McNamara, B.R., Churazov, E. et al. Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: A Topical Perspective. Space Sci Rev 215, 5 (2019). https://doi.org/10.1007/s11214-018-0571-9

Download citation

Keywords

  • Elliptical galaxies
  • Active galactic nuclei
  • Interstellar medium