Past, Present and Future of Active Radio Frequency Experiments in Space

Abstract

Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating-initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Abbreviations

AA:

anomalous absorption

AGW:

acoustic gravity wave

AKR:

auroral kilometric radiation

API:

artificial periodic irregularity

ASE:

artificially stimulated emissions

BF layer:

the region of scattering from the bottom side F region

BUM:

broad upshifted maximum

BUS:

broad upshifted structure

BSS:

broad symmetrical structure

CADI:

Canadian Advanced Digital Ionosonde

CNA:

cosmic noise absorption

DL:

descending layer

DM:

downshifted maximum

DMSP:

Defense Meteorological Satellite Program

DP:

downshifted peak

DSX:

Demonstration and Science Experiments satellite

DVH:

descending virtual height

DW:

diagnostic wave

EISCAT:

European Incoherent SCATter Scientific Association

EMIC:

electromagnetic ion cyclotron wave

ERP:

effective radiated power

FAC:

field-aligned current

FAI:

field-aligned irregularity

HAARP:

High Frequency Active Auroral Research Program

HIPAS:

HIgh Power Auroral Stimulation observatory

IAPD:

Ion Acoustic Parametric Decay instability

IAR:

ionospheric Alfvén resonator

IDM:

intermediate downshifted maximum

IDV:

ionosphere disturbed volume

IFI:

ionospheric feedback instability

IRI:

Ionospheric Research Instrument

ISR:

incoherent scatter radar

LH:

lower hybrid

LSI:

large-scale irregularity

LT:

Langmuir turbulence

MI:

modulational instability

MUIR:

modular UHF ionospheric radar (at HAARP)

MSI:

medium-scale irregularity

MZ:

magnetic zenith

NC:

narrow continuum

NEIAL:

naturally enhanced ion acoustic line

OTHR:

over-the-horizon radar

OTSI:

oscillating two-stream instability

PDI:

parametric decay instability

PFISR:

Poker Flat incoherent scatter radar

PL:

plasma line

PMSE:

polar mesospheric summer echoes

PMWE:

polar mesospheric winter echoes

PPI:

ponderomotive parametric instability

PW:

pump wave

QPO:

quasi-periodic oscillation

SAPS:

subauroral polarization stream

SAID:

subauroral ion drift

SEE:

stimulated electromagnetic emission

SLT:

strong Langmuir turbulence

SSA:

striction self-action

SSI:

small-scale irregularity

SSSI:

supra-small-scale irregularities

SST:

super strong (Langmuir) turbulence

TEC:

total electron content

TID:

travelling ionospheric disturbance

TPI:

thermal parametric instability

TSFI:

thermal self-focusing instability

UH:

upper hybrid

UHR:

upper hybrid resonance

UWE:

upshifted wideband emission

VPM:

VLF and Particle Mapper satellite

WAILES:

wide-altitude extent ion line enhancements

WT:

weak turbulence

References

  1. E.M. Allen, G.D. Thome, P.B. Rao, HF phased array observations of heater-induced spread-F. Radio Sci. 9(11), 905–916 (1974)

    ADS  Google Scholar 

  2. E.S. Andreeva, V.L. Frolov, V.E. Kunitsyn, A.S. Kryukovskii, D.S. Lukin, M.O. Nazarenko, A.M. Padokhin, Radiotomography and HF ray tracing of the artificially disturbed ionosphere above the SURA heating facility. Radio Sci. 51(6), 638–644 (2016). https://doi.org/10.1002/2015RS005939

    ADS  Article  Google Scholar 

  3. M. Ashrafi, M.J. Kosch, F. Honary, Heater-Induced altitude descent of the EISCAT UHF ion line enhancements: observations and modelling. Adv. Space Res. 38(11), 2645–2652 (2006)

    ADS  Google Scholar 

  4. M. Ashrafi, M.J. Kosch, K. Kaila, B. Isham, Spatiotemporal evolution of radio wave pump-induced ionospheric phenomena near the fourth electron gyroharmonic. J. Geophys. Res. 112, A05314 (2007). https://doi.org/10.1029/2006JA011938

    ADS  Article  Google Scholar 

  5. G. Atkinson, Auroral arcs: result of the interaction of a dynamic magnetosphere with the ionosphere. J. Geophys. Res. 75, 4746 (1970)

    ADS  Google Scholar 

  6. H. Bahcivan, J.W. Cutler, J.C. Springmann, R. Doe, M.J. Nicolls, Magnetic aspect sensitivity of high-latitude E region irregularities measured by the RAX-2 CubeSat. J. Geophys. Res. 119(2), 1233–1249 (2014)

    Google Scholar 

  7. V.A. Bailey, Interaction by resonance of radio waves. Nature 139, 68–69 (1937)

    Google Scholar 

  8. N.V. Bakhmet’eva, V.V. Belikovich, L.M. Kagan, A.A. Ponyatov, A.V. Tolmacheva, M.C. Kelley, M.J. Nicolls, New results of studying the lower ionosphere by the method of resonance scattering of radio waves from artificial periodic inhomogeneities. Radiophys. Quantum Electron. 48(9), 673–685 (2005)

    ADS  Google Scholar 

  9. R. Barr, VLF wave generation using VLF heating and the cubic nonlinearity of the ionosphere. Geophys. Res. Lett. 23, 2165 (1996). https://doi.org/10.1029/96GL02024

    ADS  Article  Google Scholar 

  10. R. Barr, P. Stubbe, ELF and VLF wave generation by HF heating: a comparison of AM and CW techniques. J. Atmos. Terr. Phys. 59(18), 2265–2279 (1997)

    ADS  Google Scholar 

  11. R. Barr, M.T. Rietveld, H. Kopka, P. Stubbe, E. Nielsen, Extra-low-frequency radiation from the polar electrojet antenna. Nature 317(6033), 155–157 (1985a)

    ADS  Google Scholar 

  12. R. Barr, M.T. Rietveld, P. Stubbe, H. Kopka, The diffraction of VLF radio Waves by a patch of ionosphere illuminated by a powerful HF transmitter. J. Geophys. Res. 90(A3), 2861–2875 (1985b)

    ADS  Google Scholar 

  13. R. Barr, P. Stubbe, M.T. Rietveld, H. Kopka, ELF and VLF signals radiated by the ‘Polar Electrojet Antenna’: experimental results. J. Geophys. Res. 91(A4), 4451–4459 (1986)

    ADS  Google Scholar 

  14. R. Barr, M.T. Rietveld, P. Stubbe, H. Kopka, Ionospheric heater beam scanning: a realistic model of this mobile source of ELF/VLF radiation. Radio Sci. 23(3), 379–388 (1988)

    ADS  Google Scholar 

  15. R. Barr, P. Stubbe, M.T. Rietveld, ELF wave generation in the ionosphere using pulse modulated HF heating: initial tests of a technique for increasing ELF wave generation efficiency. Ann. Geophys. 17, 759–769 (1999)

    ADS  Google Scholar 

  16. A.F. Belenov, V.A. Bubnov, L.M. Erukhimov, V. Kiselev Yu, G.P. Komrakov, E.E. Mityakova, L.N. Rubtsov, V.P. Uryadov, V.L. Frolov, YuV. Chugunov, On parameters of artificial small-scale ionospheric irregularities. Radiophys. Quantum Electron. 20, 1240–1245 (1977)

    ADS  Google Scholar 

  17. V.V. Belikovich, E.A. Benediktov, G.G. Getmantsev, L.M. Erukhimov, N.A. Zuikov, G.P. Komrakov, Yu.S. Korobkov, N.A. Mityakov, V.O. Rapoport, V.Yu. Trakhtengertz V.L. Frolov, New results of investigations of nonlinear phenomena in the ionosphere. Radiophys. Quantum Electron. 18(4), 377–383 (1975)

    ADS  Google Scholar 

  18. V.V. Belikovich, L.M. Erukhimov, V.A. Zyuzin, S. Korobkov Yu, O.I. Maksimenko, A.M. Nasyrov, E.N. Sergeev, V.L. Frolov, P.B. Shavin, Times of development and relaxation of artificial small-scale irregularities. Radiophys. Quantum Electron. 31, 181–185 (1988)

    ADS  Google Scholar 

  19. V.V. Belikovich, S.M. Grach, A.N. Karashtin, D.S. Kotik, Yu.V. Tokarev, The SURA facility: study of the atmosphere and space. Radiophys. Quantum Electron. 50(7), 497–526 (2007)

    ADS  Google Scholar 

  20. P. Belyaev, S. Polyakov, V. Rappoport, V. Trakhtengerts, The ionospheric Alfvén resonator. J. Atmos. Terr. Phys. 52, 781 (1990)

    ADS  Google Scholar 

  21. I.V. Berezin, G.N. Boiko, V.M. Volkov, V.A. Zyuzin, G.P. Komrakov, A.M. Leonov, A.N. Maresov, V.A. Ryzhov, V.A. Solynin, Peculiarities of the development and saturation of artificial ionospheric turbulence during a high-power disturbing transitions. Radiophys. Quantum Electron. 30(6), 522–529 (1987)

    ADS  Google Scholar 

  22. P.A. Bernhardt, C.A. Selcher, R.H. Lehmberg et al., Stimulated Brillouin scatter in magnetized ionospheric plasma. Phys. Rev. Lett. 104, 165004 (2010). https://doi.org/10.1103/PhysRevLett.104.165004

    ADS  Article  Google Scholar 

  23. P.A. Bernhardt, C.A. Selcher, S. Kowtha, Electron and ion Bernstein waves excited in the ionosphere by high power EM waves at the second harmonic of the electron cyclotron frequency. Geophys. Res. Lett. 38, L19107 (2011). https://doi.org/10.1029/2011GL049390

    ADS  Article  Google Scholar 

  24. P. Bernhardt, C. Siefring, S. Briczinski, R. Michell, Large ionospheric disturbances produced by the HAARP HF facility. Radio Sci. 51, 1081–1093 (2016). https://doi.org/10.1002/2015RS005883

    ADS  Article  Google Scholar 

  25. N.F. Blagoveshchenskaya, V.A. Kornienko, T.D. Borisova, B. Thidé, M.J. Kosch, M.T. Rietveld, E.V. Mishin, R.Y. Luk’yanova, O.A. Troschichev, Ionospheric HF pump wave triggering of local auroral activation. J. Geophys. Res. 106(A12), 29071–29090 (2001)

    ADS  Google Scholar 

  26. N.F. Blagoveshchenskaya, V.A. Kornienko, T.D. Borisova, M.T. Rietveld, T. Bösinger, B. Thidé, T.B. Leyser, A. Brekke, Heater-induced phenomena in a coupled ionosphere–magnetosphere system. Adv. Space Res. 38, 2495–2502 (2006). https://doi.org/10.1016/j.asr.2004.12.047

    ADS  Article  Google Scholar 

  27. N.F. Blagoveshchenskaya, T.D. Borisova, V.A. Kornienko, M.T. Rietveld, T.K. Yeoman, D.M. Wright, M. Rother, H. Lühr, E.V. Mishin, C. Roth, V.L. Frolov, M. Parot, J.L. Rauch, Modification of the high-latitude ionosphere by high-power HF radio waves, 2: results of coordinated satellite and ground-based observations. Radiophys. Quantum Electron. 54, 89–101, 0033-8443/11/5402-0089 (2011)

    ADS  Google Scholar 

  28. N.F. Blagoveshchenskaya, T.D. Borisova, T.K. Yeoman, M.T. Rietveld, I. Häggström, I.M. Ivanova, Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere. J. Atmos. Sol.-Terr. Phys. 105–106, 231–244 (2013)

    ADS  Google Scholar 

  29. N.F. Blagoveshchenskaya, T.D. Borisova, M. Kosch, T. Sergienko, U. Brändström, T.K. Yeoman, I. Häggström, Optical and ionospheric phenomena at EISCAT under continuous X-mode HF pumping. J. Geophys. Res. 119 (2014). https://doi.org/10.1002/2014JA020658

  30. N.F. Blagoveshchenskaya, T.D. Borisova, T.K. Yeoman, I. Häggström, A.S. Kalishin, Modification of the high latitude ionosphere F region by X-mode powerful HF radiowaves: experimental results from multi-instrument diagnostics. J. Atmos. Sol.-Terr. Phys. 135, 50–63 (2015). https://doi.org/10.1016/j.jastp.2015.10.009

    ADS  Article  Google Scholar 

  31. N.F. Blagoveshchenskaya, T.D. Borisova, A.S. Kalishin, T.K. Yeoman, I. Häggström, First observations of electron gyro-harmonic effects under X-mode HF pumping the high latitude ionospheric F-region. J. Atmos. Sol.-Terr. Phys. 155, 36–49 (2017)

    ADS  Google Scholar 

  32. G.N. Boiko, L.M. Erukhimov, V.L. Frolov, Excitation of small-scale irregularities near the pump wave reflection level. Geomagn. Aeron. 30(6), 843–846 (1990)

    Google Scholar 

  33. N. Borisov, A. Gurevich, K. Papadopoulos, Direct Cerenkov excitation of waveguide modes by a mobile ionospheric heater. Radio Sci. 33(4), 859 (1996)

    ADS  Google Scholar 

  34. T.D. Borisova, N.F. Blagoveshchenskaya, T.K. Yeoman, I. Häggström, Excitation of artificial ionospheric turbulence in the high-latitude ionospheric F region as a function of the EISCAT/heating effective radiated power. Radiophys. Quantum Electron. 60, 4 (2017). https://doi.org/10.1007/s11141-017-9798-7

    Article  Google Scholar 

  35. T. Bösinger, A. Kero, P. Pollari, A. Pashin, P. Belyaev, M. Rietveld, T. Turunen, J. Kangas, Generation of artificial magnetic pulsations in the Pc1 frequency range by periodic heating of the Earth’s ionosphere: indications of Alfven resonator effects. J. Atmos. Sol.-Terr. Phys. 62(4), 277–297 (2000)

    ADS  Google Scholar 

  36. C.J. Bryers, M.J. Kosch, A. Senior, M.T. Rietveld, T.K. Yeoman, The threshold of plasma instabilities pumped by high frequency radio waves at EISCAT. J. Geophys. Res. 118, 7472–7481 (2013a). https://doi.org/10.1002/2013JA019429

    Article  Google Scholar 

  37. C.J. Bryers, M.J. Kosch, A. Senior, M.T. Rietveld, W. Singer, A comparison between resonant and non-resonant heating at EISCAT. J. Geophys. Res. 118, 6766–6776 (2013b). https://doi.org/10.1002/jgra.50605

    Article  Google Scholar 

  38. T. Burinskaya, A. Volokitin, Nonlinear dynamics of thermal modulational instability. Physica 2D, 117–125 (1981)

    ADS  Google Scholar 

  39. V. Bychenkov, V. Silin, S. Uryupin, Ion-acoustic turbulence and anomalous transport. Phys. Rep. 164, 119–215 (1988)

    ADS  Google Scholar 

  40. P. Cannon, F. Honary, A GPU-accelerated finite-difference time-domain scheme for electromagnetic wave interaction with plasma. IEEE Trans. Antennas Propag. 63(7), 3042–3054 (2015). https://doi.org/10.1109/TAP.2015.2423710

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. P.D. Cannon, F. Honary, N. Borisov, Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere. J. Geophys. Res. Space Phys. 121(3), 2755–2782 (2016). https://doi.org/10.1002/2015JA022105

    ADS  Article  Google Scholar 

  42. H.C. Carlson, High power HF modification-geophysics, span of EM effects, and energy budget. Adv. Space Res. 13, 1015–1024 (1993). https://doi.org/10.1016/0273-1177(93)90046-E

    Article  Google Scholar 

  43. H. Carlson, V. Wickwar, G. Mantas, Observations of fluxes of suprathermal electrons accelerated by HF excited Langmuir instabilities. J. Atmos. Terr. Phys. 12, 1089 (1982)

    ADS  Google Scholar 

  44. H. Carlson, F. Djuth, L. Zhang, Creating space plasma from the ground. J. Geophys. Res. Space Phys. 122, 978 (2017). https://doi.org/10.1002/2016JA023380

    ADS  Article  Google Scholar 

  45. L.F. Chernogor, V.L. Frolov, Features of the wave disturbances in the ionosphere during periodic heating of the plasma by the SURA radiation. Radiophys. Quantum Electron. 56(5), 276–289 (2013)

    ADS  Google Scholar 

  46. A.A. Chernyshov et al., Approaches to studying the multiscale ionospheric structure using nanosatellites. Geomagn. Aeron. 56(1), 72–79 (2016). https://doi.org/10.1134/S0016793216010047

    ADS  Article  Google Scholar 

  47. P.B. Chilson, E. Belova, M.T. Rietveld, S. Kirkwood, U.-P. Hoppe, First artificially induced modulation of PMSE using the EISCAT heating facility. Geophys. Res. Lett. 27(23), 3801–3804 (2000)

    ADS  Google Scholar 

  48. M.B. Cohen, U.S. Inan, Terrestrial VLF transmitter injection into the magnetosphere. J. Geophys. Res. 117, A08310 (2012). https://doi.org/10.1029/2012JA017992

    ADS  Article  Google Scholar 

  49. R. Cohen, J.D. Whitehead, Radio reflectivity of artificial modification of the ionospheric F layer. Geophys. Res. 75(31), 6439–6445 (1970)

    ADS  Google Scholar 

  50. M.B. Cohen, M. Golkowski, U.S. Inan, Orientation of the HAARP ELF ionospheric dipole and the auroral electrojet. Geophys. Res. Lett. 35, L02806 (2008). https://doi.org/10.1029/2007GL032424

    ADS  Article  Google Scholar 

  51. M.B. Cohen, U.S. Inan, M.A. Golkowski, M.J. McCarrick, ELF/VLF wave generation via ionospheric HF heating: experimental comparison of amplitude modulation, beam painting, and geometric modulation. J. Geophys. Res. 115, A02302 (2010). https://doi.org/10.1029/2009JA014410

    ADS  Article  Google Scholar 

  52. M.B. Cohen, U.S. Inan, D. Piddyachiy, N.G. Lehtinen, M. Golkowski, Magnetospheric injection of ELF/VLF waves with steerable HF heating of the lower ionosphere. J. Geophys. Res. 116, A06308 (2011). https://doi.org/10.1029/2010JA016194

    ADS  Article  Google Scholar 

  53. M. Cohen, M. Golkowski, N. Lehtinen, U. Inan, M. McCarrick, HF beam parameters in ELF/VLF wave generation via modulated heating of the ionosphere. J. Geophys. Res. 117 (2012a). https://doi.org/10.1029/2012JA017585

  54. M.B. Cohen, R.C. Moore, M. Golkowski, N.G. Lehtinen, ELF/VLF wave generation from the beating of two HF ionospheric heating sources. J. Geophys. Res. 117, A12310 (2012b). https://doi.org/10.1029/2012JA018140

    ADS  Article  Google Scholar 

  55. T. Cussac, M.A. Clair, P. Ultré-Guerard, F. Buisson, G. Lassalle-Balier, M. Ledu, C. Elisabelar, X. Passot, N. Rey, The DEMETER microsatellite and ground segment. Planet. Space Sci. 54(5), 413–427 (2006)

    ADS  Google Scholar 

  56. A.G. Demekhov, V.Y. Trakhtengerts, M.M. Mogilevsky, L.M. Zelenyi, Current problems in studies of magnetospheric cyclotron masers and new space project “RESONANCE”. Adv. Space Res. 32(3), 355–374 (2003)

    ADS  Google Scholar 

  57. R.S. Dhillon, T.R. Robinson, Observations of time dependence and aspect sensitivity of regions of enhanced UHF backscatter associated with RF heating. Ann. Geophys. 23, 75 (2005)

    ADS  Google Scholar 

  58. Y. Dimant, A. Gurevich, K. Zybin, Acceleration of electrons under the action of intense radio-waves near electron cyclotron harmonics. J. Atmos. Terr. Phys. 54, 425–436 (1992)

    ADS  Google Scholar 

  59. F. Djuth, D. DuBois, Temporal development of HF-excited Langmuir and ion turbulence at Arecibo. Earth Moon Planets 116, 19–53 (2015). https://doi.org/10.1007/s11038-015-9458-x

    ADS  Article  Google Scholar 

  60. F. Djuth, P. Stubbe, M. Sulzer, H. Kohl, M. Rietveld, J. Elder, Altitude characteristics of plasma turbulence excited with the Tromsøsuperheater. J. Geophys. Res. 99, 333–339 (1994)

    ADS  Google Scholar 

  61. F. Djuth, T. Pedersen, E. Gerken, P. Bernhardt, C. Selcher, W. Bristow, M. Kosch, Ionospheric modification at twice the electron cyclotron frequency. Phys. Rev. Lett. 94, 125001 (2005). https://doi.org/10.1103/PhysRevLett.94.125001

    ADS  Article  Google Scholar 

  62. D.F. DuBois, D.A. Russell, P.Y. Cheung, M.P. Sulzer, High-power high-frequency-induced Langmuir turbulence in the smooth ionosphere at Arecibo, I: theoretical predictions for altitude-resolved plasma line radar spectra. Phys. Plasmas 8(3), 791–801 (2001)

    ADS  Google Scholar 

  63. K. Dysthe, E. Mjølhus, H. Pécseli, K. Rypdal, Thermal cavitons. Phys. Scr. T2B, 548–559 (1982)

    ADS  MATH  Google Scholar 

  64. B. Eliasson, Full-scale simulations of ionospheric Langmuir turbulence. Mod. Phys. Lett. B 27(8), 1330005 (2013). https://doi.org/10.1142/S0217984913300056

    ADS  Article  Google Scholar 

  65. B. Eliasson, C.-L. Chang, K. Papadopoulos, Generation of ELF and ULF electromagnetic waves by modulated heating of the ionospheric F2 region. J. Geophys. Res. 117, A10320 (2012a). https://doi.org/10.1029/2012JA017935

    ADS  Article  Google Scholar 

  66. B. Eliasson, X. Shao, G. Milikh, E.V. Mishin, K. Papadopoulos, Numerical modeling of artificial ionospheric layers driven by high-power HF-heating. J. Geophys. Res. 117, A10321 (2012b). https://doi.org/10.1029/2012JA018105

    ADS  Article  Google Scholar 

  67. B. Eliasson, G. Milikh, X. Shao, E. Mishin, K. Papadopoulos, Incidence angle dependence of Langmuir turbulence and artificial ionospheric layers driven by high-power HF-heating. J. Plasma Phys. 81, 415810201 (2015). https://doi.org/10.1017/S0022377814000968

    Article  Google Scholar 

  68. L.M. Erukhimov, S.A. Metelev, N.A. Mityakov, V.L. Frolov, Hysteresis phenomenon by artificial excitation of irregularities in ionospheric plasma. Radiophys. Quantum Electron. 21, 1209–1211 (1978)

    ADS  Google Scholar 

  69. L.M. Erukhimov, S.A. Metelev, N.A. Mityakov, V.L. Frolov, Initial stage of interaction of intense radio waves with the plasma in the upper ionosphere. Geomagn. Aeron. 23(3), 352–356 (1983)

    Google Scholar 

  70. L.M. Erukhimov, S.A. Metelev, E.N. Myasnikov, N.A. Mityakov, V.L. Frolov, Artificial ionospheric turbulence. Radiophys. Quantum Electron. 30, 156–171 (1987)

    ADS  Google Scholar 

  71. L.M. Erukhimov, C.A. Metelev, D.V. Razumov, Diagnostics of ionospheric irregularities due to artificial radio radiation. Radiophys. Quantum Electron. 31, 928–935 (1988)

    ADS  Google Scholar 

  72. D.T. Farley, C. La, Hoz.B. Fejer, Studies of the self-focusing instability at Arecibo. J. Geophys. Res. 88(A3), 2093–2102 (1983)

    ADS  Google Scholar 

  73. J.A. Fejer, Ionospheric modification and parametric instabilities. Rev. Geophys. Space Phys. 17, 135–153 (1979)

    ADS  Google Scholar 

  74. J.A. Fejer, H.M. Ierkic, R.F. Woodman, J. Rottger, M. Sulzer, R.A. Behnke, A. Veldhuis, Observations of the HF-enhanced plasma line with a 46.8-MHz radar and reinterpretation of previous observations with the 430-MHz radar. J. Geophys. Res. 88(A3), 2083–2092 (1983)

    ADS  Google Scholar 

  75. J. Fennelly, Demonstration and Science Experiment (DSX) Space Weather Experiment (SWx), in Solar Physics and Space Weather Instrumentation III, ed. by S. Fineschi, J. Fennelly. Proc. of SPIE, vol. 7438 (2009), p. 743805-1-10. https://doi.org/10.1117/12.828321

    Google Scholar 

  76. C.S. Fish et al., Design, development, implementation, and on-orbit performance of the Dynamic Ionosphere CubeSat Experiment mission. Space Sci. Rev. 181, 61–120 (2014). https://doi.org/10.1007/s11214-014-0034-x

    ADS  Article  Google Scholar 

  77. D. Forslund, Instabilities associated with heat conduction in the solar wind and their consequences. J. Geophys. Res. 75, 17–28 (1970). https://doi.org/10.1029/JA075i001p00017

    ADS  Article  Google Scholar 

  78. V.L. Frolov, Influence of modulation transfer in the action of a powerful emission on the ionospheric plasma. Radiophys. Quantum Electron. 24, 354–356 (1981)

    ADS  Google Scholar 

  79. V.L. Frolov, Control of spectral characteristics of artificial low-frequency ionosphere turbulence. Int. J. Geomagn. Aeron. 4(2), 159–165 (2003)

    Google Scholar 

  80. V.L. Frolov et al., On the study of artificial ionospheric turbulence by means of stimulated electromagnetic emission. Radiophys. Quantum Electron. 37(7), 593–603 (1994)

    ADS  Google Scholar 

  81. V.L. Frolov, L.M. Erukhimov, S.A. Metelev, E.N. Sergeev, Temporal behavior of artificial small-scale ionospheric irregularities: Review of experimental results. J. Atmos. Sol.-Terr. Phys. 59(18), 2317–2333 (1997)

    ADS  Google Scholar 

  82. V.L. Frolov, E.N. Ermakova, L.M. Kagan et al., Features of the broad upshifted structure in stimulated electromagnetic emission spectra. J. Geophys. Res. 105(A9), 20,919–20,933 (2000)

    ADS  Google Scholar 

  83. V.L. Frolov, E.N. Sergeev, E.N. Ermakova et al., Spectral features of stimulated electromagnetic emissions, measured in the 4.3–9.5 MHz pump wave frequency range. Geophys. Res. Lett. 28(16), 3103–3106 (2001)

    ADS  Google Scholar 

  84. V.L. Frolov, E.N. Sergeev, G.P. Komrakov et al., The ponderomotive narrow continuum (NCp) component in stimulated electromagnetic emission spectra. J. Geophys. Res. 109, A07304 (2004). https://doi.org/10.1029/2001JA005063

    ADS  Article  Google Scholar 

  85. V.L. Frolov et al., Modification of the terrestrial ionosphere by high-power short-wave radio radiation. Phys. Usp. 50(3), 15–24 (2007). https://doi.org/10.1070/PU2007v050n03ABEH006282

    Article  Google Scholar 

  86. V.L. Frolov et al., Gyroharmonic features of the irregularities HF-induced in the ionosphere. Radiophys. Quantum Electron. 55(6), 357–381 (2012)

    ADS  Google Scholar 

  87. V.L. Frolov et al., Generation of artificial ionospheric irregularities in the mid-latitude ionosphere modified by high-power high-frequency X-mode radio waves. Radiophys. Quantum Electron. 57(6), 393–416 (2014). https://doi.org/10.1007/s11141-014-9523-8

    ADS  Article  Google Scholar 

  88. V.L. Frolov, V.O. Rapoport, E.A. Schorokhova, A.S. Belov, M. Parrot, J.-L. Rauch, Features of the electromagnetic and plasma disturbances induced at the altitudes of the Earth’s outer ionosphere by modification of the ionospheric F2 region using high-power waves radiated by the SURA heating facility. Radiophys. Quantum Electron. 59(3), 177–198 (2016). https://doi.org/10.1007/s11141-016-9688-4

    ADS  Article  Google Scholar 

  89. V.L. Frolov, I.A. Bolotin, G.G. Vertogradov, V.G. Vertogradov, Generation of super small-scale artificial ionospheric irregularities in the ionosphere pumped by high-power HF radio waves. Radiophys. Quantum Electron. 60(6), 450–455 (2017). https://doi.org/10.1007/s11141-017-9813-z

    ADS  Article  Google Scholar 

  90. A. Galeev, R. Sagdeev, Nonlinear plasma theory, in Reviews of Plasma Phys., vol. 7, ed. by M.A. Leontovich (Consultants Bureau, New York, 1979), pp. 1–180

    Google Scholar 

  91. A. Galeev, R. Sagdeev, V. Shapiro, V. Shevchenko, Langmuir turbulence and dissipation of high-frequency energy. Sov. Phys. JETP 46, 711–719 (1977)

    ADS  Google Scholar 

  92. A. Galeev, R. Sagdeev, V. Shapiro, V. Shevehenko, Beam plasma discharge and suprathermal electron tails, in Active Experiments in Space (Alpbach, Austria). Eur. Space Agency Spec. Publ., vol. ESA SP-195 (1983), pp. 151–155

    Google Scholar 

  93. G.L. Gdalevich, Z. Klos, Y.M. Mikhailov, Excitation of ELF-VLF electric fields in ionospheric plasma in active experiments (Intercosmos-24 data). Geomagn. Aeron. 43(5), 602–609 (2003)

    Google Scholar 

  94. L. Gelinas, M. Kelley, M. Sulzer, E. Mishin, M. Starks, In situ observations during an HF heating experiment at Arecibo: Evidence for Z-mode and electron cyclotron harmonic effects. J. Geophys. Res. 108, 1382 (2003). https://doi.org/10.1029/2003JA009922

    Article  Google Scholar 

  95. G. Getmantsev, N. Zuikov, D. Kotik, L. Mironenko, N. Mityakov, V. Rapoport, Y. Sazonov, V. Trakhtengerts, V. Eidman, Combination frequencies in the interaction between high-power short-wave radiation and ionospheric plasma. JETP Lett. 20, 101 (1974)

    ADS  Google Scholar 

  96. A. Gigliotti, W. Gekelman, P. Pribyl, S. Vincena, A. Karavaev, X. Shao, A.S. Sharma, D. Papadopoulos, Generation of polarized shear Alfven waves by rotating magnetic field source. Phys. Plasmas 16, 092106 (2009)

    ADS  Google Scholar 

  97. M. Gołkowski, U.S. Inan, A.R. Gibby, M.B. Cohen, Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater. J. Geophys. Res. 113, A10201 (2008). https://doi.org/10.1029/2008JA013157

    ADS  Article  Google Scholar 

  98. M. Gołkowski, U.S. Inan, M.B. Cohen, Cross modulation of whistler mode and HF waves above the HAARP ionospheric heater. Geophys. Res. Lett. 36, L15103 (2009). https://doi.org/10.1029/2009GL039669

    ADS  Article  Google Scholar 

  99. M. Gołkowski, U.S. Inan, M.B. Cohen, A.R. Gibby, Amplitude and phase of nonlinear magnetospheric wave growth excited by the HAARP HF heater. J. Geophys. Res. 115, A00F04 (2010). https://doi.org/10.1029/2009JA014610

    ADS  Article  Google Scholar 

  100. M. Gołkowski, M.B. Cohen, D.L. Carpenter, U.S. Inan, On the occurrence of ground observations of ELF/VLF magnetospheric amplification induced by the HAARP facility. J. Geophys. Res. 116, A04208 (2011). https://doi.org/10.1029/2010JA016261

    ADS  Article  Google Scholar 

  101. W.E. Gordon, H.C. Carlson, R.L. Showen, Ionospheric heating at Arecibo: first tests. J. Geophys. Rev. 76(31), 7808–7813 (1971)

    ADS  Google Scholar 

  102. S. Grach, Thermal parametric instability in ionospheric plasma at frequencies close to \(\omega _{He}\) and 2\(\omega _{He}\). Radiophys. Quantum Electron. 22, 357–361 (1979)

    ADS  Google Scholar 

  103. S. Grach, N. Mityakov, V. Rapoport, V. Trakhtengertz, Thermal parametric turbulence in a plasma. Physica D 2, 102–106 (1981)

    ADS  MATH  Google Scholar 

  104. S.M. Grach, B. Thidé, T.B. Leyser, Plasma waves near the double resonance layer in the ionosphere. Radiophys. Quantum Electron. 37, 392–402 (1994)

    ADS  Google Scholar 

  105. S. Grach, S. Sergeev, V. Yashnov, V. Kotov, Spectra of stimulated electromagnetic emission of the ionosphere during pump frequency sweeping near gyroharmonics. II. Discussion of the results. Radiophys. Quantum Electron. 51, 499–514 (2008)

    ADS  Google Scholar 

  106. S. Grach, E. Sergeev, E. Mishin, A. Shindin, M. McCarrick, Intermediate downshifted maximum of stimulated electromagnetic emission at high-power HF heating: A new twist on an old problem. J. Geophys. Res. Space Phys. 120, 666–674 (2015). https://doi.org/10.1002/2014JA020423

    ADS  Article  Google Scholar 

  107. S. Grach, E. Sergeev, E. Mishin, A. Shindin, Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves. Phys. Usp. 59, 1091–1128 (2016). https://doi.org/10.3367/UFNe.2016.07.03786

    ADS  Article  Google Scholar 

  108. A. Gurevich, Nonlinear Phenomena in the Ionosphere (Springer, New York, 1978)

    Google Scholar 

  109. A. Gurevich, Nonlinear effects in the ionosphere. Phys. Usp. 50, 1091–1121 (2007). https://doi.org/10.1070/PU2007v050n11ABEH006212

    ADS  Article  Google Scholar 

  110. A.V. Gurevich, V.V. Migulin, Investigations in the U.S.S.R. of non-linear phenomena in the ionosphere. J. Atmos. Terr. Phys. 44(12), 1019–1024 (1982)

    ADS  Google Scholar 

  111. A.V. Gurevich, K.P. Zybin, Strong field aligned scattering of UHF radio waves in ionospheric modification. Phys. Lett. A 358, 159–165 (2006)

    ADS  MATH  Google Scholar 

  112. A.V. Gurevich, A.V. Lukyanov, K.P. Zybin, Stationary state of isolated striations developed during ionospheric modification. Phys. Lett. A. 206, 247–259 (1995)

    ADS  Google Scholar 

  113. A. Gurevich, A. Lukyanov, K. Zybin, Anomalous absorption of powerful radio waves on the striations developed during ionospheric modification. Phys. Lett. A 211, 363–372 (1996)

    ADS  Google Scholar 

  114. A. Gurevich, T. Hagfors, H. Carlson, A. Karashtin, K. Zybin, Self oscillations and bunching of striations in ionospheric modifications. Phys. Lett. A. 239, 385–392 (1998)

    ADS  Google Scholar 

  115. A. Gurevich, K. Zybin, H. Carlson, T. Pedersen, Magnetic zenith effect in ionospheric modifications. Phys. Lett. A 305, 264–274 (2002)

    ADS  Google Scholar 

  116. B. Gustavsson, B. Eliasson, HF radio wave acceleration of ionospheric electrons: analysis of HF-induced optical enhancements. J. Geophys. Res. 113, A08319 (2008). https://doi.org/10.1029/2007JA012913

    ADS  Article  Google Scholar 

  117. B. Gustavsson, T. Sergienko, M.J. Kosch, M.T. Rietveld, A. Steen, B.U.E. Brandstrom, T.B. Leyser, B. Isham, P. Gallop, T. Aso, M. Ejiri, K. Kaila, J. Jussila, H. Holma, The electron distribution during HF pumping—a picture painted in all colours. Ann. Geophys. 23, 1747–1754 (2005)

    ADS  Google Scholar 

  118. B. Gustavsson, T. Leyser, M. Kosch, M. Rietveld, Å. Steen, B. Brändström, T. Aso, Electron gyroharmonic effects in ionization and electron acceleration during High-Frequency pumping in the ionosphere. Phys. Rev. Lett. 97, 195002 (2006). https://doi.org/10.1103/PhysRevLett.97.195002

    ADS  Article  Google Scholar 

  119. B. Gustavsson, M. Kosch, A. Wong, T. Pedersen, C. Heinselman, C. Mutiso, B. Bristow, J. Hughes, W. Wang, First estimates of volume distribution of HF-pump enhanced emissions at 6300 and 5577 Å: a comparison between observations and theory. Ann. Geophys. 26, 3999–4012 (2008)

    ADS  Google Scholar 

  120. B. Gustavsson, R. Newsome, T.B. Leyser, M.J. Kosch, L. Norin, M. McCarrick, T. Pedersen, B.J. Watkins, First observations of X-mode suppression of O-mode HF enhancements at 6300 Å. Geophys. Res. Lett. 36, L20102 (2009). https://doi.org/10.1029/2009GL039421

    ADS  Article  Google Scholar 

  121. B. Gustavsson, M.T. Rietveld, N.V. Ivchenko, M.J. Kosch, The rise and fall of electron temperatures, I: Ohmic heating of ionospheric electrons from under-dense HF-radio wave pumping. J. Geophys. Res. 115, A12332 (2010). https://doi.org/10.1029/2010JA015873

    ADS  Article  Google Scholar 

  122. P. Guzdar, P. Chaturvedi, K. Papadopoulos, S. Ossakow, The thermal self-focussing instability near the critical surface in the high-latitude ionosphere. J. Geophys. Res. 103, 2231–2237 (1998)

    ADS  Google Scholar 

  123. O. Havnes, C. La Hoz, L.I. Naesheim, M.T. Rietveld, First observations of the PMSE overshoot effect and its use for investigating the conditions in the summer mesosphere. Geophys. Res. Lett. 30(23), 2229 (2003). https://doi.org/10.1029/2003GL018429

    ADS  Article  Google Scholar 

  124. R. Helliwell, Whistlers and Related Ionospheric Phenomena (Stanford University Press, Stanford, 1965)

    Google Scholar 

  125. R. Helliwell, VLF simulated experiments in the magnetosphere from Siple station, Antarctica. Rev. Geophys. 26, 551 (1988)

    ADS  Google Scholar 

  126. F.H. Hibberd, E. Nielsen, P. Stubbe, H. Kopka, M.T. Rietveld, Production of auroral zone E region irregularities by powerful HF heating. J. Geophys. Res. 88(A8), 6347–6351 (1983)

    ADS  Google Scholar 

  127. P. Hoeg, Directional changes in the irregularity drift during artificial generation of striations. Phys. Scr. 33, 469–474 (1986)

    ADS  Google Scholar 

  128. H. Holma, K. Kaila, M.J. Kosch, M.T. Rietveld, Recognising the blue emission in artificial aurora. Adv. Space Res. 38(11), 2653–2658 (2006)

    ADS  Google Scholar 

  129. O. Holt, A. Brekke, T. Hansen, H. Kopka, P. Stubbe, HF modification of the auroral D-region detected by a partial reflection experiment. J. Atmos. Terr. Phys. 47(6), 537–545 (1985)

    ADS  Google Scholar 

  130. F. Honary, T. Robinson, D. Wright, A. Stocker, M. Rietveld, I. McCrea, First direct evidence of the reduced striations at pump frequencies close to the electron gyroharmonics. Ann. Geophys. 17, 1235–1238 (1999)

    ADS  Google Scholar 

  131. F. Honary, N. Borisov, M. Beharrell, A. Senior, Temporal development of the magnetic zenith effect. J. Geophys. Res. 116, A06309 (2011). https://doi.org/10.1029/2010JA016029

    ADS  Article  Google Scholar 

  132. J. Huang, S. Kuo, A theoretical model for the broad upshifted maximum in the stimulated electromagnetic emission spectrum. J. Geophys. Res. 99, 19,569–19,576 (1994)

    ADS  Google Scholar 

  133. J. Huang, S.P. Kuo, A generation mechanism for the downshifted peak in stimulated electromagnetic emission spectrum. J. Geophys. Res. 100, 21,433–21,438 (1995). https://doi.org/10.1029/95JA02302

    ADS  Article  Google Scholar 

  134. A. Hussein, W. Scales, J. Huang, Theoretical and simulation studies of broad up-shifted sideband generation in ionospheric stimulated radiation. Geophys. Res. Lett. 25, 955–958 (1998)

    ADS  Google Scholar 

  135. D.L. Hysell, M.C. Kelley, Y.M. Yampolski, V.S. Beley, A.V. Koloskov, P.V. Ponomarenko, O.F. Tyrnov, HF radar observations of decaying artificial field-aligned irregularities. J. Geophys. Res. 101(A12), 26981–26993 (1996). https://doi.org/10.1029/96JA02647

    ADS  Article  Google Scholar 

  136. D.L. Hysell, E. Nossa, M. McCarrick, Excitation threshold and gyroharmonic suppression of artificial E region field-aligned plasma density irregularities. Radio Sci. 45, RS6003 (2010). https://doi.org/10.1029/2010RS004360

    ADS  Article  Google Scholar 

  137. D. Hysell, R. Miceli, E. Kendall, N. Schlatter, R. Varney, B. Watkins, T. Pedersen, P. Bernhardt, J. Huba, Heater-induced ionization inferred from spectrometric airglow measurements. J. Geophys. Res. 119 (2014). https://doi.org/10.1002/2013JA019663

  138. U. Inan, H. Chang, R. Helliwell, W. Imhof, J. Reagan, M. Walt, Precipitation of radiation belt electrons by man-made waves: a comparison between theory and measurement. J. Geophys. Res. 90, 359 (1985)

    ADS  Google Scholar 

  139. U. Inan, T. Bell, J. Bortnik, J. Albert, Controlled precipitation of radiation belt electrons. J. Geophys. Res. 108, 1186 (2003). https://doi.org/10.1029/2002JA009580

    Article  Google Scholar 

  140. U.S. Inan, M. Gołkowski, D.L. Carpenter, N. Reddell, R.C. Moore, T.F. Bell, E. Paschal, P. Kossey, E. Kennedy, S.Z. Meth, Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater. Geophys. Res. Lett. 31, L24805 (2004). https://doi.org/10.1029/2004GL021647

    ADS  Article  Google Scholar 

  141. B. Isham, T. Hagfors, E. Mishin, M. Rietveld, C. LaHoz, W. Kofman, T. Leyser, A search for the location of the HF excitation of enhanced ion acoustic and Langmuir waves with EISCAT and the Tromsøheater. Radiophys. Quantum Electron. 42, 607–618 (1999b)

    Google Scholar 

  142. B. Isham, C. Hoz, M. Rietveld, T. Hagfors, T. Leyser, Cavitating Langmuir turbulence observed during EISCAT high latitude ionospheric interaction experiments. Phys. Rev. Lett. 83, 2576 (1999a)

    ADS  Google Scholar 

  143. B. Isham, C.A. Tepley, M.P. Sulzer, Q.H. Zhou, M.C. Kelley, J.S. Friedman, S.A. Gonz´alez, Upper atmospheric observations at the Arecibo Observatory: Examples obtained using new capabilities. J. Geophys. Res. 105, 18609–18637 (2000). https://doi.org/10.1029/1999JA900315

    ADS  Article  Google Scholar 

  144. Y. Istomin, T. Leyser, Parametric decay of an electromagnetic wave near electron cyclotron harmonics. Phys. Plasmas 2, 2084–2097 (1995)

    ADS  Google Scholar 

  145. H.G. James, V.L. Frolov, E.S. Andreeva, A.M. Padokhin, C.L. Siefring, SURA heating facility transmissions to the CASSIOPE/e-POP satellite. Radio Sci. 52, 259–270 (2017). https://doi.org/10.1002/2016RS006190

    ADS  Article  Google Scholar 

  146. T.B. Jones, T. Robinson, P. Stubbe, H. Kopka, A hysteresis effect in the generation of field-aligned irregularities by a high-power radio wave. Radio Sci. 18(6), 835–839 (1983)

    ADS  Google Scholar 

  147. L.M. Kagan, V.L. Frolov, Significance of field-aligned currents for F-region perturbation. J. Atmos. Terr. Phys. 58(13), 1465–1474 (1996)

    ADS  Google Scholar 

  148. L.M. Kagan, M.C. Kelley, F. Garcia et al., The structure of electromagnetic wave-induced 557.7-nm emission associated with a aporadic-E event over Arecibo. Phys. Rev. Lett. 85(1), 218–221 (2000)

    ADS  Google Scholar 

  149. L.M. Kagan et al., Optical and RF diagnostics of the ionosphere over the SURA facility: review of results. Radio Phys. Radio Astron. 11(3), 221–241 (2006)

    ADS  Google Scholar 

  150. K.S. Kalogerakis, T.G. Slanger, E.A. Kendall, T.R. Pedersen, M.J. Kosch, B. Gustavsson, M.T. Rietveld, Remote Oxygen Sensing by Ionospheric Excitation (ROSIE). Ann. Geophys. 27, 1–7 (2009)

    Google Scholar 

  151. A.V. Karavaev, N.A. Gumerov, K. Papadopoulos, X. Shao, A.S. Sharma, W. Gekelman, A. Gigliotti, P. Pribyl, S. Vincena, Generation of whistler waves by a rotating magnetic field source. Phys. Plasmas 17, 012102 (2010)

    ADS  Google Scholar 

  152. A.V. Karavaev, N.A. Gumerov, K. Papadopoulos, X. Shao, A.S. Sharma, W. Gekelman, A. Gligliotti, P. Pribyl, S. Vincena, Generation of shear Alfvén waves by a rotating magnetic field source: 3D simulations. Phys. Plasmas 18, 032113 (2011)

    ADS  Google Scholar 

  153. A.J. Kavanagh, F. Honary, M.T. Rietveld, A. Senior, First observations of the artificial modulation of polar mesospheric winter echoes. Geophys. Res. Lett. 33, L19801 (2006). https://doi.org/10.1029/2006GL027565

    ADS  Article  Google Scholar 

  154. M.C. Kelley, T.L. Arce, J. Salowey, M. Sulzer, W.T. Armstrong, M. Carter, L. Duncan, Density depletions at the 10-m scale induced by the Arecibo heater. J. Geophys. Res. 100, 17367–17376 (1995)

    ADS  Google Scholar 

  155. E. Kendall, R. Marshall, R.T. Parris, A. Bhatt, A. Coster, T. Pedersen, P. Bernhardt, C. Selcher, Decameter structure in heater-induced airglow at the high frequency active auroral research program facility. J. Geophys. Res. 115, A08306 (2010). https://doi.org/10.1029/2009JA015043

    ADS  Article  Google Scholar 

  156. A. Kero, T. Bösinger, P. Pollari, E. Turunen, M. Rietveld, First EISCAT measurement of electron-gas temperature in the artificially heated D-region ionosphere. Ann. Geophys. 18(9), 1210–1215 (2000)

    ADS  Google Scholar 

  157. E. Kolesnikova, T.R. Robinson, J.A. Davies, D.M. Wright, M. Lester, Excitation of Alfven waves by modulated HF heating of the ionosphere, with application to FAST observations. Ann. Geophys. 20, 57–67 (2002)

    ADS  Google Scholar 

  158. M. Kosch, T. Rietveld, T. Hagfors, T. Leyser, High-latitude HF-induced airglow displaced equatorwards of the pump beam. Geophys. Res. Lett. 27, 2817–2820 (2000). https://doi.org/10.1029/2000GL003754

    ADS  Article  Google Scholar 

  159. M.J. Kosch, M.T. Rietveld, A.J. Kavanagh, C. Davis, T. Yeoman, F. Honary, T. Hagfors, High-latitude pump-induced optical emissions for frequencies close to the third electron gyro-harmonic. Geophys. Res. Lett. 29(23), 2112 (2002). https://doi.org/10.1029/2002GL015744

    ADS  Article  Google Scholar 

  160. M. Kosch, M. Rietveld, A. Senior, I. McCrea, A. Kavanagh, B. Isham, F. Honary, Novel artificial optical annular structures in the high latitude ionosphere. Geophys. Res. Lett. 31, L12805 (2004). https://doi.org/10.1029/2004GL019713

    ADS  Article  Google Scholar 

  161. M. Kosch, T. Pedersen, J. Hughes, R. Marshall, E. Gerken, A. Senior, D. Sentman, M. McCarrick, F. Djuth, Artificial optical emissions at HAARP for pump frequencies near the third and second gyroharmonic. Ann. Geophys. 23, 1585–1592 (2005)

    ADS  Google Scholar 

  162. M. Kosch, T. Pedersen, E. Mishin, S. Oyama, J. Hughes, A. Senior, B. Watkins, B. Bristow, Coordinated optical and radar observations of ionospheric pumping for a frequency pass through the second electron gyroharmonic at HAARP. J. Geophys. Res. 112, A06325 (2007a). https://doi.org/10.1029/2006JA012146

    ADS  Article  Google Scholar 

  163. M. Kosch, T. Pedersen, E. Mishin, M. Starks, E. Gerken-Kendall, D. Sentman, S. Oyama, B. Watkins, Temporal evolution of pump beam self-focusing at the high-frequency active auroral research program. J. Geophys. Res. 112, A08304 (2007b). https://doi.org/10.1029/2007JA012264

    ADS  Article  Google Scholar 

  164. M.J. Kosch, T. Pedersen, M.T. Rietveld, B. Gustavsson, S.M. Grach, T. Hagfors, Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: an observational review. Adv. Space Res. 40, 365–376 (2007c). https://doi.org/10.1016/j.asr.2007.02.061

    ADS  Article  Google Scholar 

  165. M. Kosch, Y. Ogawa, M. Rietveld, S. Nozawa, R. Fujii, An analysis of pump-induced artificial ionospheric ion upwelling at EISCAT. J. Geophys. Res. 115, A12317 (2010). https://doi.org/10.1029/2010JA015854

    ADS  Article  Google Scholar 

  166. M.J. Kosch, C. Bryers, M.T. Rietveld, T.K. Yeoman, Y. Ogawa, Aspect angle sensitivity of pump-induced optical emissions at EISCAT. Earth Planets Space 66, 159 (2014a). https://doi.org/10.1186/s40623-014-0159-x

    Article  Google Scholar 

  167. M.J. Kosch, H. Vickers, Y. Ogawa, A. Senior, N. Blagoveshchenskaya, First observation of the anomalous electric field in the topside ionosphere by ionospheric modification over EISCAT. Geophys. Res. Lett. 41(21), 7427–7435 (2014b). https://doi.org/10.1002/2014GL061679

    ADS  Article  Google Scholar 

  168. D.S. Kotik, E.N. Ermakova, Resonances in the generation of electromagnetic signals due to the thermal cubic nonlinearity in the lower ionosphere. J. Atmos. Sol.-Terr. Phys. 60(12), 1257 (1998)

    ADS  Google Scholar 

  169. V.E. Kunitsyn, E.D. Tereshchenko, E.S. Andreeva, I.A. Nesterov, Satellite radio probing and radio tomography of the ionosphere. Usp. Fiz. Nauk 180(5), 548–553 (2010). https://doi.org/10.3367/UFNr.0180.201005k.0548

    Article  Google Scholar 

  170. V.E. Kunitsyn, E.S. Andreeva, V.L. Frolov, G.P. Komrakov, M.O. Nazarenko, A.M. Padokhin, Sounding of HF heating-induced artificial ionospheric disturbances by navigation satellite radio transmissions. Radio Sci. 47(4), RS0L15 (2012). https://doi.org/10.1029/2011RS004957

    Article  Google Scholar 

  171. S. Kuo, Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere. Phys. Plasmas 20, 092124 (2013). https://doi.org/10.1063/1.4822336

    ADS  Article  Google Scholar 

  172. S. Kuo, Ionospheric modifications in high frequency heating experiments. Phys. Plasmas 22, 012901 (2015). https://doi.org/10.1063/1.4905519

    ADS  Article  Google Scholar 

  173. S. Kuo, M. Lee, P. Kossey, Excitation of oscillating two-stream instability by upper hybrid pump in ionospheric heating experiments at Tromsø. Geophys. Res. Lett. 24, 2969–2972 (1997)

    ADS  Google Scholar 

  174. S. Kuo, A. Snyder, P. Kossey, C.-L. Chang, J. Labenski, VLF wave generation by beating of two HF waves in the ionosphere. Geophys. Res. Lett. 38, L10608 (2011). https://doi.org/10.1029/2011GL047514

    ADS  Article  Google Scholar 

  175. S. Kuo, A. Snyder, P. Kossey, C.-L. Chang, J. Labenski, Beating HF waves to generate VLF waves in the ionosphere. J. Geophys. Res. 117, A03318 (2012). https://doi.org/10.1029/2011JA017076

    ADS  Article  Google Scholar 

  176. N. Lehtinen, U. Inan, Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet. J. Geophys. Res. 113, A06301 (2008). https://doi.org/10.1029/2007JA012911

    ADS  Article  Google Scholar 

  177. T.B. Leyser, Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma. Space Sci. Rev. 98, 223 (2001). https://doi.org/10.1023/A:1013875603938

    ADS  Article  Google Scholar 

  178. T.B. Leyser, E. Nordblad, Self-focused radio frequency L wave pumping of localized upper hybrid oscillations in high-latitude ionospheric plasma. Geophys. Res. Lett. 36(24), L24105 (2009). https://doi.org/10.1029/2009GL041438

    ADS  Article  Google Scholar 

  179. T.B. Leyser, A.Y. Wong, Powerful electromagnetic waves for active environmental research in geospace. Rev. Geophys. 47, 1 (2009). https://doi.org/10.1029/2007rg000235

    Article  Google Scholar 

  180. T.B. Leyser, B. Thide, H. Derblom et al., Dependence of stimulated electromagnetic emission on the ionosphere and pump wave. J. Geophys. Res. 95(A10), 17,233–17,244 (1990)

    ADS  Google Scholar 

  181. T.B. Leyser, B. Thide, M. Waldenvik et al., Spectral structure of stimulated electromagnetic emission between electron cyclotron harmonics. J. Geophys. Res. 98(A10), 17,597–17,606 (1993)

    ADS  Google Scholar 

  182. T.B. Leyser, B. Thide, M. Waldenvik et al., Downshifted maximum features in stimulated electromagnetic emission spectra. J. Geophys. Res. 99(A10), 19,555–19,568 (1994)

    ADS  Google Scholar 

  183. T.B. Leyser, B. Gustavsson, B.U.E. Brandstrom, Å. Steen, F. Honary, M.T. Rietveld, T. Aso, M. Ejiri, Simultaneous measurements of high-frequency pump-enhanced airglow and ionospheric temperatures at auroral latitudes. Adv. Polar Upper Atmos. Res. 14, 1–11 (2000)

    Google Scholar 

  184. A. Mahmoudian, W.A. Scales, M.J. Kosch, A. Senior, M. Rietveld, Dusty space plasma diagnosis using temporal behavior of polar mesospheric summer echoes during active modification. Ann. Geophys. 29, 2169–2179 (2011)

    ADS  Google Scholar 

  185. A. Mahmoudian, W. Scales, P. Bernhardt, A. Samimi, E. Kendall, J. Ruohoniemi, B. Isham, O. Vega-Cancel, M. Bordikar, Ion gyro-harmonic structuring in the stimulated radiation spectrum and optical emissions during electron gyro-harmonic heating. J. Geophys. Res. 118, 1270–1287 (2013). https://doi.org/10.1002/jgra.50167

    Article  Google Scholar 

  186. T. Majeed, D.J. Strickland, New survey of electron impact cross sections for photoelectron and auroral electron energy loss calculations. J. Phys. Chem. Ref. Data 26, 335–349 (1997)

    ADS  Google Scholar 

  187. G.A. Markov, Excitation of a magnetospheric maser through modification of the Earth’s ionosphere by high-power HF radio emission from a ground-based transmitter. J. Exp. Theor. Phys. 111, 916 (2010). https://doi.org/10.1134/S1063776110120046

    ADS  Article  Google Scholar 

  188. J.D. Mathews, A short history of geophysical radar at Arecibo Observatory. Hist. Geo-Space Sci. 4, 19–33 (2013). https://doi.org/10.5194/hgss-4-19-2013

    ADS  Article  Google Scholar 

  189. A.S. Maxworth, M. Gołkowski, M.B. Cohen, R.C. Moore, H.T. Chorsi, S.D. Gedney, R. Jacobs, Multistation observations of the azimuth, polarization, and frequency dependence of ELF/VLF waves generated by electrojet modulation. Radio Sci. 50 (2015). https://doi.org/10.1002/2015RS005683

  190. M.J. McCarrick, D. Sentman, A. Wong, R. Wuerker, B. Chouinard, Excitation of ELF waves in the Schumann resonance range by modulated HF heating of the polar electrojet. Radio Sci. 25, 1291 (1990)

    ADS  Google Scholar 

  191. I. McCrea, A. Aikio, L. Alfonsi, E. Belova, S. Buchert, M. Clilverd, N. Engler, B. Gustavsson, C. Heinselman, J. Kero, M. Kosch, H. Lamy, T. Leyser, Y. Ogawa, K. Oksavik, A. Pellinen-Wannberg, F. Pitout, M. Rapp, I. Stanislawska, J. Vierinen, The science case for the EISCAT_3D radar. Prog. Earth Planet. Sci. 2, 21 (2015). https://doi.org/10.1186/s40645-015-0051-8

    ADS  Article  Google Scholar 

  192. G.M. Milikh, K. Papadopoulos, Enhanced ionospheric ELF/VLF generation efficiency by multiple timescale modulated heating. Geophys. Res. Lett. 34, L20804 (2007). https://doi.org/10.1029/2007GL031518

    ADS  Article  Google Scholar 

  193. G. Milikh, A. Gurevich, K. Zybin, J. Secan, Perturbations of GPS signals by the ionospheric irregularities generated due to HF-heating at triple of electron gyrofrequency. Geophys. Res. Lett. 35, L22102 (2008b). https://doi.org/10.1029/2008GL035527

    ADS  Article  Google Scholar 

  194. G.M. Milikh, K. Papadopoulos, H. Shroff, C.L. Chang, T. Wallace, E.V. Mishin, M. Parrot, J.J. Berthelier, Formation of artificial ionospheric ducts. Geophys. Res. Lett. 35, L17104 (2008a). https://doi.org/10.1029/2008GL034630

    ADS  Article  Google Scholar 

  195. G.M. Milikh, A.G. Demekhov, K. Papadopoulos, A. Vartanyan, J.D. Huba, G. Joyce, Model for artificial ionospheric duct formation due to HF heating. Geophys. Res. Lett. 37, L07803 (2010b). https://doi.org/10.1029/2010GL042684

    ADS  Article  Google Scholar 

  196. G.M. Milikh, E. Mishin, I. Galkin, A. Vartanyan, C. Roth, B.W. Reinisch, Ion outflows and artificial ducts in the topside ionosphere at HAARP. Geophys. Res. Lett. 37, L18102 (2010a). https://doi.org/10.1029/2010GL044636

    ADS  Article  Google Scholar 

  197. J. Minkoff, P. Kugelman, I. Weissman, Radio frequency scattering from a heated ionospheric volume, 1, VHF/UHF field-aligned and plasma-line backscatter measurements. Radio Sci. 9(11), 941–955 (1974)

    ADS  Google Scholar 

  198. E. Mishin, Heat transport in the solar wind. Astrophys. Space Sci. 27, 367–382 (1974)

    ADS  Google Scholar 

  199. E. Mishin, T. Pedersen, Ionizing wave via high-power HF acceleration. Geophys. Res. Lett. 38, L01105 (2011). https://doi.org/10.1029/2010GL046045

    ADS  Article  Google Scholar 

  200. E. Mishin, V. Telegin, Spectrum of suprathermal electrons in the auroral plasma. Sov. J. Plasma Phys. 12, 509–511 (1986)

    Google Scholar 

  201. E. Mishin, T. Hagfors, B. Isham, A generation mechanism for topside enhanced incoherent backscatter during high frequency modification experiments in Tromsø. Geophys. Res. Lett. 28, 479–482 (2001)

    ADS  Google Scholar 

  202. E. Mishin, W. Burke, T. Pedersen, On the onset of HF-induced airglow at magnetic zenith. J. Geophys. Res. 109, A02305 (2004). https://doi.org/10.1029/2003JA010205

    ADS  Article  Google Scholar 

  203. E. Mishin, W. Burke, T. Pedersen, HF-induced airglow at magnetic zenith: theoretical considerations. Ann. Geophys. 23, 47–53 (2005a)

    ADS  Google Scholar 

  204. E. Mishin, M. Kosch, T. Pedersen, W. Burke, HF-induced airglow at magnetic zenith: coexistence of the thermal and parametric instabilities near electron gyroharmonics. Geophys. Res. Lett. 32, L23106 (2005b). https://doi.org/10.1029/2005GL023864

    ADS  Article  Google Scholar 

  205. E. Mishin, E. Sutton, G. Milikh, I. Galkin, C. Roth, M. Förster, F2-region atmospheric gravity waves due to high-power HF heating and subauroral polarization streams. Geophys. Res. Lett. 39, L11101 (2012). https://doi.org/10.1029/2012GL052004

    ADS  Article  Google Scholar 

  206. E. Mishin, B. Watkins, N. Lehtinen, B. Eliasson, T. Pedersen, S. Grach, Artificial ionospheric layers driven by high-frequency radiowaves: An assessment. J. Geophys. Res. Space Phys. 121, 3497–3524 (2016). https://doi.org/10.1002/2015JA021823

    ADS  Article  Google Scholar 

  207. E. Mjølhus, On linear conversion in a magnetized plasma. Radio Sci. 25, 1321–1339 (1990)

    ADS  Google Scholar 

  208. E. Mjølhus, On the small scale striation effect in ionospheric radio modification experiments near harmonics of the electron gyro frequency. J. Atmos. Terr. Phys. 55, 907 (1993)

    ADS  Google Scholar 

  209. E. Mjølhus, E. Helmersen, D. DuBois, Geometric aspects of HF driven Langmuir turbulence in the ionosphere. Nonlinear Process. Geophys. 10, 151–177 (2003)

    ADS  Google Scholar 

  210. M.M. Mogilevsky, L.M. Zelenyi, A.G. Demekhov, A.A. Petrukovich, D.R. Shklyar, RESONANCE project for studies of wave-particle interactions in the inner magnetosphere, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, ed. by e.D. Summers, I.R. Mann, D.N. Baker, M. Schulz (American Geophysical Union, Washington, 2012). https://doi.org/10.1029/2012GM001334

    Google Scholar 

  211. R.C. Moore, S. Fujjimaru, M. Cohen, M. Golkowski, M.J. McCarrick, On the altitude of the ELF/VLF source region generated during “beat wave” HF heating experiments. Geophys. Res. Lett. 39, L18101 (2012). https://doi.org/10.1029/2012GL053210

    ADS  Article  Google Scholar 

  212. R.C. Moore, S. Fujimaru, D.A. Kotovsky, M. Gołkowski, Observations of ionospheric ELF and VLF wave generation by excitation of the thermal cubic nonlinearity. Phys. Rev. Lett. 111(23), 235007 (2013). https://doi.org/10.1103/PhysRevLett.111.235007

    ADS  Article  Google Scholar 

  213. S.L. Musher, A.M. Rubenchik, B.I. Sturman, Collective effects associated with lower hybrid heating of plasma. Plasma Phys. 20, 1131–1150 (1978)

    ADS  Google Scholar 

  214. C. Mutiso, J. Hughes, G. Sivjee, T. Pedersen, B. Gustavsson, M. Kosch, Previously unreported optical emissions generated during ionospheric heating. Geophys. Res. Lett. 35, L14103 (2008). https://doi.org/10.1029/2008GL034563

    ADS  Article  Google Scholar 

  215. A. Najmi, G. Milikh, J. Secan, K. Chiang, M. Psiaki, P. Bernhardt, S. Briczinski, C. Siefring, C.L. Chang, K. Papadopoulos, Generation and detection of super small striations by F region HF heating. J. Geophys. Res. Space Phys. 119(7) (2014). https://doi.org/10.1002/2014JA020038

  216. A. Najmi, B. Eliasson, X. Shao, G. Milikh, K. Papadopoulos, Simulations of ionospheric turbulence produced by HF heating near the upper hybrid layer. Radio Sci. 51, 704–717 (2016). https://doi.org/10.1002/2015RS005866

    ADS  Article  Google Scholar 

  217. S. Oyama, B. Watkins, F. Djuth, M. Kosch, P. Bernhardt, C. Heinselman, Persistent enhancement of the HF pump-induced plasma line measured with a UHF diagnostic radar at HAARP. J. Geophys. Res. 111, A06309 (2006). https://doi.org/10.1029/2005JA011363

    ADS  Article  Google Scholar 

  218. K. Papadopoulos, H.-B. Zhou, C.-L. Chang, Cerenkov excitation of whistler/helicon waves by ionospheric HF heating. Geophys. Res. Lett. 21(17), 1767 (1994)

    ADS  Google Scholar 

  219. K. Papadopoulos, T. Wallace, M. McCarrick, G.M. Milikh, X. Yang, On the efficiency of ELF/VLF generation using HF heating of the auroral electrojet. Plasma Phys. Rep. 29, 561 (2003)

    ADS  Google Scholar 

  220. K. Papadopoulos, C.-L. Chang, J. Labenski, T. Wallace, First demonstration of HF driven ionospheric currents. Geophys. Res. Lett. 38, L20107 (2011b). https://doi.org/10.1029/2011GL049263

    ADS  Article  Google Scholar 

  221. K. Papadopoulos, N. Gumerov, X. Shao, C.-L. Cheng, I. Doxas, HF driven current in the polar ionosphere. Geophys. Res. Lett. 38, L12103 (2011a). https://doi.org/10.1029/2011GL047368

    ADS  Article  Google Scholar 

  222. T.R. Pedersen, H.C. Carlson, First observations of HF heater produced airglow at the High Frequency Active Auroral Research Program facility: thermal excitation and spatial structuring. Radio Sci. 36(5), 1013–1026 (2001). https://doi.org/10.1029/2000RS002399

    ADS  Article  Google Scholar 

  223. T.R. Pedersen, E. Gerken, Creation of visible artificial optical emissions in the aurora by high-power radio waves. Nature 433, 498–500 (2005). https://doi.org/10.1038/nature03243

    ADS  Article  Google Scholar 

  224. T. Pedersen, M. McCarrick, E. Gerken, C. Selcher, D. Sentman, H. Carlson, A. Gurevich, Magnetic zenith enhancement of HF radio-induced airglow production at HAARP. Geophys. Res. Lett. 30, 1169–1172 (2003). https://doi.org/10.1029/2002GL016096

    ADS  Article  Google Scholar 

  225. T. Pedersen, R. Esposito, E. Kendall, D. Sentman, M. Kosch, E. Mishin, R. Marshall, Observations of artificial and natural optical emissions at the HAARP facility. Ann. Geophys. 26, 1089–1099 (2008)

    ADS  Google Scholar 

  226. T. Pedersen, B. Gustavsson, E. Mishin, E. MacKenzie, H.C. Carlson, M. Starks, T. Mills, Optical ring formation and ionization production in high-power HF heating experiments at HAARP. Geophys. Res. Lett. 36, L18107 (2009). https://doi.org/10.1029/2009GL040047

    ADS  Article  Google Scholar 

  227. T. Pedersen, B. Gustavsson, E. Mishin, E. Kendall, T. Mills, H.C. Carlson, A.L. Snyder, Creation of artificial ionospheric layers using high-power HF waves. Geophys. Res. Lett. 37, L02106 (2010). https://doi.org/10.1016/S0273-1177(02)00186-2

    ADS  Article  Google Scholar 

  228. T. Pedersen, M. McCarrick, B. Reinisch, B. Watkins, R. Hamel, V. Paznukhov, Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic. Ann. Geophys. 29, 47–51 (2011). https://doi.org/10.5194/angeo-29-47-2011

    ADS  Article  Google Scholar 

  229. F.W. Perkins, A theoretical model for short-scale field-aligned plasma density striations. Radio Sci. 9(11), 1065–1070 (1974)

    ADS  Google Scholar 

  230. D. Piddyachiy, U.S. Inan, T.F. Bell, N.G. Lehtinen, M. Parrot, DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater. J. Geophys. Res. 113, A10308 (2008). https://doi.org/10.1029/2008JA013208

    ADS  Article  Google Scholar 

  231. S. Polyakov, V. Rapoport, The ionospheric Alfvén resonator. Geomagn. Aeron. 21, 816 (1981)

    ADS  Google Scholar 

  232. P.V. Ponomarenko, T.B. Leyser, B. Thide, New electron gyroharmonic effects in HF scatter from pump-excited magnetic field-aligned ionospheric irregularities. J. Geophys. Res. 104(A5), 10,081–10,087 (1999)

    ADS  Google Scholar 

  233. P.V. Ponomarenko, Yu.M. Yampolski, A.V. Zalizovsky, D. Hysell, O. Tyrnov, Interaction between artificial ionospheric irregularities and natural MHD waves. J. Geophys. Res. 105(A1), 171–181 (2000)

    ADS  Google Scholar 

  234. R. Pradipta, M.C. Lee, J.F. Cohen, D.J. Watkins, Generation of artificial acoustic-gravity waves and traveling ionospheric disturbances in HF heating experiments. Earth Moon Planets (2015). https://doi.org/10.1007/s11038-015-9461-2

    Article  Google Scholar 

  235. V.O. Rapoport, V.L. Frolov, S.V. Polyakov, G.P. Komrakov, N.A. Ryzhov, G.A. Markov, A.S. Belov, M. Parrot, J.-L. Rauch, VLF electromagnetic field structures in the ionosphere disturbed by SURA RF heating facility. J. Geophys. Res. 115, A10322 (2010). https://doi.org/10.1029/2010JA015484

    ADS  Article  Google Scholar 

  236. B. Reinisch et al., First results from the Radio Plasma Imager on IMAGE. Geophys. Res. Lett. 28, 1167–1170 (2001). https://doi.org/10.1029/2000GL012398

    ADS  Article  Google Scholar 

  237. F.J. Rich, M. Hairston, Large-scale convection patterns observed by DMSP. J. Geophys. Res. 79, 3827 (1994)

    ADS  Google Scholar 

  238. M.T. Rietveld, P.N. Collis, J.-P.St. Maurice, Naturally enhanced ion-acoustic waves in the auroral ionosphere observed by the EISCAT 933 MHz radar. J. Geophys. Res. 96, 19291–19305 (1991)

    ADS  Google Scholar 

  239. M.T. Rietveld, H. Kohl, H. Kopka, P. Stubbe, Introduction to ionospheric heating at Tromsø. Experimental overview. J. Atmos. Terr. Phys. 55, 577–599 (1993)

    ADS  Google Scholar 

  240. M.T. Rietveld, B. Isham, H. Kohl, C. La Hoz, T. Hagfors, Measurements of HF-enhanced plasma and ion lines at EISCAT with high altitude resolution. J. Geophys. Res. 105(A4), 7429–7439 (2000)

    ADS  Google Scholar 

  241. M.T. Rietveld, B. Isham, T. Grydeland, C. La Hoz, T.B. Leyser, F. Honary, H. Ueda, M. Kosch, T. Hagfors, HF-pump-induced parametric instabilities in the auroral E-region. Adv. Space Res. 29(9), 1363–1368 (2002)

    ADS  Google Scholar 

  242. M.T. Rietveld, M.J. Kosch, N.F. Blagoveshchenskaya, V.A. Kornienko, T.B. Leyser, T.K. Yeoman, Ionospheric electron heating, optical emissions and striations induced by powerful HF radio waves at high latitudes: aspect angle dependence. J. Geophys. Res. 108(A4), 1141 (2003). https://doi.org/10.1029/2002JA009543

    Article  Google Scholar 

  243. M.T. Rietveld, A. Senior, J. Markkanen, A. Westman, New capabilities of the upgraded EISCAT high-power HF facility. Radio Sci. 51 (2016). https://doi.org/10.1002/2016RS006093

  244. T. Robinson, The heating of the high latitude ionosphere by high-power radio waves. Phys. Rep. 179, 79–209 (1989)

    ADS  Google Scholar 

  245. T.R. Robinson, The Role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere: Implications for RF heating of the auroral electrojet. Ann. Geophys. 12(4), 316–332 (1994)

    ADS  Google Scholar 

  246. P. Robinson, Nonlinear wave collapse and strong turbulence. Rev. Mod. Phys. 69, 507–573 (1997)

    ADS  Google Scholar 

  247. T.R. Robinson, F. Honary, A. Stocker, T.B. Jones, Factors influencing the heating of the auroral electrojet by high power radio waves. Adv. Space Res. 15(12), 41–44 (1995)

    ADS  Google Scholar 

  248. T.R. Robinson, G. Bond, P. Eglitis, F. Honary, M.T. Rietveld, RF heating of a strong auroral electrojet. Adv. Space Res. 21(5), 689–692 (1998)

    ADS  Google Scholar 

  249. T.R. Robinson, R. Strangeway, D.M. Wright, J.A. Davies, R.B. Horne, T.K. Yeoman, A.J. Stocker, M. Lester, M.T. Rietveld, I.R. Mann, C.W. Carlson, J.P. McFadden, FAST observations of ULF waves injected into the magnetosphere by means of modulated RF heating of the auroral electrojet. Geophys. Res. Lett. 27(19), 3165–3168 (2000)

    ADS  Google Scholar 

  250. T.R. Robinson, T.K. Yeoman, R.S. Dhillon, M. Lester, E.C. Thomas, J.D. Thornhill, D.M. Wright, A.P. van Eyken, I. McCrea, First observations of SPEAR induced artificial backscatter from CUTLASS and the EISCAT Svalbard radar. Ann. Geophys. 24, 291–309 (2006)

    ADS  Google Scholar 

  251. Yu. Ruzhin et al., On the possibility of localization of a substorm by using the SURA heating facility. Radiophys. Quantum Electron. 55(1–2), 85–94 (2012)

    ADS  Google Scholar 

  252. R. Sagdeev, The 1976 Oppenheimer Lectures: Critical problems in plasma astrophysics. Rev. Mod. Phys. 51, 1–20 (1979)

    ADS  Google Scholar 

  253. A. Samimi, W.A. Scales, P.A. Bernhardt, S.J. Briczinski, M.J. McCarrick, Ion gyroharmonic structures in stimulated radiation during second electron gyroharmonic heating, 1: theory. J. Geophys. Res. Space Phys. 118, 502–514 (2013). https://doi.org/10.1029/2012JA018146

    ADS  Article  Google Scholar 

  254. A. Samimi, W.A. Scales, P.A. Bernhardt, S.J. Briczinski, M.J. McCarrick, Ion gyroharmonic structures in stimulated radiation during second electron gyroharmonic heating, 2: simulations. J. Geophys. Res. Space Phys. 119, 462–478 (2014). https://doi.org/10.1002/2013JA019341

    ADS  Article  Google Scholar 

  255. J.C. Samson, D.D. Wallis, T.J. Hughes, F. Greutzberg, J.M. Ruohoniemi, R.A. Greenwald, Substorm intensifications and field line resonaces in the nightside magnetosphere. J. Geophys. Res. 97, 8495 (1992)

    ADS  Google Scholar 

  256. J.-A. Sauvaud, T. Moreau, R. Maggiolo, J.-P. Treilhou, C. Jacquey, A. Cros, J. Coutelier, J. Rouzaud, E. Penou, M. Gangloff, High-energy electron detection onboard DEMETER: The IDP spectrometer, description and first results on the inner belt. Planet. Space Sci. 54, 502–511 (2006)

    ADS  Google Scholar 

  257. M. Scherbarth, A. Adler, G. Ginet, Demonstration and Science Experiment (DSX) Mission, in Solar Physics and Space Weather Instrumentation III, ed. by S. Fineschi, J. Fennelly. Proc. of SPIE, vol. 7438 (2009), p. 74380B-1-10. https://doi.org/10.1117/12.824898

    Google Scholar 

  258. N.M. Schlatter, N. Ivchenko, B. Gustavsson, T. Leyser, M. Rietveld, Observations of HF induced instability in the auroral E region. Ann. Geophys. 31, 1103–1108 (2013). https://doi.org/10.5194/angeo-31-1103-2013

    ADS  Article  Google Scholar 

  259. N.M. Schlatter, V. Belyey, B. Gustavsson, N. Ivchenko, D. Whiter, H. Dahlgren, S. Tuttle, T. Grydeland, Auroral ion acoustic wave enhancement observed with a radar interferometer system. Ann. Geophys. 33, 837–844 (2015). https://doi.org/10.5194/angeo-33-837-2015

    ADS  Article  Google Scholar 

  260. W. Schumann, On the damping of electromagnetic self-oscillations in the system earth–air–ionosphere. Z. Naturforsch. 7(a2), 250149 (1952). https://doi.org/10.1515/zna-1952-0202 (in German)

    ADS  Article  Google Scholar 

  261. H. Scoffield, T. Yeoman, T. Robinson, L. Baddeley, R. Dhillon, D. Wright, T. Raita, T. Turunen, First results of artificial stimulation of the ionospheric Alfvén resonator at 78 N. Geophys. Res. Lett. 33(L19), 103 (2006). https://doi.org/10.1029/2006GL027

    Article  Google Scholar 

  262. K.J.F. Sedgemore-Schulthess, J.-P. St. Maurice, Naturally enhanced ion-acoustic spectra and their interpretation. Surv. Geophys. 22, 55–92 (2001)

    ADS  Google Scholar 

  263. A. Senior, F. Honary, P.J. Chapman, M.T. Rietveld, T.S. Kelso, M.J. Kosch, High-frequency magnetospheric sounding at EISCAT: some trials and their implications. Radio Sci. 43, RS4009 (2008). https://doi.org/10.1029/2007RS003779

    ADS  Article  Google Scholar 

  264. A. Senior, M.T. Rietveld, M.J. Kosch, W. Singer, Diagnosing radio plasma heating in the polar summer mesosphere using cross-modulation: Theory and observations. J. Geophys. Res. 115, A09318 (2010). https://doi.org/10.1029/2010JA015379

    ADS  Article  Google Scholar 

  265. A. Senior, M.T. Rietveld, F. Honary, W. Singer, M.J. Kosch, Measurements and modelling of cosmic noise absorption changes due to radio heating of the D-region ionosphere. J. Geophys. Res. 116, A04310 (2011). https://doi.org/10.1029/2010JA016189

    ADS  Article  Google Scholar 

  266. A. Senior, M.T. Rietveld, I. Haggstrom, M.J. Kosch, Radio-induced incoherent scatter ion line enhancements with wide altitude extents in the high-latitude ionosphere. Geophys. Res. Lett. 40(9), 1669–1674 (2013). https://doi.org/10.1002/grl.50272

    ADS  Article  Google Scholar 

  267. A. Senior, A. Mahmoudian, H. Pinedo, C. La Hoz, M.T. Rietveld, W.A. Scales, M.J. Kosch, First modulation of high-frequency polar mesospheric summer echoes by radio heating of the ionosphere. Geophys. Res. Lett. 41(15), 5347–5353 (2014). https://doi.org/10.1002/2014GL060703

    ADS  Article  Google Scholar 

  268. E.N. Sergeev et al., Exploring HF-induced ionospheric turbulence by Doppler sounding and stimulated electromagnetic emissions at HAARP heating facility. Radio Sci. 51 (2016). https://doi.org/10.1002/2015RS005936

  269. E.N. Sergeev, V.L. Frolov, G.P. Komrakov, B. Thide, Temporal evolution of HF-excited plasma waves, measured at different pump frequencies by stimulated electromagnetic emission. J. Atmos. Sol.-Terr. Phys. 59(18), 2383–2400 (1997)

    ADS  Google Scholar 

  270. E.N. Sergeev, V.L. Frolov, G.N. Boiko, G.P. Komrakov, Results of investigation of the Langmuir and upper hybrid plasma turbulence evolution by means of the stimulated ionospheric emission. Radiophys. Quantum Electron. 41(3), 206–228 (1998)

    ADS  Google Scholar 

  271. E.N. Sergeev, S.M. Grach, G.P. Komrakov, V.L. Frolov, P. Stubbe, B. Thide, T.B. Leyser, T.D. Carozzi, Influence of small-scale irregularities on characteristics of the overshoot effect in the temporal evolution of stimulated electromagnetic emission. Part I. Development stage. Radiophys. Quantum Electron. 42(7), 544–556 (1999)

    ADS  Google Scholar 

  272. E.N. Sergeev, S.M. Grach, P.V. Kotov, Study of the excitation conditions and characteristics of ionospheric plasma turbulence at the development stage of the pondermotive parametric instability. Radiophys. Quantum Electron. 47(3), 185–204 (2004)

    ADS  Google Scholar 

  273. E.N. Sergeev, V.L. Frolov, S.M. Grach, P.V. Kotov, On the morphology of SEE spectral features in a wide pump wave frequency range. Adv. Space Res. 38(11), 2518–2526 (2006). https://doi.org/10.1016/j.asr.2005.02.046

    ADS  Article  Google Scholar 

  274. E. Sergeev, S. Grach, A. Shindin, E. Mishin, P. Bernhardt, S. Briczinski, B. Isham, M. Broughton, J. LaBelle, B. Watkins, Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP. Phys. Rev. Lett. 110 (2013). https://doi.org/10.1134/S1028335814020074

  275. E.N. Sergeev, S.M. Grach, V.L. Frolov, A.V. Shinding, Diagnostics of the generation, decay, and transfer of artificial plasma perturbations by means of short pulses of a high-power radio emission. Radiophys. Quantum Electron. 59(11), 876–887 (2017). https://doi.org/10.1007/s11141-017-9758-2

    ADS  Article  Google Scholar 

  276. T. Sergienko, I. Kornilov, E. Belova et al., Optical effects in the aurora caused by ionospheric HF heating. J. Atmos. Sol.-Terr. Phys. 99(18), 2401–2407 (1997)

    ADS  Google Scholar 

  277. T. Sergienko, B. Gustavsson, U. Brandstrom, K. Axelsson, Modelling of optical emissions enhanced by the HF pumping of the ionospheric F-region. Ann. Geophys. 30, 885–895 (2010). https://doi.org/10.5194/angeo-30-885-2012

    ADS  Article  Google Scholar 

  278. V. Shapiro, V. Shevchenko, Strong turbulence of plasma oscillations, in Basic Plasma Physics, vol. 2, ed. by A. Galeev, R. Sudan (North-Holland, New York, 1984), pp. 123–182

    Google Scholar 

  279. A.V. Shindin et al., The 630 nm and 557.7 nm airglow during HF ionosphere pumping by the SURA facility radiation for pump frequencies near the fourth electron gyroharmonic. Radiophys. Quantum Electron. 57(11), 759–772 (2015)

    ADS  Google Scholar 

  280. M.M. Shvarts, S.M. Grach, E.N. Sergeev, V.L. Frolov, On the generation of the stimulated electromagnetic emission. The computer simulation results. Adv. Space Res. 15(12), 59–62 (1995)

    Google Scholar 

  281. C.L. Siefring, P.A. Bernhardt, H.G. James, R.T. Parris, The CERTO beacon on CASSIOPE/e-POP and experiments using high-power HF ionospheric heaters. Space Sci. Rev. 189, 107–122 (2014). https://doi.org/10.1007/s11214-014-0110-2

    ADS  Article  Google Scholar 

  282. F. Simoes, R. Pfaff, H. Freudenreich, Satellite observations of Schumann resonances in the Earth’s ionosphere. Geophys. Res. Lett. 38(L22), 101 (2011). https://doi.org/10.1029/2011GL049668

    Article  Google Scholar 

  283. M. Starodubtsev, V. Nazarov, A. Kostrov, Laboratory study of nonlinear trapping of magnetized Langmuir waves inside a density depletion. Phys. Rev. Lett. 98, 195001 (2007). https://doi.org/10.1103/PhysRevLett.98.195001

    ADS  Article  Google Scholar 

  284. A.V. Streltsov, T.R. Pedersen, An alternative method for generation of ULF waves by ionospheric heating. Geophys. Res. Lett. 37, L14101 (2010). https://doi.org/10.1029/2010GL043543

    ADS  Article  Google Scholar 

  285. A.V. Streltsov, T.R. Pedersen, Excitation of zero-frequency magnetic field-aligned currents by ionospheric heating. Ann. Geophys. 29, 1147 (2011). https://doi.org/10.5194/angeo-29-1147-2011

    ADS  Article  Google Scholar 

  286. A. Streltsov, W. Lotko, G. Milikh, Simulations of ULF field-aligned currents generated by HF heating of the ionosphere. J. Geophys. Res. 110, 629 (2005). https://doi.org/10.1029/2004JA010

    Article  Google Scholar 

  287. A.V. Streltsov, T.R. Pedersen, E.V. Mishin, A.L. Snyder, Ionospheric feedback instability and substorm development. J. Geophys. Res. 115, A07205 (2010a). https://doi.org/10.1029/2009JA014961

    ADS  Article  Google Scholar 

  288. A.V. Streltsov, M. Gołkowski, U.S. Inan, K.D. Papadopoulos, Propagation of whistler-mode waves with a modulated frequency in the magnetosphere. J. Geophys. Res. 115, A09209 (2010b). https://doi.org/10.1029/2009JA015155

    ADS  Article  Google Scholar 

  289. A.V. Streltsov, C.-L. Chang, J. Labenski, G.M. Milikh, A. Vartanyan, A.L. Snyder, Excitation of the ionospheric Alfvén resonator from the ground: theory and experiments. J. Geophys. Res. 116, A10221 (2011). https://doi.org/10.1029/2011JA016680

    ADS  Article  Google Scholar 

  290. A.V. Streltsov, T. Guido, B. Tulegenov, J. Labenski, C.-L. Chang, Artificial excitation of ELF waves with frequency of Schumann resonance. J. Atmos. Sol.-Terr. Phys. 119, 110 (2014). https://doi.org/10.1016/j.jastp.2014.07.004

    ADS  Article  Google Scholar 

  291. P. Stubbe, Review of ionospheric modification experiments at Tromsø. J. Atmos. Terr. Phys. 58, 1–4 (1996). 349–368

    Google Scholar 

  292. P. Stubbe, T. Hagfors, The Earth’s ionosphere: a wall-less plasma laboratory. Surv. Geophys. 18(1), 57–127 (1997)

    ADS  Google Scholar 

  293. P. Stubbe, H. Kopka, Modulation of the polar electrojet by powerful HF waves. J. Geophys. Res. 82(16), 2319–2325 (1977)

    ADS  Google Scholar 

  294. P. Stubbe, H. Kopka, Stimulated electromagnetic emission in a magnetized plasma: A new symmetrical spectral feature. Phys. Rev. Lett. 65(2), 183–186 (1990)

    ADS  Google Scholar 

  295. P. Stubbe, H. Kopka, R.L. Dowden, Generation of ELF and VLF waves by polar electrojet modulation: Experimental results. J. Geophys. Res. 86(A11), 9073 (1981)

    ADS  Google Scholar 

  296. P. Stubbe, H. Kopka, H. Lauche, M.T. Rietveld, A. Brekke, O. Holt, T.B. Jones, T. Robinson, A. Hedberg, B. Thidé, B. Crochet, H.-J. Lotz, Ionospheric modification experiments in northern Scandinavia. J. Atmos. Terr. Phys. 44(12), 1025–1041 (1982)

    ADS  Google Scholar 

  297. P. Stubbe, H. Kopka, B. Thidé, H. Derblom, Stimulated electromagnetic emission: a new technique to study the parametric decay instability in the ionosphere. J. Geophys. Res. 89(A9), 7523–7536 (1984)

    ADS  Google Scholar 

  298. P. Stubbe, H. Kopka, M.T. Rietveld, A. Frey, P. Hoeg, H. Kohl, E. Nielsen, G. Rose, C. LaHoz, R. Barr, H. Derblom, A. Hedberg, B. Thide, T.B. Jones, T. Robinson, A. Brekke, T. Hansen, O. Holt, Ionospheric modification experiments with the Tromsøheating facility. J. Atmos. Terr. Phys. 47(12), 1151–1163 (1985)

    ADS  Google Scholar 

  299. P. Stubbe, A.J. Stocker, F. Honary, T.R. Robinson, T.B. Jones, Stimulated electromagnetic emissions (SEE) and anomalous HF wave absorption near electron gyroharmonics. J. Geophys. Res. 99, 6233–6246 (1994)

    ADS  Google Scholar 

  300. B. Sturman, Interaction of potential oscillations in a magnetoactive plasma. Radiophys. Quantum Electron. 17, 1349–1355 (1974)

    ADS  Google Scholar 

  301. M.P. Sulzer, J.D. Mathews, A.A. Tomko, A UHF cross-modulation D region heating experiment with aeronomic implications. Radio Sci. 17(2), 435–443 (1982)

    ADS  Google Scholar 

  302. V. Surkov, N. Nosikova, A. Plyasov, V. Pilipenko, V. Ignatov, Penetration of Schumann resonances into the upper ionosphere. J. Atmos. Sol.-Terr. Phys. 97, 65 (2013)

    ADS  Google Scholar 

  303. B.D.H. Tellegen, Interaction between radio waves. Nature 131, 840 (1933). https://doi.org/10.1038/131840a0

    ADS  Article  Google Scholar 

  304. E.D. Tereshchenko, B.Z. Khudukon, A.V. Gurevich, K.P. Zybin, V.L. Frolov, E.N. Myasnikov, N.V. Muravieva, H.C. Carlson, Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes. Phys. Lett. A 325, 381–388 (2004)

    ADS  Google Scholar 

  305. B. Thidé, H. Kopka, P. Stubbe, Observations of stimulated scattering of a strong high frequency radio wave in the ionosphere. Phys. Rev. Lett. 49, 1561–1564 (1982). https://doi.org/10.1103/PhysRevLett.49.1561

    ADS  Article  Google Scholar 

  306. G.D. Thome, D.W. Blood, First observations of RF backscatter from field-aligned irregularities produced by ionospheric heating. Radio Sci. 9(11), 917–921 (1974)

    ADS  Google Scholar 

  307. V. Trakhtengertz, A.Y. Feldstein, Quiet auroral arcs: ionospheric effect of magnetospheric convection stratification. Planet. Space Sci. 32, 127 (1984)

    ADS  Google Scholar 

  308. T.T. Tsuda, M.T. Rietveld, M.J. Kosch, S. Oyama, K. Hosokawa, S. Nozawa, T. Kawabata, A. Mizuno, Y. Ogawa, A survey of conditions for artificial aurora experiments at EISCAT Tromsø site using dynasonde data. Earth Planets Space 70, 40 (2018). https://doi.org/10.5194/angeo-36-243-2018

    ADS  Article  Google Scholar 

  309. V.P. Uryadov, G.G. Vertogradov, V.G. Vertogradov, G.P. Komrakov, N. Cherkashin Yu, V.V. Vas’kov, Field-aligned scattering of HF radio waves under modification of the ionosphere by high-power oblique radio waves. Radiophys. Quantum Electron. 50(8), 611–618 (2007)

    ADS  Google Scholar 

  310. A. Vartanyan, G.M. Milikh, E. Mishin, M. Parrot, I. Galkin, B. Reinisch, J. Huba, G. Joyce, K. Papadopoulos, Artificial ducts caused by HF heating of the ionosphere by HAARP. J. Geophys. Res. 117, A10307 (2012). https://doi.org/10.1029/2012JA017563

    ADS  Article  Google Scholar 

  311. A. Vartanyan, G.M. Milikh, B. Eliasson, A.C. Najmi, M. Parrot, K. Papadopoulos, Generation of whistler waves by continuous HF heating of the upper ionosphere. Radio Sci. 51, 1188 (2016). https://doi.org/10.1002/2015RS005892

    ADS  Article  Google Scholar 

  312. V.V. Vas’kov, N.I. Bud’ko, O.V. Kapustina, Y.M. Mikhailov, N.A. Ryabova, G.L. Gdalevich, G.P. Komrakov, A.N. Maresov, Detection on the INTERCOSMOS-24 satellite of VLF and ELF waves stimulated in the topside ionosphere by the heating facility SURA. J. Atmos. Sol.-Terr. Phys. 60(12), 1261–1274 (1998). https://doi.org/10.1016/S1364-6826(98)00054-6

    ADS  Article  Google Scholar 

  313. J. Vierinen, A. Kero, M.T. Rietveld, High latitude artificial periodic irregularity observations with the upgraded EISCAT heating facility. J. Atmos. Sol.-Terr. Phys. 105–106, 253–261 (2013)

    ADS  Google Scholar 

  314. M.N. Vlasov, M.C. Kelley, D.L. Hysell, The main types of electron energy distribution determined by model fitting to optical emissions during HF wave ionospheric modification experiments. J. Geophys. Res. 118, 3877–3890 (2013). https://doi.org/10.1002/jgra.50364

    Article  Google Scholar 

  315. A. Volokitin, C. Krafft, Wave decay processes in a weakly magnetized plasma. Phys. Lett. A 336, 193–198 (2005)

    ADS  Google Scholar 

  316. A. Volokitin, E. Mishin, Relaxation of an electron beam in a plasma with infrequent collisions. Sov. J. Plasma Phys. 5, 654 (1979)

    ADS  Google Scholar 

  317. J. Wang, D. Newman, M. Goldman, Vlasov simulations of electron heating by Langmuir turbulence near the critical altitude in the radiation-modified ionosphere. J. Atmos. Sol.-Terr. Phys. 59, 2461 (1997). https://doi.org/10.1016/S1364-6826(96)00140-X

    ADS  Article  Google Scholar 

  318. A.Y. Wong, J. Carroll, R. Dickman, W. Harrison, W. Huhn, B. Lure, M. McCarrick, J. Santoru, C. Schock, G. Wong, R.F. Wuerker, High-power radiating facility at the HIPAS Observatory. Radio Sci. 25(6), 1269–1282 (1990)

    ADS  Google Scholar 

  319. D.M. Wright, J.A. Davies, T.K. Yeoman, T. Robinson, S.R. Cash, E. Kolesnikova, M. Lester, P.J. Chapman, R.J. Strangeway, R.B. Horne, M.T. Rietveld, C.W. Carlson, Detection of artificially generated ULF waves by the FAST spacecraft and its application to the “tagging” of narrow flux tubes. J. Geophys. Res. 108(A2), 1090 (2003). https://doi.org/10.1029/2002JA009483

    Article  Google Scholar 

  320. H. Xi, W. Scales, Numerical simulation studies on the broad upshifted maximum of ionospheric stimulated electromagnetic emission. J. Geophys. Res. 106, 12,787 (2001). https://doi.org/10.1029/2000JA000322

    ADS  Article  Google Scholar 

  321. N.A. Zabotin, E.S. Kovalenko, Simple numerical model of radio wave multiple scattering effects in the ionospheric plasma layer. Waves Random Media 9(3), 393–399 (1999). https://doi.org/10.1088/0959-7174/9/3/307

    ADS  Article  MATH  Google Scholar 

  322. V. Zakharov, Collapse and self-focusing of Langmuir waves, in Basic Plasma Physics, vol. 2, ed. by A. Galeev, R. Sudan (North-Holland, New York, 1984), pp. 81–121

    Google Scholar 

  323. H.L. Zhou, J. Huang, S.P. Kuo, Cascading of the upper hybrid/electron Bernstein wave in ionospheric heating experiments. Phys. Plasmas 1, 3044–3052 (1994)

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussion of active experiments and heating facilities with H.C. Carlson, M. Cohen, M. Golkowski, S. Grach, M.M. Mogilevsky, E. Nossa, K.D. Papadopoulos, T. Pedersen, B. Watkins.

This work was made possible by the ISSI funding of the international scince team “Past, Present and Future of Active Experiments in Space” and supported in part through CNES grant DEMETER 2874949; US National Academy of Sciences; Air Force Office of Scientific Research; Russian Education Ministry project 3.1844.2017.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Streltsov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Streltsov, A.V., Berthelier, J., Chernyshov, A.A. et al. Past, Present and Future of Active Radio Frequency Experiments in Space. Space Sci Rev 214, 118 (2018). https://doi.org/10.1007/s11214-018-0549-7

Download citation

Keywords

  • Active experiments
  • Ionospheric heating
  • HAARP
  • SURA
  • Arecibo
  • ULF wave
  • Ionospheric feedback instability
  • VLF waves
  • Ionospheric irregularities
  • Plasma instabilities
  • Wave-particle interactions
  • Artificial aurora
  • EISCAT
  • Ionosphere
  • DEMETER
  • Ionospheric resonator