Dust Emission by Active Moons

Abstract

In recent decades, volcanic and cryovolcanic activity on moons within the Solar System has been recognised as an important source of cosmic dust. Two moons, Jupiter’s satellite Io and Saturn’s satellite Enceladus, are known to be actively emitting dust into circumplanetary and interplanetary space. A third moon, Europa, shows tantalising hints of activity. Here we review current observations and theories concerning the generation, emission and evolution of cosmic dust arising from these objects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Notes

  1. 1.

    Given the high speed of dust in the Jovian and Saturnian “streams” (although squalls may be a better name—see Sect. 6), it is also likely that active moons inject dust into the local interstellar environment, making them also a source of interstellar dust.

  2. 2.

    Strictly speaking the primary energy sources for the moons considered here are originally exogenic, being the motion of planet and satellite.

  3. 3.

    First observation where known, publication where not.

  4. 4.

    Estimates of the exact contribution are strongly model dependent.

  5. 5.

    Methane may also form during the production of magnetite if CO2 is present.

  6. 6.

    Values given for a core-appropriate pressure of 8 GPa.

  7. 7.

    The large sizes inferred from remote observation (Jaumann et al. 2008) probably result from thermal annealing of grains after deposition.

  8. 8.

    The “Tiger Stripe” sulci appear to have dark flanks in the IR (Porco et al. 2006), which may have given rise to the nickname.

  9. 9.

    To maintain an ocean surface area of approximately \(10~\mbox{km}^{2}\) (Postberg et al. 2009b, 2011b) and assuming subsurface fracture lengths similar to those (500 km) measured at the surface, results in ocean-boundary fracture widths of 20 m, although smaller 10 m widths are possible if the fractures taper significantly towards the surface (Nakajima and Ingersoll 2016; Ingersoll and Nakajima 2016).

  10. 10.

    Corrected from the original 12 nm radius published in error by Postberg et al. (2006).

  11. 11.

    Although some Prometheus-type plumes can reach similar heights, so it is possible that both the major volcano types on Io may produce cosmic dust.

  12. 12.

    Which in turn depend on the depth of the charging region—for example, at 400 km, a grain may only spend \(\approx 10^{2}~\mbox{s}\) in a 10 km thick “charging region” at the top of its trajectory, neglecting gas interaction.

  13. 13.

    We here correct the definition given in Postberg et al. (2008, 2011b), which proposed minor silicate inclusions as an alternative to the organics.

  14. 14.

    This number reflects the current stage of knowledge. It is under investigation and may change in the future.

  15. 15.

    These are a small subset (known by their High Mass Organic Cation, HMOC spectra) of the overall Type II grain population, which exhibit a wide range of organic concentrations.

  16. 16.

    If water-ice particles this small can even form, as minimum formation sizes are estimated to be 1.3 nm, Meyer-Vernet (2013).

  17. 17.

    Assuming a compact ice layer—for fluffy snow-like deposition the layer thickness will be higher.

  18. 18.

    With particles up to \(10~\upmu\mbox{m}\) also possible, Ye et al. (2016).

  19. 19.

    Although initially Jupiter’s Gossamer ring was postulated as a possible source, Hamilton and Burns (1993).

  20. 20.

    Although partially predicted by Pang et al. (1984) and Horányi (2000).

References

  1. O. Abramov, J.R. Spencer, Endogenic heat from Enceladus’ south polar fractures: new observations, and models of conductive surface heating. Icarus 199(1), 189–196 (2009). https://doi.org/10.1016/j.icarus.2008.07.016

    ADS  Article  Google Scholar 

  2. J.D. Anderson, G. Schubert, Saturn’s gravitational field, internal rotation, and interior structure. Science 317(5843), 1384–1387 (2007). https://doi.org/10.1126/science.1144835

    ADS  Article  Google Scholar 

  3. J.D. Anderson, G. Schubert, R.A. Jacobson, E.L. Lau, W.B. Moore, W.L. Sjogren, Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281(5385), 2019–2022 (1998). https://doi.org/10.1126/science.281.5385.2019. http://www.sciencemag.org/cgi/doi/10.1126/science.276.5316.1236

    ADS  Article  Google Scholar 

  4. J.D. Anderson, R.A. Jacobson, E.L. Lau, W.B. Moore, G. Schubert, Io’s gravity field and interior structure. J. Geophys. Res., Planets 106(E12), 32963–32969 (2001). https://doi.org/10.1029/2000JE001367

    ADS  Article  Google Scholar 

  5. R.M. Baland, M. Yseboodt, T.V. Hoolst, Obliquity of the Galilean satellites: the influence of a global internal liquid layer. Icarus 220(2), 435–448 (2012). https://doi.org/10.1016/j.icarus.2012.05.020

    ADS  Article  Google Scholar 

  6. R.M. Baland, M. Yseboodt, T. Van Hoolst, The obliquity of Enceladus. Icarus 268, 12–31 (2016). https://doi.org/10.1016/j.icarus.2015.11.039. arXiv:1512.0285

    ADS  Article  Google Scholar 

  7. D.D. Barbosa, F.V. Coroniti, A. Eviatar, Coulomb thermal properties and stability of the Io plasma torus. Astrophys. J. 274, 429–442 (1983). https://doi.org/10.1086/161459

    ADS  Article  Google Scholar 

  8. M. Běhounková, O. Souček, J. Hron, O. Čadek, Plume activity and tidal deformation on Enceladus influenced by faults and variable ice shell thickness. Astrobiology 17(9), 941–954 (2017). https://doi.org/10.1089/ast.2016.1629

    ADS  Article  Google Scholar 

  9. J.J. Berg, D.B. Goldstein, P.L. Varghese, L.M. Trafton, DSMC simulation of Europa water vapor plumes. Icarus 277, 370–380 (2016). https://doi.org/10.1016/j.icarus.2016.05.030

    ADS  Article  Google Scholar 

  10. C.J. Bierson, F. Nimmo, A test for Io’s magma ocean: modeling tidal dissipation with a partially molten mantle. J. Geophys. Res., Planets 121(11), 2211–2224 (2016). https://doi.org/10.1002/2016JE005005

    ADS  Article  Google Scholar 

  11. M.T. Bland, W.B. McKinnon, P.M. Schenk, Constraining the heat flux between Enceladus’ tiger stripes: numerical modeling of funiscular plains formation. Icarus 260, 232–245 (2015). https://doi.org/10.1016/j.icarus.2015.07.016

    ADS  Article  Google Scholar 

  12. N.V. Brilliantov, J. Schmidt, F. Spahn, Nucleation and growth of a solid phase expanding into vacuum. Int. J. Mod. Phys. C 18(04), 676–684 (2007). https://doi.org/10.1142/S0129183107010930

    ADS  Article  MATH  Google Scholar 

  13. R.H. Brown, R.L. Kirk, T.V. Johnson, L.A. Soderblom, Energy sources for Triton’s geyser-like plumes. Science 250(4979), 431–435 (1990). https://doi.org/10.1126/science.250.4979.431

    ADS  Article  Google Scholar 

  14. C. Bu, D.A. Bahr, C.A. Dukes, R.A. Baragiola, The effects of cracking on the surface potential of icy grains in Saturn’s E-ring: laboratory studies. Astrophys. J. 825(2), 106 (2016). https://doi.org/10.3847/0004-637X/825/2/106

    ADS  Article  Google Scholar 

  15. O. Čadek, G. Tobie, T. Van Hoolst, M. Massé, G. Choblet, A. Lefèvre, G. Mitri, R.M. Baland, M. Běhounková, O. Bourgeois, A. Trinh, Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Lett. 43(11), 5653–5660 (2016). https://doi.org/10.1002/2016GL068634

    ADS  Article  Google Scholar 

  16. M.H. Carr, M.J. Belton, C.R. Chapman, M.E. Davies, P. Geissler, R. Greenberg, A.S. McEwen, B.R. Tufts, R. Greeley, R. Sullivan, J.W. Head, R.T. Pappalardo, K.P. Klaasen, T.V. Johnson, J. Kaufman, D. Senske, J. Moore, G. Neukum, G. Schubert, J.A. Burns, P. Thomas, J. Veverka, Evidence for a subsurface ocean on Europa. Nature 391, 363–365 (1998). https://doi.org/10.1038/34857

    ADS  Article  Google Scholar 

  17. J.C. Castillo-Rogez, T.B. McCord, Ceres’ evolution and present state constrained by shape data. Icarus 205(2), 443–459 (2010). https://doi.org/10.1016/j.icarus.2009.04.008

    ADS  Article  Google Scholar 

  18. J. Castillo-Rogez, T.V. Johnson, M.H. Lee, N.J. Turner, D.L. Matson, J. Lunine, \(^{26}\mbox{Al}\) decay: heat production and a revised age for Iapetus. Icarus 204(2), 658–662 (2009). https://doi.org/10.1016/j.icarus.2009.07.025

    ADS  Article  Google Scholar 

  19. E. Cataldo, L. Wilson, S. Lane, J. Gilbert, A model for large-scale volcanic plumes on Io: implications for eruption rates and interactions between magmas and near-surface volatiles. J. Geophys. Res., Planets 107(E11), 19 (2002). https://doi.org/10.1029/2001JE001513

    Article  Google Scholar 

  20. G. Choblet, G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg, O. Souček, Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1(12), 841–847 (2017). https://doi.org/10.1038/s41550-017-0289-8

    ADS  Article  Google Scholar 

  21. S.A. Collins, Spatial color variations in the volcanic plume at Loki, on Io. J. Geophys. Res. Space Phys. 86(A10), 8621–8626 (1981). https://doi.org/10.1029/JA086iA10p08621

    ADS  Article  Google Scholar 

  22. G.C. Collins, J.C. Goodman, Enceladus’ south polar sea. Icarus 189(1), 72–82 (2007). https://doi.org/10.1016/j.icarus.2007.01.010

    ADS  Article  Google Scholar 

  23. G.J. Consolmagno, Io: thermal models and chemical evolution. Icarus 47, 36–45 (1981)

    ADS  Article  Google Scholar 

  24. G.D. Crawford, D.J. Stevenson, Gas-driven water volcanism and the resurfacing of Europa. Icarus 73(1), 66–79 (1988). https://doi.org/10.1016/0019-1035(88)90085-1

    ADS  Article  Google Scholar 

  25. E.N. Crow-Willard, R.T. Pappalardo, Structural mapping of Enceladus and implications for formation of tectonized regions. J. Geophys. Res., Planets 120(5), 928–950 (2015). https://doi.org/10.1002/2015JE004818

    ADS  Article  Google Scholar 

  26. A.G. Davies, Volcanism on Io—A Comparison with Earth (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  27. A.G. Davies, L.P. Keszthelyi, D.A. Williams, C.B. Phillips, A.S. McEwen, R.M.C. Lopes, W.D. Smythe, L.W. Kamp, L.A. Soderblom, R.W. Carlson, Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io. J. Geophys. Res., Planets 106(E12), 33079–33103 (2001). https://doi.org/10.1029/2000JE001357

    ADS  Article  Google Scholar 

  28. G. De Maria, G. Balducci, M. Guido, V. Piacente, Mass spectrometric investigation of the vaporization process of Apollo 12 lunar samples, in Proc. Lunar Planet. Sci. Conf. 2 (MIT Press, Cambridge, 1971), pp. 1367–1380

    Google Scholar 

  29. I. de Pater, C. Laver, A.G. Davies, K. de Kleer, D.A. Williams, R.R. Howell, J.A. Rathbun, J.R. Spencer, Io: eruptions at Pillan, and the time evolution of Pele and Pillan from 1996 to 2015. Icarus 264(August, 198–212 (2016). https://doi.org/10.1016/j.icarus.2015.09.006. 2007

    ADS  Article  Google Scholar 

  30. S.F. Dermott, On the origin of commensurabilities in the Solar System—I. The tidal hypothesis. Mon. Not. R. Astron. Soc. 141(3), 349–361 (1968). https://doi.org/10.1093/mnras/141.3.349

    ADS  Article  Google Scholar 

  31. D. Dhingra, M.M. Hedman, R.N. Clark, P.D. Nicholson, Spatially resolved near infrared observations of Enceladus’ tiger stripe eruptions from Cassini VIMS. Icarus 292, 1–12 (2017). https://doi.org/10.1016/j.icarus.2017.03.002

    ADS  Article  Google Scholar 

  32. V. Dikarev, Dynamics of particles in Saturn’s E ring: effects of charge variations and the plasma drag force. Astron. Astrophys. 346, 1011–1019 (1999)

    ADS  Google Scholar 

  33. Y. Dong, T.W. Hill, B.D. Teolis, B.A. Magee, J.H. Waite, The water vapor plumes of Enceladus. J. Geophys. Res. Space Phys. 116(10), 1–13 (2011). https://doi.org/10.1029/2011JA016693

    Article  Google Scholar 

  34. Y. Dong, T.W. Hill, S.Y. Ye, Characteristics of ice grains in the Enceladus plume from Cassini observations. J. Geophys. Res. Space Phys. 120(2), 915–937 (2015). https://doi.org/10.1002/2014JA020288

    ADS  Article  Google Scholar 

  35. M.K. Dougherty, K.K. Khurana, F.M. Neubauer, C.T. Russell, J. Saur, J.S. Leisner, M.E. Burton, Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006). https://doi.org/10.1126/science.1120985

    ADS  Article  Google Scholar 

  36. G. Dourneau, Orbital elements of the eight major satellites of Saturn determined from a fit of their theories of motion to observations from the 1886 to 1985. Astron. Astrophys. 267, 292–299 (1993)

    ADS  Google Scholar 

  37. N. Duxbury, R. Brown, The role of an internal heat source for the eruptive plumes on Triton. Icarus 125(1), 83–93 (1997). https://doi.org/10.1006/icar.1996.5554

    ADS  Article  Google Scholar 

  38. I.A.D. Engelhardt, J.E. Wahlund, D.J. Andrews, A.I. Eriksson, S. Ye, W.S. Kurth, D.A. Gurnett, M.W. Morooka, W.M. Farrell, M.K. Dougherty, Plasma regions, charged dust and field-aligned currents near Enceladus. Planet. Space Sci. 117, 453–469 (2015). https://doi.org/10.1016/j.pss.2015.09.010

    ADS  Article  Google Scholar 

  39. B. Fegley, M.Y. Zolotov, Chemistry of sodium, potassium, and chlorine in volcanic gases on Io. Icarus 148, 193–210 (2000). https://doi.org/10.1006/icar.2000.6490

    ADS  Article  Google Scholar 

  40. W.A. Feibelman, Concerning the “D” ring of Saturn. Nature 214, 793 (1967). https://doi.org/10.1038/214793a0

    ADS  Article  Google Scholar 

  41. A. Flandes, Dust escape from Io. Geophys. Res. Lett. 31(16), L16802 (2004a). https://doi.org/10.1029/2004GL020046

    ADS  Article  Google Scholar 

  42. A. Flandes, Dust escape mechanism from Io. Adv. Space Res. 34(11), 2251–2255 (2004b). https://doi.org/10.1016/j.asr.2003.09.064

    ADS  Article  Google Scholar 

  43. A. Flandes, H. Krüger, D.P. Hamilton, J.F. Valdés-Galicia, L. Spilker, R. Caballero, Magnetic field modulated dust streams from Jupiter in interplanetary space. Planet. Space Sci. 59(13), 1455–1471 (2011). https://doi.org/10.1016/j.pss.2011.05.014

    ADS  Article  Google Scholar 

  44. L.A. Frank, W.R. Paterson, K.L. Ackerson, V.M. Vasyliunas, F.V. Coroniti, S.J. Bolton, Plasma observations at Io with the Galileo spacecraft. Science 274(5286), 394–395 (1996). https://doi.org/10.1126/science.274.5286.394

    ADS  Article  Google Scholar 

  45. J. Fuller, J. Luan, E. Quataert, Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astron. Soc. 458(4), 3867–3879 (2016). https://doi.org/10.1093/mnras/stw609. arXiv:1601.05804

    ADS  Article  Google Scholar 

  46. P. Gao, P. Kopparla, X. Zhang, A.P. Ingersoll, Aggregate particles in the plumes of Enceladus. Icarus 264, 227–238 (2016). https://doi.org/10.1016/j.icarus.2015.09.030. arXiv:1506.00713

    ADS  Article  Google Scholar 

  47. P.E. Geissler, M.T. McMillan, Galileo observations of volcanic plumes on Io. Icarus 197(2), 505–518 (2008). https://doi.org/10.1016/j.icarus.2008.05.005

    ADS  Article  Google Scholar 

  48. P.E. Geissler, A.S. McEwen, L. Keszthelyi, R. Lopes-Gautier, J. Granahan, D.P. Simonelli, Global color variations on Io. Icarus 140, 265–282 (1999). https://doi.org/10.1006/icar.1999.6128

    ADS  Article  Google Scholar 

  49. C.R. Glein, E.L. Shock, Sodium chloride as a geophysical probe of a subsurface ocean on Enceladus. Geophys. Res. Lett. 37(9), L09204 (2010). https://doi.org/10.1029/2010GL042446

    ADS  Article  Google Scholar 

  50. C.R. Glein, J.A. Baross, J.H. Waite, The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015). https://doi.org/10.1016/j.gca.2015.04.017. arXiv:1502.01946

    ADS  Article  Google Scholar 

  51. J.D. Goguen, B.J. Buratti, R.H. Brown, R.N. Clark, P.D. Nicholson, M.M. Hedman, R.R. Howell, C. Sotin, D.P. Cruikshank, K.H. Baines, K.J. Lawrence, J.R. Spencer, D.G. Blackburn, The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover. Icarus 226(1), 1128–1137 (2013). https://doi.org/10.1016/j.icarus.2013.07.012

    ADS  Article  Google Scholar 

  52. P. Goldreich, S. Soter, \(Q\) in the solar system. Icarus 5, 375–389 (1966). https://doi.org/10.1016/0019-1035(66)90051-0

    ADS  Article  Google Scholar 

  53. J.C. Goodman, G.C. Collins, J. Marshall, R.T. Pierrehumbert, Hydrothermal plume dynamics on Europa: implications for chaos formation. J. Geophys. Res. 109, E03008 (2004). https://doi.org/10.1029/2003JE002073

    ADS  Article  Google Scholar 

  54. A. Graps, E. Grun, H. Svedhem, H. Kruger, M. Horanyl, S. Heck a Lammers, Io as a source of the Jovian dust streams. Nature 405(6782), 48–50 (2000). https://doi.org/10.1038/35011008

    ADS  Article  Google Scholar 

  55. A.L. Graps, G.H. Jones, A. Juhasz, M. Horanyi, O. Havnes, The charging of planetary rings. Space Sci. Rev. 137(1–4), 435–453 (2008). https://doi.org/10.1007/s11214-008-9406-4

    ADS  Article  Google Scholar 

  56. R. Greenberg, Tidal-tectonic processes and their implications for the character of Europa’s icy crust. Rev. Geophys. 40(2), 1–34 (2002). https://doi.org/10.1029/2000RG000096

    Article  Google Scholar 

  57. R. Greenberg, The icy Jovian satellites after the Galileo mission. Rep. Prog. Phys. 73, 6801 (2010). https://doi.org/10.1088/0034-4885/73/3/036801

    Article  Google Scholar 

  58. R. Greenberg, P. Geissler, G. Hoppa, B.R. Tufts, D.D. Durda, R. Pappalardo, J.W. Head, R. Greeley, R. Sullivan, M.H. Carr, Tectonic processes on Europa: tidal stresses, mechanical response, and visible features. Icarus 135(1), 64–78 (1998). https://doi.org/10.1006/icar.1998.5986

    ADS  Article  Google Scholar 

  59. R. Greenberg, P. Geissler, B.R. Tufts, G.V. Hoppa, Habitability of Europa’s crust: the role of tidal-tectonic processes. J. Geophys. Res., Planets 105(E7), 17551–17562 (2000). https://doi.org/10.1029/1999JE001147

    ADS  Article  Google Scholar 

  60. E. Grün, H.A. Zook, M. Baguhl, H. Fechtig, M.S. Hanner, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I.B. Mann, Ulysses dust measurements near Jupiter. Science 257, 1550–1552 (1992). https://doi.org/10.1126/science.11538054

    ADS  Article  Google Scholar 

  61. E. Grün, H. Zook, M. Baguhl, A. Balogh, Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430 (1993). https://doi.org/10.1038/362428a0

    ADS  Article  Google Scholar 

  62. E. Grün, D.P. Hamilton, M. Baguhl, R. Riemann, M. Horanyi, C. Polanskey, Dust streams from comet Shoemaker-Levy 9? Geophys. Res. Lett. 21(11), 1035–1038 (1994). https://doi.org/10.1029/94GL00701

    ADS  Article  Google Scholar 

  63. E. Grün, M. Baguhl, N. Divine, H. Fechtig, D. Hamilton, M. Hanner, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. McDonnell, G. Morfill, C. Polanskey, R. Riemann, G. Schwehm, N. Siddique, P. Staubach, H. Zook, Two years of Ulysses dust data. Planet. Space Sci. 43(8), 971–999 (1995). https://doi.org/10.1016/0032-0633(94)00233-H

    ADS  Article  Google Scholar 

  64. E. Grün, M. Baguhl, D.P. Hamilton, R. Riemann, H.A. Zook, Constraints from Galileo observations on the origin of Jovian dust streams. Nature 381(6581), 395–398 (1996a). https://doi.org/10.1038/381395a0

    ADS  Article  Google Scholar 

  65. E. Grün, D. Hamilton, R. Riemann, S. Dermott, H. Fechtig, B. Gustafson, M. Hanner, A. Heck, M. Horanyi, J. Kissel, H. Kruger, B. Lindblad, D. Linkert, G. Linkert, I. Mann, J. McDonnell, G. Morfill, C. Polanskey, G. Schwehm, R. Srama, H. Zook, Dust measurements during Galileo’s approach to Jupiter and Io encounter. Science 274, 399–401 (1996b). https://doi.org/10.1126/science.274.5286.399

    ADS  Article  Google Scholar 

  66. E. Grün, H. Krüger, A.L. Graps, D.P. Hamilton, A. Heck, G. Linkert, H.A. Zook, S. Dermott, H. Fechtig, B.A. Gustafson, M.S. Hanner, M. Horányi, J. Kissel, B.A. Lindblad, D. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, Galileo observes electromagnetically coupled dust in the Jovian magnetosphere. J. Geophys. Res., Planets 103(E9), 20011–20022 (1998). https://doi.org/10.1029/98JE00228

    ADS  Article  Google Scholar 

  67. D.P. Hamilton, Motion of dust in a planetary magnetosphere: orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn’s E-ring. Icarus 101, 244–264 (1993). https://doi.org/10.1006/icar.1993.1065

    ADS  Article  Google Scholar 

  68. D.P. Hamilton, J.A. Burns, Ejection of dust from Jupiter’s gossamer ring. Nature 364(6439), 695–699 (1993). https://doi.org/10.1038/364695a0

    ADS  Article  Google Scholar 

  69. C.W. Hamilton, C.D. Beggan, S. Still, M. Beuthe, R.M.C. Lopes, D.A. Williams, J. Radebaugh, W. Wright, Spatial distribution of volcanoes on Io: implications for tidal heating and magma ascent. Earth Planet. Sci. Lett. 361, 272–286 (2013). https://doi.org/10.1016/j.epsl.2012.10.032

    ADS  Article  Google Scholar 

  70. C.J. Hansen, L.W. Esposito, A.I.F. Stewart, J.E. Colwell, A.R. Hendrix, W. Pryor, D.E. Shemansky, R. West, Enceladus’ water vapor plume. Science 311(5766), 1422–1425 (2006). https://doi.org/10.1126/science.1121254

    ADS  Article  Google Scholar 

  71. C.J. Hansen, L.W. Esposito, A.I.F. Stewart, B. Meinke, B. Wallis, J.E. Colwell, A.R. Hendrix, K. Larsen, W. Pryor, F. Tian, Water vapour jets inside the plume of gas leaving Enceladus. Nature 456(7221), 477–479 (2008). https://doi.org/10.1038/nature07542

    ADS  Article  Google Scholar 

  72. C.J. Hansen, D.E. Shemansky, L.W. Esposito, A.I.F. Stewart, B.R. Lewis, J.E. Colwell, A.R. Hendrix, R.A. West, J.H. Waite, B. Teolis, B.A. Magee, The composition and structure of the Enceladus plume. Geophys. Res. Lett. 38(11), 1–5 (2011). https://doi.org/10.1029/2011GL047415

    Article  Google Scholar 

  73. C.J. Hansen, L.W. Esposito, K.M. Aye, J.E. Colwell, A.R. Hendrix, G. Portyankina, D. Shemansky, Investigation of diurnal variability of water vapor in Enceladus’ plume by the Cassini ultraviolet imaging spectrograph. Geophys. Res. Lett. 44(2), 672–677 (2017). https://doi.org/10.1002/2016GL071853

    ADS  Article  Google Scholar 

  74. J.W. Head, R.T. Pappalardo, Brine mobilization during lithospheric heating on Europa: implications for formation of chaos terrain, lenticula texture, and color variations. J. Geophys. Res., Planets 104(E11), 27143–27155 (1999). https://doi.org/10.1029/1999JE001062

    ADS  Article  Google Scholar 

  75. M.M. Hedman, P.D. Nicholson, M.R. Showalter, R.H. Brown, B.J. Buratti, R.N. Clark, Spectral observations of the Enceladus plume with Cassini-VIMS. Astrophys. J. 693(2), 1749–1762 (2009). https://doi.org/10.1088/0004-637X/693/2/1749

    ADS  Article  Google Scholar 

  76. M.M. Hedman, J.A. Burns, D.P. Hamilton, M.R. Showalter, The three-dimensional structure of Saturn’s E ring. Icarus 217(1), 322–338 (2012). https://doi.org/10.1016/j.icarus.2011.11.006, arXiv:1111.2568

    ADS  Article  Google Scholar 

  77. M.M. Hedman, C.M. Gosmeyer, P.D. Nicholson, C. Sotin, R.H. Brown, R.N. Clark, K.H. Baines, B.J. Buratti, M.R. Showalter, An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500(7461), 182–184 (2013). https://doi.org/10.1038/nature12371

    ADS  Article  Google Scholar 

  78. M. Hedman, D. Dhingra, P. Nicholson, C. Hansen, G. Portyankina, S. Ye, Y. Dong, Spatial variations in the dust-to-gas ratio of Enceladus’ plume. Icarus 305, 123–138 (2018). https://doi.org/10.1016/j.icarus.2018.01.006, arXiv:1801.01567

    ADS  Article  Google Scholar 

  79. P. Helfenstein, C.C. Porco, Enceladus’ geysers: relation to geological features. Astron. J. 150(3), 96 (2015). https://doi.org/10.1088/0004-6256/150/3/96

    ADS  Article  Google Scholar 

  80. T.W. Hill, M.F. Thomsen, R.L. Tokar, A.J. Coates, G.R. Lewis, D.T. Young, F.J. Crary, R.A. Baragiola, R.E. Johnson, Y. Dong, R.J. Wilson, G.H. Jones, J.E. Wahlund, D.G. Mitchell, M. Horanyi, Charged nanograins in the Enceladus plume. J. Geophys. Res. Space Phys. 117(5), 1–11 (2012). https://doi.org/10.1029/2011JA017218

    Article  Google Scholar 

  81. J.K. Hillier, S.F. Green, N. McBride, J.P. Schwanethal, F. Postberg, R. Srama, S. Kempf, G. Moragas-Klostermeyer, J.A.M. McDonnell, E. Grun, E. Grün, The composition of Saturn’s E ring. Mon. Not. R. Astron. Soc. 377(4), 1588–1596 (2007). https://doi.org/10.1111/j.1365-2966.2007.11710.x

    ADS  Article  Google Scholar 

  82. R. Hodyss, C.D. Parkinson, P.V. Johnson, J.V. Stern, J.D. Goguen, Y.L. Yung, I. Kanik, Methanol on Enceladus. Geophys. Res. Lett. 36(17), 17103 (2009). https://doi.org/10.1029/2009GL039336

    ADS  Article  Google Scholar 

  83. M. Horányi, Charged Dust Dynamics in the Solar System. Annu. Rev. Astron. Astrophys. 34, 383–418 (1996). https://doi.org/10.1146/annurev.astro.34.1.383

    ADS  Article  Google Scholar 

  84. M. Horányi, Dust streams from Jupiter and Saturn. Phys. Plasmas 7(10), 3847–3849 (2000). https://doi.org/10.1063/1.1288909

    ADS  Article  Google Scholar 

  85. M. Horányi, G. Morfill, E. Grün, Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere. Nature 363, 144–146 (1993a). https://doi.org/10.1038/363144a0

    ADS  Article  Google Scholar 

  86. M. Horányi, G. Morfill, E. Grün, The dusty ballerina skirt of Jupiter. J. Geophys. Res. 98, 245–251 (1993b)

    Article  Google Scholar 

  87. M. Horányi, E. Grün, A. Heck, Modeling the Galileo dust measurements at Jupiter. Geophys. Res. Lett. 24(17), 2175–2178 (1997). https://doi.org/10.1029/97GL01539

    ADS  Article  Google Scholar 

  88. M. Horányi, T.W. Hartquist, O. Havnes, D.A. Mendis, G.E. Morfill, Dusty plasma effects in Saturn’s magnetosphere. Rev. Geophys. 42(4), RG4002 (2004). https://doi.org/10.1029/2004RG000151

    ADS  Article  Google Scholar 

  89. M. Horanyi, A. Juhasz, G.E. Morfill, Large-scale structure of Saturn’s E-ring. Geophys. Res. Lett. 35(4), 1–5 (2008). https://doi.org/10.1029/2007GL032726

    Article  Google Scholar 

  90. R.R. Howell, R.M.C. Lopes, Morphology, temperature, and eruption dynamics at Pele. Icarus 213(2), 593–607 (2011). https://doi.org/10.1016/j.icarus.2011.03.008

    ADS  Article  Google Scholar 

  91. C.J.A. Howett, J.R. Spencer, J. Pearl, M. Segura, High heat flow from Enceladus’ south polar region measured using \(10\mbox{--}600~\mbox{cm}^{-1}\) Cassini/CIRS data. J. Geophys. Res., Planets 116(3), 1–15 (2011). https://doi.org/10.1029/2010JE003718

    Article  Google Scholar 

  92. H.W. Hsu, S. Kempf, C.M. Jackman, Observation of saturnian stream particles in the interplanetary space. Icarus 206(2), 653–661 (2010a). https://doi.org/10.1016/j.icarus.2009.06.033

    ADS  Article  Google Scholar 

  93. H.W. Hsu, S. Kempf, F. Postberg, R. Srama, C.M. Jackman, G. Moragas-Klostermeyer, S. Helfert, E. Grün, Interaction of the solar wind and stream particles, results from the Cassini dust detector. AIP Conf. Proc. 1216, 510–513 (2010b). https://doi.org/10.1063/1.3395914

    ADS  Article  Google Scholar 

  94. H.W. Hsu, S. Kempf, F. Postberg, M. Trieloff, M. Burton, M. Roy, G. Moragas-Klostermeyer, R. Srama, Cassini dust stream particle measurements during the first three orbits at Saturn. J. Geophys. Res. Space Phys. 116(8), 1–10 (2011a). https://doi.org/10.1029/2010JA015959

    Article  Google Scholar 

  95. H.W. Hsu, F. Postberg, S. Kempf, M. Trieloff, M. Burton, M. Roy, G. Moragas-Klostermeyer, R. Srama, Stream particles as the probe of the dust-plasma-magnetosphere interaction at Saturn. J. Geophys. Res. Space Phys. 116(9), 1–23 (2011b). https://doi.org/10.1029/2011JA016488

    Article  Google Scholar 

  96. H.W. Hsu, H. Krüger, F. Postberg, Dynamics, composition, and origin of Jovian and Saturnian dust-stream particles, in Nanodust in the Solar System: Discoveries and Interpretations (2012), pp. 77–117. https://doi.org/10.1007/978-3-642-27543-2_5

    Chapter  Google Scholar 

  97. H.W. Hsu, K.C. Hansen, M. Horányi, S. Kempf, A. Mocker, G. Moragas-Klostermeyer, F. Postberg, R. Srama, B. Zieger, Probing IMF using nanodust measurements from inside Saturn’s magnetosphere. Geophys. Res. Lett. 40(12), 2902–2906 (2013). https://doi.org/10.1002/grl.50604

    ADS  Article  Google Scholar 

  98. H.W. Hsu, F. Postberg, Y. Sekine, T. Shibuya, S. Kempf, M. Horányi, A. Juhász, N. Altobelli, K. Suzuki, Y. Masaki, T. Kuwatani, S. Tachibana, S.I. Sirono, G. Moragas-Klostermeyer, R. Srama, Ongoing hydrothermal activities within Enceladus. Nature 519(7542), 207–210 (2015). https://doi.org/10.1038/nature14262

    ADS  Article  Google Scholar 

  99. H.W. Hsu, S. Kempf, S.V. Badman, W.S. Kurth, F. Postberg, R. Srama, Interplanetary magnetic field structure at Saturn inferred from nanodust measurements during the 2013 aurora campaign. Icarus 263, 10–16 (2016). https://doi.org/10.1016/j.icarus.2015.02.022

    ADS  Article  Google Scholar 

  100. T.A. Hurford, P. Helfenstein, J.N. Spitale, Tidal control of jet eruptions on Enceladus as observed by Cassini ISS between 2005 and 2007. Icarus 220, 896–903 (2012). https://doi.org/10.1016/j.icarus.2012.06.022

    ADS  Article  Google Scholar 

  101. H. Hussmann, G. Choblet, V. Lainey, D.L. Matson, C. Sotin, G. Tobie, T. Van Hoolst, Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites. Space Sci. Rev. 153(1–4), 317–348 (2010). https://doi.org/10.1007/s11214-010-9636-0

    ADS  Article  Google Scholar 

  102. L. Iess, D.J. Stevenson, M. Parisi, D. Hemingway, R.A. Jacobson, J.I. Lunine, F. Nimmo, J.W. Armstrong, S.W. Asmar, M. Ducci, P. Tortora, The gravity field and interior structure of Enceladus. Science 344(6179), 78–80 (2014). https://doi.org/10.1126/science.1250551

    ADS  Article  Google Scholar 

  103. A.P. Ingersoll, S.P. Ewald, Total particulate mass in Enceladus plumes and mass of Saturn’s E ring inferred from Cassini ISS images. Icarus 216(2), 492–506 (2011). https://doi.org/10.1016/j.icarus.2011.09.018

    ADS  Article  Google Scholar 

  104. A.P. Ingersoll, S.P. Ewald, Decadal timescale variability of the Enceladus plumes inferred from Cassini images. Icarus 282, 260–275 (2017). https://doi.org/10.1016/j.icarus.2016.09.018

    ADS  Article  Google Scholar 

  105. A.P. Ingersoll, M. Nakajima, Controlled boiling on Enceladus. 2. Model of the liquid-filled cracks. Icarus 272, 319–326 (2016). https://doi.org/10.1016/j.icarus.2015.12.040

    ADS  Article  Google Scholar 

  106. A.P. Ingersoll, A.A. Pankine, Subsurface heat transfer on Enceladus: conditions under which melting occurs. Icarus 206(2), 594–607 (2010). https://doi.org/10.1016/j.icarus.2009.09.015

    ADS  Article  Google Scholar 

  107. W.H. Ip, C.K. Goertz, An interpretation of the dawn–dusk asymmetry of UV emission from the Io plasma torus. Nature 302(5905), 232–233 (1983). https://doi.org/10.1038/302232a0

    ADS  Article  Google Scholar 

  108. R. Jacobson, P. Antreasian, J. Bordi, K. Criddle, R. Ionasescu, J. Jones, R. Mackenzie, M. Meek, D. Parcher, F. Pelletier, W. Owen Jr., D. Roth, I. Roundhill, J. Stauch, The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astron. J. 132(6), 2520–2526 (2006). https://doi.org/10.1086/508812

    ADS  Article  Google Scholar 

  109. R. Jaumann, K. Stephan, G.B. Hansen, R.N. Clark, B.J. Buratti, R.H. Brown, K.H. Baines, S.F. Newman, G. Bellucci, G. Filacchione, A. Coradini, D.P. Cruikshank, C.A. Griffith, C.A. Hibbitts, T.B. McCord, R.M. Nelson, P.D. Nicholson, C. Sotin, R. Wagner, Distribution of icy particles across Enceladus’ surface as derived from Cassini-VIMS measurements. Icarus 193(2), 407–419 (2008). https://doi.org/10.1016/j.icarus.2007.09.013

    ADS  Article  Google Scholar 

  110. K.L. Jessup, J.R. Spencer, Characterizing Io’s Pele, Tvashtar and Pillan plumes: lessons learned from Hubble. Icarus 218(1), 378–405 (2012). https://doi.org/10.1016/j.icarus.2011.11.013

    ADS  Article  Google Scholar 

  111. X. Jia, M.G. Kivelson, K.K. Khurana, W.S. Kurth, Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nat. Astron. 2, 459–464 (2018). https://doi.org/10.1038/s41550-018-0450-z

    ADS  Article  Google Scholar 

  112. T.V. Johnson, G. Morfill, E. Grün, Dust in Jupiter’s magnetosphere: an Io source? Geophys. Res. Lett. 7(5), 305–308 (1980). https://doi.org/10.1029/GL007i005p00305

    ADS  Article  Google Scholar 

  113. G.H. Jones, C.S. Arridge, A.J. Coates, G.R. Lewis, S. Kanani, A. Wellbrock, D.T. Young, F.J. Crary, R.L. Tokar, R.J. Wilson, T.W. Hill, R.E. Johnson, D.G. Mitchell, J. Schmidt, S. Kempf, U. Beckmann, C.T. Russell, Y.D. Jia, M.K. Dougherty, J.H. Waite, B.A. Magee, Fine jet structure of electrically charged grains in Enceladus’ plume. Geophys. Res. Lett. 36(16), 1–6 (2009). https://doi.org/10.1029/2009GL038284

    Article  Google Scholar 

  114. A. Juhász, M. Horányi, G.E. Morfill, Signatures of Enceladus in Saturn’s E ring. Geophys. Res. Lett. 34(9), 1–5 (2007). https://doi.org/10.1029/2006GL029120

    Article  Google Scholar 

  115. S. Jurac, R.E. Johnson, J.D. Richardson, Saturn’s E ring and production of the neutral torus. Icarus 149(2), 384–396 (2001). https://doi.org/10.1006/icar.2000.6528

    ADS  Article  Google Scholar 

  116. J.S. Kargel, Cryovolcanism on the icy satellites. Earth Moon Planets 67(1–3), 101–113 (1994). https://doi.org/10.1007/BF00613296

    ADS  Article  Google Scholar 

  117. S. Kempf, Interpretation of high rate dust measurements with the Cassini dust detector CDA. Planet. Space Sci. 56(3–4), 378–385 (2008). https://doi.org/10.1016/j.pss.2007.11.022

    ADS  Article  Google Scholar 

  118. S. Kempf, R. Srama, M. Horányi, M. Burton, S. Helfert, G. Moragas-Klostermeyer, M. Roy, E. Grün, High-velocity streams of dust originating from Saturn. Nature 433(7023), 289–291 (2005a). https://doi.org/10.1038/nature03218

    ADS  Article  Google Scholar 

  119. S. Kempf, R. Srama, F. Postberg, M. Burton, S.F. Green, S. Helfert, J.K. Hillier, N. McBride, J.A.M. McDonnell, G. Moragas-Klostermeyer, M. Roy, E. Grün, Composition of saturnian stream particles. Science 307(5713), 1274–1276 (2005b). https://doi.org/10.1126/science.1106218

    ADS  Article  Google Scholar 

  120. S. Kempf, U. Beckmann, R. Srama, M. Horanyi, S. Auer, E. Grün, The electrostatic potential of E ring particles. Planet. Space Sci. 54(9–10), 999–1006 (2006). https://doi.org/10.1016/j.pss.2006.05.012

    ADS  Article  Google Scholar 

  121. S. Kempf, U. Beckmann, G. Moragas-Klostermeyer, F. Postberg, R. Srama, T. Economou, J. Schmidt, F. Spahn, E. Grün, The E ring in the vicinity of Enceladus. I. Spatial distribution and properties of the ring particles. Icarus 193(2), 420–437 (2008). https://doi.org/10.1016/j.icarus.2007.06.027

    ADS  Article  Google Scholar 

  122. S. Kempf, U. Beckmann, J. Schmidt, How the Enceladus dust plume feeds Saturn’s E ring. Icarus 206(2), 446–457 (2010). https://doi.org/10.1016/j.icarus.2009.09.016

    ADS  Article  Google Scholar 

  123. S. Kempf, R. Srama, E. Grün, A. Mocker, F. Postberg, J.K. Hillier, M. Horányi, Z. Sternovsky, B. Abel, A. Beinsen, R. Thissen, J. Schmidt, F. Spahn, N. Altobelli, Linear high resolution dust mass spectrometer for a mission to the Galilean satellites. Planet. Space Sci. 65(1), 10–20 (2012). https://doi.org/10.1016/j.pss.2011.12.019

    ADS  Article  Google Scholar 

  124. L. Keszthelyi, A. McEwen, Thermal models for basaltic volcanism on Io. Geophys. Res. Lett. 24(20), 2463–2466 (1997). https://doi.org/10.1029/97GL01368

    ADS  Article  Google Scholar 

  125. L. Keszthelyi, W.L. Jaeger, E.P. Turtle, M. Milazzo, J. Radebaugh, A post-Galileo view of Io’s interior. Icarus 169(1), 271–286 (2004). https://doi.org/10.1016/j.icarus.2004.01.005

    ADS  Article  Google Scholar 

  126. L. Keszthelyi, W. Jaeger, M. Milazzo, J. Radebaugh, A.G. Davies, K.L. Mitchell, New estimates for Io eruption temperatures: implications for the interior. Icarus 192(2), 491–502 (2007). https://doi.org/10.1016/j.icarus.2007.07.008

    ADS  Article  Google Scholar 

  127. K.K. Khurana, M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, C. Polanskey, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395(6704), 777–780 (1998). https://doi.org/10.1038/27394

    ADS  Article  Google Scholar 

  128. K.K. Khurana, X. Jia, M.G. Kivelson, F. Nimmo, G. Schubert, C.T. Russell, Evidence of a global magma ocean in Io’s interior. Science 332(6034), 1186–1189 (2011). https://doi.org/10.1126/science.1201425

    ADS  Article  Google Scholar 

  129. S.W. Kieffer, R. Lopes-Gautier, A. McEwen, W. Smythe, L. Keszthelyi, R.W. Carlson, Prometheus: Io’s wandering plume. Science 288(5469), 1204–1208 (2000). https://doi.org/10.1126/science.288.5469.1204

    ADS  Article  Google Scholar 

  130. M.R. Kirchoff, W.B. McKinnon, P.M. Schenk, Global distribution of volcanic centers and mountains on Io: Control by asthenospheric heating and implications for mountain formation. Earth Planet. Sci. Lett. 301(1–2), 22–30 (2011). https://doi.org/10.1016/j.epsl.2010.11.018

    ADS  Article  Google Scholar 

  131. E.S. Kite, A.M. Rubin, Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes. Proc. Natl. Acad. Sci. USA 113(15), 3972–3975 (2016). https://doi.org/10.1073/pnas.1520507113

    ADS  Article  Google Scholar 

  132. M.G. Kivelson, Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289(5483), 1340–1343 (2000). https://doi.org/10.1126/science.289.5483.1340

    ADS  Article  Google Scholar 

  133. M.G. Kivelson, J.A. Slavin, D.J. Southwood, Magnetospheres of the Galilean satellites. Science 205(4405), 491–493 (1979)

    ADS  Article  Google Scholar 

  134. H. Krüger, E. Grün, Dust en-route to Jupiter and the Galilean satellites, in COSPAR Colloquia Series, vol. 15 (2002), pp. 144–159. https://doi.org/10.1016/S0964-2749(02)80336-5. arXiv:astro-ph/0205478

    Chapter  Google Scholar 

  135. H. Krüger, E. Grün, A. Graps, S. Lammers, Observations of electromagnetically coupled dust in the Jovian magnetosphere. Astrophys. Space Sci. 264(1–4), 247–256 (1998). https://doi.org/10.1023/A:1002474912055

    ADS  Article  Google Scholar 

  136. H. Krüger, E. Grun, A. Heck, S. Lammers, Analysis of the sensor characteristics of the Galileo dust detector with collimated Jovian dust stream particles. Planet. Space Sci. 47(8–9), 1015–1028 (1999). https://doi.org/10.1016/S0032-0633(99)00027-6

    ADS  Article  Google Scholar 

  137. H. Krüger, P. Geissler, M. Horányi, A.L. Graps, S. Kempf, R. Srama, G. Moragas-Klostermeyer, R. Moissl, T.V. Johnson, E. Grün, Jovian dust streams: a monitor of Io’s volcanic plume activity. Geophys. Res. Lett. 30(21), 2101 (2003a). https://doi.org/10.1029/2003gl017827

    ADS  Article  Google Scholar 

  138. H. Krüger, M. Horányi, E. Grün, Jovian dust streams: probes of the Io plasma torus. Geophys. Res. Lett. 30(2), 10–13 (2003b). https://doi.org/10.1029/2002GL015920. arXiv:astro-ph/0211061

    Article  Google Scholar 

  139. H. Krüger, A.V. Krivov, M. Sremčević, E. Grün, Impact-generated dust clouds surrounding the Galilean moons. Icarus 164(1), 170–187 (2003c). https://doi.org/10.1016/S0019-1035(03)00127-1. arXiv:astro-ph/0304381

    ADS  Article  Google Scholar 

  140. H. Krüger, N. Altobelli, B. Anweiler, S.F. Dermott, V. Dikarev, A.L. Graps, E. Grün, B.A. Gustafson, D.P. Hamilton, M.S. Hanner, M. Horányi, J. Kissel, M. Landgraf, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, H.A. Zook, Five years of Ulysses dust data: 2000–2004. Planet. Space Sci. 54(9–10), 932–956 (2006a). https://doi.org/10.1016/j.pss.2006.04.015

    ADS  Article  Google Scholar 

  141. H. Krüger, A.L. Graps, D.P. Hamilton, A. Flandes, R.J. Forsyth, M. Horányi, E. Grün, Ulysses jovian latitude scan of high-velocity dust streams originating from the jovian system. Planet. Space Sci. 54(9–10), 919–931 (2006b). https://doi.org/10.1016/j.pss.2006.05.010

    ADS  Article  Google Scholar 

  142. H. Krüger, V. Dikarev, B. Anweiler, S.F. Dermott, A.L. Graps, E. Grün, B.A. Gustafson, D.P. Hamilton, M.S. Hanner, M. Horányi, J. Kissel, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, Three years of Ulysses dust data: 2005 to 2007. Planet. Space Sci. 58(7–8), 951–964 (2010). https://doi.org/10.1016/j.pss.2009.11.002. arXiv:astro-ph/9809133

    ADS  Article  Google Scholar 

  143. L.A. Morabito, S.P. Synnott, P.N. Kupferman, S.A. Collins, Discovery of currently active extraterrestrial volcanism. Science 204(4396), 972 (1979). https://doi.org/10.1126/science.204.4396.972

    ADS  Article  Google Scholar 

  144. V. Lainey, J.E. Arlot, O. Karatekin, T. Van Hoolst, Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459(7249), 957–959 (2009). https://doi.org/10.1038/nature08108

    ADS  Article  Google Scholar 

  145. V. Lainey, Ö. Karatekin, J. Desmars, S. Charnoz, J.-E. Arlot, N. Emelyanov, C. Le Poncin-Lafitte, S. Mathis, F. Remus, G. Tobie, J.-P. Zahn, Strong tidal dissipation in Saturn and constraints on Enceladus’ thermal state from astrometry. Astrophys. J. 752(1), 14–33 (2012). https://doi.org/10.1088/0004-637X/752/1/14

    ADS  Article  Google Scholar 

  146. V. Lainey, R.A. Jacobson, R. Tajeddine, N.J. Cooper, C. Murray, V. Robert, G. Tobie, T. Guillot, S. Mathis, F. Remus, J. Desmars, J.-E. Arlot, J.-P. De Cuyper, V. Dehant, D. Pascu, W. Thuillot, C. Le Poncin-Lafitte, J.-P. Zahn, New constraints on Saturn’s interior from Cassini astrometric data. Icarus 281, 286–296 (2017). https://doi.org/10.1016/j.icarus.2016.07.014. arXiv:1510.05870

    ADS  Article  Google Scholar 

  147. H.M. Lamadrid, J.D. Rimstidt, E.M. Schwarzenbach, F. Klein, S. Ulrich, A. Dolocan, R.J. Bodnar, Effect of water activity on rates of serpentinization of olivine. Nat. Commun. 8(May), 1–9 (2017). https://doi.org/10.1038/ncomms16107

    Article  Google Scholar 

  148. D. Laufer, A. Bar-Nun, I. Pat-El, R. Jacovi, Experimental studies of ice grain ejection by massive gas flow from ice and implications to comets, Triton and Mars. Icarus 222(1), 73–80 (2013). https://doi.org/10.1016/j.icarus.2012.10.030

    ADS  Article  Google Scholar 

  149. A. Le Gall, C. Leyrat, M.A. Janssen, G. Choblet, G. Tobie, O. Bourgeois, A. Lucas, C. Sotin, C. Howett, R. Kirk, R.D. Lorenz, R.D. West, A. Stolzenbach, M. Massé, A.H. Hayes, L. Bonnefoy, G. Veyssière, F. Paganelli, Thermally anomalous features in the subsurface of Enceladus’s south polar terrain. Nat. Astron. 1, 0063 (2017). https://doi.org/10.1038/s41550-017-0063

    Article  Google Scholar 

  150. E. Lellouch, G. Paubert, J.I. Moses, N.M. Schneider, D.F. Strobel, Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421(6918), 45–47 (2003). https://doi.org/10.1038/nature01292

    ADS  Article  Google Scholar 

  151. G. Leone, L. Wilson, A.G. Davies, The geothermal gradient of Io: consequences for lithosphere structure and volcanic eruptive activity. Icarus 211(1), 623–635 (2011). https://doi.org/10.1016/j.icarus.2010.10.016

    ADS  Article  Google Scholar 

  152. R.M. Lopes, J.R. Spencer, Io After Galileo: A New View of Jupiter’s Volcanic Moon (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-48841-5

    Book  Google Scholar 

  153. R.M.C. Lopes, R.L. Kirk, K.L. Mitchell, A. LeGall, J.W. Barnes, A. Hayes, J. Kargel, L. Wye, J. Radebaugh, E.R. Stofan, M.A. Janssen, C.D. Neish, S.D. Wall, C.A. Wood, J.I. Lunine, M.J. Malaska, Cryovolcanism on Titan: new results from Cassini radar and VIMS. J. Geophys. Res., Planets 118(3), 416–435 (2013). https://doi.org/10.1002/jgre.20062

    ADS  Article  Google Scholar 

  154. R.D. Lorenz, Europa ocean sampling by plume flythrough: astrobiological expectations. Icarus 267, 217–219 (2016). https://doi.org/10.1016/j.icarus.2015.12.018

    ADS  Article  Google Scholar 

  155. A.E.H. Love, Treatise on Mathematical Theory of Elasticity, 4th edn. (1944). https://archive.org/details/atreatiseonmath01lovegoog

    MATH  Google Scholar 

  156. R.P. Lowell, M. DuBose, Hydrothermal systems on Europa. Geophys. Res. Lett. 32(January), 4–7 (2005). https://doi.org/10.1029/2005GL022375

    Article  Google Scholar 

  157. V.V. Makarov, M. Efroimsky, Tidal dissipation in a homogeneous spherical body. II. Three examples: Mercury, Io, and Kepler-10b. Astrophys. J. 795(7), 1–10 (2014). https://doi.org/10.1088/0004-637X/795/1/7

    Article  Google Scholar 

  158. B. Malvoisin, N. Brantut, M.A. Kaczmarek, Control of serpentinisation rate by reaction-induced cracking. Earth Planet. Sci. Lett. 476, 143–152 (2017). https://doi.org/10.1016/j.epsl.2017.07.042

    ADS  Article  Google Scholar 

  159. D. Maravilla, K. Flammer, D. Mendis, On the injection of fine dust from the Jovian magnetosphere. Astrophys. J. 438, 968–974 (1995). 1995ApJ...438..968M

    ADS  Article  Google Scholar 

  160. H.R. Martens, A.P. Ingersoll, S.P. Ewald, P. Helfenstein, B. Giese, Spatial distribution of ice blocks on Enceladus and implications for their origin and emplacement. Icarus 245, 162–176 (2015). https://doi.org/10.1016/j.icarus.2014.09.035

    ADS  Article  Google Scholar 

  161. E.S. Martin, The distribution and characterization of strike-slip faults on Enceladus. Geophys. Res. Lett. 43(6), 2456–2464 (2016). https://doi.org/10.1002/2016GL067805

    ADS  Article  Google Scholar 

  162. D.L. Matson, J.C. Castillo-Rogez, A.G. Davies, T.V. Johnson, Enceladus: a hypothesis for bringing both heat and chemicals to the surface. Icarus 221(1), 53–62 (2012). https://doi.org/10.1016/j.icarus.2012.05.031

    ADS  Article  Google Scholar 

  163. I. Matsuyama, F. Nimmo, Tectonic patterns on reoriented and despun planetary bodies. Icarus 195(1), 459–473 (2008). https://doi.org/10.1016/j.icarus.2007.12.003

    ADS  Article  Google Scholar 

  164. N. McBride, J. Hillier, S. Green, R. Srama, S. Kempf, F. Postberg, G. Moragas-Klostermeyer, J. McDonnell, E. Grün, Cassini cosmic dust analyser: composition of dust at Saturn, in ESA—Workshop on Dust in Planetary Systems SP-643 (2007), pp. 107–110

    Google Scholar 

  165. W.J. McDoniel, D.B. Goldstein, P.L. Varghese, L.M. Trafton, Three-dimensional simulation of gas and dust in Io’s Pele plume. Icarus 257, 251–274 (2015). https://doi.org/10.1016/j.icarus.2015.03.019

    ADS  Article  Google Scholar 

  166. W.J. McDoniel, D.B. Goldstein, P.L. Varghese, L.M. Trafton, The interaction of Io’s plumes and sublimation atmosphere. Icarus 294, 81–97 (2017). https://doi.org/10.1016/j.icarus.2017.04.021

    ADS  Article  Google Scholar 

  167. A.S. McEwen, L.A. Soderblom, Two classes of volcanic plumes on Io. Icarus 55(2), 191–217 (1983). https://doi.org/10.1016/0019-1035(83)90075-1

    ADS  Article  Google Scholar 

  168. W.B. McKinnon, Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Lett. 42(7), 2137–2143 (2015). https://doi.org/10.1002/2015GL063384

    ADS  Article  Google Scholar 

  169. P. Meier, H. Kriegel, U. Motschmann, J. Schmidt, F. Spahn, T.W. Hill, Y. Dong, G.H. Jones, A model of the spatial and size distribution of Enceladus’ dust plume. Planet. Space Sci. 104, 216–233 (2014). https://doi.org/10.1016/j.pss.2014.09.016

    ADS  Article  Google Scholar 

  170. D.A. Mendis, W.I. Axford, Satellites and magnetospheres of the outer planets. Annu. Rev. Earth Planet. Sci. 2(1), 419–474 (1974). https://doi.org/10.1146/annurev.ea.02.050174.002223

    ADS  Article  Google Scholar 

  171. N. Meyer-Vernet, On the charge of nanograins in cold environments and Enceladus dust. Icarus 226(1), 583–590 (2013). https://doi.org/10.1016/j.icarus.2013.06.014. arXiv:1306.2228

    ADS  Article  Google Scholar 

  172. K. Miljković, J.K. Hillier, N.J. Mason, J.C. Zarnecki, Models of dust around Europa and Ganymede. Planet. Space Sci. 70(1), 20–27 (2012). https://doi.org/10.1016/j.pss.2012.06.006. arXiv:1206.2833v1

    ADS  Article  Google Scholar 

  173. W.B. Moore, G. Schubert, J.D. Anderson, J.R. Spencer, The interior of Io, in Io After Galileo: A New View of Jupiter’s Volcanic Moon (2007), pp. 89–108. https://doi.org/10.1007/978-3-540-48841-5_5

    Chapter  Google Scholar 

  174. J.M. Moore, W.B. McKinnon, J.R. Spencer, A.D. Howard, P.M. Schenk, R.A. Beyer, F. Nimmo, K.N. Singer, O.M. Umurhan, O.L. White, S.A. Stern, K. Ennico, C.B. Olkin, H.A. Weaver, L.A. Young, R.P. Binzel, M.W. Buie, B.J. Buratti, A.F. Cheng, D.P. Cruikshank, W.M. Grundy, I.R. Linscott, H.J. Reitsema, D.C. Reuter, M.R. Showalter, V.J. Bray, C.L. Chavez, C.J.A. Howett, T.R. Lauer, C.M. Lisse, A.H. Parker, S.B. Porter, S.J. Robbins, K. Runyon, T. Stryk, H.B. Throop, C.C.C. Tsang, A.J. Verbiscer, A.M. Zangari, A.L. Chaikin, D.E. Wilhelms, F. Bagenal, G.R. Gladstone, T. Andert, J. Andrews, M. Banks, B. Bauer, J. Bauman, O.S. Barnouin, P. Bedini, K. Beisser, S. Bhaskaran, E. Birath, M. Bird, D.J. Bogan, A. Bowman, M. Brozovic, C. Bryan, M.R. Buckley, S.S. Bushman, A. Calloway, B. Carcich, S. Conard, C.A. Conrad, J.C. Cook, O.S. Custodio, C.M.D. Ore, C. Deboy, Z.J.B. Dischner, P. Dumont, A.M. Earle, H.A. Elliott, J. Ercol, C.M. Ernst, T. Finley, S.H. Flanigan, G. Fountain, M.J. Freeze, T. Greathouse, J.L. Green, Y. Guo, M. Hahn, D.P. Hamilton, S.A. Hamilton, J. Hanley, A. Harch, H.M. Hart, C.B. Hersman, A. Hill, M.E. Hill, D.P. Hinson, M.E. Holdridge, M. Horanyi, C. Jackman, R.A. Jacobson, D.E. Jennings, J.A. Kammer, H.K. Kang, D.E. Kaufmann, P. Kollmann, S.M. Krimigis, D. Kusnierkiewicz, J.E. Lee, K.L. Lindstrom, A.W. Lunsford, V.A. Mallder, N. Martin, D.J. McComas, R.L. McNutt, D. Mehoke, T. Mehoke, E.D. Melin, M. Mutchler, D. Nelson, J.I. Nunez, A. Ocampo, W.M. Owen, M. Paetzold, B. Page, J.W. Parker, F. Pelletier, J. Peterson, N. Pinkine, M. Piquette, S. Protopapa, J. Redfern, J.H. Roberts, G. Rogers, D. Rose, K.D. Retherford, M.G. Ryschkewitsch, E. Schindhelm, B. Sepan, M. Soluri, D. Stanbridge, A.J. Steffl, D.F. Strobel, M.E. Summers, J.R. Szalay, M. Tapley, A. Taylor, H. Taylor, G.L. Tyler, M.H. Versteeg, M. Vincent, R. Webbert, S. Weidner, G.E. Weigle, K. Whittenburg, B.G. Williams, K. Williams, S. Williams, W.W. Woods, E. Zirnstein, The geology of Pluto and Charon through the eyes of New Horizons. Science 351, 1284–1293 (2016). https://doi.org/10.1126/science.aad7055

    ADS  Article  Google Scholar 

  175. G. Morfill, E. Grün, T. Johnson, Dust in Jupiter’s magnetosphere: physical processes. Planet. Space Sci. 28(12), 1087–1100 (1980). https://doi.org/10.1016/0032-0633(80)90067-7

    ADS  Article  Google Scholar 

  176. S. Mostefaoui, G.W. Lugmair, P. Hoppe, \(^{60}\mbox{Fe}\): a heat source for planetary differentiation from a nearby supernova explosion. Astrophys. J. 625(1), 271–277 (2005). https://doi.org/10.1086/429555, 2005ApJ...625..271M

    ADS  Article  Google Scholar 

  177. A.L. Nahm, S.A. Kattenhorn, A unified nomenclature for tectonic structures on the surface of Enceladus. Icarus 258, 67–81 (2015). https://doi.org/10.1016/j.icarus.2015.06.009

    ADS  Article  Google Scholar 

  178. M. Nakajima, A.P. Ingersoll, Controlled boiling on Enceladus. 1. Model of the vapor-driven jets. Icarus 272, 309–318 (2016). https://doi.org/10.1016/j.icarus.2016.02.027

    ADS  Article  Google Scholar 

  179. M. Neveu, S.J. Desch, J.C. Castillo-Rogez, Aqueous geochemistry in icy world interiors: equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides. Geochim. Cosmochim. Acta 212, 324–371 (2017). https://doi.org/10.1016/j.gca.2017.06.023

    ADS  Article  Google Scholar 

  180. R.C. Newton, C.E. Manning, Solubilities of corundum, wollastonite and quartz in \(\mbox{H}_{2}\mbox{O}\)–NaCl solutions at \(800~^{\circ}\mbox{C}\) and 10 kbar: interaction of simple minerals with brines at high pressure and temperature. Geochim. Cosmochim. Acta 70(22), 5571–5582 (2006). https://doi.org/10.1016/j.gca.2006.08.012

    ADS  Article  Google Scholar 

  181. P.D. Nicholson, M.R. Showalter, L. Dones, R.G. French, S.M. Larson, J.J. Lissauer, C.A. McGhee, P. Seitzer, B. Sicardy, G.E. Danielson, Observations of Saturn’s ring-plane crossings in August and November 1995. Science 272(5261), 509–515 (1996). https://doi.org/10.1126/science.272.5261.509

    ADS  Article  Google Scholar 

  182. F. Nimmo, M. Manga, Causes, characteristics and consequences of convective diapirism on Europa. Geophys. Res. Lett. 29(23), 24:1–24:4 (2002). https://doi.org/10.1029/2002GL015754

    Article  Google Scholar 

  183. F. Nimmo, R.T. Pappalardo, Diapir-induced reorientation of Saturn’s moon Enceladus. Nature 441(7093), 614–616 (2006). https://doi.org/10.1038/nature04821

    ADS  Article  Google Scholar 

  184. F. Nimmo, B. Giese, R.T. Pappalardo, Estimates of Europa’s ice shell thickness from elastically-supported topography. Geophys. Res. Lett. 30(5), 1233 (2003). https://doi.org/10.1029/2002GL016660

    ADS  Article  Google Scholar 

  185. F. Nimmo, C. Porco, C. Mitchell, Tidally modulated eruptions on Enceladus: Cassini ISS observations and models. Astron. J. 148(3), 46 (2014). https://doi.org/10.1088/0004-6256/148/3/46

    ADS  Article  Google Scholar 

  186. D. O’Brien, P.E. Geissler, R. Greenberg, A melt-through model for chaos formation on Europa. Icarus 156(1), 152–161 (2002). https://doi.org/10.1006/icar.2001.6777

    ADS  Article  Google Scholar 

  187. G.W. Ojakangas, D.J. Stevenson, Episodic volcanism of tidally heated satellites with application to Io. Icarus 66(2), 341–358 (1986). https://doi.org/10.1016/0019-1035(86)90163-6

    ADS  Article  Google Scholar 

  188. K.M. Ostdiek, T.S. Anderson, W.K. Bauder, M.R. Bowers, A.M. Clark, P. Collon, W. Lu, A.D. Nelson, D. Robertson, M. Skulski, R. Dressler, D. Schumann, J.P. Greene, W. Kutschera, M. Paul, Activity measurement of \(^{60}\mbox{Fe}\) through the decay of \(^{60m}\mbox{Co}\) and confirmation of its half-life. Phys. Rev. C 95(5), 055809 (2017). https://doi.org/10.1103/PhysRevC.95.055809

    ADS  Article  Google Scholar 

  189. K.D. Pang, C.C. Voge, J.W. Rhoads, J.M. Ajello, The E ring of Saturn and satellite Enceladus. J. Geophys. Res. 89(B11), 9459–9470 (1984). https://doi.org/10.1029/JB089iB11p09459

    ADS  Article  Google Scholar 

  190. R.T. Pappalardo, J.W. Head, R. Greeley, R.J. Sullivan, C. Pilcher, G. Schubert, W.B. Moore, M.H. Carr, J.M. Moore, M.J.S. Belton, D.L. Goldsby, Geological evidence for solid-state convection in Europa’s ice shell. Nature 391(6665), 365–368 (1998). https://doi.org/10.1038/34862

    ADS  Article  Google Scholar 

  191. R.T. Pappalardo, M.J.S. Belton, H.H. Breneman, M.H. Carr, C.R. Chapman, G.C. Collins, T. Denk, S. Fagents, P.E. Geissler, B. Giese, R. Greeley, R. Greenberg, J.W. Head, P. Helfenstein, G. Hoppa, S.D. Kadel, K.P. Klaasen, J.E. Klemaszewski, K. Magee, A.S. McEwen, J.M. Moore, W.B. Moore, G. Neukum, C.B. Phillips, L.M. Prockter, G. Schubert, D.A. Senske, R.J. Sullivan, B.R. Tufts, E.P. Turtle, R. Wagner, K.K. Williams, Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res., Planets 104(E10), 24015–24055 (1999). https://doi.org/10.1029/1998JE000628

    ADS  Article  Google Scholar 

  192. R.T. Pappalardo, W.B. McKinnon, K.K. Khurana, Europa (University of Arizona Press, Tucson, 2009). https://doi.org/10.2307/j.ctt1xp3wdw

    Book  Google Scholar 

  193. D.A. Patthoff, S.A. Kattenhorn, A fracture history on Enceladus provides evidence for a global ocean. Geophys. Res. Lett. 38(18), 1–6 (2011). https://doi.org/10.1029/2011GL048387

    Article  Google Scholar 

  194. S.J. Peale, Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37(1), 533–602 (1999). https://doi.org/10.1146/annurev.astro.37.1.533

    ADS  Article  Google Scholar 

  195. S.J. Peale, P. Cassen, R.T. Reynolds, Melting of Io by tidal dissipation. Science 203(4383), 892–894 (1979). https://doi.org/10.1126/science.203.4383.892

    ADS  Article  Google Scholar 

  196. C.C. Porco, P. Helfenstein, P.C. Thomas, A.P. Ingersoll, J. Wisdom, R. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch, S. Kieffer, E. Turtle, A. McEwen, T.V. Johnson, J. Rathbun, J. Veverka, D. Wilson, J. Perry, J. Spitale, A. Brahic, J.A. Burns, A.D. Delgenio, L. Dones, C.D. Murray, S. Squyres, Cassini observes the active south pole of Enceladus. Science 311(5766), 1393–1401 (2006). https://doi.org/10.1126/science.1123013

    ADS  Article  Google Scholar 

  197. C. Porco, D. DiNino, F. Nimmo, How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related. Astron. J. 148(3), 45 (2014). https://doi.org/10.1088/0004-6256/148/3/45

    ADS  Article  Google Scholar 

  198. C.C. Porco, F. Nimmo, D. DiNino, Enceladus’ 101 geysers: phantoms? Hardly, in European Planetary Science Congress 2015 (2015)

    Google Scholar 

  199. F. Postberg, S. Kempf, R. Srama, S.F. Green, J.K. Hillier, N. McBride, E. Grün, Composition of jovian dust stream particles. Icarus 183(1), 122–134 (2006). https://doi.org/10.1016/j.icarus.2006.02.001

    ADS  Article  Google Scholar 

  200. F. Postberg, S. Kempf, J.K. Hillier, R. Srama, S.F. Green, N. McBride, E. Grün, The E-ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193(2), 438–454 (2008). https://doi.org/10.1016/j.icarus.2007.09.001

    ADS  Article  Google Scholar 

  201. F. Postberg, S. Kempf, D. Rost, T. Stephan, R. Srama, M. Trieloff, A. Mocker, M. Goerlich, Discriminating contamination from particle components in spectra of Cassini’s dust detector CDA. Planet. Space Sci. 57(12), 1359–1374 (2009a). https://doi.org/10.1016/j.pss.2009.06.027

    ADS  Article  Google Scholar 

  202. F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, B. a, B. Abel, U. Buck, R. Srama, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459(June), 1–4 (2009b). https://doi.org/10.1038/nature08046

    Article  Google Scholar 

  203. F. Postberg, E. Grün, M. Horanyi, S. Kempf, H. Krüger, J. Schmidt, F. Spahn, R. Srama, Z. Sternovsky, M. Trieloff, Compositional mapping of planetary moons by mass spectrometry of dust ejecta. Planet. Space Sci. 59(14), 1815–1825 (2011a). https://doi.org/10.1016/j.pss.2011.05.001

    ADS  Article  Google Scholar 

  204. F. Postberg, J. Schmidt, J. Hillier, S. Kempf, R. Srama, A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474(7353), 620–622 (2011b). https://doi.org/10.1038/nature10175

    ADS  Article  Google Scholar 

  205. F. Postberg, N. Khawaja, B. Abel, G. Choblet, C.R. Glein, M.S. Gudipati, B.L. Henderson, H.W. Hsu, S. Kempf, F. Klenner, G. Moragas-Klostermeyer, B. Magee, L. Nlle, M. Perry, R. Reviol, J. Schmidt, R. Srama, F. Stolz, G. Tobie, M. Trieloff, J.H. Waite, Macromolecular organic compounds from the depths of Enceladus. Nature 558(7711), 564–568 (2018). https://doi.org/10.1038/s41586-018-0246-4

    ADS  Article  Google Scholar 

  206. L.C. Quick, O.S. Barnouin, L.M. Prockter, G.W. Patterson, Constraints on the detection of cryovolcanic plumes on Europa. Planet. Space Sci. 86, 1–9 (2013). https://doi.org/10.1016/j.pss.2013.06.028

    ADS  Article  Google Scholar 

  207. A.R. Rhoden, T.A. Hurford, L. Roth, K. Retherford, Linking Europa’s plume activity to tides, tectonics, and liquid water. Icarus 253, 169–178 (2015). https://doi.org/10.1016/j.icarus.2015.02.023. arXiv:1011.1669v3

    ADS  Article  Google Scholar 

  208. A.R. Rhoden, W. Henning, T.A. Hurford, D.A. Patthoff, R. Tajeddine, The implications of tides on the Mimas ocean hypothesis. J. Geophys. Res., Planets 122(2), 400–410 (2017). https://doi.org/10.1002/2016JE005097

    ADS  Article  Google Scholar 

  209. J.H. Roberts, The fluffy core of Enceladus. Icarus 258, 54–66 (2015). https://doi.org/10.1016/j.icarus.2015.05.033

    ADS  Article  Google Scholar 

  210. M.N. Ross, G. Schubert, Tidally forced viscous heating in a partially molten Io. Icarus 64(3), 391–400 (1985). https://doi.org/10.1016/0019-1035(85)90063-6

    ADS  Article  Google Scholar 

  211. L. Roth, K.D. Retherford, J. Saur, D.F. Strobel, P.D. Feldman, M.A. McGrath, F. Nimmo, Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa’s water vapor aurora. Proc. Natl. Acad. Sci. USA 111(48), E5123–E5132 (2014a). https://doi.org/10.1073/pnas.1416671111

    ADS  Article  Google Scholar 

  212. L. Roth, J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, F. Nimmo, Transient water vapor at Europa’s south pole. Science 343(6167), 171–174 (2014b). https://doi.org/10.1126/science.1247051

    ADS  Article  Google Scholar 

  213. L. Roth, J. Saur, K.D. Retherford, A. Blöcker, D.F. Strobel, P.D. Feldman, Constraints on Io’s interior from auroral spot oscillations. J. Geophys. Res. Space Phys. 122(2), 1903–1927 (2017). https://doi.org/10.1002/2016JA023701

    ADS  Article  Google Scholar 

  214. J. Saur, P.D. Feldman, L. Roth, F. Nimmo, D.F. Strobel, K.D. Retherford, M.A. McGrath, N. Schilling, J.C. Gérard, D. Grodent, Hubble Space Telescope/Advanced Camera for Surveys observations of Europa’s atmospheric ultraviolet emission at eastern elongation. Astrophys. J. 738, 153–166 (2011). https://doi.org/10.1088/0004-637X/738/2/153

    ADS  Article  Google Scholar 

  215. L. Schaefer, B. Fegley, Alkali and halogen chemistry in volcanic gases on Io. Icarus 173(2), 454–468 (2005). https://doi.org/10.1016/j.icarus.2004.08.015

    ADS  Article  Google Scholar 

  216. P. Schenk, H. Hargitai, R. Wilson, A. Mcewen, P. Thomas, The mountains of Io: global and geological perspectives from Voyager and Galileo. J. Geophys. Res. 106(25), 33201–33222 (2001). https://doi.org/10.1029/2000JE001408

    ADS  Article  Google Scholar 

  217. P. Schenk, J. Schmidt, O. White, The snows of Enceladus. EPSC Abstracts 6:EPSC-DPS2011-1358-1-2 (2011)

  218. P.M. Schenk, R.N. Clark, C.J.A. Howett, A.J. Verbiscer, J.H. Waite (eds.), Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018)

    Google Scholar 

  219. P. Schippers, M. Blanc, N. André, I. Dandouras, G.R. Lewis, L.K. Gilbert, A.M. Persoon, N. Krupp, D.A. Gurnett, A.J. Coates, S.M. Krimigis, D.T. Young, M.K. Dougherty, Multi-instrument analysis of electron populations in Saturn’s magnetosphere. J. Geophys. Res. Space Phys. 113(A7), A07208 (2008). https://doi.org/10.1029/2008JA013098

    ADS  Article  Google Scholar 

  220. J. Schmidt, N. Brilliantov, F. Spahn, S. Kempf, Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451(7179), 685–688 (2008). https://doi.org/10.1038/nature06491

    ADS  Article  Google Scholar 

  221. N.M. Schneider, M.H. Burger, E.L. Schaller, M.E. Brown, R.E. Johnson, J.S. Kargel, M.K. Dougherty, A. Na, No sodium in the vapour plumes of Enceladus. Nature 459(7250), 1102–1104 (2009). https://doi.org/10.1038/nature08070

    ADS  Article  Google Scholar 

  222. G. Schubert, D.J. Stevenson, K. Ellsworth, Internal structures of the Galilean satellites. Icarus 47(1), 46–59 (1981). https://doi.org/10.1016/0019-1035(81)90090-7

    ADS  Article  Google Scholar 

  223. G. Schubert, D.J. Andersen, T. Spohn, W.B. Mckinnon, Interior composition, structure and dynamics of the Galilean satellites, in Jupiter the Planet, Satellites and Magnetosphere (2004), pp. 281–306

    Google Scholar 

  224. G. Schubert, F. Sohl, H. Hussmann, Interior of Europa, in Europa, ed. by R. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 353–367

    Google Scholar 

  225. G. Schubert, H. Hussmann, V. Lainey, D.L. Matson, W.B. McKinnon, F. Sohl, C. Sotin, G. Tobie, D. Turrini, T. Van Hoolst, Evolution of icy satellites. Space Sci. Rev. 153(1–4), 447–484 (2010). https://doi.org/10.1007/s11214-010-9635-1

    ADS  Article  Google Scholar 

  226. M. Segatz, T. Spohn, M.N. Ross, G. Schubert, Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus 75(2), 187–206 (1988). https://doi.org/10.1016/0019-1035(88)90001-2

    ADS  Article  Google Scholar 

  227. P.K. Seidelmann, B.A. Archinal, M.F. A’Hearn, A. Conrad, G.J. Consolmagno, D. Hestroffer, J.L. Hilton, G.A. Krasinsky, G. Neumann, J. Oberst, P. Stooke, E.F. Tedesco, D.J. Tholen, P.C. Thomas, I.P. Williams, Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astron. 98(3), 155–180 (2007). https://doi.org/10.1007/s10569-007-9072-y

    ADS  Article  MATH  Google Scholar 

  228. Y. Sekine, T. Shibuya, F. Postberg, H.W. Hsu, K. Suzuki, Y. Masaki, T. Kuwatani, M. Mori, P.K. Hong, M. Yoshizaki, S. Tachibana, S. Si, High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015). https://doi.org/10.1038/ncomms9604

    Article  Google Scholar 

  229. D. Shoji, H. Hussmann, Frequency-dependent tidal dissipation in a viscoelastic Saturnian core and expansion of Mimas’ semi-major axis. Astron. Astrophys. 599, L10 (2017). https://doi.org/10.1051/0004-6361/201630230

    ADS  Article  Google Scholar 

  230. M.R. Showalter, J.N. Cuzzi, S.M. Larson, Structure and particle properties of Saturn’s E ring. Icarus 94(2), 451–473 (1991). https://doi.org/10.1016/0019-1035(91)90241-K

    ADS  Article  Google Scholar 

  231. A.P. Showman, I. Mosqueira, J.W. Head, On the resurfacing of Ganymede by liquid water volcanism. Icarus 172, 625–640 (2004). https://doi.org/10.1016/j.icarus.2004.07.011

    ADS  Article  Google Scholar 

  232. B.A. Smith, E.M. Shoemaker, S.W. Kieffer, A.F. Cook, The role of \(\mbox{SO}_{2}\) in volcanism on Io. Nature 280, 738–743 (1979). https://doi.org/10.1038/280738a0

    ADS  Article  Google Scholar 

  233. B.A. Smith, L.A. Soderblom, D. Banfield, C. Barnet, A.T. Basilevsky, R.F. Beebe, K. Bollinger, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, C. Chyba, S.A. Collins, T. Colvin, A.F. Cook II, D. Crisp, S.K. Croft, D. Cruikshank, J.N. Cuzzi, G.E. Danielson, M.E. Davies, E. De Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, V.R. Haemmerle, H. Hammel, C.J. Hansen, C.P. Helfenstein, C. Howell, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, J. Kargel, R. Kirk, D.I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J.B. Pollack, C.C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E.M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synott, R.J. Terrile, P. Thomas, W.R. Thompson, A. Verbiscer, J. Veverka, Voyager 2 at Neptune—imaging science results. Science 246(4936), 1422–1449 (1989). https://doi.org/10.1126/science.246.4936.1422

    ADS  Article  Google Scholar 

  234. L.A. Soderblom, S.W. Kieffer, T.L. Becker, R.H. Brown, A.F. Cook, C.J. Hansen, T.V. Johnson, R.L. Kirk, E.M. Shoemaker, Triton’s geyser-like plumes: discovery and basic characterization. Science 250(4979), 410–415 (1990). https://doi.org/10.1126/science.250.4979.410

    ADS  Article  Google Scholar 

  235. F. Sohl, T. Spohn, D. Breuer, K. Nagel, Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157(1), 104–119 (2002). https://doi.org/10.1006/icar.2002.6828

    ADS  Article  Google Scholar 

  236. F. Sohl, M. Choukroun, J. Kargel, J. Kimura, R. Pappalardo, S. Vance, M. Zolotov, Subsurface water oceans on icy satellites: chemical composition and exchange processes. Space Sci. Rev. 153(1–4), 485–510 (2010). https://doi.org/10.1007/s11214-010-9646-y

    ADS  Article  Google Scholar 

  237. O. Souček, J. Hron, M. Běhounková, O. Čadek, Effect of the tiger stripes on the deformation of Saturn’s moon Enceladus. Geophys. Res. Lett. 43(14), 7417–7423 (2016). https://doi.org/10.1002/2016GL069415

    ADS  Article  Google Scholar 

  238. B.S. Southworth, S. Kempf, J. Schmidt, Modeling Europa’s dust plumes. Geophys. Res. Lett. 42(24), 10541–10548 (2015). https://doi.org/10.1002/2015GL066502

    ADS  Article  Google Scholar 

  239. F. Spahn, N. Albers, M. Hörning, S. Kempf, A.V. Krivov, M. Makuch, J. Schmidt, M. Seiß, M. Sremčević, E ring dust sources: implications from Cassini’s dust measurements. Planet. Space Sci. 54(9–10), 1024–1032 (2006a). https://doi.org/10.1016/j.pss.2006.05.022

    ADS  Article  Google Scholar 

  240. F. Spahn, J. Schmidt, N. Albers, M. Hörning, M. Makuch, M. Seiß, S. Kempf, R. Srama, V. Dikarev, S. Helfert, G. Moragas-Klostermeyer, A. Krivov, M. Sremčević, A.J. Tuzzolino, T. Economou, E. Grün, Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311(5766), 1416–1418 (2006b). https://doi.org/10.1126/science.1121375

    ADS  Article  Google Scholar 

  241. W.B. Sparks, K.P. Hand, M.A. McGrath, E. Bergeron, M. Cracraft, S.E. Deustua, Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829(2), 121–132 (2016). https://doi.org/10.3847/0004-637X/829/2/121

    ADS  Article  Google Scholar 

  242. W.B. Sparks, B.E. Schmidt, M.A. Mcgrath, K.P. Hand, J.R. Spencer, M. Cracraft, S.E. Deustua, Active cryovolcanism on Europa? Astrophys. J. Lett. 839(2), L18–L23 (2017). https://doi.org/10.3847/2041-8213/aa67f8. arXiv:1704.04283

    ADS  Article  Google Scholar 

  243. J. Spencer, C. Howett, Enceladus heat flow from high spatial resolution thermal emission observations. EPSC Abstracts 8, 1–2 (2013). http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-840-1.pdf

    Google Scholar 

  244. J.R. Spencer, L.K. Tamppari, T.Z. Martin, L.D. Travis, Temperatures on Europa from Galileo photopolarimeter-radiometer: nighttime thermal anomalies. Science 284(5419), 1514–1516 (1999). https://doi.org/10.1126/science.284.5419.1514

    ADS  Article  Google Scholar 

  245. J.R. Spencer, J. Pearl, M. Segura, F.M. Flasar, A. Mamoutkine, P. Romani, B.J. Buratti, A.R. Hendrix, L. Spilker, R.M.C. Lopes, Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311(5766), 1401–1405 (2006). https://doi.org/10.1126/science.1121661

    ADS  Article  Google Scholar 

  246. J.R. Spencer, S.A. Stern, A.F. Cheng, H.A. Weaver, D.C. Reuter, K. Retherford, A. Lunsford, J.M. Moore, O. Abramov, R.M.C. Lopes, J.E. Perry, L. Kamp, M. Showalter, K.L. Jessup, F. Marchis, P.M. Schenk, C. Dumas, Io volcanism seen by New Horizons: a major eruption of the Tvashtar volcano. Science 318(5848), 240–243 (2007). https://doi.org/10.1126/science.1147621

    ADS  Article  Google Scholar 

  247. J.N. Spitale, C.C. Porco, Association of the jets of Enceladus with the warmest regions on its south-polar fractures. Nature 449(7163), 695–697 (2007). https://doi.org/10.1038/nature06217. arXiv:1507.02142v2

    ADS  Article  Google Scholar 

  248. J.N. Spitale, T.A. Hurford, A.R. Rhoden, E.E. Berkson, S.S. Platts, Curtain eruptions from Enceladus’ south-polar terrain. Nature 521(7550), 57–60 (2015). https://doi.org/10.1038/nature14368

    ADS  Article  Google Scholar 

  249. T. Spohn, G. Schubert, Oceans in the icy Galilean satellites of Jupiter? Icarus 161(2), 456–467 (2003). https://doi.org/10.1016/S0019-1035(02)00048-9

    ADS  Article  Google Scholar 

  250. S.W. Squyres, R.T. Reynolds, P.M. Cassen, S.J. Peale, Liquid water and active resurfacing on Europa. Nature 301(5897), 225–226 (1983). https://doi.org/10.1038/301225a0

    ADS  Article  Google Scholar 

  251. R. Srama, S. Kempf, G. Moragas-Klostermeyer, S. Helfert, T.J. Ahrens, N. Altobelli, S. Auer, U. Beckmann, J.G. Bradley, M. Burton, V.V. Dikarev, T. Economou, H. Fechtig, S.F. Green, M. Grande, O. Havnes, J.K. Hillier, M. Horanyi, E. Igenbergs, E.K. Jessberger, T.V. Johnson, H. Krüger, G. Matt, N. McBride, A. Mocker, P. Lamy, D. Linkert, G. Linkert, F. Lura, J.A.M. McDonnell, D. Möhlmann, G.E. Morfill, F. Postberg, M. Roy, G.H. Schwehm, F. Spahn, J. Svestka, V. Tschernjawski, A.J. Tuzzolino, R. Wäsch, E. Grün, In situ dust measurements in the inner Saturnian system. Planet. Space Sci. 54(9–10), 967–987 (2006). https://doi.org/10.1016/j.pss.2006.05.021

    ADS  Article  Google Scholar 

  252. M. Sremčević, A.V. Krivov, H. Krüger, F. Spahn, Impact-generated dust clouds around planetary satellites: model versus Galileo data. Planet. Space Sci. 53(6), 625–641 (2005). https://doi.org/10.1016/j.pss.2004.10.001

    ADS  Article  Google Scholar 

  253. R.G. Strom, N.M. Schneider, R.J. Terrile, A.F. Cook, C. Hansen, Volcanic eruptions on Io. J. Geophys. Res. Space Phys. 86(A10), 8593–8620 (1981). https://doi.org/10.1029/JA086iA10p08593

    ADS  Article  Google Scholar 

  254. P.J. Tackley, G. Schubert, G.A. Glatzmaier, P. Schenk, J.T. Ratcliff, J.P. Matas, Three-dimensional simulations of mantle convection in Io. Icarus 149(1), 79–93 (2001). https://doi.org/10.1006/icar.2000.6536

    ADS  Article  Google Scholar 

  255. R. Tajeddine, K.M. Soderlund, P.C. Thomas, P. Helfenstein, M.M. Hedman, J.A. Burns, P.M. Schenk, True polar wander of Enceladus from topographic data. Icarus 295, 46–60 (2017). https://doi.org/10.1016/j.icarus.2017.04.019

    ADS  Article  Google Scholar 

  256. B.D. Teolis, M.E. Perry, B.A. Magee, J. Westlake, J.H. Waite, Detection and measurement of ice grains and gas distribution in the Enceladus plume by Cassini’s Ion Neutral Mass Spectrometer. J. Geophys. Res. Space Phys. 115(9), 1–12 (2010). https://doi.org/10.1029/2009JA015192

    Article  Google Scholar 

  257. B.D. Teolis, D.Y. Wyrick, A. Bouquet, B.A. Magee, J.H. Waite, Plume and surface feature structure and compositional effects on Europa’s global exosphere: preliminary Europa mission predictions. Icarus 284, 18–29 (2017a). https://doi.org/10.1016/j.icarus.2016.10.027

    ADS  Article  Google Scholar 

  258. B.D. Teolis, D.Y. Wyrick, A. Bouquet, B.A. Magee, J.H. Waite, Plume and surface feature structure and compositional effects on Europa’s global exosphere: preliminary Europa mission predictions. Icarus 284, 18–29 (2017b). https://doi.org/10.1016/j.icarus.2016.10.027

    ADS  Article  Google Scholar 

  259. P.C. Thomas, Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus 208(1), 395–401 (2010). https://doi.org/10.1016/j.icarus.2010.01.025

    ADS  Article  Google Scholar 

  260. P. Thomas, J. Burns, P. Helfenstein, S. Squyres, J. Veverka, C. Porco, E. Turtle, A. McEwen, T. Denk, B. Giese, Shapes of the saturnian icy satellites and their significance. Icarus 190(2), 573–584 (2007). https://doi.org/10.1016/j.icarus.2007.03.012

    ADS  Article  Google Scholar 

  261. P.C. Thomas, R. Tajeddine, M.S. Tiscareno, J.A. Burns, J. Joseph, T.J. Loredo, P. Helfenstein, C. Porco, Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016). https://doi.org/10.1016/j.icarus.2015.08.037. arXiv:1509.07555

    ADS  Article  Google Scholar 

  262. F. Tian, A. Stewart, O. Toon, K. Larsen, L. Esposito, Monte Carlo simulations of the water vapor plumes on Enceladus. Icarus 188(1), 154–161 (2007). https://doi.org/10.1016/j.icarus.2006.11.010

    ADS  Article  Google Scholar 

  263. G. Tobie, A. Mocquet, C. Sotin, Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177(2), 534–549 (2005). https://doi.org/10.1016/j.icarus.2005.04.006

    ADS  Article  Google Scholar 

  264. R.L. Tokar, The interaction of the atmosphere of Enceladus with Saturn’s plasma. Science 311(5766), 1409–1412 (2006). https://doi.org/10.1126/science.1121061

    ADS  Article  Google Scholar 

  265. B.J. Travis, G. Schubert, Keeping Enceladus warm. Icarus 250, 32–42 (2015). https://doi.org/10.1016/j.icarus.2014.11.017

    ADS  Article  Google Scholar 

  266. S.K. Trumbo, M.E. Brown, B.J. Butler, ALMA thermal observations of a proposed plume source region on Europa. Astron. J. 154(4), 148 (2017). https://doi.org/10.3847/1538-3881/aa8769. arXiv:1708.07922

    ADS  Article  Google Scholar 

  267. B.M. Tutolo, A.J. Luhmann, N.J. Tosca, W.E. Seyfried, Serpentinization as a reactive transport process: the brucite silicification reaction. Earth Planet. Sci. Lett. 484, 385–395 (2018). https://doi.org/10.1016/j.epsl.2017.12.029

    ADS  Article  Google Scholar 

  268. R.H. Tyler, W.G. Henning, C.W. Hamilton, Tidal heating in a magma ocean within Jupiter’s moon Io. Astrophys. J. Suppl. Ser. 218(2), 22 (2015). https://doi.org/10.1088/0067-0049/218/2/22

    ADS  Article  Google Scholar 

  269. T. Van Hoolst, R.M. Baland, A. Trinh, The diurnal libration and interior structure of Enceladus. Icarus 277, 311–318 (2016). https://doi.org/10.1016/j.icarus.2016.05.025

    ADS  Article  Google Scholar 

  270. W.R. Van Schmus, Natural radioactivity of the crust and mantle, in Global Earth Physics: A Handbook of Physical Constants (1995), pp. 283–291

    Google Scholar 

  271. S. Vance, J. Harnmeijer, J. Kimura, H. Hussmann, B. Demartin, J.M. Brown, Hydrothermal systems in small ocean planets. Astrobiology 7(6), 987–1005 (2007). https://doi.org/10.1089/ast.2007.0075

    ADS  Article  Google Scholar 

  272. P. Varga, B. Süle, E. Illés-Almár, On the tidal heating of Enceladus. J. Geodyn. 48(3–5), 247–252 (2009). https://doi.org/10.1016/j.jog.2009.09.031

    Article  Google Scholar 

  273. G.J. Veeder, D.L. Matson, T.V. Johnson, A.G. Davies, D.L. Blaney, The polar contribution to the heat flow of Io. Icarus 169(1), 264–270 (2004). https://doi.org/10.1016/j.icarus.2003.11.016

    ADS  Article  Google Scholar 

  274. A.J. Verbiscer, M.F. Skrutskie, D.P. Hamilton, Saturn’s largest ring. Nature 461(7267), 1098–1100 (2009). https://doi.org/10.1038/nature08515

    ADS  Article  Google Scholar 

  275. J.E. Wahlund, M. André, A. Eriksson, M. Lundberg, M. Morooka, M. Shafiq, T. Averkamp, D. Gurnett, G. Hospodarsky, W. Kurth, K. Jacobsen, A. Pedersen, W. Farrell, S. Ratynskaia, N. Piskunov, Detection of dusty plasma near the E-ring of Saturn. Planet. Space Sci. 57(14–15), 1795–1806 (2009). https://doi.org/10.1016/j.pss.2009.03.011

    ADS  Article  Google Scholar 

  276. J.H. Waite, M.R. Combi, W.H. Ip, T.E. Cravens, R.L. McNutt, W. Kasprzak, R. Yelle, J. Luhmann, H. Niemann, D. Gell, B. Magee, G. Fletcher, J. Lunine, W.L. Tseng, Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311(5766), 1419–1422 (2006). https://doi.org/10.1126/science.1121290

    ADS  Article  Google Scholar 

  277. J.H. Waite, W.S. Lewis, B.A. Magee, J.I. Lunine, W.B. McKinnon, C.R. Glein, O. Mousis, D.T. Young, T. Brockwell, J. Westlake, M.J. Nguyen, B.D. Teolis, H.B. Niemann, R.L. McNutt, M. Perry, W.H. Ip, Liquid water on Enceladus from observations of ammonia and \(^{40}\mbox{Ar}\) in the plume. Nature 460(7254), 487–490 (2009). https://doi.org/10.1038/nature08153

    ADS  Article  Google Scholar 

  278. J.H. Waite, C.R. Glein, R.S. Perryman, B.D. Teolis, B.A. Magee, G. Miller, J. Grimes, M.E. Perry, K.E. Miller, A. Bouquet, J.I. Lunine, T. Brockwell, S.J. Bolton, Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356(6334), 155–159 (2017). https://doi.org/10.1126/science.aai8703

    ADS  Article  Google Scholar 

  279. W.W. Wegner, W.G. Ernst, Experimentally determined hydration and dehydration reaction rates in the system MgO-\(\mbox{SiO}_{2}\)-\(\mbox{H}_{2}\mbox{O}\) (1983)

  280. R.J. Wilson, R.L. Tokar, M.G. Henderson, T.W. Hill, M.F. Thomsen, D.H. Pontius, Cassini plasma spectrometer thermal ion measurements in Saturn’s inner magnetosphere. J. Geophys. Res. Space Phys. 113(A12), A12218 (2008). https://doi.org/10.1029/2008JA013486

    ADS  Article  Google Scholar 

  281. S.Y. Ye, D. Gurnett, W. Kurth, T. Averkamp, S. Kempf, H.W. Hsu, R. Srama, E. Grün, Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft. J. Geophys. Res. Space Phys. 119, 6294–6312 (2014). https://doi.org/10.1002/2014JA020024

    ADS  Article  Google Scholar 

  282. S.Y. Ye, D.A. Gurnett, W.S. Kurth, In-situ measurements of Saturn’s dusty rings based on dust impact signals detected by Cassini RPWS. Icarus 279, 51–61 (2016). https://doi.org/10.1016/j.icarus.2016.05.006

    ADS  Article  Google Scholar 

  283. S.K. Yeoh, Z. Li, D.B. Goldstein, P.L. Varghese, D.A. Levin, L.M. Trafton, Constraining the Enceladus plume using numerical simulation and Cassini data. Icarus 281, 357–378 (2017). https://doi.org/10.1016/j.icarus.2016.08.028

    ADS  Article  Google Scholar 

  284. J. Zhang, D.B. Goldstein, P.L. Varghese, N.E. Gimelshein, S.F. Gimelshein, D.A. Levin, Simulation of gas dynamics and radiation in volcanic plumes on Io. Icarus 163(1), 182–197 (2003). https://doi.org/10.1016/S0019-1035(03)00050-2

    ADS  Article  Google Scholar 

  285. J. Zhang, D.B. Goldstein, P.L. Varghese, L. Trafton, C. Moore, K. Miki, Numerical modeling of ionian volcanic plumes with entrained particulates. Icarus 172(2), 479–502 (2004). https://doi.org/10.1016/j.icarus.2004.06.016

    ADS  Article  Google Scholar 

  286. M.Y. Zolotov, An oceanic composition on early and today’s Enceladus. Geophys. Res. Lett. 34(23), 1–5 (2007). https://doi.org/10.1029/2007GL031234

    Article  Google Scholar 

  287. M.Y. Zolotov, B. Fegley, Oxidation state of volcanic gases and the interior of Io. Icarus 141(1), 40–52 (1999). https://doi.org/10.1006/icar.1999.6164

    ADS  Article  Google Scholar 

  288. M.Y. Zolotov, B. Fegley, Eruption conditions of Pele volcano on Io inferred from chemistry of its volcanic plume. Geophys. Res. Lett. 27(17), 2789–2792 (2000). https://doi.org/10.1029/2000GL011608

    ADS  Article  Google Scholar 

  289. H.A. Zook, E. Grun, M. Baguhl, D.P. Hamilton, G. Linkert, J.C. Liou, R. Forsyth, J.L. Phillips, Solar wind magnetic field bending of Jovian dust trajectories. Science 274(5292), 1501–1503 (1996). https://doi.org/10.1126/science.274.5292.1501

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank H. Krüger and an anonymous referee for their helpful and constructive comments, which have improved the manuscript. JH acknowledges funding from Universität Heidelberg. The authors thank ISSI and Andrea Fischer for funding and arranging copyright permissions for many of the figures within this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. K. Hillier.

Additional information

Cosmic Dust from the Laboratory to the Stars

Edited by Rafael Rodrigo, Jürgen Blum, Hsiang-Wen Hsu, Detlef Koschny, Anny-Chantal Levasseur-Regourd, Jesús Martín-Pintado, Veerle Sterken and Andrew Westphal

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hillier, J.K., Schmidt, J., Hsu, HW. et al. Dust Emission by Active Moons. Space Sci Rev 214, 131 (2018). https://doi.org/10.1007/s11214-018-0539-9

Download citation

Keywords

  • Cosmic dust
  • Tidal heating
  • Planetary satellites
  • Volcanism