The Rotation and Interior Structure Experiment on the InSight Mission to Mars

Abstract

The Rotation and Interior Structure Experiment (RISE) on-board the InSight mission will use the lander’s X-band (8 GHz) radio system in combination with tracking stations of the NASA Deep Space Network (DSN) to determine the rotation of Mars. RISE will measure the nutation of the Martian spin axis, detecting for the first time the effect of the liquid core of Mars and providing in turn new constraints on the core radius and density. RISE will also measure changes in the rotation rate of Mars on seasonal time-scales thereby constraining the atmospheric angular momentum budget. Finally, RISE will provide a superb tie between the cartographic and inertial reference frames. This paper describes the RISE scientific objectives and measurements, and provides the expected results of the experiment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    A first low accuracy estimate of polar motion amplitudes has been inferred from gravity degree-2 coefficients by Konopliv et al. (2006), but no direct measurements of it has been performed until now.

References

  1. B.A. Archinal, C.H. Acton, M.F. A’Hearn, A. Conrad et al., Report of the IAU working group on cartographic coordinates and rotational elements: 2015. Celest. Mech. Dyn. Astron. 130(3), 22 (2018). https://doi.org/10.1007/s10569-017-9805-5

    ADS  MathSciNet  Article  Google Scholar 

  2. R.E. Arvidson, R.C. Anderson, P. Bartlett, J.F. Bell et al., Localization and physical properties experiments conducted by Spirit at Gusev crater. Science 305, 821–824 (2004a)

    ADS  Article  Google Scholar 

  3. R.E. Arvidson, R.C. Anderson, P. Bartlett, J.F. Bell et al., Localization and physical properties experiments conducted by opportunity at Meridiani Planum. Science 306, 1730–1733 (2004b)

    ADS  Article  Google Scholar 

  4. S.W. Asmar, J.W. Armstrong, L. Iess, P. Tortora, Spacecraft Doppler tracking: Noise budget and accuracy achievable in precision radio science observations. Radio Sci. 40, RS2001 (2005). https://doi.org/10.1029/2004RS003101

    ADS  Article  Google Scholar 

  5. W.B. Banerdt et al., The InSight mission. Space Sci. Rev. (2018), this issue

  6. Y.E. Bar-Sever, C.S. Jacobs, S. Keihm, G.E. Lanyi et al., Atmospheric media calibration for the deep space network. Proc. IEEE 95, 2180–2192 (2007)

    ADS  Article  Google Scholar 

  7. J.-P. Barriot, V. Dehant, J.-C. Cerisier, W. Folkner et al., NEIGE: NetLander ionosphere and geodesy experiment. Adv. Space Res. 28, 1237–1249 (2001). https://doi.org/10.1016/S0273-1177(01)00295-2

    ADS  Article  Google Scholar 

  8. N. Bergeot, O. Witasse, W. Kofman, C. Grima et al., Study of the total electron content in Mars ionosphere from MARSIS data set, in EGU General Assembly 2016, Vienna, Austria (2016)

    Google Scholar 

  9. A. Cazenave, G. Balmino, Meteorological effects on the seasonal variations on the rotation of Mars. Geophys. Res. Lett. 8, 245–248 (1981)

    ADS  Article  Google Scholar 

  10. B.F. Chao, D.P. Rubincam, Variations of Mars’ gravitational field and rotation due to seasonal CO2 exchange. J. Geophys. Res. 95(B9), 14755–14760 (1990)

    ADS  Article  Google Scholar 

  11. S. Chapman, The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc. 43, 26–45 (1931)

    ADS  Article  MATH  Google Scholar 

  12. J.A.D. Connolly, Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005). https://doi.org/10.1016/j.epsl.2005.04.033

    ADS  Article  Google Scholar 

  13. F.A. Dahlen, J. Tromp, Theoretical Global Seismology (Princeton University Press, Princeton, 1998)

    Google Scholar 

  14. P. Defraigne, O. de Viron, V. Dehant, T. Van Hoolst, F. Hourdin, Mars rotation variations induced by atmospheric CO2 and winds. J. Geophys. Res., Planets 105, 24563–24570 (2000). https://doi.org/10.1029/1999JE001227

    ADS  Article  Google Scholar 

  15. P. Defraigne, A. Rivoldini, T. Van Hoolst, V. Dehant, Mars nutation resonance due to free inner core nutation. J. Geophys. Res., Planets 108(E12), 5128 (2003). https://doi.org/10.1029/2003JE002145

    ADS  Article  Google Scholar 

  16. V. Dehant, P.M. Mathews, Precession, Nutation and Wobble of the Earth (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  17. V. Dehant, P. Defraigne, T. Van Hoolst, Computation of Mars’ transfer function for nutation tides and surface loading. Phys. Earth Planet. Inter. 117, 385–395 (2000a). https://doi.org/10.1016/S0031-9201(99)00108-9

    ADS  Article  Google Scholar 

  18. V. Dehant, T. Van Hoolst, P. Defraigne, Comparison between the nutations of the planet Mars and the nutations of the Earth. Geophys. Surv. 21, 89–110 (2000b)

    Article  Google Scholar 

  19. V. Dehant, W. Folkner, E. Renotte, D. Orban et al., Lander radioscience for obtaining the rotation and orientation of Mars. Planet. Space Sci. 57, 1050–1067 (2009). https://doi.org/10.1016/j.pss.2008.08.009

    ADS  Article  Google Scholar 

  20. V. Dehant, S. Le Maistre, A. Rivoldini, M. Yseboodt et al., Revealing Mars’ deep interior: Future geodesy missions using radio links between landers, orbiters, and the Earth. Planet. Space Sci. 57, 1069–1081 (2011). https://doi.org/10.1016/j.pss.2010.03.014

    ADS  Article  Google Scholar 

  21. G. Dreibus, H. Wanke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985)

    ADS  Google Scholar 

  22. R. Fergason, R.L. Kirk, G. Cushing, D.M. Galuzska et al., Analysis of local slopes at the InSight landing site on Mars. Space Sci. Rev. 211, 109–133 (2017). https://doi.org/10.1007/s11214-016-0292-x

    ADS  Article  Google Scholar 

  23. W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278, 1749–1752 (1997)

    ADS  Article  Google Scholar 

  24. A. Genova, S. Goossens, F.G. Lemoine, E. Mazarico et al., Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245 (2016). https://doi.org/10.1016/j.icarus.2016.02.050

    ADS  Article  Google Scholar 

  25. M.P. Golombek, R.A. Cook, T. Economou, W. Folkner et al., Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science 278, 1743–1748 (1997)

    ADS  Article  Google Scholar 

  26. M.P. Golombek, R.C. Anderson, J.R. Barnes, J.F. Bell et al., Overview of the Mars Pathfinder mission: Launch through landing, surface operations, data sets, and science results. J. Geophys. Res. 104, 8523–8553 (1999a)

    ADS  Article  Google Scholar 

  27. M.P. Golombek, H.J. Moore, A.F.C. Haldemann, T.J. Parker, J.T. Schofield, Assessment of Mars Pathfinder landing site predictions. J. Geophys. Res. 104, 8585–8594 (1999b)

    ADS  Article  Google Scholar 

  28. M.P. Golombek, D. Kipp, N. Warner, I.J. Daubar et al., Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017). https://doi.org/10.1007/s11214-016-0321-9

    ADS  Article  Google Scholar 

  29. M.P. Golombek, M. Grott, G. Kargl, J. Andrade et al., Geology and physical properties investigations by the InSight lander. Space Sci. Rev. (2018), this issue. https://doi.org/10.1007/s11214-018-0512-7

    Google Scholar 

  30. K. Gwinner, F. Scholten, F. Preusker, S. Elgner et al., Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance. Earth Planet. Sci. Lett. 294, 506–519 (2010). https://doi.org/10.1016/j.epsl.2009.11.007

    ADS  Article  Google Scholar 

  31. Ö. Karatekin, T. Van Hoolst, J. Tastet, O. de Viron, V. Dehant, The effects of seasonal mass redistribution and interior structure on length-of-day variations of Mars. Adv. Space Res. 38, 739–744 (2006). https://doi.org/10.1016/j.asr.2005.03.117

    ADS  Article  Google Scholar 

  32. Ö. Karatekin, O. de Viron, S. Lambert, P. Rosenblatt et al., Atmospheric angular momentum variations of Earth, Mars and Venus at seasonal time scales. Planet. Space Sci. 59, 923–933 (2011). https://doi.org/10.1016/j.pss.2010.09.010

    ADS  Article  Google Scholar 

  33. S.J. Keihm, A. Tanner, H. Rosenberger, Measurements and calibration of tropospheric delay at Goldstone from the Cassini media calibration system, in Interplanetary Network Progress Report 42-158 (2004)

    Google Scholar 

  34. A. Khan, C. Liebske, A. Rozel, A. Rivoldini et al., A geophysical perspective on the bulk composition of Mars. J. Geophys. Res. 123(2), 575–611 (2018). https://doi.org/10.1002/2017JE005371

    Article  Google Scholar 

  35. A.S. Konopliv, C.F. Yoder, E.M. Standish, D.N. Yuan, W.L. Sjogren, A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006)

    ADS  Article  Google Scholar 

  36. A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin et al., Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)

    ADS  Article  Google Scholar 

  37. A.S. Konopliv, R.S. Park, W.M. Folkner, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016). https://doi.org/10.1016/j.icarus.2016.02.052

    ADS  Article  Google Scholar 

  38. P. Kuchynka, W.M. Folkner, A.S. Konopliv, R.S. Park, S. Le Maistre, V. Dehant, New constraints on Mars rotation determined from radiometric tracking of the opportunity Mars exploration rover. Icarus 229, 340–347 (2014). https://doi.org/10.1016/j.icarus.2013.11.015

    ADS  Article  Google Scholar 

  39. S. Le Maistre, InSight coordinates determination from direct-to-Earth radio-tracking and Mars topography model. Planet. Space Sci. 121, 1–9 (2016). https://doi.org/10.1016/j.pss.2015.11.003

    ADS  Article  Google Scholar 

  40. S. Le Maistre, P. Rosenblatt, A. Rivoldini, V. Dehant et al., Lander radio science experiment with a direct link between Mars and the Earth. Planet. Space Sci. 68, 105–122 (2012). https://doi.org/10.1016/j.pss.2011.12.020

    ADS  Article  Google Scholar 

  41. R.J. Lillis, D.A. Brain, S.L. England, P. Withers et al., Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux. J. Geophys. Res. Space Phys. 115, A11314 (2010). https://doi.org/10.1029/2010JA015698

    ADS  Article  Google Scholar 

  42. K. Lodders, B. Fegley, An oxygen isotope model for the composition of Mars. Icarus 126, 373–394 (1997). https://doi.org/10.1006/icar.1996.5653

    ADS  Article  Google Scholar 

  43. P. Lognonne, W.B. Banerdt, D. Giardini, W.T. Pike et al., SEIS: The seismic experiment for internal structure on InSight. Space Sci. Rev. (2018), this issue

  44. A.J. Mannucci, B.D. Wilson, D.N. Yuan, C.H. Ho et al., A global mapping technique for GPS-derived ionospheric total electron content. Radio Sci. 33, 565–582 (1998)

    ADS  Article  Google Scholar 

  45. P.M. Mathews, B.A. Buffett, T.A. Herring, I.I. Shapiro, Forced nutations of the Earth: Influence of inner core dynamics: 1. Theory. J. Geophys. Res., Solid Earth 96(B5), 8219–8242 (1991a)

    Article  Google Scholar 

  46. P.M. Mathews, B.A. Buffett, T.A. Herring, I.I. Shapiro, Forced nutations of the Earth: Influence of inner core dynamics, 2. Numerical results and comparisons. J. Geophys. Res., Solid Earth 96(B5), 8243–8257 (1991b). https://doi.org/10.1029/90JB01956

    Article  Google Scholar 

  47. R.K. Mohapatra, S.V.S. Murty, Precursors of Mars: Constraints from nitrogen and oxygen isotopic compositions of Martian meteorites. Meteorit. Planet. Sci. 38(2), 225–241 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00261.x

    ADS  Article  Google Scholar 

  48. J.W. Morgan, E. Anders, Chemical composition of Mars. Geochim. Cosmochim. Acta 43(10), 1601–1610 (1979). https://doi.org/10.1016/0016-7037(79)90180-7

    ADS  Article  Google Scholar 

  49. P. Morgan, S.E. Smrekar, R. Lorenz, M. Grott, O. Kroemer, O. Müller, Potential effects of surface temperature variations and disturbances and thermal convection on the Mars InSight HP3 heat-flow determination. Space Sci. Rev. 211, 277 (2017). https://doi.org/10.1007/s11214-017-0388-y

    ADS  Article  Google Scholar 

  50. M.P. Panning, P. Lognonne, W.B. Banerdt, R. Garcia et al., Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 211, 611–650 (2017). https://doi.org/10.1007/s11214-016-0317-5

    ADS  Article  Google Scholar 

  51. T.J. Parker, F.J. Calef, M.P. Golombek, T.M. Hare, High-resolution basemaps for localization, mission planning, and geologic mapping at Meridiani Planum and Gale crater, in The 43rd Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2012). Abstract #2535

    Google Scholar 

  52. T.J. Parker, M.C. Malin, F.J. Calef, R.G. Deen et al., Localization and ‘contextualization’ of Curiosity in Gale crater, and other landed Mars missions, in The 44th Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2013). Abstract #2534

    Google Scholar 

  53. A.C. Plesa, M. Grott, N. Tosi, D. Breuer et al., How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res., Planets 121, 2386–2403 (2016). https://doi.org/10.1002/2016JE005126

    ADS  Article  Google Scholar 

  54. A. Rivoldini, T. Van Hoolst, The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth Planet. Sci. Lett. 377, 62–72 (2013). https://doi.org/10.1016/j.epsl.2013.07.021

    ADS  Article  Google Scholar 

  55. A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011). https://doi.org/10.1016/j.icarus.2011.03.024

    ADS  Article  Google Scholar 

  56. F. Roosbeek, Analytical developments of rigid Mars nutation and tide generating potential series. Celest. Mech. Dyn. Astron. 75, 287–300 (1999)

    ADS  Article  MATH  Google Scholar 

  57. C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999). https://doi.org/10.1016/S0031-9201(98)00175-7

    ADS  Article  Google Scholar 

  58. T. Sasao, S. Okubo, M. Saito, A simple theory on the dynamical effects of a stratified fluid core upon nutational motion of the Earth, in Symposium-International Astronomical Union, vol. 78 (Cambridge University Press, Cambridge, 1980), pp. 165–183

    Google Scholar 

  59. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin et al., Mars Orbiter Laser Altimeter (MOLA): Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001)

    ADS  Article  Google Scholar 

  60. A. Spiga, N. Teanby, A. Lucas, B. Kenda et al., Atmospheric science with InSight. Space Sci. Rev. (2018), this issue

  61. T. Spohn, M. Grott et al., The heat flow and physical properties package (HP3) for the InSight mission. Space Sci. Rev. (2018), this issue. https://doi.org/10.1007/s11214-018-0531-4

    Google Scholar 

  62. G.J. Taylor, The bulk composition of Mars. Chem. Erde 73, 401–420 (2013). https://doi.org/10.1016/j.chemer.2013.09.006

    Article  Google Scholar 

  63. E. Van den Acker, T. Van Hoolst, O. de Viron, P. Defraigne et al., Influence of the winds and of the CO2 mass exchange between the atmosphere and the polar ice caps on Mars’ rotation. J. Geophys. Res. 107(E7), 5055 (2002). https://doi.org/10.1029/2000JE001539

    Article  Google Scholar 

  64. T. Van Hoolst, V. Dehant, Influence of triaxiality and second-order terms in flattenings on the rotation of terrestrial planets: I. Formalism and rotational normal modes. Phys. Earth Planet. Inter. 134, 17–33 (2002)

    ADS  Article  Google Scholar 

  65. T. Van Hoolst, V. Dehant, P. Defraigne, Sensitivity of the free core nutation and the Chandler Wobble to changes in the interior structure of Mars. Phys. Earth Planet. Inter. 117, 397–405 (2000a)

    ADS  Article  Google Scholar 

  66. T. Van Hoolst, V. Dehant, P. Defraigne, Chandler Wobble and free core nutation for Mars. Planet. Space Sci. 48, 1145–1151 (2000b)

    ADS  Article  Google Scholar 

  67. T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161, 281–296 (2003). https://doi.org/10.1016/S0019-1035(02)00045-3

    ADS  Article  Google Scholar 

  68. M.A. Wieczorek, M.T. Zuber, Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. J. Geophys. Res. 109, E1 (2014). https://doi.org/10.1029/2003JE002153

    Google Scholar 

  69. R. Woo, F.-C. Yang, K.W. Yip, W.B. Kendall, Measurements of large-scale density fluctuations in the solar wind using dual-frequency phase scintillations. Astrophys. J. 210, 568–574 (1976)

    ADS  Article  Google Scholar 

  70. C.F. Yoder, E.M. Standish, Martian precession and rotation from Viking lander range data. J. Geophys. Res. 102(E2), 4065–4080 (1997)

    ADS  Article  Google Scholar 

  71. C.F. Yoder, A.S. Konopliv, D.N. Yuan, E.M. Standish, W.M. Folkner, Fluid core size of Mars from detection of the solar tide. Science 300, 299–303 (2003). https://doi.org/10.1126/science.1079645

    ADS  Article  Google Scholar 

  72. M. Yseboodt, V. Dehant, M.J. Péters, Signatures of the Martian rotation parameters in the Doppler and range observables. Planet. Space Sci. 144, 74–88 (2017)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was carried out in part by the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; and in part at the Royal Observatory of Belgium with financial support by the Belgian PRODEX program managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office. This is InSight Contribution Number 53.

Author information

Affiliations

Authors

Corresponding author

Correspondence to William M. Folkner.

Additional information

The InSight Mission to Mars II

Edited by William B. Banerdt and Christopher T. Russell

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Folkner, W.M., Dehant, V., Le Maistre, S. et al. The Rotation and Interior Structure Experiment on the InSight Mission to Mars. Space Sci Rev 214, 100 (2018). https://doi.org/10.1007/s11214-018-0530-5

Download citation

Keywords

  • InSight
  • Mars
  • Physical properties
  • Interior structure
  • Radio science