Skip to main content
Log in

Water and Volatile Inventories of Mercury, Venus, the Moon, and Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We review the geochemical observations of water, \(\mbox{D}/\mbox{H}\) and volatile element abundances of the inner Solar System bodies, Mercury, Venus, the Moon, and Mars. We focus primarily on the inventories of water in these bodies, but also consider other volatiles when they can inform us about water. For Mercury, we have no data for internal water, but the reducing nature of the surface of Mercury would suggest that some hydrogen may be retained in its core. We evaluate the current knowledge and understanding of venusian water and volatiles and conclude that the venusian mantle was likely endowed with as much water as Earth of which it retains a small but non-negligible fraction. Estimates of the abundance of the Moon’s internal water vary from Earth-like to one to two orders of magnitude more depleted. Cl, K, and Zn isotope anomalies for lunar samples argue that the giant impact left a unique geochemical fingerprint on the Moon, but not the Earth. For Mars, an early magma ocean likely generated a thick crust; this combined with a lack of crustal recycling mechanisms would have led to early isolation of the Martian mantle from later delivery of water and volatiles from surface reservoirs or late accretion. The abundance estimates of Martian mantle water are similar to those of the terrestrial mantle, suggesting some similarities in the water and volatile inventories for the terrestrial planets and the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • B. Agee, N.V. Wilson, F.M. McCubbin, K. Ziegler, V.J. Polyak, Z.D. Sharp, Y. Asmerom, M.H. Numm, R. Shaheen, M.H. Thiemens, A. Steele, M.L. Fogel, R. Bowden, M. Glamoclija, Z. Zhang, S.M. Elardo, Unique meteorite from Early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Nature 339(6121), 780–785 (2013). https://doi.org/10.1126/science.1228858

    Google Scholar 

  • F. Albarède, Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009)

    ADS  Google Scholar 

  • F. Albarède, E. Albalat, C.-T.A. Lee, An intrinsic volatility scale relevant to the Earth and Moon and the status of water in the Moon. Meteorit. Planet. Sci. 50, 568–577 (2015)

    ADS  Google Scholar 

  • C.M.O’D. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, L.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721 (2012). https://doi.org/10.1126/science.1223474

    ADS  Google Scholar 

  • C.M.O’D. Alexander, K.D. McKeegan, K. Altwegg, Water reservoirs in small planetary bodies: meteorites, asteroids, and comets. Space Sci. Rev. 214, 36 (2018) (this book). https://doi.org/10.1007/s11214-018-0474-9.

    ADS  Google Scholar 

  • J.J. Barnes, I.A. Franchi, M. Anand, R. Tartèse, N.A. Starkey, M. Koike, Y. Sano, S.S. Russell, Accurate and precise measurements of the \(\mbox{D}/\mbox{H}\) ratio and hydroxyl content in lunar apatites using NanoSIMS. Chem. Geol. 337, 48–55 (2013)

    ADS  Google Scholar 

  • J.J. Barnes, R. Tartèse, M. Anand, F.M. McCubbin, I.A. Franchi, N.A. Starkey, S.S. Russell, The origin of water in the primitive Moon as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 390, 244–252 (2014)

    ADS  Google Scholar 

  • J.J. Barnes, D.A. Kring, R. Tartèse, I.A. Franchi, M. Anand, S.S. Russell, An asteroidal origin for water in the Moon. Nat. Commun. 7, 11684 (2016)

    ADS  Google Scholar 

  • Basaltic Volcanism Study Project: Basaltic Volcanism on the Terrestrial Planets. Pergamon, New York (1981), 1286 pp.

  • W. Benz, W.L. Slattery, A.G.W. Cameron, Collisional stripping of Mercury’s mantle. Icarus 74, 516–528 (1988)

    ADS  Google Scholar 

  • J.P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget, M. Berthé, C. Gomez, D. Jouglet, A. Soufflot, M. Vincendon, M. Combes, P. Drossart, T. Encrenaz, T. Fouchet, R. Merchiorri, G. Belluci, F. Altieri, V. Formisano, F. Capaccioni, P. Cerroni, A. Coradini, S. Fonti, O. Korablev, V. Kottsov, N. Ignatiev, V. Moroz, D. Titov, L. Zasova, D. Loiseau, N. Mangold, P. Pinet, S. Douté, B. Schmitt, C. Sotin, E. Hauber, H. Hoffmann, R. Jaumann, U. Keller, T. Duxbury, G. Neukum, Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006)

    ADS  Google Scholar 

  • T.A. Bida, R.M. Killen, T.H. Morgan, Discovery of calcium in Mercury’s atmosphere. Nature 404, 159–161 (2000)

    ADS  Google Scholar 

  • D.T. Blewett, M.S. Robinson, B.W. Denevi, J.J. Gillis-Davis, J.W. Head, S.C. Solomon, G.M. Holsclaw, W.E. McClintock, Multispectral images of Mercury from the first MESSENGER flyby: analysis of global and regional color trends. Earth Planet. Sci. Lett. 285, 272–282 (2009)

    ADS  Google Scholar 

  • N.Z. Boctor, C.M.O’D. Alexander, J. Wang, E. Hauri, The sources of water in Martian meteorites: clues from hydrogen isotopes. Geochim. Cosmochim. Acta 67, 3971–3989 (2003)

    ADS  Google Scholar 

  • D.D. Bogard, P. Johnson, Martian gases in an Antarctic meteorite? Science 221, 651–654 (1983)

    ADS  Google Scholar 

  • L.E. Borg, J.N. Connelly, L.E. Nyquist, C.Y. Shih, H. Wiesmann, Y. Reese, The age of the carbonates in martian meteorite ALH84001. Science 286, 90–94 (1999)

    ADS  Google Scholar 

  • J.W. Boyce, Y. Liu, G.R. Rossman, Y. Guan, J.M. Eiler, E.M. Stolper, L.A. Taylor, Lunar apatite with terrestrial volatile abundances. Nature 466, 466–470 (2010)

    ADS  Google Scholar 

  • J.W. Boyce, S.M. Tomlinson, F.M. McCubbin, J.P. Greenwood, A.H. Treiman, The Lunar Apatite Paradox. Science 344, 400–402 (2014)

    ADS  Google Scholar 

  • J.W. Boyce, A.H. Treiman, Y. Guan, C. Ma, J.M. Eiler, J. Gross, J.P. Greenwood, E.M. Stolper, The chlorine isotope fingerprint of the lunar magma ocean. Sci. Adv. 1, e1500380 (2015)

    ADS  Google Scholar 

  • W.V. Boynton, W.C. Feldman, S.W. Squyres, T.H. Prettyman, J. Brückner, L.G. Evans, R.C. Reedy, R. Starr, J.R. Arnold, D.M. Drake, P.A.J. Englert, A.E. Metzger, I. Mitrofanov, J.I. Trombka, C. d’Uston, H. Wänke, O. Gasnault, D.K. Hamara, D.M. Janes, R.L. Marcialis, S. Maurice, I. Mikheeva, G.J. Taylor, R. Tokar, C. Shinohara, Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 81–85 (2002). https://doi.org/10.1126/science.1073722

    ADS  Google Scholar 

  • A.D. Brandon, R.J. Walker, J.W. Morgan, G.G. Goles, Re-Os isotopic evidence for early differentiation of the Martian mantle. Geochim. Cosmochim. Acta 64, 4083–4095 (2000)

    ADS  Google Scholar 

  • R. Brasser, The formation of Mars: building blocks and accretion time scale. Space Sci. Rev. 174, 11–25 (2013)

    ADS  Google Scholar 

  • J.M. Brenan, Partitioning of fluorine and chlorine between apatite and aqueous fluids at high-pressure and temperature—implications for the F and Cl content of high P-T fluids. Earth Planet. Sci. Lett. 117, 251–263 (1993)

    ADS  Google Scholar 

  • A.L. Broadfoot, S. Kumar, M.J.S. Belton, Mercury’s atmosphere from Mariner 10: preliminary results. Science 185, 166–169 (1974)

    ADS  Google Scholar 

  • A.L. Broadfoot, D.E. Shemansky, S. Kumar, Mariner 10: Mercury atmosphere. Geophys. Res. Lett. 3, 577–580 (1976)

    ADS  Google Scholar 

  • S.M. Brown, L.T. Elkins-Tanton, Compositions of Mercury’s earliest crust from magma ocean models. Earth Planet. Sci. Lett. 286, 446–455 (2009)

    ADS  Google Scholar 

  • C.E. Bucholz, G.A. Gaetani, M.D. Behn, N. Shimizu, Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 374, 145–155 (2013)

    ADS  Google Scholar 

  • P.A. Candela, Toward a thermodynamic model for the halogens in magmatic systems—an application to melt vapor apatite equilibria. Chem. Geol. 57, 289–301 (1986)

    ADS  Google Scholar 

  • R. Canup, C. Visscher, J. Salmon, B. Fegley, Protolunar disk evolution and the depletion of volatile elements in the Moon, in Lunar Planet. Sci. Conf. XLVI, abstract #2304 (2015a)

  • R. Canup, C. Visscher, J. Salmon, B. Fegley, Lunar volatile depletion due to incomplete accretion within an impact-generated disk. Nat. Geosci. 8, 918–921 (2015b)

    ADS  Google Scholar 

  • M.H. Carr, The Surface of Mars (Cambridge University Press, Cambridge, 2006), 322 pp.

    Google Scholar 

  • M.H. Carr, J.W. Head, Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042 (2003). https://doi.org/10.1029/2002JE001963

    Google Scholar 

  • N.L. Chabot, E.A. Wollack, R.L. Klima, M.E. Minitti, Experimental constraints on Mercury’s core composition. Earth Planet. Sci. Lett. 390, 199–208 (2014a)

    ADS  Google Scholar 

  • N.L. Chabot, C.M. Ernst, B.W. Denevi, H. Nair, A.N. Deutsch, D.T. Blewett, S.L. Murchie, G.A. Neumann, E. Mazarico, D.A. Paige, J.K. Harmon, J.W. Head, S.C. Solomon, Images of surface volatiles in Mercury’s polar craters acquired by the MESSENGER spacecraft. Geology 42, 1051–1054 (2014b)

    ADS  Google Scholar 

  • S. Charnoz, C. Michaut, Evolution of the protolunar disk: dynamics, cooling timescale and implantation of volatiles onto the Earth. Icarus 260, 440–463 (2015)

    ADS  Google Scholar 

  • Y. Chen, Y. Zhang, Y. Liu, Y. Guan, J. Eiler, E.M. Stolper, Water, fluorine, and sulfur concentrations in the lunar mantle. Earth Planet. Sci. Lett. 427, 37–46 (2015)

    ADS  Google Scholar 

  • F. Civet, P. Tarits, Electrical conductivity of the mantle of Mars from MGS magnetic observations. Earth Planets Space 66, 66–85 (2014)

    Google Scholar 

  • S.M. Clifford, T.J. Parker, The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001)

    ADS  Google Scholar 

  • M. Clog, C. Aubaud, P. Cartigny, L. Dosso, The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the \(\mbox{D}/\mbox{H}\) ratio of the depleted mantle reservoir. Earth Planet. Sci. Lett. 381, 156–165 (2013)

    ADS  Google Scholar 

  • L. Dai, S. Karato, The effect of pressure on hydrogen-assisted electrical conductivity of olivine. Phys. Earth Planet. Inter. 232, 51–56 (2014a)

    ADS  Google Scholar 

  • L. Dai, S. Karato, The influence of FeO and H content on the electrical conductivity of olivine: applications to terrestrial planets with different FeO content. Earth Planet. Sci. Lett. 237, 73–79 (2014b)

    Google Scholar 

  • N. Dauphas, A. Morbidelli, Geochemical and planetary dynamical views on the origin of Earth’s atmosphere and oceans, in Treatise on Geochemistry, 2nd edn., ed. by A.S. Davis (Elsevier, Amsterdam, 2014), pp. 1–35

    Google Scholar 

  • V. Debaille, A.D. Brandon, Q.Z. Yin, B. Jacobsen, Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525–528 (2007)

    ADS  Google Scholar 

  • S.J. Desch, G.J. Taylor, A model of the Moon’s volatile depletion, in Lunar Plan. Sci. Conf., XLII, abstract #2005 (2011)

  • G. Di Achille, B.M. Hynek, Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3, 459–463 (2010)

    ADS  Google Scholar 

  • T.M. Donahue, J.H. Hoffman, R.R. Hodges, A.J. Watson, Venus was wet—a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982)

    ADS  Google Scholar 

  • G. Dreibus, H. Wanke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985)

    ADS  Google Scholar 

  • C.M. Dundas, A.M. Bramson, L. Ojha, J.J. Wray, M.T. Mellon, S. Byrne, A.S. McEwen, N. Putzig, D. Viola, S. Sutton, E. Clark, J.W. Holt, Exposed subsurface ice sheets in the Martian mid-latitudes. Science 359, 199–201 (2018)

    ADS  Google Scholar 

  • D.S. Ebel, R.O. Sack, Djerfisherite: nebular source of refractory potassium. Contrib. Mineral. Petrol. 166, 923–934 (2013)

    ADS  Google Scholar 

  • B.L. Ehlmann, C.S. Edwards, Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014)

    ADS  Google Scholar 

  • L.T. Elkins-Tanton, T.L. Grove, Water (hydrogen) in the lunar mantle: results from petrology and magma ocean modeling. Earth Planet. Sci. Lett. 307, 173–179 (2011)

    ADS  Google Scholar 

  • L.T. Elkins-Tanton, P.C. Hess, E.M. Parmentier, Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01 (2005). https://doi.org/10.1029/2005JE002480

    ADS  Google Scholar 

  • L.T. Elkins-Tanton, S.E. Smrekar, P.C. Hess, E.M. Parmentier, Volcanism and volatile recycling on a one-plate planet: applications to Venus. J. Geophys. Res. 112, E04S06 (2007)

    ADS  Google Scholar 

  • L.G. Evans, P.N. Peplowski, E.A. Rhodes, D.J. Lawrence, T.J. McCoy, L.R. Nittler, S.C. Solomon, A.L. Sprague, K.R. Stockstill-Cahill, R.D. Starr, S.Z. Weider, W.V. Boynton, D.K. Hamara, J.O. Goldsten, Major-element abundances on the surface of Mercury: results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res. 117, E00L07 (2012)

    ADS  Google Scholar 

  • L.G. Evans, P.N. Peplowski, F.M. McCubbin, T.J. McCoy, L.R. Nittler, M.Y. Zolotov, D.S. Ebel, D.J. Lawrence, R.D. Starr, S.Z. Weider, S.C. Solomon, Chlorine on the surface of Mercury: MESSENGER Gamma-Ray measurements and implications for the planet’s formation and evolution. Icarus 257, 417–427 (2015)

    ADS  Google Scholar 

  • B. Fegley Jr., Venus, in Meteorites, Comets, and Planets, ed. by A.M. Davis, Treatise on Geochemistry, 2nd edn. (Elsevier-Pergamon, Oxford, 2014), pp. 127–146. https://doi.org/10.1016/B978-0-08-095975-7.00122-4

    Google Scholar 

  • D.A. Fisher, Mars’ water isotope (\(\mbox{D}/\mbox{H}\)) history in the strata of the North Polar Cap: inferences about the water cycle. Icarus 187, 430–441 (2007)

    ADS  Google Scholar 

  • C.N. Foley, M. Madhwa, L.E. Borg, P.E. Janney, R. Hines, T.L. Grove, The early differentiation history of Mars from 182W–142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005)

    ADS  Google Scholar 

  • I. Friedman, J.R. O’Neil, J.D. Gleason, K. Hardcastle, The carbon and hydrogen content and isotopic composition of some Apollo 12 materials, in Proc. Lunar Sci. Conf., vol. 2 (1971), pp. 1407–1415

    Google Scholar 

  • E. Füri, E. Deloule, New constraints on the production rate of cosmogenic deuterium at the Moon’s surface, in 47th Lunar Planet. Sci. Conf., abstract #1351 (2016)

  • E. Füri, E. Deloule, A.A. Gurenko, B. Marty, New evidence for chondritic lunar water from combined \(\mbox{D}/\mbox{H}\) and noble gas analyses of single Apollo 17 volcanic glasses. Icarus 229, 109–120 (2014)

    ADS  Google Scholar 

  • E. Füri, P.H. Barry, L.A. Taylor, B. Marty, Indigenous nitrogen in the Moon: constraints from coupled nitrogen-noble gas analyses of mare basalts. Earth Planet. Sci. Lett. 431, 195–205 (2015)

    ADS  Google Scholar 

  • G.A. Gaetani, J.A. O’Leary, N. Shimizu, C.E. Bucholz, M. Newville, Rapid re-equilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40, 915–918 (2012)

    ADS  Google Scholar 

  • H. Genda, Effects of Giant Impacts on the Atmosphere Formation of Terrestrial Planets (University of Tokyo, Tokyo, 2004)

    Google Scholar 

  • H. Genda, M. Ikoma, Origin of the ocean on the Earth: early evolution of water \(\mbox{D}/\mbox{H}\) in a hydrogen-rich atmosphere. Icarus 194, 42–52 (2008). https://doi.org/10.1016/j.icarus.2007.09.007

    ADS  Google Scholar 

  • M. Gilmore, A. Treiman, J. Helbert, S. Smrekar, Venus surface composition constrained by observation and experiment. Space Sci. Rev. 212(3–4), 1511–1540 (2017). https://doi.org/10.1007/s11214-017-0370-8

    ADS  Google Scholar 

  • T.A. Goudge, J.W. Head, L. Kerber, D.T. Blewett, B.W. Denevi, D.L. Domingue, J.J. Gillis-Davis, K. Gwinner, J. Helbert, G.M. Holsclaw, N.R. Izenberg, R.L. Klima, W.E. McClintock, S.L. Murchie, G.A. Neumann, D.E. Smith, R.G. Strom, Z. Xiao, M.T. Zuber, S.C. Solomon, Global inventory and characterization of pyroclastic deposits on Mercury: new insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. 119, 635–658 (2014)

    Google Scholar 

  • M.M. Grady, I.P. Wright, L.P. Carr, C.T. Pillinger, Compositional differences in enstatite chondrites based on carbon and nitrogen stable isotope measurements. Geochim. Cosmochim. Acta 50, 2799–2813 (1986)

    ADS  Google Scholar 

  • J.P. Greenwood, S. Itoh, N. Sakamoto, E. Vicenzi, H. Yurimoto, Hydrogen isotope evidence for loss of water from Mars through time. Geophys. Res. Lett. 35, L05203 (2008). https://doi.org/10.1029/2007GL032721

    ADS  Google Scholar 

  • J.P. Greenwood, S. Itoh, N. Sakamoto, P.H. Warren, L.A. Taylor, H. Yurimoto, Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat. Geosci. 4, 79–82 (2011)

    ADS  Google Scholar 

  • J.P. Greenwood, N. Sakamoto, S. Itoh, P.H. Warren, J.A. Singer, K. Yanai, H. Yurimoto, The lunar magma ocean volatile signature recorded in chlorine-rich glasses in KREEP basalts 15382 and 15386. Geochem. J. 51, 105–114 (2017)

    Google Scholar 

  • R.E. Grimm, K.P. Harrison, D.E. Stillman, M.R. Kirchoff, On the secular retention of ground water and ice on Mars. J. Geophys. Res., Planets 122, 94–109 (2017). https://doi.org/10.1002/2016JE005132

    ADS  Google Scholar 

  • D.H. Grinspoon, Implications of the high deuterium-to-hydrogen ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993)

    ADS  Google Scholar 

  • D.H. Grinspoon, J.S. Lewis, Cometary water on Venus: implications of stochastic impacts. Icarus 74, 21–35 (1988)

    ADS  Google Scholar 

  • A.N. Halliday, The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013)

    ADS  Google Scholar 

  • A.N. Halliday, D. Lee, S. Tommasini, G.R. Davies, C.R. Paslick, J.G. Fitton, D.E. James, Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet. Sci. Lett. 133, 379–395 (1995)

    ADS  Google Scholar 

  • L.J. Hallis, \(\mbox{D}/\mbox{H}\) ratios of the inner solar system. Philos. Trans. R. Soc. Lond. A 375, 20150390 (2017)

    ADS  Google Scholar 

  • L.J. Hallis, G.J. Taylor, K. Nagashima, G.R. Huss, Magmatic water in the martian meteorite Nakhla. Earth Planet. Sci. Lett. 359–360, 84–92 (2012)

    Google Scholar 

  • L.J. Hallis, G.R. Huss, K. Nagashima, G.J. Taylor, S.A. Halldórsson, D.R. Hilton, M.J. Mottl, K.J. Meech, Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015). https://doi.org/10.1126/science.aac4834

    ADS  Google Scholar 

  • K. Hamano, Y. Abe, H. Genda, Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013). https://doi.org/10.1038/nature12163

    ADS  Google Scholar 

  • J.K. Harmon, M.A. Slade, Radar mapping of Mercury: full-disk images and polar anomalies. Science 258, 640–642 (1992)

    ADS  Google Scholar 

  • L.A. Haskin, P.H. Warren, Lunar chemistry, in Lunar Sourcebook: A User’s Guide to the Moon, ed. by G. Heiken, D. Vaniman, B. French (Cambridge University Press, New York, 1991), pp. 357–474

    Google Scholar 

  • S.A. Hauck II, J.L. Margot, S.C. Solomon, R.J. Phillips, C.L. Johnson, F.G. Lemoine, E. Mazarico, T.J. McCoy, S. Padovan, S.J. Peale, M.E. Perry, D.E. Smith, M.T. Zuber, The curious case of Mercury’s internal structure. J. Geophys. Res., Planets 118, 1204–1220 (2013)

    ADS  Google Scholar 

  • E. Hauri, J. Wang, J.E. Dixon, P.L. King, C. Mandeville, S. Newman, SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects, and comparisons with FTIR. Chem. Geol. 183, 99–114 (2002)

    ADS  Google Scholar 

  • E.H. Hauri, T. Weinreich, A.E. Saal, M.C. Rutherford, J.A. Van Orman, High pre-eruptive water contents preserved in Lunar melt inclusions. Science 333, 213–215 (2011)

    ADS  Google Scholar 

  • E.H. Hauri, A.E. Saal, M.C. Rutherford, J.A. Van Orman, Water in the Moon’s interior: truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015)

    ADS  Google Scholar 

  • E.H. Hauri, A.E. Saal, M. Nakajima, M. Anand, M.J. Rutherford, J.A. Van Orman, M. Le Voyer, Origin and evolution of water in the Moon’s interior. Annu. Rev. Earth Planet. Sci. 45, 89–111 (2017)

    ADS  Google Scholar 

  • J.W. Head III, L. Wilson, Alphonsus-type dark-halo craters: morphology, morphometry, and eruption conditions, in Lunar Planet. Sci. Conf. XI, vol. 418 (1979)

    Google Scholar 

  • J.W. Head III, H. Hiesinger, M.A. Ivanov, M.A. Kreslavsky, S. Pratt, B.J. Thomson, Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science 286, 2134–2137 (1999)

    ADS  Google Scholar 

  • C.D.K. Herd, Basalts as probes of planetary interior redox state. Rev. Mineral. Geochem. 68, 527–553 (2008). Oxygen in the Solar System, ed. by G.J. MacPherson

    Google Scholar 

  • Y. Higashi, S. Itoh, M. Hashiguchi, S. Sakata, T. Hirata, K. Watanabe, I. Sakaguchi, Hydrogen diffusion in the apatite-water system: fluorapatite parallel to the c-axis. Geochem. J. 51, 115–122 (2017)

    Google Scholar 

  • M.M. Hirschmann, A.C. Withers, P. Ardia, N.T. Foley, Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345–348, 38–48 (2012)

    Google Scholar 

  • L.L. Hood, F. Herbert, C.P. Sonett, The deep lunar electrical conductivity profile: structural and thermal inferences. J. Geophys. Res. 87, 5311–5326 (1982)

    ADS  Google Scholar 

  • G.L. Hovis, D.E. Harlov, Solution calorimetric investigation of fluor-chlorapatite crystalline solutions. Am. Mineral. 95, 946–952 (2010)

    ADS  Google Scholar 

  • S. Hu, Y. Lin, J. Zhang, J. Hao, L. Feng, L. Xu, W. Yang, J. Yang, NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: hydrogen isotope evidence for recent past underground hydrothermal activity on Mars. Geochim. Cosmochim. Acta 140, 321–333 (2014)

    ADS  Google Scholar 

  • H. Hui, A.H. Peslier, Y. Zhang, C.R. Neal, Water in lunar anorthosites and evidence for a wet early Moon. Nat. Geosci. 6, 177–180 (2013). https://doi.org/10.1038/ngeo1735

    ADS  Google Scholar 

  • H. Hui, Y. Guan, Y. Chen, A.H. Peslier, Y. Zhang, Y. Liu, R.L. Flemming, G.R. Rossman, J.M. Eiler, C.R. Neal, G.R. Osinsky, A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 473, 14–23 (2017). https://doi.org/10.1016/j.epsl.2017.05.029

    ADS  Google Scholar 

  • D. Hunten, R.O. Pepin, J.C.G. Walker, Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987)

    ADS  Google Scholar 

  • A.P. Ingersoll, The runaway greenhouse: a history of water on Venus. J. Atmos. Sci. 26(6), 1191–1198 (1969)

    ADS  Google Scholar 

  • E. Jarosewich, Chemical analyses of meteorite: a compilation of stony and iron meteorite analyses. Meteoritics 25, 323–337 (1990)

    ADS  Google Scholar 

  • E.A. Jerde, R.V. Morris, P.H. Warren, In quest of lunar regolith breccias of exotic provenance—a uniquely anorthositic sample from the Fra Mauro (Apollo 14) highlands. Earth Planet. Sci. Lett. 98, 90–108 (1990)

    ADS  Google Scholar 

  • K.P. Jochum, N.T. Arndt, A.W. Hofmann, Nb-Th-La in komatiites and basalts: constraints on komatiite petrogenesis and mantle evolution. Earth Planet. Sci. Lett. 107, 272–289 (1991)

    ADS  Google Scholar 

  • B.L. Jolliff, R.L. Korotev, R.A. Zeigler, C. Floss, Northwest Africa 773: lunar mare breccia with a shallow-formed olivine-cumulate component, inferred very-low-Ti (VLT) heritage, and a KREEP connection. Geochim. Cosmochim. Acta 67, 4857–4879 (2003)

    ADS  Google Scholar 

  • S.-I. Karato, Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon. Earth Planet. Sci. Lett. 384, 144–153 (2013)

    ADS  Google Scholar 

  • S.-I. Karato, Physical basis of trace element partitioning: a review. Am. Mineral. 101, 2577–2593 (2016)

    ADS  Google Scholar 

  • S.-I. Karato, Some remarks on hydrogen-assisted electrical conductivity in olivine and other minerals, in Water in the Earth, ed. by K. Mibe, J. Kasahara (Springer, Tokyo, 2017)

    Google Scholar 

  • S.-I. Karato, D. Wang, Electrical conductivity of minerals and rocks, in Physics and Chemistry of the Deep Earth, ed. by S.-I. Karato (Wiley, New York, 2013), pp. 145–182

    Google Scholar 

  • J.F. Kasting, J.B. Pollack, Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 63, 479–508 (1983)

    ADS  Google Scholar 

  • C. Kato, F. Moynier, M.C. Valdes, J.K. Dhaliwal, J.M.D. Day, Extensive volatiles loss during the formation and differentiation of the Moon. Nat. Commun. 6, 7617 (2015). https://doi.org/10.1038/ncomms8617

    ADS  Google Scholar 

  • A. Kent Jr., Melt inclusions in basaltic and related volcanic rocks. Rev. Mineral. Geochem. 69, 273–331 (2008). Minerals, Inclusions, and Volcanic Processes, ed. by K.D. Putirka, and F.J. Tepley III. MSA

    Google Scholar 

  • L. Kerber, J.W. Head, S.C. Solomon, S.L. Murchie, D.T. Blewett, L. Wilson, Explosive volcanic eruptions on Mercury: eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett. 285, 263–271 (2009)

    ADS  Google Scholar 

  • L. Kerber, J.W. Head, D.T. Blewett, S.C. Solomon, L. Wilson, S.L. Murchie, M.S. Robinson, B.W. Denevi, D.L. Domingue, The global distribution of pyroclastic deposits on Mercury: the view from MESSENGER flybys 1–3. Planet. Space Sci. 59, 1895–1909 (2011)

    ADS  Google Scholar 

  • K. Kitts, K. Lodders, Survey and evaluation of eucrite bulk compositions. Meteorit. Planet. Sci. 33, A197–A213 (1998)

    Google Scholar 

  • T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q-Z. Yin, A.N. Halliday, Hf–W chronology of the accretion and evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    ADS  Google Scholar 

  • R.L. Korotev, Mixing levels, the Apennine Front soil component, and compositional trends in the Apollo 15 soils, in Proc. Lunar Plan. Sci. Conf., vol. 17 (1987), pp. E411–E431

    Google Scholar 

  • R.L. Korotev, D.T. Kremser, Compositional variations in Apollo 17 soils and their relationship to the geology of the Taurus-Littrow site, in Proc. Lunar Plan. Sci. Conf., vol. 22 (1992), pp. 275–301

    Google Scholar 

  • H. Kurokawa, M. Sato, M. Ushioda, T. Matsuyama, R. Moriwaki, J.M. Dohm, T. Usui, Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in martian meteorites. Earth Planet. Sci. Lett. 394, 179–185 (2014)

    ADS  Google Scholar 

  • V. Lainey, V. Dehant, M. Pätzold, First numerical ephemerides of the Martian moons. Astron. Astrophys. 465, 1075–1084 (2007)

    ADS  Google Scholar 

  • D.J. Lawrence, W.C. Feldman, J.O. Goldsten, S. Maurice, P.N. Peplowski, B.J. Anderson, D. Bazell, R.L. McNutt Jr., L.R. Nittler, T.H. Prettyman, D.J. Rodgers, S.C. Solomon, S.Z. Weider, Evidence for water ice near Mercury’s north pole from MESSENGER neutron spectrometer measurements. Science 339, 292–298 (2013)

    ADS  Google Scholar 

  • L.A. Leshin, Insights into martian water reservoirs from analyses of martian meteorite QUE94201. Geophys. Res. Lett. 27, 2017–2020 (2000)

    ADS  Google Scholar 

  • L.A. Leshin, P.R. Mahaffy, C.R. Webster, M. Cabane, P. Coll, P.G. Conrad, P.D. Archer Jr., S.K. Atreya, A.E. Brunner, A. Buch, J.L. Eigenbrode, G.J. Flesch, H.B. Franz, C. Freissinet, D.P. Glavin, A.C. Mcadam, K.E. Miller, D.W. Ming, R.V. Morris, R. Navarro-González, P.B. Niles, T. Owen, R.O. Pepin, S. Squyres, A. Steele, J.C. Stern, R.E. Summons, D.Y. Sumner, B. Sutter, C. Szopa, S. Teinturier, M.G. Trainer, J.J. Wray, J.P. Grotzinger (MSL Science Team), Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science 341, 1238937 (2013)

    Google Scholar 

  • Y. Liu, Y. Guan, Y. Zhang, G.R. Rossman, J.M. Eiler, L.A. Taylor, Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nat. Geosci. 5, 779–782 (2012)

    ADS  Google Scholar 

  • Y. Liu, C. Ma, J.R. Beckett, Y. Chen, Y. Guan, Rare-Earth element minerals in martian meteorites NWA 7034 and 7533: implications for fluid-rock interaction in the martian crust. Earth Planet. Sci. Lett. 451, 251–262 (2016)

    ADS  Google Scholar 

  • S.J. Lock, S.T. Stewart, M.I. Petaev, Z.M. Leinhardt, M.T. Mace, S.B. Jacobsen, M. Ćuk, The origin of the Moon within a terrestrial synestia. J. Geophys. Res. 123, 910–951 (2018). https://doi.org/10.1002/2017JE005333

    Google Scholar 

  • K. Lodders, B. Fegley, The Planetary Scientist’s Companion (Oxford University Press, New York, 1998)

    Google Scholar 

  • P. Lowell, Mars and Its Canals (Macmillan & Co., London, 1906)

    Google Scholar 

  • P. Lucey, R.L. Korotev, J.J. Gillis, L.A. Taylor, D. Lawrence, B.A. Campbell, R. Elphic, B. Feldman, L.L. Hood, D. Hunten, M. Mendillo, S. Noble, J.J. Papike, R.C. Reedy, S. Lawson, T. Prettyman, O. Gasnault, S. Maurice, Understanding the lunar surface and Space-Moon interactions. Rev. Mineral. Geochem. 60, 83–219 (2006). New Views of the Moon, ed. by B.L. Joliff, M.A. Weiczorek, C.K. Shearer, C.R. Neal

    Google Scholar 

  • R.W. Luth, Mantle volatiles-distributions and consequences, in The Mantle and Core, ed. by R.W. Carlson. Treatise on Geochemistry (Elsevier-Pergamon, Oxford, 2005), pp. 319–361

    Google Scholar 

  • P.R. Mahaffy, C.R. Webster, J.C. Stern, A.E. Brunner, S.K. Atreya, P.G. Conrad, S. Domagal-Goldman, J.L. Eigenbrode, G.J. Flesch, L.E. Christensen, H.B. Franz, C. Freissinet, D.P. Glavin, J.P. Grotzinger, J.H. Jones, L.A. Leshin, C. Malespin, A.C. Mcadam, D.W. Ming, R. Navarro-Gonzalez, P.B. Niles, T. Owen, A.A. Pavlov, A. Steele, M.G. Trainer, K.H. Williford, J.J. Wray (MSL Science Team), The imprint of atmospheric evolution in the \(\mbox{D}/\mbox{H}\) of Hesperian clay minerals on Mars. Science 347, 412–414 (2015)

    ADS  Google Scholar 

  • V. Malavergne, J. Siebert, F. Guyot, L. Gautron, R. Combes, T. Hammouda, S. Borensztajn, D. Frost, I. Martinez, Si in the core? New high-pressure and high-temperature experimental data. Geochim. Cosmochim. Acta 68, 4201–4211 (2004)

    ADS  Google Scholar 

  • V. Malavergne, M.J. Toplis, S. Berthet, J. Jones, Highly reducing conditions during core formation on Mercury: implications for internal structure and the origin of a magnetic field. Icarus 206, 199–209 (2010)

    ADS  Google Scholar 

  • V. Malavergne, P. Cordier, K. Righter, F. Brunet, B. Zanda, A. Addad, T. Smith, H. Bureau, S. Surblé, C. Raepsaet, E. Charon, R.H. Hewins, How Mercury can be the most reduced terrestrial planet and still store iron in its mantle. Earth Planet. Sci. Lett. 394, 186–197 (2014)

    ADS  Google Scholar 

  • B.E. Mandler, L.T. Elkins-Tanton, The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit. Planet. Sci. 48, 2333–2349 (2013)

    ADS  Google Scholar 

  • P. Mane, R. Hervig, M. Wadhwa, L.A.J. Garvie, J.B. Balta, H.Y. McSween Jr., Hydrogen isotopic composition of the Martian mantle inferred from the newest Martian meteorite fall, Tissint. Meteorit. Planet. Sci. 51, 2073–2091 (2016). https://doi.org/10.1111/maps.12717

    ADS  Google Scholar 

  • B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012)

    Google Scholar 

  • B. Marty, G. Avice, Y. Sano, K. Altwegg, H. Balsiger, M. Hässig, A. Morbidelli, O. Mousis, M. Rubie, Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016)

    ADS  Google Scholar 

  • T.J. McCoy, T.L. Dickinson, G.E. Lofgren, Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34, 735–746 (1999)

    ADS  Google Scholar 

  • F.M. McCubbin, A. Steele, E.H. Hauri, H. Nekvasil, S. Yamashita, R.J. Hemley, Nominally hydrous magmatism on the Moon. Proc. Natl. Acad. Sci. 107(25), 11223–11228 (2010a)

    ADS  Google Scholar 

  • F.M. McCubbin, A. Steele, H. Nekvasil, A. Schnieders, T. Rose, M. Fries, P.K. Carpenter, B.L. Jolliff, Detection of structurally bound hydroxyl in fluorapatite from Apollo Mare basalt 15058,128 using TOF-SIMS. Am. Mineral. 95, 1141–1150 (2010b)

    ADS  Google Scholar 

  • F.M. McCubbin, M.A. Riner, K.E. Vander Kaaden, L.K. Burkemper, Is Mercury a volatile-rich planet? Geophys. Res. Lett. 39, L09202 (2012a)

    ADS  Google Scholar 

  • F.M. McCubbin, E.H. Hauri, S.M. Elardo, K.E. Vander Kaaden, J. Wang, C.K. Shearer Jr., Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology 40(8), 683–686 (2012b). https://doi.org/10.1130/G33242.1

    ADS  Google Scholar 

  • F.M. McCubbin, K.E. Vander Kaaden, R. Tartèse, R.L. Klima, Y. Liu, J. Mortimer, J.J. Barnes, C.K. Shearer, A.H. Treiman, D.J. Lawrence, S.M. Elardo, D.M. Hurley, J.W. Boyce, M. Anand, Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: abundances, distributions, processes, and reservoirs. Am. Mineral. 100, 1668–1707 (2015a)

    ADS  Google Scholar 

  • F.M. McCubbin, K.E. Vander Kaaden, R. Tartèse, J.W. Boyce, S. Mikhail, E.S. Whitson, A.S. Bell, M. Anand, I.A. Franchi, J. Wang, E.H. Hauri, Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and \(950\mbox{--}1000~{}^{\circ}\)C. Am. Mineral. 100, 1790–1802 (2015b)

    ADS  Google Scholar 

  • F.M. McCubbin, K.E. Vander Kaaden, P.N. Peplowski, A.S. Bell, L.R. Nittler, J.W. Boyce, L.G. Evans, L.P. Keller, S.M. Elardo, T.J. McCoy, A low O/Si ratio on the surface of Mercury: evidence for silicon smelting? J. Geophys. Res. 122, 2053–2076 (2017)

    Google Scholar 

  • W.F. McDonough, S.-S. Sun, The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    ADS  Google Scholar 

  • M.B. McElroy, Y.L. Yung, A.O. Nier, Isotopic composition of nitrogen: implications for the past history of Mars’ atmosphere. Science 194, 70–72 (1976)

    ADS  Google Scholar 

  • W.B. McKinnon, K.J. Zahnle, B.A. Ivanov, H.J. Melosh, Cratering on Venus: models and observations, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 969–1014

    Google Scholar 

  • H.Y. McSween Jr., R.P. Binzel, M.C. De Sanctis, E. Ammannito, T.H. Prettyman, A.W. Beck, V. Reddy, L. Le Corre, M.J. Gaffey, T.B. McCord, C.A. Raymond, C.T. Russell (The Dawn Science Team), Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteorit. Planet. Sci. 48, 2090–2104 (2013)

    ADS  Google Scholar 

  • L. Merlivat, M. Lelu, G. Nief, E. Roth, Spallation deuterium in rock 70215, in Proc. Lunar Sci. Conf, vol. 7 (1976), pp. 649–658

    Google Scholar 

  • F. Montmessin, T. Fouchet, F. Forget, Modeling the annual cycle of HDO in the Martian atmosphere. J. Geophys. Res. 110, E03006 (2005)

    ADS  Google Scholar 

  • A. Morbidelli, J.I. Lunine, D.P. O’Brien, S.N. Raymond, K.J. Walsh, Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012). https://doi.org/10.1146/annurevearth042711-105319

    ADS  Google Scholar 

  • J. Mortimer, A.B. Verchovsky, M. Anand, I. Gilmour, C.T. Pillinger, Simultaneous analysis of abundance and isotopic composition of nitrogen, carbon, and noble gases in lunar basalts: insights into interior and surface processes on the Moon. Icarus (2015). https://doi.org/10.1016/j.icarus.2014.10.006

    Google Scholar 

  • J. Mouginot, A. Pommerol, P. Beck, W. Kofman, S.M. Clifford, Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys. Res. Lett. 39, L02202 (2012)

    ADS  Google Scholar 

  • S.L. Murchie, R.L. Klima, B.W. Denevi, C.M. Ernst, M.R. Keller, D.L. Domingue, D.T. Blewett, N.L. Chabot, C. Hash, E. Malaret, N.R. Izenberg, F. Vilas, L.R. Nittler, J.W. Head, Orbital multispectral mapping of Mercury using the MESSENGER Mercury Dual Imaging System: evidence for the origins of plains units and low-reflectance material. Icarus 254, 287–305 (2015)

    ADS  Google Scholar 

  • N. Muttik, F.M. McCubbin, L.P. Keller, A.R. Santos, W.A. McCutcheon, P.P. Provencio, Z. Rahman, C.K. Shearer, J.W. Boyce, C.B. Agee, Inventory of H2O in the ancient martian regolith from Northwest Africa 7034: the important role of iron oxides. Geophys. Res. Lett. 41, 8235–8244 (2014). https://doi.org/10.1002/2014GL062533

    ADS  Google Scholar 

  • M. Nakajima, D.J. Stevenson, Inefficient volatile loss from the Moon-forming disk: reconciling the giant impact hypothesis and a wet Moon. Earth Planet. Sci. Lett. 487, 117–126 (2018)

    ADS  Google Scholar 

  • O. Namur, M. Collinet, B. Charlier, T.L. Grove, F. Holtz, C. McCammon, Melting processes and mantle sources of surface lavas on Mercury. Earth Planet. Sci. Lett. 439, 117–128 (2016)

    ADS  Google Scholar 

  • H.E. Newsom, W.M. White, K.P. Jochum, A.W. Hofmann, Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth’s core. Earth Planet. Sci. Lett. 80, 299–313 (1986)

    ADS  Google Scholar 

  • A.O. Nier, M.B. McElroy, Y.L. Yung, Isotopic composition of the Martian atmosphere. Science 194, 68–70 (1976)

    ADS  Google Scholar 

  • L.R. Nittler, R.D. Starr, S.Z. Weider, T.J. McCoy, W.V. Boynton, D.S. Ebel, C.M. Ernst, L.G. Evans, J.O. Goldsten, D.K. Hamara, D.J. Lawrence, R.L. McNutt, C.E. Schlemm, S.C. Solomon, A.L. Sprague, The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333, 1847–1850 (2011)

    ADS  Google Scholar 

  • L.E. Nyquist, C.-Y. Shih, F.M. McCubbin, A.R. Santos, C.K. Shearer, Z.X. Peng, P.V. Burger, C.B. Agee, Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034. Meteorit. Plan. Sci. 51, 483–498 (2016)

    ADS  Google Scholar 

  • D.P. O’Brien, A. Izidoro, S.A. Jacobson, S.N. Raymond, D.C. Rubie, The delivery of water during terrestrial planet formation. Space Sci. Rev. 214, 47 (2018) (this book). https://doi.org/10.1007/s11214-018-0475-8

    ADS  Google Scholar 

  • J. Ormö, J.M. Dohm, J.C. Ferris, A. Lepinette, A.G. Fairén, Marine-target craters on Mars? An assessment study. Meteorit. Planet. Sci. 39, 333–346 (2004)

    ADS  Google Scholar 

  • T. Owen, The composition and early history of the atmosphere of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder (University of Arizona Press, Tucson, 1992)

    Google Scholar 

  • T. Owen, J.P. Maillard, C. de Bergh, B.L. Lutz, Deuterium on Mars: the abundance of HDO and the value of \(\mbox{D}/\mbox{H}\). Science 240, 1767–1770 (1988)

    ADS  Google Scholar 

  • K. Pahlevan, D.J. Stevenson, Volatile loss Following the Moonforming giant impact. Geochim. Cosmochim. Acta, Suppl. 72, A716 (2008)

    Google Scholar 

  • K. Pahlevan, S.-I. Karato, B. Fegley, Speciation and dissolution of hydrogen in the proto-lunar disk. Earth Planet. Sci. Lett. 445, 104–113 (2016)

    ADS  Google Scholar 

  • H. Palme, H.S.C. O’Neill, Cosmochemical estimates of mantle composition, in The Mantle and Core, ed. by R.W. Carlson. Treatise on Geochemistry (Elsevier-Pergamon, Oxford, 2014), pp. 1–39

    Google Scholar 

  • Y.M. Pan, M.E. Fleet, Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev. Mineral. Geochem. 48, 13–49 (2002). Phosphates: Geochemical, Geobiological, and Materials Importance, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes

    Google Scholar 

  • R.C. Paniello, J.M.D. Day, F. Moynier, Zinc isotope evidence for the origin of the Moon. Nature 490, 376–380 (2012)

    ADS  Google Scholar 

  • S.W. Parman, E.M. Parmentier, S. Wang, Crystallization of Mercury’s sulfur-rich magma ocean, in Lunar Planet. Sci. Conf. XLVII, abstract# 2990 (2016)

  • E.M. Parmentier, P.C. Hess, Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992)

    ADS  Google Scholar 

  • P.N. Peplowski, L.G. Evans, S.A. Hauck, T.J. McCoy, W.V. Boynton, J.J. Gillis-Davis, D.S. Ebel, J.O. Goldsten, D.K. Hamara, D.J. Lawrence, R.L. McNutt, L.R. Nittler, S.C. Solomon, E.A. Rhodes, A.L. Sprague, R.D. Starr, K.R. Stockstill-Cahill, Radioactive elements on Mercury’s surface from MESSENGER: implications for the planet’s formation and evolution. Science 333, 1850–1852 (2011)

    ADS  Google Scholar 

  • P.N. Peplowski, D.J. Lawrence, E.A. Rhodes, A.L. Sprague, T.J. McCoy, B.W. Denevi, L.G. Evans, J.W. Head, L.R. Nittler, S.C. Solomon, K.R. Stockstill-Cahill, S.Z. Weider, Variations in the abundances of potassium and thorium on the surface of Mercury: results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res. 117, E00L04 (2012). https://doi.org/10.1029/2012JE004141

    ADS  Google Scholar 

  • P.N. Peplowski, L.G. Evans, K.R. Stockstill-Cahill, D.J. Lawrence, J.O. Goldsten, T.J. McCoy, L.R. Nittler, S.C. Solomon, A.L. Sprague, R.D. Starr, S.Z. Weider, Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus 228, 86–95 (2014)

    ADS  Google Scholar 

  • P.N. Peplowski, D.J. Lawrence, L.G. Evans, R.L. Klima, D.T. Blewett, J.O. Goldsten, S.L. Murchie, T.J. McCoy, L.R. Nittler, S.C. Solomon, R.D. Starr, S.Z. Weider, Constraints on the abundance of carbon in near-surface materials on Mercury: results from the MESSENGER Gamma-Ray Spectrometer. Planet. Space Sci. 108, 98–107 (2015)

    ADS  Google Scholar 

  • P.N. Peplowski, R.L. Klima, D.J. Lawrence, C.M. Ernst, B.W. Denevi, E.A. Frank, J.O. Goldsten, S.L. Murchie, L.R. Nittler, S.C. Solomon, Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nat. Geosci. 9, 273–276 (2016)

    ADS  Google Scholar 

  • A.H. Peslier, M. Schönbächler, H. Busemann, S.I. Karato, Water in the Earth’s interior: distribution and origin. Space Sci. Rev. 212, 743–810 (2017) (this book). https://doi.org/10.1007/s11214-017-0387-z

    ADS  Google Scholar 

  • A.E. Potter, T.H. Morgan, Discovery of sodium in the atmosphere of Mercury. Science 229, 651–653 (1985)

    ADS  Google Scholar 

  • A.E. Potter, T.H. Morgan, Potassium in the atmosphere of Mercury. Icarus 67, 336–340 (1986)

    ADS  Google Scholar 

  • B. Rava, B. Hapke, An analysis of the Mariner 10 color ratio map of Mercury. Icarus 71, 397–429 (1987)

    ADS  Google Scholar 

  • R.C. Reedy, Cosmic-ray produced stable nuclides: various production rates and their implications. Lunar Planet. Sci. Conf. XII, 871 (1981)

    ADS  Google Scholar 

  • J. Riker, M.C.S. Humphreys, R.A. Brooker, J.C.M. De Hoog (EIMF), First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite–silicate melt. Am. Mineral. 103, 260–270 (2018)

    ADS  Google Scholar 

  • M.A. Riner, P.G. Lucey, S.J. Desch, F.M. McCubbin, Nature of opaque components on Mercury: insights into a Mercurian magma ocean. Geophys. Res. Lett. 36, L02201 (2009)

    ADS  Google Scholar 

  • K.L. Robinson, G.J. Taylor, Heterogeneous distribution of water in the Moon. Nat. Geosci. 7, 401–408 (2014)

    ADS  Google Scholar 

  • M.S. Robinson, S.L. Murchie, D.T. Blewett, D.L. Domingue, S.E. Hawkins, J.W. Head III, G.M. Holsclaw, W.E. McClintock, T.J. McCoy, R.L. McNutt Jr., L.M. Prockter, S.C. Solomon, T.R. Watters, Reflectance and color variations on Mercury: regolith processes and compositional heterogeneity. Science 321, 66–69 (2008)

    ADS  Google Scholar 

  • K.L. Robinson, J.J. Barnes, K. Nagashima, A. Thomen, I.A. Franchi, G.R. Huss, M. Anand, G.J. Taylor, Water in evolved lunar rocks: evidence for multiple reservoirs. Geochim. Cosmochim. Acta 188, 244–260 (2016)

    ADS  Google Scholar 

  • D.C. Rubie, D.J. Frost, U. Mann, Y. Asahara, F. Nimmo, K. Tsuno, P. Kegler, A. Holzheid, H. Palme, Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011). https://doi.org/10.1016/j.epsl.2010.11.030

    ADS  Google Scholar 

  • A.E. Saal, E.H. Hauri, M. Lo Cascio, J.A. Van Orman, M.C. Rutherford, R.F. Cooper, Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–196 (2008)

    ADS  Google Scholar 

  • A.E. Saal, E.H. Hauri, J.A. Van Orman, M.C. Rutherford, Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013)

    ADS  Google Scholar 

  • J. Salmon, R.M. Canup, Lunar accretion from a Roche-interior fluid disk. Astrophys. J. 760, 83 (2012). https://doi.org/10.1088/0004-637X/760/1/83

    ADS  Google Scholar 

  • C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999)

    ADS  Google Scholar 

  • A.R. Sarafian, S.G. Nielsen, H.R. Marschall, F.M. McCubbin, B.D. Monteleone, Early accretion of water in the inner solar system from a carbonaceous chondrite-like source. Science 346, 623–626 (2014)

    ADS  Google Scholar 

  • A.R. Sarafian, E.H. Hauri, F.M. McCubbin, T.J. Lapen, E.L. Berger, S.G. Nielsen, H.R. Marschall, G.A. Gaetani, K. Righter, E. Sarafian, Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Philos. Trans. R. Soc. Lond. A 375, 1–27 (2017)

    Google Scholar 

  • G.G. Schaber, R.G. Strom, H.J. Moore, L.A. Soderblom, R.L. Kirk, D.J. Chadwick, D.D. Dawson, L.R. Gaddis, J.M. Boyce, J. Russell, Geology and distribution of impact craters on Venus: what are they telling us? J. Geophys. Res. 97, 13257–13301 (1992)

    ADS  Google Scholar 

  • Z.D. Sharp, C.K. Shearer, K.D. McKeegan, J.D. Barnes, Y.Q. Wang, The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329, 1050–1053 (2010)

    ADS  Google Scholar 

  • Z.D. Sharp, F.M. McCubbin, C.K. Shearer, A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet. Sci. Lett. 380, 88–97 (2013)

    ADS  Google Scholar 

  • J.A. Singer, J.P. Greenwood, S. Itoh, N. Sakamoto, H. Yurimoto, Evidence for the solar wind in lunar magmas: a study of slowly-cooled samples of the Apollo 12 olivine basalt suite. Geochem. J. 51, 95–104 (2017)

    Google Scholar 

  • M.A. Slade, B.J. Butler, D.O. Muhleman, Mercury radar imaging: evidence for polar ice. Science 258, 635–640 (1992)

    ADS  Google Scholar 

  • G. Slodzian, T.D. Wu, N. Bardin, J. Duprat, C. Engrand, J.L. Guerquin-Kern, Simultaneous hydrogen and heavier element isotopic ratio images with a scanning submicron ion probe and mass resolved polyatomic ions. Microsc. Microanal. 20(2), 577–581 (2014)

    ADS  Google Scholar 

  • P.H. Smith, L.K. Tamppari, R.E. Arvidson, D. Bass, D. Blaney, W.V. Boynton, A. Carswell, D.C. Catling, B.C. Clark, T. Duck, E. DeJong, D. Fisher, W. Goetz, H.P. Gunnlaugsson, M.H. Hecht, V. Hipkin, J. Hoffman, S.F. Hviid, H.U. Keller, S.P. Kounaves, C.F. Lange, M.T. Lemmon, M.B. Madsen, W.J. Markiewicz, J. Marshall, C.P. McKay, M.T. Mellon, D.W. Ming, R.V. Morris, W.T. Pike, N. Renno, U. Staufer, C. Stoker, P. Taylor, J.A. Whiteway, A.P. Zent, H2O at the Phoenix landing site. Science 325, 58–61 (2009). https://doi.org/10.1126/science.1172339

    ADS  Google Scholar 

  • D.E. Smith, M.T. Zuber, R.J. Phillips, S.C. Solomon, S.A. Hauck, F.G. Lemoine, E. Mazarico, G.A. Neumann, S.J. Peale, J.-L. Margot, C.L. Johnson, M.H. Torrence, M.E. Perry, D.D. Rowlands, S. Goossens, J.W. Head, A.H. Taylor, Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–217 (2012)

    ADS  Google Scholar 

  • S.C. Solomon, R.L. McNutt Jr., R.E. Gold, M.H. Acuna, D.N. Baker, W.V. Boynton, C.R. Chapman, A.F. Cheng, G. Gloeckler, J.W. Head, S.M. Krimigis, W.E. McClintock, S.L. Murchie, S.J. Peale, R.J. Phillips, M.S. Robinson, J.A. Slavin, D.E. Smith, R.G. Strom, J.I. Trombka, M.T. Zuber, The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49, 1445–1465 (2001)

    ADS  Google Scholar 

  • C.P. Sonett, D.S. Colburn, P. Dyal, C.W. Parkin, B.F. Smith, G. Schubert, K. Schwartz, Lunar electrical conductivity profile. Nature 230, 359–362 (1971)

    ADS  Google Scholar 

  • D.J. Stevenson, Origin of the Moon—the collision hypothesis. Annu. Rev. Earth Planet. Sci. 15, 271–315 (1987)

    ADS  Google Scholar 

  • K.R. Stockstill-Cahill, T.J. McCoy, L.R. Nittler, S.Z. Weider, S.A. Hauck II, Magnesium-rich crustal compositions on Mercury: implications for magmatism from petrologic modeling. J. Geophys. Res. 117, E00L15 (2012)

    ADS  Google Scholar 

  • N. Sugiura, H. Hoshino, Hydrogen-isotopic compositions in Allan Hills 84001 and the evolution of the martian atmosphere. Meteorit. Planet. Sci. 35, 373–380 (2000)

    ADS  Google Scholar 

  • R. Tartèse, M. Anand, Late delivery of chondritic hydrogen into the lunar mantle: insights from mare basalts. Earth Planet. Sci. Lett. 361, 480–486 (2013)

    ADS  Google Scholar 

  • R. Tartèse, M. Anand, J.J. Barnes, N.A. Starkey, I.A. Franchi, Y. Sano, The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples: implications for the volatile inventory of the Moon. Geochim. Cosmochim. Acta 122, 58–74 (2013)

    ADS  Google Scholar 

  • R. Tartèse, M. Anand, F.M. McCubbin, S.M. Elardo, C.K. Shearer, I.A. Franchi, Apatite in lunar KREEP basalts: the missing link to understanding the H isotope systematics of the Moon. Geology 42, 363–366 (2014a)

    ADS  Google Scholar 

  • R. Tartèse, M. Anand, K.H. Joy, I.A. Franchi, H and Cl isotope systematics of apatite in brecciated lunar meteorites Northwest Africa 4472, Northwest Africa 773, Sayh al Uhaymir 169, and Kalahari 009. Meteorit. Planet. Sci. 49, 2266–22894 (2014b). https://doi.org/10.1111/maps.12398

    ADS  Google Scholar 

  • B.E. Taylor, Magmatic volatiles: isotopic variation of C, H, and S. Rev. Mineral. Geochem. 16(1), 185–225 (1986). Stable Isotopes in High Temperature Geological Processes, ed. by J.W. Valley, H.P. Taylor, Jr., J.R. O’Neil (MSA, Blacksburg, 1986)

    MathSciNet  Google Scholar 

  • G.J. Taylor, The bulk composition of Mars. Chem. Erde 73, 401–420 (2013)

    Google Scholar 

  • R.J. Thomas, D.A. Rothery, S.J. Conway, M. Anand, Long-lived explosive volcanism on Mercury. Geophys. Res. Lett. 41, 6084–6092 (2014)

    ADS  Google Scholar 

  • R.J. Thomas, D.A. Rothery, S.J. Conway, M. Anand, Explosive volcanism in complex impact craters on Mercury and the Moon: influence of tectonic regime on depth of magmatic intrusion. Earth Planet. Sci. Lett. 431, 164–172 (2015)

    ADS  Google Scholar 

  • A. Treiman, E. Harrington, V. Sharpton, Venus’ radar bright highlands: different signatures and materials on Ovda Regio and on Maxwell Montes. Icarus 280, 172–182 (2016a)

    ADS  Google Scholar 

  • A.H. Treiman, J.W. Boyce, J.P. Greenwood, J.M. Eiler, J. Gross, Y. Guan, C. Ma, E.M. Stolper, D-poor hydrogen in lunar mare basalts assimilated from lunar regolith. Am. Mineral. 101, 1596–1603 (2016b)

    ADS  Google Scholar 

  • J. Tuff, J. Wade, B. Wood, Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 498, 342 (2013)

    ADS  Google Scholar 

  • G. Ustunisik, H. Nekvasil, D.H. Lindsley, F.M. McCubbin, Degassing pathways of Cl-, F-, H-, and S-bearing magmas near the lunar surface: implications for the composition and Cl isotopic values of lunar apatite. Am. Mineral. 100(8–9), 1717–1727 (2015)

    ADS  Google Scholar 

  • T. Usui, Hydrogen reservoirs in Mars as revealed by martian meteorites, in Volatiles in the Martian Crust, ed. by J. Filiberto, S.S. Schwenzer (Elsevier, Amsterdam, 2018)

    Google Scholar 

  • T. Usui, C.M.O’D. Alexander, J. Wang, J.I. Simon, J.H. Jones, Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth Planet. Sci. Lett. 357–358, 119–129 (2012)

    Google Scholar 

  • T. Usui, C.M.O’D. Alexander, J. Wang, J.I. Simon, J.H. Jones, Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth Planet. Sci. Lett. 410, 140–151 (2015)

    ADS  Google Scholar 

  • K.E. Vander Kaaden, F.M. McCubbin, Exotic crust formation on Mercury: consequences of a shallow, FeO-poor mantle. J. Geophys. Res. 120, 195–209 (2015)

    Google Scholar 

  • K.E. Vander Kaaden, F.M. McCubbin, The origin of boninites on Mercury: an experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta 173, 246–263 (2016)

    ADS  Google Scholar 

  • K.E. Vander Kaaden, F.M. McCubbin, D.K. Ross, J.F. Rapp, L.R. Danielson, L.P. Keller, K. Righter, Carbon solubility in Si-Fe-bearing metals during core formation on Mercury, in Lunar Plan. Sci. Conf. XLVII, abstract #1474 (2016)

  • K.E. Vander Kaaden, F.M. McCubbin, L.R. Nittler, P.N. Peplowski, S.Z. Weider, E.A. Frank, T.J. McCoy, Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: insights into the mercurian mantle. Icarus 285, 155–168 (2017)

    ADS  Google Scholar 

  • O. Verhoeven, P. Vasher, Laboratory-based electrical conductivity at Martian mantle conditions. Planet. Space Sci. 134, 29–35 (2016)

    ADS  Google Scholar 

  • G.L. Villanueva, M.J. Mumma, R.E. Novak, H.U. Kaufl, P. Hartogh, T. Encrenaz, A. Tokunaga, A. Khayat, M.D. Smith, Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs. Science 348, 218–221 (2015)

    ADS  Google Scholar 

  • M. Wadhwa, Redox conditions on small bodies, the Moon, and Mars. Rev. Mineral. Geochem. 68, 493–510 (2008). Oxygen in the Solar System, ed. by G.J. MacPherson

    Google Scholar 

  • D. Walker, J. Longhi, J. Kirkpatrick, J.F. Hays, Differentiation of an Apollo 12 picrite magma. Proc. Lunar Planet. Sci. Conf. 7, 1365–1389 (1976)

    ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011). https://doi.org/10.1038/nature10201

    ADS  Google Scholar 

  • K. Wang, S.B. Jacobsen, Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature 538, 487 (2016)

    ADS  Google Scholar 

  • H. Wänke, G. Dreibus, Chemical composition and accretion history of terrestrial planets. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 325, 545–557 (1988)

    ADS  Google Scholar 

  • P.H. Warren, The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 13, 201–240 (1985)

    ADS  Google Scholar 

  • P.H. Warren, “New” lunar meteorites: implications for composition of the global lunar surface, of the lunar crust, and of the bulk Moon. Meteorit. Planet. Sci. 40, 477–506 (2005)

    ADS  Google Scholar 

  • P.H. Warren, G.W. Kallemeyn, Geochemistry of lunar meteorite Yamato-791197: comparison with ALHA81005 and other lunar samples. Mem. Natl. Inst. Polar Res., Spec. Issue 41, 3–16 (1986). Proceedings of the NIPR Symposium on Antarctic Meteorites (Tokyo)

    ADS  Google Scholar 

  • P.H. Warren, G.J. Taylor, The Moon, in Planets, Asteroids, Comets, and the Solar System, ed. by A.M. Davis. Treatise on Geochemistry, 2nd edn. (2014), pp. 213–250

    Google Scholar 

  • P.H. Warren, J.T. Wasson, The origin of KREEP. Rev. Geophys. Space Phys. 17, 73–88 (1979)

    ADS  Google Scholar 

  • J.T. Wasson, G.W. Kallemeyn, Compositions of chondrites. Philos. Trans. R. Soc. Lond. A 325, 535–544 (1988)

    ADS  Google Scholar 

  • L.L. Watson, I.D. Hutcheon, S. Epstein, E.M. Stolper, Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265, 86–90 (1994)

    ADS  Google Scholar 

  • C.R. Webster, P.R. Mahaffy, G.J. Flesch, P.B. Niles, J.H. Jones, L.A. Leshin, S.K. Atreya, J.C. Stern, L.E. Christensen, T. Owen, H. Franz, R.O. Pepin, A. Steele (MSL Science Team), Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere. Science 341, 260–263 (2013)

    ADS  Google Scholar 

  • S.Z. Weider, L.R. Nittler, R.D. Starr, T.J. McCoy, K.R. Stockstill-Cahill, P.K. Byrne, B.W. Denevi, J.W. Head, S.C. Solomon, Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res. 117, E00L05 (2012). https://doi.org/10.1029/2012JE004153

    ADS  Google Scholar 

  • J.G. Williams, D.H. Boggs, C.F. Yoder, J.T. Ratcliff, J.O. Dickey, Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001)

    ADS  Google Scholar 

  • B.J. Wood, A.N. Halliday, M. Rehkamper, Volatile accretion history of the Earth. Nature 467, E6–E7 (2010)

    ADS  Google Scholar 

  • R.D. Wordsworth, The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016)

    ADS  Google Scholar 

  • Y. Xu, T.J. Shankland, A.G. Duba, Pressure effect on electrical conductivity of mantle olivine. Phys. Earth Planet. Inter. 118, 149–161 (2000)

    ADS  Google Scholar 

  • T. Yoshino, A. Shimojuku, S. Shan, X. Guo, D. Yamazaki, E. Ito, Y. Higo, K. Funakoshi, Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs. J. Geophys. Res. 117, B08205 (2012). https://doi.org/10.1029/2011JB008774

    ADS  Google Scholar 

  • E.D. Young, Evaporating planetesimals. Nature 549, 461–462 (2017)

    ADS  Google Scholar 

  • H. Yurimoto, K. Nagashima, T. Kunihiro, High precision isotope micro-imaging of materials. Appl. Surf. Sci. 203–204, 793–797 (2003)

    Google Scholar 

  • H. Yurimoto, S. Itoh, M. Zolensky, M. Kusakabe, A. Karen, R. Bodnar, Isotopic compositions of asteroidal liquid water trapped in fluid inclusions of chondrites. Geochem. J. 48, 549–560 (2014)

    Google Scholar 

  • M.Y. Zolotov, A.L. Sprague, L.R. Nittler, S.Z. Weider, R.D. Starr, L.G. Evans, W.V. Boynton, J.O. Goldstein, S.A. Hauck, S.C. Solomon, Implications of the MESSENGER discovery of high sulfur abundance on the surface of Mercury. EOS (Trans., Am. Geophys. Union) Abstract #P41A-1584 (2011)

  • M.Y. Zolotov, A.L. Sprague, S.A. Hauck, L.R. Nittler, S.C. Solomon, S.Z. Weider, The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. 118, 138–146 (2013). https://doi.org/10.1029/2012JE004274

    Google Scholar 

Download references

Acknowledgements

We thank the organizing committee for inviting us to write this article. J.P.G. also thanks K. Abe for assistance with figure preparation, M. Gilmore for discussions regarding Venus, and S. Itoh, N. Sakamoto and H. Yurimoto for discussions of water measurements using SIMS and for discussions on volatile delivery mechanisms to the Solar System. This work was supported by NASA-LASER (NNX14AQ76G) and NASA-EW (NNX17AE26G) to J.P.G., and by JSPS (16H04073, 15KK0153, 17H06459) to T.U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Greenwood.

Additional information

The Delivery of Water to Protoplanets, Planets and Satellites

Edited by Michel Blanc, Allessandro Morbidelli, Yann Alibert, Lindy Elkins-Tanton, Paul Estrada, Keiko Hamano, Helmut Lammer, Sean Raymond and Maria Schönbächler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenwood, J.P., Karato, Si., Vander Kaaden, K.E. et al. Water and Volatile Inventories of Mercury, Venus, the Moon, and Mars. Space Sci Rev 214, 92 (2018). https://doi.org/10.1007/s11214-018-0526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0526-1

Keywords

Navigation