Advertisement

Space Science Reviews

, 214:92 | Cite as

Water and Volatile Inventories of Mercury, Venus, the Moon, and Mars

  • James P. Greenwood
  • Shun-ichiro Karato
  • Kathleen E. Vander Kaaden
  • Kaveh Pahlevan
  • Tomohiro Usui
Article
Part of the following topical collections:
  1. The Delivery of Water to Protoplanets, Planets and Satellites

Abstract

We review the geochemical observations of water, \(\mbox{D}/\mbox{H}\) and volatile element abundances of the inner Solar System bodies, Mercury, Venus, the Moon, and Mars. We focus primarily on the inventories of water in these bodies, but also consider other volatiles when they can inform us about water. For Mercury, we have no data for internal water, but the reducing nature of the surface of Mercury would suggest that some hydrogen may be retained in its core. We evaluate the current knowledge and understanding of venusian water and volatiles and conclude that the venusian mantle was likely endowed with as much water as Earth of which it retains a small but non-negligible fraction. Estimates of the abundance of the Moon’s internal water vary from Earth-like to one to two orders of magnitude more depleted. Cl, K, and Zn isotope anomalies for lunar samples argue that the giant impact left a unique geochemical fingerprint on the Moon, but not the Earth. For Mars, an early magma ocean likely generated a thick crust; this combined with a lack of crustal recycling mechanisms would have led to early isolation of the Martian mantle from later delivery of water and volatiles from surface reservoirs or late accretion. The abundance estimates of Martian mantle water are similar to those of the terrestrial mantle, suggesting some similarities in the water and volatile inventories for the terrestrial planets and the Moon.

Keywords

Water Hydrogen isotopes Mercury Venus Mars Moon 

Notes

Acknowledgements

We thank the organizing committee for inviting us to write this article. J.P.G. also thanks K. Abe for assistance with figure preparation, M. Gilmore for discussions regarding Venus, and S. Itoh, N. Sakamoto and H. Yurimoto for discussions of water measurements using SIMS and for discussions on volatile delivery mechanisms to the Solar System. This work was supported by NASA-LASER (NNX14AQ76G) and NASA-EW (NNX17AE26G) to J.P.G., and by JSPS (16H04073, 15KK0153, 17H06459) to T.U.

References

  1. B. Agee, N.V. Wilson, F.M. McCubbin, K. Ziegler, V.J. Polyak, Z.D. Sharp, Y. Asmerom, M.H. Numm, R. Shaheen, M.H. Thiemens, A. Steele, M.L. Fogel, R. Bowden, M. Glamoclija, Z. Zhang, S.M. Elardo, Unique meteorite from Early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Nature 339(6121), 780–785 (2013).  https://doi.org/10.1126/science.1228858 Google Scholar
  2. F. Albarède, Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009) ADSGoogle Scholar
  3. F. Albarède, E. Albalat, C.-T.A. Lee, An intrinsic volatility scale relevant to the Earth and Moon and the status of water in the Moon. Meteorit. Planet. Sci. 50, 568–577 (2015) ADSGoogle Scholar
  4. C.M.O’D. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, L.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721 (2012).  https://doi.org/10.1126/science.1223474 ADSGoogle Scholar
  5. C.M.O’D. Alexander, K.D. McKeegan, K. Altwegg, Water reservoirs in small planetary bodies: meteorites, asteroids, and comets. Space Sci. Rev. 214, 36 (2018) (this book).  https://doi.org/10.1007/s11214-018-0474-9. ADSGoogle Scholar
  6. J.J. Barnes, I.A. Franchi, M. Anand, R. Tartèse, N.A. Starkey, M. Koike, Y. Sano, S.S. Russell, Accurate and precise measurements of the \(\mbox{D}/\mbox{H}\) ratio and hydroxyl content in lunar apatites using NanoSIMS. Chem. Geol. 337, 48–55 (2013) ADSGoogle Scholar
  7. J.J. Barnes, R. Tartèse, M. Anand, F.M. McCubbin, I.A. Franchi, N.A. Starkey, S.S. Russell, The origin of water in the primitive Moon as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 390, 244–252 (2014) ADSGoogle Scholar
  8. J.J. Barnes, D.A. Kring, R. Tartèse, I.A. Franchi, M. Anand, S.S. Russell, An asteroidal origin for water in the Moon. Nat. Commun. 7, 11684 (2016) ADSGoogle Scholar
  9. Basaltic Volcanism Study Project: Basaltic Volcanism on the Terrestrial Planets. Pergamon, New York (1981), 1286 pp. Google Scholar
  10. W. Benz, W.L. Slattery, A.G.W. Cameron, Collisional stripping of Mercury’s mantle. Icarus 74, 516–528 (1988) ADSGoogle Scholar
  11. J.P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget, M. Berthé, C. Gomez, D. Jouglet, A. Soufflot, M. Vincendon, M. Combes, P. Drossart, T. Encrenaz, T. Fouchet, R. Merchiorri, G. Belluci, F. Altieri, V. Formisano, F. Capaccioni, P. Cerroni, A. Coradini, S. Fonti, O. Korablev, V. Kottsov, N. Ignatiev, V. Moroz, D. Titov, L. Zasova, D. Loiseau, N. Mangold, P. Pinet, S. Douté, B. Schmitt, C. Sotin, E. Hauber, H. Hoffmann, R. Jaumann, U. Keller, T. Duxbury, G. Neukum, Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006) ADSGoogle Scholar
  12. T.A. Bida, R.M. Killen, T.H. Morgan, Discovery of calcium in Mercury’s atmosphere. Nature 404, 159–161 (2000) ADSGoogle Scholar
  13. D.T. Blewett, M.S. Robinson, B.W. Denevi, J.J. Gillis-Davis, J.W. Head, S.C. Solomon, G.M. Holsclaw, W.E. McClintock, Multispectral images of Mercury from the first MESSENGER flyby: analysis of global and regional color trends. Earth Planet. Sci. Lett. 285, 272–282 (2009) ADSGoogle Scholar
  14. N.Z. Boctor, C.M.O’D. Alexander, J. Wang, E. Hauri, The sources of water in Martian meteorites: clues from hydrogen isotopes. Geochim. Cosmochim. Acta 67, 3971–3989 (2003) ADSGoogle Scholar
  15. D.D. Bogard, P. Johnson, Martian gases in an Antarctic meteorite? Science 221, 651–654 (1983) ADSGoogle Scholar
  16. L.E. Borg, J.N. Connelly, L.E. Nyquist, C.Y. Shih, H. Wiesmann, Y. Reese, The age of the carbonates in martian meteorite ALH84001. Science 286, 90–94 (1999) ADSGoogle Scholar
  17. J.W. Boyce, Y. Liu, G.R. Rossman, Y. Guan, J.M. Eiler, E.M. Stolper, L.A. Taylor, Lunar apatite with terrestrial volatile abundances. Nature 466, 466–470 (2010) ADSGoogle Scholar
  18. J.W. Boyce, S.M. Tomlinson, F.M. McCubbin, J.P. Greenwood, A.H. Treiman, The Lunar Apatite Paradox. Science 344, 400–402 (2014) ADSGoogle Scholar
  19. J.W. Boyce, A.H. Treiman, Y. Guan, C. Ma, J.M. Eiler, J. Gross, J.P. Greenwood, E.M. Stolper, The chlorine isotope fingerprint of the lunar magma ocean. Sci. Adv. 1, e1500380 (2015) ADSGoogle Scholar
  20. W.V. Boynton, W.C. Feldman, S.W. Squyres, T.H. Prettyman, J. Brückner, L.G. Evans, R.C. Reedy, R. Starr, J.R. Arnold, D.M. Drake, P.A.J. Englert, A.E. Metzger, I. Mitrofanov, J.I. Trombka, C. d’Uston, H. Wänke, O. Gasnault, D.K. Hamara, D.M. Janes, R.L. Marcialis, S. Maurice, I. Mikheeva, G.J. Taylor, R. Tokar, C. Shinohara, Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 81–85 (2002).  https://doi.org/10.1126/science.1073722 ADSGoogle Scholar
  21. A.D. Brandon, R.J. Walker, J.W. Morgan, G.G. Goles, Re-Os isotopic evidence for early differentiation of the Martian mantle. Geochim. Cosmochim. Acta 64, 4083–4095 (2000) ADSGoogle Scholar
  22. R. Brasser, The formation of Mars: building blocks and accretion time scale. Space Sci. Rev. 174, 11–25 (2013) ADSGoogle Scholar
  23. J.M. Brenan, Partitioning of fluorine and chlorine between apatite and aqueous fluids at high-pressure and temperature—implications for the F and Cl content of high P-T fluids. Earth Planet. Sci. Lett. 117, 251–263 (1993) ADSGoogle Scholar
  24. A.L. Broadfoot, S. Kumar, M.J.S. Belton, Mercury’s atmosphere from Mariner 10: preliminary results. Science 185, 166–169 (1974) ADSGoogle Scholar
  25. A.L. Broadfoot, D.E. Shemansky, S. Kumar, Mariner 10: Mercury atmosphere. Geophys. Res. Lett. 3, 577–580 (1976) ADSGoogle Scholar
  26. S.M. Brown, L.T. Elkins-Tanton, Compositions of Mercury’s earliest crust from magma ocean models. Earth Planet. Sci. Lett. 286, 446–455 (2009) ADSGoogle Scholar
  27. C.E. Bucholz, G.A. Gaetani, M.D. Behn, N. Shimizu, Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 374, 145–155 (2013) ADSGoogle Scholar
  28. P.A. Candela, Toward a thermodynamic model for the halogens in magmatic systems—an application to melt vapor apatite equilibria. Chem. Geol. 57, 289–301 (1986) ADSGoogle Scholar
  29. R. Canup, C. Visscher, J. Salmon, B. Fegley, Protolunar disk evolution and the depletion of volatile elements in the Moon, in Lunar Planet. Sci. Conf. XLVI, abstract #2304 (2015a) Google Scholar
  30. R. Canup, C. Visscher, J. Salmon, B. Fegley, Lunar volatile depletion due to incomplete accretion within an impact-generated disk. Nat. Geosci. 8, 918–921 (2015b) ADSGoogle Scholar
  31. M.H. Carr, The Surface of Mars (Cambridge University Press, Cambridge, 2006), 322 pp. Google Scholar
  32. M.H. Carr, J.W. Head, Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042 (2003).  https://doi.org/10.1029/2002JE001963 Google Scholar
  33. N.L. Chabot, E.A. Wollack, R.L. Klima, M.E. Minitti, Experimental constraints on Mercury’s core composition. Earth Planet. Sci. Lett. 390, 199–208 (2014a) ADSGoogle Scholar
  34. N.L. Chabot, C.M. Ernst, B.W. Denevi, H. Nair, A.N. Deutsch, D.T. Blewett, S.L. Murchie, G.A. Neumann, E. Mazarico, D.A. Paige, J.K. Harmon, J.W. Head, S.C. Solomon, Images of surface volatiles in Mercury’s polar craters acquired by the MESSENGER spacecraft. Geology 42, 1051–1054 (2014b) ADSGoogle Scholar
  35. S. Charnoz, C. Michaut, Evolution of the protolunar disk: dynamics, cooling timescale and implantation of volatiles onto the Earth. Icarus 260, 440–463 (2015) ADSGoogle Scholar
  36. Y. Chen, Y. Zhang, Y. Liu, Y. Guan, J. Eiler, E.M. Stolper, Water, fluorine, and sulfur concentrations in the lunar mantle. Earth Planet. Sci. Lett. 427, 37–46 (2015) ADSGoogle Scholar
  37. F. Civet, P. Tarits, Electrical conductivity of the mantle of Mars from MGS magnetic observations. Earth Planets Space 66, 66–85 (2014) Google Scholar
  38. S.M. Clifford, T.J. Parker, The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001) ADSGoogle Scholar
  39. M. Clog, C. Aubaud, P. Cartigny, L. Dosso, The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the \(\mbox{D}/\mbox{H}\) ratio of the depleted mantle reservoir. Earth Planet. Sci. Lett. 381, 156–165 (2013) ADSGoogle Scholar
  40. L. Dai, S. Karato, The effect of pressure on hydrogen-assisted electrical conductivity of olivine. Phys. Earth Planet. Inter. 232, 51–56 (2014a) ADSGoogle Scholar
  41. L. Dai, S. Karato, The influence of FeO and H content on the electrical conductivity of olivine: applications to terrestrial planets with different FeO content. Earth Planet. Sci. Lett. 237, 73–79 (2014b) Google Scholar
  42. N. Dauphas, A. Morbidelli, Geochemical and planetary dynamical views on the origin of Earth’s atmosphere and oceans, in Treatise on Geochemistry, 2nd edn., ed. by A.S. Davis (Elsevier, Amsterdam, 2014), pp. 1–35 Google Scholar
  43. V. Debaille, A.D. Brandon, Q.Z. Yin, B. Jacobsen, Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525–528 (2007) ADSGoogle Scholar
  44. S.J. Desch, G.J. Taylor, A model of the Moon’s volatile depletion, in Lunar Plan. Sci. Conf., XLII, abstract #2005 (2011) Google Scholar
  45. G. Di Achille, B.M. Hynek, Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3, 459–463 (2010) ADSGoogle Scholar
  46. T.M. Donahue, J.H. Hoffman, R.R. Hodges, A.J. Watson, Venus was wet—a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982) ADSGoogle Scholar
  47. G. Dreibus, H. Wanke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985) ADSGoogle Scholar
  48. C.M. Dundas, A.M. Bramson, L. Ojha, J.J. Wray, M.T. Mellon, S. Byrne, A.S. McEwen, N. Putzig, D. Viola, S. Sutton, E. Clark, J.W. Holt, Exposed subsurface ice sheets in the Martian mid-latitudes. Science 359, 199–201 (2018) ADSGoogle Scholar
  49. D.S. Ebel, R.O. Sack, Djerfisherite: nebular source of refractory potassium. Contrib. Mineral. Petrol. 166, 923–934 (2013) ADSGoogle Scholar
  50. B.L. Ehlmann, C.S. Edwards, Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014) ADSGoogle Scholar
  51. L.T. Elkins-Tanton, T.L. Grove, Water (hydrogen) in the lunar mantle: results from petrology and magma ocean modeling. Earth Planet. Sci. Lett. 307, 173–179 (2011) ADSGoogle Scholar
  52. L.T. Elkins-Tanton, P.C. Hess, E.M. Parmentier, Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01 (2005).  https://doi.org/10.1029/2005JE002480 ADSGoogle Scholar
  53. L.T. Elkins-Tanton, S.E. Smrekar, P.C. Hess, E.M. Parmentier, Volcanism and volatile recycling on a one-plate planet: applications to Venus. J. Geophys. Res. 112, E04S06 (2007) ADSGoogle Scholar
  54. L.G. Evans, P.N. Peplowski, E.A. Rhodes, D.J. Lawrence, T.J. McCoy, L.R. Nittler, S.C. Solomon, A.L. Sprague, K.R. Stockstill-Cahill, R.D. Starr, S.Z. Weider, W.V. Boynton, D.K. Hamara, J.O. Goldsten, Major-element abundances on the surface of Mercury: results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res. 117, E00L07 (2012) ADSGoogle Scholar
  55. L.G. Evans, P.N. Peplowski, F.M. McCubbin, T.J. McCoy, L.R. Nittler, M.Y. Zolotov, D.S. Ebel, D.J. Lawrence, R.D. Starr, S.Z. Weider, S.C. Solomon, Chlorine on the surface of Mercury: MESSENGER Gamma-Ray measurements and implications for the planet’s formation and evolution. Icarus 257, 417–427 (2015) ADSGoogle Scholar
  56. B. Fegley Jr., Venus, in Meteorites, Comets, and Planets, ed. by A.M. Davis, Treatise on Geochemistry, 2nd edn. (Elsevier-Pergamon, Oxford, 2014), pp. 127–146.  https://doi.org/10.1016/B978-0-08-095975-7.00122-4 Google Scholar
  57. D.A. Fisher, Mars’ water isotope (\(\mbox{D}/\mbox{H}\)) history in the strata of the North Polar Cap: inferences about the water cycle. Icarus 187, 430–441 (2007) ADSGoogle Scholar
  58. C.N. Foley, M. Madhwa, L.E. Borg, P.E. Janney, R. Hines, T.L. Grove, The early differentiation history of Mars from 182W–142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005) ADSGoogle Scholar
  59. I. Friedman, J.R. O’Neil, J.D. Gleason, K. Hardcastle, The carbon and hydrogen content and isotopic composition of some Apollo 12 materials, in Proc. Lunar Sci. Conf., vol. 2 (1971), pp. 1407–1415 Google Scholar
  60. E. Füri, E. Deloule, New constraints on the production rate of cosmogenic deuterium at the Moon’s surface, in 47th Lunar Planet. Sci. Conf., abstract #1351 (2016) Google Scholar
  61. E. Füri, E. Deloule, A.A. Gurenko, B. Marty, New evidence for chondritic lunar water from combined \(\mbox{D}/\mbox{H}\) and noble gas analyses of single Apollo 17 volcanic glasses. Icarus 229, 109–120 (2014) ADSGoogle Scholar
  62. E. Füri, P.H. Barry, L.A. Taylor, B. Marty, Indigenous nitrogen in the Moon: constraints from coupled nitrogen-noble gas analyses of mare basalts. Earth Planet. Sci. Lett. 431, 195–205 (2015) ADSGoogle Scholar
  63. G.A. Gaetani, J.A. O’Leary, N. Shimizu, C.E. Bucholz, M. Newville, Rapid re-equilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40, 915–918 (2012) ADSGoogle Scholar
  64. H. Genda, Effects of Giant Impacts on the Atmosphere Formation of Terrestrial Planets (University of Tokyo, Tokyo, 2004) Google Scholar
  65. H. Genda, M. Ikoma, Origin of the ocean on the Earth: early evolution of water \(\mbox{D}/\mbox{H}\) in a hydrogen-rich atmosphere. Icarus 194, 42–52 (2008).  https://doi.org/10.1016/j.icarus.2007.09.007 ADSGoogle Scholar
  66. M. Gilmore, A. Treiman, J. Helbert, S. Smrekar, Venus surface composition constrained by observation and experiment. Space Sci. Rev. 212(3–4), 1511–1540 (2017).  https://doi.org/10.1007/s11214-017-0370-8 ADSGoogle Scholar
  67. T.A. Goudge, J.W. Head, L. Kerber, D.T. Blewett, B.W. Denevi, D.L. Domingue, J.J. Gillis-Davis, K. Gwinner, J. Helbert, G.M. Holsclaw, N.R. Izenberg, R.L. Klima, W.E. McClintock, S.L. Murchie, G.A. Neumann, D.E. Smith, R.G. Strom, Z. Xiao, M.T. Zuber, S.C. Solomon, Global inventory and characterization of pyroclastic deposits on Mercury: new insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. 119, 635–658 (2014) Google Scholar
  68. M.M. Grady, I.P. Wright, L.P. Carr, C.T. Pillinger, Compositional differences in enstatite chondrites based on carbon and nitrogen stable isotope measurements. Geochim. Cosmochim. Acta 50, 2799–2813 (1986) ADSGoogle Scholar
  69. J.P. Greenwood, S. Itoh, N. Sakamoto, E. Vicenzi, H. Yurimoto, Hydrogen isotope evidence for loss of water from Mars through time. Geophys. Res. Lett. 35, L05203 (2008).  https://doi.org/10.1029/2007GL032721 ADSGoogle Scholar
  70. J.P. Greenwood, S. Itoh, N. Sakamoto, P.H. Warren, L.A. Taylor, H. Yurimoto, Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat. Geosci. 4, 79–82 (2011) ADSGoogle Scholar
  71. J.P. Greenwood, N. Sakamoto, S. Itoh, P.H. Warren, J.A. Singer, K. Yanai, H. Yurimoto, The lunar magma ocean volatile signature recorded in chlorine-rich glasses in KREEP basalts 15382 and 15386. Geochem. J. 51, 105–114 (2017) Google Scholar
  72. R.E. Grimm, K.P. Harrison, D.E. Stillman, M.R. Kirchoff, On the secular retention of ground water and ice on Mars. J. Geophys. Res., Planets 122, 94–109 (2017).  https://doi.org/10.1002/2016JE005132 ADSGoogle Scholar
  73. D.H. Grinspoon, Implications of the high deuterium-to-hydrogen ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993) ADSGoogle Scholar
  74. D.H. Grinspoon, J.S. Lewis, Cometary water on Venus: implications of stochastic impacts. Icarus 74, 21–35 (1988) ADSGoogle Scholar
  75. A.N. Halliday, The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013) ADSGoogle Scholar
  76. A.N. Halliday, D. Lee, S. Tommasini, G.R. Davies, C.R. Paslick, J.G. Fitton, D.E. James, Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet. Sci. Lett. 133, 379–395 (1995) ADSGoogle Scholar
  77. L.J. Hallis, \(\mbox{D}/\mbox{H}\) ratios of the inner solar system. Philos. Trans. R. Soc. Lond. A 375, 20150390 (2017) ADSGoogle Scholar
  78. L.J. Hallis, G.J. Taylor, K. Nagashima, G.R. Huss, Magmatic water in the martian meteorite Nakhla. Earth Planet. Sci. Lett. 359–360, 84–92 (2012) Google Scholar
  79. L.J. Hallis, G.R. Huss, K. Nagashima, G.J. Taylor, S.A. Halldórsson, D.R. Hilton, M.J. Mottl, K.J. Meech, Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015).  https://doi.org/10.1126/science.aac4834 ADSGoogle Scholar
  80. K. Hamano, Y. Abe, H. Genda, Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).  https://doi.org/10.1038/nature12163 ADSGoogle Scholar
  81. J.K. Harmon, M.A. Slade, Radar mapping of Mercury: full-disk images and polar anomalies. Science 258, 640–642 (1992) ADSGoogle Scholar
  82. L.A. Haskin, P.H. Warren, Lunar chemistry, in Lunar Sourcebook: A User’s Guide to the Moon, ed. by G. Heiken, D. Vaniman, B. French (Cambridge University Press, New York, 1991), pp. 357–474 Google Scholar
  83. S.A. Hauck II, J.L. Margot, S.C. Solomon, R.J. Phillips, C.L. Johnson, F.G. Lemoine, E. Mazarico, T.J. McCoy, S. Padovan, S.J. Peale, M.E. Perry, D.E. Smith, M.T. Zuber, The curious case of Mercury’s internal structure. J. Geophys. Res., Planets 118, 1204–1220 (2013) ADSGoogle Scholar
  84. E. Hauri, J. Wang, J.E. Dixon, P.L. King, C. Mandeville, S. Newman, SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects, and comparisons with FTIR. Chem. Geol. 183, 99–114 (2002) ADSGoogle Scholar
  85. E.H. Hauri, T. Weinreich, A.E. Saal, M.C. Rutherford, J.A. Van Orman, High pre-eruptive water contents preserved in Lunar melt inclusions. Science 333, 213–215 (2011) ADSGoogle Scholar
  86. E.H. Hauri, A.E. Saal, M.C. Rutherford, J.A. Van Orman, Water in the Moon’s interior: truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015) ADSGoogle Scholar
  87. E.H. Hauri, A.E. Saal, M. Nakajima, M. Anand, M.J. Rutherford, J.A. Van Orman, M. Le Voyer, Origin and evolution of water in the Moon’s interior. Annu. Rev. Earth Planet. Sci. 45, 89–111 (2017) ADSGoogle Scholar
  88. J.W. Head III, L. Wilson, Alphonsus-type dark-halo craters: morphology, morphometry, and eruption conditions, in Lunar Planet. Sci. Conf. XI, vol. 418 (1979) Google Scholar
  89. J.W. Head III, H. Hiesinger, M.A. Ivanov, M.A. Kreslavsky, S. Pratt, B.J. Thomson, Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science 286, 2134–2137 (1999) ADSGoogle Scholar
  90. C.D.K. Herd, Basalts as probes of planetary interior redox state. Rev. Mineral. Geochem. 68, 527–553 (2008). Oxygen in the Solar System, ed. by G.J. MacPherson Google Scholar
  91. Y. Higashi, S. Itoh, M. Hashiguchi, S. Sakata, T. Hirata, K. Watanabe, I. Sakaguchi, Hydrogen diffusion in the apatite-water system: fluorapatite parallel to the c-axis. Geochem. J. 51, 115–122 (2017) Google Scholar
  92. M.M. Hirschmann, A.C. Withers, P. Ardia, N.T. Foley, Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345–348, 38–48 (2012) Google Scholar
  93. L.L. Hood, F. Herbert, C.P. Sonett, The deep lunar electrical conductivity profile: structural and thermal inferences. J. Geophys. Res. 87, 5311–5326 (1982) ADSGoogle Scholar
  94. G.L. Hovis, D.E. Harlov, Solution calorimetric investigation of fluor-chlorapatite crystalline solutions. Am. Mineral. 95, 946–952 (2010) ADSGoogle Scholar
  95. S. Hu, Y. Lin, J. Zhang, J. Hao, L. Feng, L. Xu, W. Yang, J. Yang, NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: hydrogen isotope evidence for recent past underground hydrothermal activity on Mars. Geochim. Cosmochim. Acta 140, 321–333 (2014) ADSGoogle Scholar
  96. H. Hui, A.H. Peslier, Y. Zhang, C.R. Neal, Water in lunar anorthosites and evidence for a wet early Moon. Nat. Geosci. 6, 177–180 (2013).  https://doi.org/10.1038/ngeo1735 ADSGoogle Scholar
  97. H. Hui, Y. Guan, Y. Chen, A.H. Peslier, Y. Zhang, Y. Liu, R.L. Flemming, G.R. Rossman, J.M. Eiler, C.R. Neal, G.R. Osinsky, A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 473, 14–23 (2017).  https://doi.org/10.1016/j.epsl.2017.05.029 ADSGoogle Scholar
  98. D. Hunten, R.O. Pepin, J.C.G. Walker, Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987) ADSGoogle Scholar
  99. A.P. Ingersoll, The runaway greenhouse: a history of water on Venus. J. Atmos. Sci. 26(6), 1191–1198 (1969) ADSGoogle Scholar
  100. E. Jarosewich, Chemical analyses of meteorite: a compilation of stony and iron meteorite analyses. Meteoritics 25, 323–337 (1990) ADSGoogle Scholar
  101. E.A. Jerde, R.V. Morris, P.H. Warren, In quest of lunar regolith breccias of exotic provenance—a uniquely anorthositic sample from the Fra Mauro (Apollo 14) highlands. Earth Planet. Sci. Lett. 98, 90–108 (1990) ADSGoogle Scholar
  102. K.P. Jochum, N.T. Arndt, A.W. Hofmann, Nb-Th-La in komatiites and basalts: constraints on komatiite petrogenesis and mantle evolution. Earth Planet. Sci. Lett. 107, 272–289 (1991) ADSGoogle Scholar
  103. B.L. Jolliff, R.L. Korotev, R.A. Zeigler, C. Floss, Northwest Africa 773: lunar mare breccia with a shallow-formed olivine-cumulate component, inferred very-low-Ti (VLT) heritage, and a KREEP connection. Geochim. Cosmochim. Acta 67, 4857–4879 (2003) ADSGoogle Scholar
  104. S.-I. Karato, Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon. Earth Planet. Sci. Lett. 384, 144–153 (2013) ADSGoogle Scholar
  105. S.-I. Karato, Physical basis of trace element partitioning: a review. Am. Mineral. 101, 2577–2593 (2016) ADSGoogle Scholar
  106. S.-I. Karato, Some remarks on hydrogen-assisted electrical conductivity in olivine and other minerals, in Water in the Earth, ed. by K. Mibe, J. Kasahara (Springer, Tokyo, 2017) Google Scholar
  107. S.-I. Karato, D. Wang, Electrical conductivity of minerals and rocks, in Physics and Chemistry of the Deep Earth, ed. by S.-I. Karato (Wiley, New York, 2013), pp. 145–182 Google Scholar
  108. J.F. Kasting, J.B. Pollack, Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 63, 479–508 (1983) ADSGoogle Scholar
  109. C. Kato, F. Moynier, M.C. Valdes, J.K. Dhaliwal, J.M.D. Day, Extensive volatiles loss during the formation and differentiation of the Moon. Nat. Commun. 6, 7617 (2015).  https://doi.org/10.1038/ncomms8617 ADSGoogle Scholar
  110. A. Kent Jr., Melt inclusions in basaltic and related volcanic rocks. Rev. Mineral. Geochem. 69, 273–331 (2008). Minerals, Inclusions, and Volcanic Processes, ed. by K.D. Putirka, and F.J. Tepley III. MSA Google Scholar
  111. L. Kerber, J.W. Head, S.C. Solomon, S.L. Murchie, D.T. Blewett, L. Wilson, Explosive volcanic eruptions on Mercury: eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett. 285, 263–271 (2009) ADSGoogle Scholar
  112. L. Kerber, J.W. Head, D.T. Blewett, S.C. Solomon, L. Wilson, S.L. Murchie, M.S. Robinson, B.W. Denevi, D.L. Domingue, The global distribution of pyroclastic deposits on Mercury: the view from MESSENGER flybys 1–3. Planet. Space Sci. 59, 1895–1909 (2011) ADSGoogle Scholar
  113. K. Kitts, K. Lodders, Survey and evaluation of eucrite bulk compositions. Meteorit. Planet. Sci. 33, A197–A213 (1998) Google Scholar
  114. T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q-Z. Yin, A.N. Halliday, Hf–W chronology of the accretion and evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009) ADSGoogle Scholar
  115. R.L. Korotev, Mixing levels, the Apennine Front soil component, and compositional trends in the Apollo 15 soils, in Proc. Lunar Plan. Sci. Conf., vol. 17 (1987), pp. E411–E431 Google Scholar
  116. R.L. Korotev, D.T. Kremser, Compositional variations in Apollo 17 soils and their relationship to the geology of the Taurus-Littrow site, in Proc. Lunar Plan. Sci. Conf., vol. 22 (1992), pp. 275–301 Google Scholar
  117. H. Kurokawa, M. Sato, M. Ushioda, T. Matsuyama, R. Moriwaki, J.M. Dohm, T. Usui, Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in martian meteorites. Earth Planet. Sci. Lett. 394, 179–185 (2014) ADSGoogle Scholar
  118. V. Lainey, V. Dehant, M. Pätzold, First numerical ephemerides of the Martian moons. Astron. Astrophys. 465, 1075–1084 (2007) ADSGoogle Scholar
  119. D.J. Lawrence, W.C. Feldman, J.O. Goldsten, S. Maurice, P.N. Peplowski, B.J. Anderson, D. Bazell, R.L. McNutt Jr., L.R. Nittler, T.H. Prettyman, D.J. Rodgers, S.C. Solomon, S.Z. Weider, Evidence for water ice near Mercury’s north pole from MESSENGER neutron spectrometer measurements. Science 339, 292–298 (2013) ADSGoogle Scholar
  120. L.A. Leshin, Insights into martian water reservoirs from analyses of martian meteorite QUE94201. Geophys. Res. Lett. 27, 2017–2020 (2000) ADSGoogle Scholar
  121. L.A. Leshin, P.R. Mahaffy, C.R. Webster, M. Cabane, P. Coll, P.G. Conrad, P.D. Archer Jr., S.K. Atreya, A.E. Brunner, A. Buch, J.L. Eigenbrode, G.J. Flesch, H.B. Franz, C. Freissinet, D.P. Glavin, A.C. Mcadam, K.E. Miller, D.W. Ming, R.V. Morris, R. Navarro-González, P.B. Niles, T. Owen, R.O. Pepin, S. Squyres, A. Steele, J.C. Stern, R.E. Summons, D.Y. Sumner, B. Sutter, C. Szopa, S. Teinturier, M.G. Trainer, J.J. Wray, J.P. Grotzinger (MSL Science Team), Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science 341, 1238937 (2013) Google Scholar
  122. Y. Liu, Y. Guan, Y. Zhang, G.R. Rossman, J.M. Eiler, L.A. Taylor, Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nat. Geosci. 5, 779–782 (2012) ADSGoogle Scholar
  123. Y. Liu, C. Ma, J.R. Beckett, Y. Chen, Y. Guan, Rare-Earth element minerals in martian meteorites NWA 7034 and 7533: implications for fluid-rock interaction in the martian crust. Earth Planet. Sci. Lett. 451, 251–262 (2016) ADSGoogle Scholar
  124. S.J. Lock, S.T. Stewart, M.I. Petaev, Z.M. Leinhardt, M.T. Mace, S.B. Jacobsen, M. Ćuk, The origin of the Moon within a terrestrial synestia. J. Geophys. Res. 123, 910–951 (2018).  https://doi.org/10.1002/2017JE005333 Google Scholar
  125. K. Lodders, B. Fegley, The Planetary Scientist’s Companion (Oxford University Press, New York, 1998) Google Scholar
  126. P. Lowell, Mars and Its Canals (Macmillan & Co., London, 1906) Google Scholar
  127. P. Lucey, R.L. Korotev, J.J. Gillis, L.A. Taylor, D. Lawrence, B.A. Campbell, R. Elphic, B. Feldman, L.L. Hood, D. Hunten, M. Mendillo, S. Noble, J.J. Papike, R.C. Reedy, S. Lawson, T. Prettyman, O. Gasnault, S. Maurice, Understanding the lunar surface and Space-Moon interactions. Rev. Mineral. Geochem. 60, 83–219 (2006). New Views of the Moon, ed. by B.L. Joliff, M.A. Weiczorek, C.K. Shearer, C.R. Neal Google Scholar
  128. R.W. Luth, Mantle volatiles-distributions and consequences, in The Mantle and Core, ed. by R.W. Carlson. Treatise on Geochemistry (Elsevier-Pergamon, Oxford, 2005), pp. 319–361 Google Scholar
  129. P.R. Mahaffy, C.R. Webster, J.C. Stern, A.E. Brunner, S.K. Atreya, P.G. Conrad, S. Domagal-Goldman, J.L. Eigenbrode, G.J. Flesch, L.E. Christensen, H.B. Franz, C. Freissinet, D.P. Glavin, J.P. Grotzinger, J.H. Jones, L.A. Leshin, C. Malespin, A.C. Mcadam, D.W. Ming, R. Navarro-Gonzalez, P.B. Niles, T. Owen, A.A. Pavlov, A. Steele, M.G. Trainer, K.H. Williford, J.J. Wray (MSL Science Team), The imprint of atmospheric evolution in the \(\mbox{D}/\mbox{H}\) of Hesperian clay minerals on Mars. Science 347, 412–414 (2015) ADSGoogle Scholar
  130. V. Malavergne, J. Siebert, F. Guyot, L. Gautron, R. Combes, T. Hammouda, S. Borensztajn, D. Frost, I. Martinez, Si in the core? New high-pressure and high-temperature experimental data. Geochim. Cosmochim. Acta 68, 4201–4211 (2004) ADSGoogle Scholar
  131. V. Malavergne, M.J. Toplis, S. Berthet, J. Jones, Highly reducing conditions during core formation on Mercury: implications for internal structure and the origin of a magnetic field. Icarus 206, 199–209 (2010) ADSGoogle Scholar
  132. V. Malavergne, P. Cordier, K. Righter, F. Brunet, B. Zanda, A. Addad, T. Smith, H. Bureau, S. Surblé, C. Raepsaet, E. Charon, R.H. Hewins, How Mercury can be the most reduced terrestrial planet and still store iron in its mantle. Earth Planet. Sci. Lett. 394, 186–197 (2014) ADSGoogle Scholar
  133. B.E. Mandler, L.T. Elkins-Tanton, The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit. Planet. Sci. 48, 2333–2349 (2013) ADSGoogle Scholar
  134. P. Mane, R. Hervig, M. Wadhwa, L.A.J. Garvie, J.B. Balta, H.Y. McSween Jr., Hydrogen isotopic composition of the Martian mantle inferred from the newest Martian meteorite fall, Tissint. Meteorit. Planet. Sci. 51, 2073–2091 (2016).  https://doi.org/10.1111/maps.12717 ADSGoogle Scholar
  135. B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012) Google Scholar
  136. B. Marty, G. Avice, Y. Sano, K. Altwegg, H. Balsiger, M. Hässig, A. Morbidelli, O. Mousis, M. Rubie, Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016) ADSGoogle Scholar
  137. T.J. McCoy, T.L. Dickinson, G.E. Lofgren, Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34, 735–746 (1999) ADSGoogle Scholar
  138. F.M. McCubbin, A. Steele, E.H. Hauri, H. Nekvasil, S. Yamashita, R.J. Hemley, Nominally hydrous magmatism on the Moon. Proc. Natl. Acad. Sci. 107(25), 11223–11228 (2010a) ADSGoogle Scholar
  139. F.M. McCubbin, A. Steele, H. Nekvasil, A. Schnieders, T. Rose, M. Fries, P.K. Carpenter, B.L. Jolliff, Detection of structurally bound hydroxyl in fluorapatite from Apollo Mare basalt 15058,128 using TOF-SIMS. Am. Mineral. 95, 1141–1150 (2010b) ADSGoogle Scholar
  140. F.M. McCubbin, M.A. Riner, K.E. Vander Kaaden, L.K. Burkemper, Is Mercury a volatile-rich planet? Geophys. Res. Lett. 39, L09202 (2012a) ADSGoogle Scholar
  141. F.M. McCubbin, E.H. Hauri, S.M. Elardo, K.E. Vander Kaaden, J. Wang, C.K. Shearer Jr., Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology 40(8), 683–686 (2012b).  https://doi.org/10.1130/G33242.1 ADSGoogle Scholar
  142. F.M. McCubbin, K.E. Vander Kaaden, R. Tartèse, R.L. Klima, Y. Liu, J. Mortimer, J.J. Barnes, C.K. Shearer, A.H. Treiman, D.J. Lawrence, S.M. Elardo, D.M. Hurley, J.W. Boyce, M. Anand, Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: abundances, distributions, processes, and reservoirs. Am. Mineral. 100, 1668–1707 (2015a) ADSGoogle Scholar
  143. F.M. McCubbin, K.E. Vander Kaaden, R. Tartèse, J.W. Boyce, S. Mikhail, E.S. Whitson, A.S. Bell, M. Anand, I.A. Franchi, J. Wang, E.H. Hauri, Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and \(950\mbox{--}1000~{}^{\circ}\)C. Am. Mineral. 100, 1790–1802 (2015b) ADSGoogle Scholar
  144. F.M. McCubbin, K.E. Vander Kaaden, P.N. Peplowski, A.S. Bell, L.R. Nittler, J.W. Boyce, L.G. Evans, L.P. Keller, S.M. Elardo, T.J. McCoy, A low O/Si ratio on the surface of Mercury: evidence for silicon smelting? J. Geophys. Res. 122, 2053–2076 (2017) Google Scholar
  145. W.F. McDonough, S.-S. Sun, The composition of the Earth. Chem. Geol. 120, 223–253 (1995) ADSGoogle Scholar
  146. M.B. McElroy, Y.L. Yung, A.O. Nier, Isotopic composition of nitrogen: implications for the past history of Mars’ atmosphere. Science 194, 70–72 (1976) ADSGoogle Scholar
  147. W.B. McKinnon, K.J. Zahnle, B.A. Ivanov, H.J. Melosh, Cratering on Venus: models and observations, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 969–1014 Google Scholar
  148. H.Y. McSween Jr., R.P. Binzel, M.C. De Sanctis, E. Ammannito, T.H. Prettyman, A.W. Beck, V. Reddy, L. Le Corre, M.J. Gaffey, T.B. McCord, C.A. Raymond, C.T. Russell (The Dawn Science Team), Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteorit. Planet. Sci. 48, 2090–2104 (2013) ADSGoogle Scholar
  149. L. Merlivat, M. Lelu, G. Nief, E. Roth, Spallation deuterium in rock 70215, in Proc. Lunar Sci. Conf, vol. 7 (1976), pp. 649–658 Google Scholar
  150. F. Montmessin, T. Fouchet, F. Forget, Modeling the annual cycle of HDO in the Martian atmosphere. J. Geophys. Res. 110, E03006 (2005) ADSGoogle Scholar
  151. A. Morbidelli, J.I. Lunine, D.P. O’Brien, S.N. Raymond, K.J. Walsh, Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).  https://doi.org/10.1146/annurevearth042711-105319 ADSGoogle Scholar
  152. J. Mortimer, A.B. Verchovsky, M. Anand, I. Gilmour, C.T. Pillinger, Simultaneous analysis of abundance and isotopic composition of nitrogen, carbon, and noble gases in lunar basalts: insights into interior and surface processes on the Moon. Icarus (2015).  https://doi.org/10.1016/j.icarus.2014.10.006 Google Scholar
  153. J. Mouginot, A. Pommerol, P. Beck, W. Kofman, S.M. Clifford, Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys. Res. Lett. 39, L02202 (2012) ADSGoogle Scholar
  154. S.L. Murchie, R.L. Klima, B.W. Denevi, C.M. Ernst, M.R. Keller, D.L. Domingue, D.T. Blewett, N.L. Chabot, C. Hash, E. Malaret, N.R. Izenberg, F. Vilas, L.R. Nittler, J.W. Head, Orbital multispectral mapping of Mercury using the MESSENGER Mercury Dual Imaging System: evidence for the origins of plains units and low-reflectance material. Icarus 254, 287–305 (2015) ADSGoogle Scholar
  155. N. Muttik, F.M. McCubbin, L.P. Keller, A.R. Santos, W.A. McCutcheon, P.P. Provencio, Z. Rahman, C.K. Shearer, J.W. Boyce, C.B. Agee, Inventory of H2O in the ancient martian regolith from Northwest Africa 7034: the important role of iron oxides. Geophys. Res. Lett. 41, 8235–8244 (2014).  https://doi.org/10.1002/2014GL062533 ADSGoogle Scholar
  156. M. Nakajima, D.J. Stevenson, Inefficient volatile loss from the Moon-forming disk: reconciling the giant impact hypothesis and a wet Moon. Earth Planet. Sci. Lett. 487, 117–126 (2018) ADSGoogle Scholar
  157. O. Namur, M. Collinet, B. Charlier, T.L. Grove, F. Holtz, C. McCammon, Melting processes and mantle sources of surface lavas on Mercury. Earth Planet. Sci. Lett. 439, 117–128 (2016) ADSGoogle Scholar
  158. H.E. Newsom, W.M. White, K.P. Jochum, A.W. Hofmann, Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth’s core. Earth Planet. Sci. Lett. 80, 299–313 (1986) ADSGoogle Scholar
  159. A.O. Nier, M.B. McElroy, Y.L. Yung, Isotopic composition of the Martian atmosphere. Science 194, 68–70 (1976) ADSGoogle Scholar
  160. L.R. Nittler, R.D. Starr, S.Z. Weider, T.J. McCoy, W.V. Boynton, D.S. Ebel, C.M. Ernst, L.G. Evans, J.O. Goldsten, D.K. Hamara, D.J. Lawrence, R.L. McNutt, C.E. Schlemm, S.C. Solomon, A.L. Sprague, The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333, 1847–1850 (2011) ADSGoogle Scholar
  161. L.E. Nyquist, C.-Y. Shih, F.M. McCubbin, A.R. Santos, C.K. Shearer, Z.X. Peng, P.V. Burger, C.B. Agee, Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034. Meteorit. Plan. Sci. 51, 483–498 (2016) ADSGoogle Scholar
  162. D.P. O’Brien, A. Izidoro, S.A. Jacobson, S.N. Raymond, D.C. Rubie, The delivery of water during terrestrial planet formation. Space Sci. Rev. 214, 47 (2018) (this book).  https://doi.org/10.1007/s11214-018-0475-8 ADSGoogle Scholar
  163. J. Ormö, J.M. Dohm, J.C. Ferris, A. Lepinette, A.G. Fairén, Marine-target craters on Mars? An assessment study. Meteorit. Planet. Sci. 39, 333–346 (2004) ADSGoogle Scholar
  164. T. Owen, The composition and early history of the atmosphere of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder (University of Arizona Press, Tucson, 1992) Google Scholar
  165. T. Owen, J.P. Maillard, C. de Bergh, B.L. Lutz, Deuterium on Mars: the abundance of HDO and the value of \(\mbox{D}/\mbox{H}\). Science 240, 1767–1770 (1988) ADSGoogle Scholar
  166. K. Pahlevan, D.J. Stevenson, Volatile loss Following the Moonforming giant impact. Geochim. Cosmochim. Acta, Suppl. 72, A716 (2008) Google Scholar
  167. K. Pahlevan, S.-I. Karato, B. Fegley, Speciation and dissolution of hydrogen in the proto-lunar disk. Earth Planet. Sci. Lett. 445, 104–113 (2016) ADSGoogle Scholar
  168. H. Palme, H.S.C. O’Neill, Cosmochemical estimates of mantle composition, in The Mantle and Core, ed. by R.W. Carlson. Treatise on Geochemistry (Elsevier-Pergamon, Oxford, 2014), pp. 1–39 Google Scholar
  169. Y.M. Pan, M.E. Fleet, Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev. Mineral. Geochem. 48, 13–49 (2002). Phosphates: Geochemical, Geobiological, and Materials Importance, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes Google Scholar
  170. R.C. Paniello, J.M.D. Day, F. Moynier, Zinc isotope evidence for the origin of the Moon. Nature 490, 376–380 (2012) ADSGoogle Scholar
  171. S.W. Parman, E.M. Parmentier, S. Wang, Crystallization of Mercury’s sulfur-rich magma ocean, in Lunar Planet. Sci. Conf. XLVII, abstract# 2990 (2016) Google Scholar
  172. E.M. Parmentier, P.C. Hess, Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992) ADSGoogle Scholar
  173. P.N. Peplowski, L.G. Evans, S.A. Hauck, T.J. McCoy, W.V. Boynton, J.J. Gillis-Davis, D.S. Ebel, J.O. Goldsten, D.K. Hamara, D.J. Lawrence, R.L. McNutt, L.R. Nittler, S.C. Solomon, E.A. Rhodes, A.L. Sprague, R.D. Starr, K.R. Stockstill-Cahill, Radioactive elements on Mercury’s surface from MESSENGER: implications for the planet’s formation and evolution. Science 333, 1850–1852 (2011) ADSGoogle Scholar
  174. P.N. Peplowski, D.J. Lawrence, E.A. Rhodes, A.L. Sprague, T.J. McCoy, B.W. Denevi, L.G. Evans, J.W. Head, L.R. Nittler, S.C. Solomon, K.R. Stockstill-Cahill, S.Z. Weider, Variations in the abundances of potassium and thorium on the surface of Mercury: results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res. 117, E00L04 (2012).  https://doi.org/10.1029/2012JE004141 ADSGoogle Scholar
  175. P.N. Peplowski, L.G. Evans, K.R. Stockstill-Cahill, D.J. Lawrence, J.O. Goldsten, T.J. McCoy, L.R. Nittler, S.C. Solomon, A.L. Sprague, R.D. Starr, S.Z. Weider, Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus 228, 86–95 (2014) ADSGoogle Scholar
  176. P.N. Peplowski, D.J. Lawrence, L.G. Evans, R.L. Klima, D.T. Blewett, J.O. Goldsten, S.L. Murchie, T.J. McCoy, L.R. Nittler, S.C. Solomon, R.D. Starr, S.Z. Weider, Constraints on the abundance of carbon in near-surface materials on Mercury: results from the MESSENGER Gamma-Ray Spectrometer. Planet. Space Sci. 108, 98–107 (2015) ADSGoogle Scholar
  177. P.N. Peplowski, R.L. Klima, D.J. Lawrence, C.M. Ernst, B.W. Denevi, E.A. Frank, J.O. Goldsten, S.L. Murchie, L.R. Nittler, S.C. Solomon, Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nat. Geosci. 9, 273–276 (2016) ADSGoogle Scholar
  178. A.H. Peslier, M. Schönbächler, H. Busemann, S.I. Karato, Water in the Earth’s interior: distribution and origin. Space Sci. Rev. 212, 743–810 (2017) (this book).  https://doi.org/10.1007/s11214-017-0387-z ADSGoogle Scholar
  179. A.E. Potter, T.H. Morgan, Discovery of sodium in the atmosphere of Mercury. Science 229, 651–653 (1985) ADSGoogle Scholar
  180. A.E. Potter, T.H. Morgan, Potassium in the atmosphere of Mercury. Icarus 67, 336–340 (1986) ADSGoogle Scholar
  181. B. Rava, B. Hapke, An analysis of the Mariner 10 color ratio map of Mercury. Icarus 71, 397–429 (1987) ADSGoogle Scholar
  182. R.C. Reedy, Cosmic-ray produced stable nuclides: various production rates and their implications. Lunar Planet. Sci. Conf. XII, 871 (1981) ADSGoogle Scholar
  183. J. Riker, M.C.S. Humphreys, R.A. Brooker, J.C.M. De Hoog (EIMF), First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite–silicate melt. Am. Mineral. 103, 260–270 (2018) ADSGoogle Scholar
  184. M.A. Riner, P.G. Lucey, S.J. Desch, F.M. McCubbin, Nature of opaque components on Mercury: insights into a Mercurian magma ocean. Geophys. Res. Lett. 36, L02201 (2009) ADSGoogle Scholar
  185. K.L. Robinson, G.J. Taylor, Heterogeneous distribution of water in the Moon. Nat. Geosci. 7, 401–408 (2014) ADSGoogle Scholar
  186. M.S. Robinson, S.L. Murchie, D.T. Blewett, D.L. Domingue, S.E. Hawkins, J.W. Head III, G.M. Holsclaw, W.E. McClintock, T.J. McCoy, R.L. McNutt Jr., L.M. Prockter, S.C. Solomon, T.R. Watters, Reflectance and color variations on Mercury: regolith processes and compositional heterogeneity. Science 321, 66–69 (2008) ADSGoogle Scholar
  187. K.L. Robinson, J.J. Barnes, K. Nagashima, A. Thomen, I.A. Franchi, G.R. Huss, M. Anand, G.J. Taylor, Water in evolved lunar rocks: evidence for multiple reservoirs. Geochim. Cosmochim. Acta 188, 244–260 (2016) ADSGoogle Scholar
  188. D.C. Rubie, D.J. Frost, U. Mann, Y. Asahara, F. Nimmo, K. Tsuno, P. Kegler, A. Holzheid, H. Palme, Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011).  https://doi.org/10.1016/j.epsl.2010.11.030 ADSGoogle Scholar
  189. A.E. Saal, E.H. Hauri, M. Lo Cascio, J.A. Van Orman, M.C. Rutherford, R.F. Cooper, Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–196 (2008) ADSGoogle Scholar
  190. A.E. Saal, E.H. Hauri, J.A. Van Orman, M.C. Rutherford, Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013) ADSGoogle Scholar
  191. J. Salmon, R.M. Canup, Lunar accretion from a Roche-interior fluid disk. Astrophys. J. 760, 83 (2012).  https://doi.org/10.1088/0004-637X/760/1/83 ADSGoogle Scholar
  192. C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999) ADSGoogle Scholar
  193. A.R. Sarafian, S.G. Nielsen, H.R. Marschall, F.M. McCubbin, B.D. Monteleone, Early accretion of water in the inner solar system from a carbonaceous chondrite-like source. Science 346, 623–626 (2014) ADSGoogle Scholar
  194. A.R. Sarafian, E.H. Hauri, F.M. McCubbin, T.J. Lapen, E.L. Berger, S.G. Nielsen, H.R. Marschall, G.A. Gaetani, K. Righter, E. Sarafian, Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Philos. Trans. R. Soc. Lond. A 375, 1–27 (2017) Google Scholar
  195. G.G. Schaber, R.G. Strom, H.J. Moore, L.A. Soderblom, R.L. Kirk, D.J. Chadwick, D.D. Dawson, L.R. Gaddis, J.M. Boyce, J. Russell, Geology and distribution of impact craters on Venus: what are they telling us? J. Geophys. Res. 97, 13257–13301 (1992) ADSGoogle Scholar
  196. Z.D. Sharp, C.K. Shearer, K.D. McKeegan, J.D. Barnes, Y.Q. Wang, The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329, 1050–1053 (2010) ADSGoogle Scholar
  197. Z.D. Sharp, F.M. McCubbin, C.K. Shearer, A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet. Sci. Lett. 380, 88–97 (2013) ADSGoogle Scholar
  198. J.A. Singer, J.P. Greenwood, S. Itoh, N. Sakamoto, H. Yurimoto, Evidence for the solar wind in lunar magmas: a study of slowly-cooled samples of the Apollo 12 olivine basalt suite. Geochem. J. 51, 95–104 (2017) Google Scholar
  199. M.A. Slade, B.J. Butler, D.O. Muhleman, Mercury radar imaging: evidence for polar ice. Science 258, 635–640 (1992) ADSGoogle Scholar
  200. G. Slodzian, T.D. Wu, N. Bardin, J. Duprat, C. Engrand, J.L. Guerquin-Kern, Simultaneous hydrogen and heavier element isotopic ratio images with a scanning submicron ion probe and mass resolved polyatomic ions. Microsc. Microanal. 20(2), 577–581 (2014) ADSGoogle Scholar
  201. P.H. Smith, L.K. Tamppari, R.E. Arvidson, D. Bass, D. Blaney, W.V. Boynton, A. Carswell, D.C. Catling, B.C. Clark, T. Duck, E. DeJong, D. Fisher, W. Goetz, H.P. Gunnlaugsson, M.H. Hecht, V. Hipkin, J. Hoffman, S.F. Hviid, H.U. Keller, S.P. Kounaves, C.F. Lange, M.T. Lemmon, M.B. Madsen, W.J. Markiewicz, J. Marshall, C.P. McKay, M.T. Mellon, D.W. Ming, R.V. Morris, W.T. Pike, N. Renno, U. Staufer, C. Stoker, P. Taylor, J.A. Whiteway, A.P. Zent, H2O at the Phoenix landing site. Science 325, 58–61 (2009).  https://doi.org/10.1126/science.1172339 ADSGoogle Scholar
  202. D.E. Smith, M.T. Zuber, R.J. Phillips, S.C. Solomon, S.A. Hauck, F.G. Lemoine, E. Mazarico, G.A. Neumann, S.J. Peale, J.-L. Margot, C.L. Johnson, M.H. Torrence, M.E. Perry, D.D. Rowlands, S. Goossens, J.W. Head, A.H. Taylor, Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–217 (2012) ADSGoogle Scholar
  203. S.C. Solomon, R.L. McNutt Jr., R.E. Gold, M.H. Acuna, D.N. Baker, W.V. Boynton, C.R. Chapman, A.F. Cheng, G. Gloeckler, J.W. Head, S.M. Krimigis, W.E. McClintock, S.L. Murchie, S.J. Peale, R.J. Phillips, M.S. Robinson, J.A. Slavin, D.E. Smith, R.G. Strom, J.I. Trombka, M.T. Zuber, The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49, 1445–1465 (2001) ADSGoogle Scholar
  204. C.P. Sonett, D.S. Colburn, P. Dyal, C.W. Parkin, B.F. Smith, G. Schubert, K. Schwartz, Lunar electrical conductivity profile. Nature 230, 359–362 (1971) ADSGoogle Scholar
  205. D.J. Stevenson, Origin of the Moon—the collision hypothesis. Annu. Rev. Earth Planet. Sci. 15, 271–315 (1987) ADSGoogle Scholar
  206. K.R. Stockstill-Cahill, T.J. McCoy, L.R. Nittler, S.Z. Weider, S.A. Hauck II, Magnesium-rich crustal compositions on Mercury: implications for magmatism from petrologic modeling. J. Geophys. Res. 117, E00L15 (2012) ADSGoogle Scholar
  207. N. Sugiura, H. Hoshino, Hydrogen-isotopic compositions in Allan Hills 84001 and the evolution of the martian atmosphere. Meteorit. Planet. Sci. 35, 373–380 (2000) ADSGoogle Scholar
  208. R. Tartèse, M. Anand, Late delivery of chondritic hydrogen into the lunar mantle: insights from mare basalts. Earth Planet. Sci. Lett. 361, 480–486 (2013) ADSGoogle Scholar
  209. R. Tartèse, M. Anand, J.J. Barnes, N.A. Starkey, I.A. Franchi, Y. Sano, The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples: implications for the volatile inventory of the Moon. Geochim. Cosmochim. Acta 122, 58–74 (2013) ADSGoogle Scholar
  210. R. Tartèse, M. Anand, F.M. McCubbin, S.M. Elardo, C.K. Shearer, I.A. Franchi, Apatite in lunar KREEP basalts: the missing link to understanding the H isotope systematics of the Moon. Geology 42, 363–366 (2014a) ADSGoogle Scholar
  211. R. Tartèse, M. Anand, K.H. Joy, I.A. Franchi, H and Cl isotope systematics of apatite in brecciated lunar meteorites Northwest Africa 4472, Northwest Africa 773, Sayh al Uhaymir 169, and Kalahari 009. Meteorit. Planet. Sci. 49, 2266–22894 (2014b).  https://doi.org/10.1111/maps.12398 ADSGoogle Scholar
  212. B.E. Taylor, Magmatic volatiles: isotopic variation of C, H, and S. Rev. Mineral. Geochem. 16(1), 185–225 (1986). Stable Isotopes in High Temperature Geological Processes, ed. by J.W. Valley, H.P. Taylor, Jr., J.R. O’Neil (MSA, Blacksburg, 1986) MathSciNetGoogle Scholar
  213. G.J. Taylor, The bulk composition of Mars. Chem. Erde 73, 401–420 (2013) Google Scholar
  214. R.J. Thomas, D.A. Rothery, S.J. Conway, M. Anand, Long-lived explosive volcanism on Mercury. Geophys. Res. Lett. 41, 6084–6092 (2014) ADSGoogle Scholar
  215. R.J. Thomas, D.A. Rothery, S.J. Conway, M. Anand, Explosive volcanism in complex impact craters on Mercury and the Moon: influence of tectonic regime on depth of magmatic intrusion. Earth Planet. Sci. Lett. 431, 164–172 (2015) ADSGoogle Scholar
  216. A. Treiman, E. Harrington, V. Sharpton, Venus’ radar bright highlands: different signatures and materials on Ovda Regio and on Maxwell Montes. Icarus 280, 172–182 (2016a) ADSGoogle Scholar
  217. A.H. Treiman, J.W. Boyce, J.P. Greenwood, J.M. Eiler, J. Gross, Y. Guan, C. Ma, E.M. Stolper, D-poor hydrogen in lunar mare basalts assimilated from lunar regolith. Am. Mineral. 101, 1596–1603 (2016b) ADSGoogle Scholar
  218. J. Tuff, J. Wade, B. Wood, Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 498, 342 (2013) ADSGoogle Scholar
  219. G. Ustunisik, H. Nekvasil, D.H. Lindsley, F.M. McCubbin, Degassing pathways of Cl-, F-, H-, and S-bearing magmas near the lunar surface: implications for the composition and Cl isotopic values of lunar apatite. Am. Mineral. 100(8–9), 1717–1727 (2015) ADSGoogle Scholar
  220. T. Usui, Hydrogen reservoirs in Mars as revealed by martian meteorites, in Volatiles in the Martian Crust, ed. by J. Filiberto, S.S. Schwenzer (Elsevier, Amsterdam, 2018) Google Scholar
  221. T. Usui, C.M.O’D. Alexander, J. Wang, J.I. Simon, J.H. Jones, Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth Planet. Sci. Lett. 357–358, 119–129 (2012) Google Scholar
  222. T. Usui, C.M.O’D. Alexander, J. Wang, J.I. Simon, J.H. Jones, Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth Planet. Sci. Lett. 410, 140–151 (2015) ADSGoogle Scholar
  223. K.E. Vander Kaaden, F.M. McCubbin, Exotic crust formation on Mercury: consequences of a shallow, FeO-poor mantle. J. Geophys. Res. 120, 195–209 (2015) Google Scholar
  224. K.E. Vander Kaaden, F.M. McCubbin, The origin of boninites on Mercury: an experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta 173, 246–263 (2016) ADSGoogle Scholar
  225. K.E. Vander Kaaden, F.M. McCubbin, D.K. Ross, J.F. Rapp, L.R. Danielson, L.P. Keller, K. Righter, Carbon solubility in Si-Fe-bearing metals during core formation on Mercury, in Lunar Plan. Sci. Conf. XLVII, abstract #1474 (2016) Google Scholar
  226. K.E. Vander Kaaden, F.M. McCubbin, L.R. Nittler, P.N. Peplowski, S.Z. Weider, E.A. Frank, T.J. McCoy, Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: insights into the mercurian mantle. Icarus 285, 155–168 (2017) ADSGoogle Scholar
  227. O. Verhoeven, P. Vasher, Laboratory-based electrical conductivity at Martian mantle conditions. Planet. Space Sci. 134, 29–35 (2016) ADSGoogle Scholar
  228. G.L. Villanueva, M.J. Mumma, R.E. Novak, H.U. Kaufl, P. Hartogh, T. Encrenaz, A. Tokunaga, A. Khayat, M.D. Smith, Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs. Science 348, 218–221 (2015) ADSGoogle Scholar
  229. M. Wadhwa, Redox conditions on small bodies, the Moon, and Mars. Rev. Mineral. Geochem. 68, 493–510 (2008). Oxygen in the Solar System, ed. by G.J. MacPherson Google Scholar
  230. D. Walker, J. Longhi, J. Kirkpatrick, J.F. Hays, Differentiation of an Apollo 12 picrite magma. Proc. Lunar Planet. Sci. Conf. 7, 1365–1389 (1976) ADSGoogle Scholar
  231. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).  https://doi.org/10.1038/nature10201 ADSGoogle Scholar
  232. K. Wang, S.B. Jacobsen, Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature 538, 487 (2016) ADSGoogle Scholar
  233. H. Wänke, G. Dreibus, Chemical composition and accretion history of terrestrial planets. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 325, 545–557 (1988) ADSGoogle Scholar
  234. P.H. Warren, The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 13, 201–240 (1985) ADSGoogle Scholar
  235. P.H. Warren, “New” lunar meteorites: implications for composition of the global lunar surface, of the lunar crust, and of the bulk Moon. Meteorit. Planet. Sci. 40, 477–506 (2005) ADSGoogle Scholar
  236. P.H. Warren, G.W. Kallemeyn, Geochemistry of lunar meteorite Yamato-791197: comparison with ALHA81005 and other lunar samples. Mem. Natl. Inst. Polar Res., Spec. Issue 41, 3–16 (1986). Proceedings of the NIPR Symposium on Antarctic Meteorites (Tokyo) ADSGoogle Scholar
  237. P.H. Warren, G.J. Taylor, The Moon, in Planets, Asteroids, Comets, and the Solar System, ed. by A.M. Davis. Treatise on Geochemistry, 2nd edn. (2014), pp. 213–250 Google Scholar
  238. P.H. Warren, J.T. Wasson, The origin of KREEP. Rev. Geophys. Space Phys. 17, 73–88 (1979) ADSGoogle Scholar
  239. J.T. Wasson, G.W. Kallemeyn, Compositions of chondrites. Philos. Trans. R. Soc. Lond. A 325, 535–544 (1988) ADSGoogle Scholar
  240. L.L. Watson, I.D. Hutcheon, S. Epstein, E.M. Stolper, Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265, 86–90 (1994) ADSGoogle Scholar
  241. C.R. Webster, P.R. Mahaffy, G.J. Flesch, P.B. Niles, J.H. Jones, L.A. Leshin, S.K. Atreya, J.C. Stern, L.E. Christensen, T. Owen, H. Franz, R.O. Pepin, A. Steele (MSL Science Team), Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere. Science 341, 260–263 (2013) ADSGoogle Scholar
  242. S.Z. Weider, L.R. Nittler, R.D. Starr, T.J. McCoy, K.R. Stockstill-Cahill, P.K. Byrne, B.W. Denevi, J.W. Head, S.C. Solomon, Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res. 117, E00L05 (2012).  https://doi.org/10.1029/2012JE004153 ADSGoogle Scholar
  243. J.G. Williams, D.H. Boggs, C.F. Yoder, J.T. Ratcliff, J.O. Dickey, Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001) ADSGoogle Scholar
  244. B.J. Wood, A.N. Halliday, M. Rehkamper, Volatile accretion history of the Earth. Nature 467, E6–E7 (2010) ADSGoogle Scholar
  245. R.D. Wordsworth, The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016) ADSGoogle Scholar
  246. Y. Xu, T.J. Shankland, A.G. Duba, Pressure effect on electrical conductivity of mantle olivine. Phys. Earth Planet. Inter. 118, 149–161 (2000) ADSGoogle Scholar
  247. T. Yoshino, A. Shimojuku, S. Shan, X. Guo, D. Yamazaki, E. Ito, Y. Higo, K. Funakoshi, Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs. J. Geophys. Res. 117, B08205 (2012).  https://doi.org/10.1029/2011JB008774 ADSGoogle Scholar
  248. E.D. Young, Evaporating planetesimals. Nature 549, 461–462 (2017) ADSGoogle Scholar
  249. H. Yurimoto, K. Nagashima, T. Kunihiro, High precision isotope micro-imaging of materials. Appl. Surf. Sci. 203–204, 793–797 (2003) Google Scholar
  250. H. Yurimoto, S. Itoh, M. Zolensky, M. Kusakabe, A. Karen, R. Bodnar, Isotopic compositions of asteroidal liquid water trapped in fluid inclusions of chondrites. Geochem. J. 48, 549–560 (2014) Google Scholar
  251. M.Y. Zolotov, A.L. Sprague, L.R. Nittler, S.Z. Weider, R.D. Starr, L.G. Evans, W.V. Boynton, J.O. Goldstein, S.A. Hauck, S.C. Solomon, Implications of the MESSENGER discovery of high sulfur abundance on the surface of Mercury. EOS (Trans., Am. Geophys. Union) Abstract #P41A-1584 (2011) Google Scholar
  252. M.Y. Zolotov, A.L. Sprague, S.A. Hauck, L.R. Nittler, S.C. Solomon, S.Z. Weider, The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. 118, 138–146 (2013).  https://doi.org/10.1029/2012JE004274 Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • James P. Greenwood
    • 1
  • Shun-ichiro Karato
    • 2
  • Kathleen E. Vander Kaaden
    • 3
  • Kaveh Pahlevan
    • 4
  • Tomohiro Usui
    • 5
  1. 1.Department of Earth and Environmental SciencesWesleyan UniversityMiddletownUSA
  2. 2.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  3. 3.Jacobs, NASA Johnson Space CenterHoustonUSA
  4. 4.School of Earth & Space ExplorationArizona State UniversityTempeUSA
  5. 5.Earth-Life Science InstituteTokyo Institute of TechnologyMeguroJapan

Personalised recommendations