Skip to main content

Fine Resolution Epithermal Neutron Detector (FREND) Onboard the ExoMars Trace Gas Orbiter

Abstract

ExoMars is a two-launch mission undertaken by Roscosmos and European Space Agency. Trace Gas Orbiter, a satellite part of the 2016 launch carries the Fine Resolution Neutron Detector instrument as part of its payload. The instrument aims at mapping hydrogen content in the upper meter of Martian soil with spatial resolution between 60 and 200 km diameter spot. This resolution is achieved by a collimation module that limits the field of view of the instruments detectors. A dosimetry module that surveys the radiation environment in cruise to Mars and on orbit around it is another part of the instrument.

This paper describes the mission and the instrument, its measurement principles and technical characteristics. We perform an initial assessment of our sensitivity and time required to achieve the mission goal. The Martian atmosphere is a parameter that needs to be considered in data analysis of a collimated neutron instrument. This factor is described in a section of this paper. Finally, the first data accumulated during cruise to Mars is presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • W.V. Boynton, W.C. Feldman, S.W. Squyres, T.H. Prettyman, J. Brückner, L.G. Evans, R.C. Reedy, R. Starr, J.R. Arnold, D.M. Drake, P.A.J. Englert, A.E. Metzger, I. Mitrofanov, J.I. Trombka, C. d’Uston, H. Wänke, O. Gasnault, D.K. Hamara, D.M. Janes, R.L. Marcialis, S. Maurice, I. Mikheeva, G.J. Taylor, R. Tokar, C. Shinohara, Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297(5578), 81–85 (2002). https://doi.org/10.1126/science.1073722

    ADS  Article  Google Scholar 

  • W.V. Boynton, W.C. Feldman, I.G. Mitrofanov, L.G. Evans, R.C. Reedy, S.W. Squyres, R. Starr, J.I. Trombka, C. D’Uston, J.R. Arnold, P.A.J. Englert, A.E. Metzger, H. Wänke, J. Brückner, D.M. Drake, C. Shinohara, C. Fellows, D.K. Hamara, K. Harshman, K. Kerry, C. Turner, M. Ward, H. Barthe, K.R. Fuller, S.A. Storms, G.W. Thornton, J.L. Longmire, M.L. Litvak, A.K. Ton’chev, The Mars Odyssey Gamma-Ray Spectrometer instrument suite. Space Sci. Rev. 110(1), 37–83 (2004). https://doi.org/10.1023/B:SPAC.0000021007.76126.15

    ADS  Article  Google Scholar 

  • W.V. Boynton, G.J. Taylor, L.G. Evans, R.C. Reedy, R. Starr, D.M. Janes, K.E. Kerry, D.M. Drake, K.J. Kim, R.M.S. Williams, M.K. Crombie, J.M. Dohm, V. Baker, A.E. Metzger, S. Karunatillake, J.M. Keller, H.E. Newsom, J.R. Arnold, J. Brückner, P.A.J. Englert, O. Gasnault, A.L. Sprague, I. Mitrofanov, S.W. Squyres, J.I. Trombka, L. d’Uston, H. Wänke, D.K. Hamara, Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J. Geophys. Res. 112(E12), E12S99 (2007)

    ADS  Article  Google Scholar 

  • W.V. Boynton et al., High spatial resolution studies of epithermal neutron emission from the lunar poles: constraints on hydrogen mobility. J. Geophys. Res. 117, E00H33 (2012). https://doi.org/10.1029/2011JE003979

    Article  Google Scholar 

  • E.W. Cliver, H.V. Cane, Gradual and impulsive Solar energetic particle events. Eos Trans. AGU 83, 61–68 (2002). https://doi.org/10.1029/2002EO000084

    ADS  Article  Google Scholar 

  • Committee for Evaluation of Space Radiation Cancer Risk Model, National Research Council, Review of NASA model, in Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation (National Academies Press, Washington D.C., 2012). Available from: https://www.ncbi.nlm.nih.gov/books/NBK189542/

    Google Scholar 

  • F.A. Cucinotta, W. Schimmerling, J.W. Wilson, L.E. Peterson, P.B. Saganti, J.F. Dicello, Uncertainties in estimates of the risks of late effects from space radiation. Adv. Space Res. 34, 1383–1389 (2004)

    ADS  Article  Google Scholar 

  • T.P. Dachev, J.V. Semkova, B.T. Tomov, Yu.N. Matviichuk, P.G. Dimitrov, R.T. Koleva, St. Malchev, N.G. Bankov, V.A. Shurshakov, V.V. Benghin, E.N. Yarmanova, O.A. Ivanova, D.-P. Häder, M. Lebert, M.T. Schuster, G. Reitz, G. Horneck, Y. Uchihori, H. Kitamura, O. Ploc, J. Cubancak, I. Nikolaev, Overview of the Liulin type instruments for space radiation measurement and their scientific results. Life Sci. Space Res. 4, 92–114 (2015). https://doi.org/10.1016/j.lssr.2015.01.005

    ADS  Article  Google Scholar 

  • D.M. Drake, W.C. Feldman, B.M. Jakosky, Martian neutron leakage spectra. J. Geophys. Res. 93, 6353–6368 (1988)

    ADS  Article  Google Scholar 

  • V.R. Eke, L.F. Teodoro, D.J. Lawrence, R.C. Elphic, W.C. Feldman, A quantitative comparison of lunar orbital neutron data. Astrophys. J. 747(1), 6 (2012)

    ADS  Article  Google Scholar 

  • W.C. Feldman, W.V. Boynton, B.M. Jakosky, M.T. Mellon, Redistribution of subsurface neutrons caused by ground ice on Mars. J. Geophys. Res. 98(E11), 20855–20870 (1993)

    ADS  Article  Google Scholar 

  • W.C. Feldman, W.V. Boynton, R.L. Tokar, T.H. Prettyman, O. Gasnault, S.W. Squyres, R.C. Elphic, D.J. Lawrence, S.L. Lawson, S. Maurice, G.W. McKinney, K.R. Moore, R.C. Reedy, Global distribution of neutrons from Mars: results from Mars Odyssey. Science 297, 75–78 (2002)

    ADS  Article  Google Scholar 

  • W.C. Feldman, T.H. Prettyman, S. Maurice, J.J. Plaut, D.L. Bish, D.T. Vaniman, M.T. Mellon, A.E. Metzger, S.W. Squyres, S. Karunatillake, W.V. Boynton, R.C. Elphic, H.O. Funsten, D.J. Lawrence, R.L. Tokar, Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109(E9), E09006 (2004)

    ADS  Article  Google Scholar 

  • W.C. Feldman, A. Pathare, S. Maurice, T.H. Prettyman, D.J. Lawrence, R.E. Milliken, B.J. Travis, Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars. J. Geophys. Res. 116(E11), E11009 (2011)

    ADS  Article  Google Scholar 

  • F. Forget, A. Spiga, B. Dolla, S. Vinatier, R. Melchiorri, P. Drossart, A. Gendrin, J.-P. Bibring, Y. Langevin, B. Gondet, Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method. J. Geophys. Res. 112(E8), E08S15 (2007)

    Article  Google Scholar 

  • F. Forget, F. Montmessin, J.-L. Bertaux, F. González-Galindo, S. Lebonnois, E. Quémerais, A. Reberac, E. Dimarellis, M.A. López-Valverde, Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. J. Geophys. Res. 114(E1), E01004 (2009)

    ADS  Article  Google Scholar 

  • F. González-Galindo, F. Forget, M.A. López-Valverde, M. Angelats i Coll, E. Millour, A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res. 114(E4), E04001 (2009)

    ADS  Article  Google Scholar 

  • G. Gronoff, R. Norman, C. Mertens, Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and Planetocosmics for proton and alpha particles. Adv. Space Res. 55, 1799–1805 (2015). https://doi.org/10.1016/j.asr.2015.01.028

    ADS  Article  Google Scholar 

  • R.M. Haberle, J.B. Pollack, J.R. Barnes, R.W. Zurek, C.B. Leovy, J.R. Murphy, H. Lee, J. Schaeffer, Mars atmospheric dynamics as simulated by the NASA AMES General Circulation Model: 1. The zonalmean circulation. J. Geophys. Res. 98, 3093–3123 (1993)

    ADS  Article  Google Scholar 

  • R.M. Haberle, M.M. Joshi, J.R. Murphy, J.R. Barnes, J.T. Schofield, G. Wilson, M. Lopez-Valverde, J.L. Hollingsworth, A.F.C. Bridger, J. Schaeffer, General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J. Geophys. Res. 104(E4), 8957–8974 (1999)

    ADS  Article  Google Scholar 

  • D.M. Hassler, The Radiation Assessment Detector (RAD) investigation. Space Sci. Rev. 170, 503–558 (2012)

    ADS  Article  Google Scholar 

  • D.M. Hassler et al., Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover. Science 343(6169), 1244797 (2014)

    Article  Google Scholar 

  • ICRP, 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication, vol. 60 (Pergamon Press, Oxford, 1991)

    Google Scholar 

  • D.J. Lawrence, R.C. Elphic, W.C. Feldman, H.O. Funsten, T.H. Prettyman, Performance of orbital neutron instruments for spatially resolved hydrogen measurements of airless planetary bodies. Astrobiology 10(2), 183–200 (2010)

    ADS  Article  Google Scholar 

  • D.J. Lawrence, V.R. Eke, R.C. Elphic, W.C. Feldman, H.O. Funsten, T.H. Prettyman, L. Teodoro, Technical comment on “Hydrogen mapping of the lunar south pole using the LRO Neutron Detector Experiment LEND”. Science 334, 1058 (2011)

    ADS  Article  Google Scholar 

  • M.L. Litvak, I.G. Mitrofanov, A.S. Kozyrev, A.B. Sanin, V.I. Tretyakov, W.V. Boynton, N.J. Kelly, D. Hamara, C. Shinohara, R.S. Saunders, Comparison between polar regions of Mars from HEND/Odyssey data. Icarus 180, 23–37 (2006)

    ADS  Article  Google Scholar 

  • M.L. Litvak et al., The Dynamic Albedo of Neutrons (DAN) experiment for NASA’s 2009 Mars Science Laboratory. Astrobiology 8(3), 605–612 (2008). https://doi.org/10.1089/ast.2007.0157

    ADS  Article  Google Scholar 

  • M.L. Litvak et al., Global maps of lunar neutron fluxes from the LEND instrument. J. Geophys. Res. 117, E00H22 (2012). https://doi.org/10.1029/2011JE003949

    Google Scholar 

  • M.L. Litvak, I.G. Mitrofanov, A.B. Sanin, D. Lisov, A. Behar, W.V. Boynton, L. Deflores, F. Fedosov, D. Golovin, C. Hardgrove, Local variations of bulk hydrogen and chlorine-equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity. J. Geophys. Res., Planets 119(6), 1259–1275 (2014)

    ADS  Article  Google Scholar 

  • M.L. Litvak, I.G. Mitrofanov, A.B. Sanin et al., The variations of neutron component of lunar radiation background from LEND/LRO observations. Planet. Space Sci. 122, 53–65 (2016a). https://doi.org/10.1016/j.pss.2016.01.006

    ADS  Article  Google Scholar 

  • M.L. Litvak, I.G. Mitrofanov, C. Hardgrove, K.M. Stack, A.B. Sanin, D. Lisov, W.V. Boynton, F. Fedosov, D. Golovin, K. Harshman, I. Jun, A.S. Kozyrev, R.O. Kuzmin, A. Malakhov, R. Milliken, M. Mischna, J. Moersch, M. Mokrousov, S. Nikiforov, R. Starr, C. Tate, V.I. Tret’yakov, A. Vostrukhin, Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover. J. Geophys. Res., Planets 121(5), 836–845 (2016b)

    ADS  Article  Google Scholar 

  • J. Masarik, R.C. Reedy, Gamma ray production and transport in Mars. J. Geophys. Res. 101(E8), 18891–18912 (1996). https://doi.org/10.1029/96JE01563

    ADS  Article  Google Scholar 

  • S. Maurice, W. Feldman, B. Diez, O. Gasnault, D.J. Lawrence, A. Pathare, T. Prettyman, Mars Odyssey neutron data: 1. Data processing and models of water-equivalent-hydrogen distribution. J. Geophys. Res. 116(E11), E11008 (2011)

    ADS  Article  Google Scholar 

  • S. McKenna-Lawlor, P. Goncalves, A. Keating, G. Reitz, D. Matthia, Overview of energetic particle hazards during prospective manned missions to Mars. Planet. Space Sci. 63–64, 123–132 (2012). https://doi.org/10.1016/j.pss.2011.06.017

    Article  Google Scholar 

  • I. Mitrofanov, D. Anfimov, A. Kozyrev, M. Litvak, A. Sanin, V. Tret’yakov, A. Krylov, V. Shvetsov, W. Boynton, C. Shinohara, D. Hamara, R.S. Saunders, Maps of subsurface hydrogen from the High Energy Neutron Detector, Mars Odyssey. Science 297, 78–81 (2002)

    ADS  Article  Google Scholar 

  • I.G. Mitrofanov, M.T. Zuber, M.L. Litvak, W.V. Boynton, D.E. Smith, D. Drake, D. Hamara, A.S. Kozyrev, A.B. Sanin, C. Shinohara, R.S. Saunders, V. Tretyakov, CO2 snow depth and subsurface water-ice abundance in the northern hemisphere of Mars. Science 300, 2081–2084 (2003a)

    ADS  Article  Google Scholar 

  • I.G. Mitrofanov, M.L. Litvak, A.S. Kozyrev, A.B. Sanin, V.I. Tret’yakov, W.V. Boynton, C. Shinohara, D. Hamara, S. Saunders, D.M. Drake, Search for water in martian soil using global neutron mapping by the Russian HEND Instrument onboard the US 2001 Mars Odyssey spacecraft. Sol. Syst. Res. 37, 366–377 (2003b)

    ADS  Article  Google Scholar 

  • I.G. Mitrofanov, M.L. Litvak, A.S. Kozyrev, A.B. Sanin, V.I. Tret’yakov, V.Yu. Grin’kov, W.V. Boynton, C. Shinohara, D. Hamara, R.S. Saunders, Soil water content on Mars as estimated from neutron measurements by the HEND instrument onboard the 2001 Mars Odyssey spacecraft. Sol. Syst. Res. 38, 253–257 (2004)

    ADS  Article  Google Scholar 

  • I.G. Mitrofanov, A.B. Sanin, D.V. Golovin, M.L. Litvak, A.A. Konovalov, A.A. Kozyrev, A.V. Malakhov, M.I. Mokrousov, V.I. Tretyakov, V.S. Troshin, V.N. Uvarov, A.B. Varenikov, A.A. Vostrukhin, V.V. Shevchenko, V.N. Shvetsov, A.R. Krylov, G.N. Timoshenko, Y.I. Bobrovnitsky, T.M. Tomilina, A.S. Grebennikov, L.L. Kazakov, R.Z. Sagdeev, G.N. Milikh, A. Bartels, G. Chin, S. Floyd, J. Garvin, J. Keller, T. McClanahan, J. Trombka, W. Boynton, K. Harshman, R. Starr, L. Evans, Experiment LEND of the NASA Lunar Reconnaissance Orbiter for high-resolution mapping of neutron emission of the Moon. Astrobiology 8, 793–804 (2008)

    ADS  Article  Google Scholar 

  • I.G. Mitrofanov, A. Bartels, Y.I. Bobrovnitsky, W. Boynton, G. Chin, H. Enos, L. Evans, S. Floyd, J. Garvin, D.V. Golovin, A.S. Grebennikov, K. Harshman, L.L. Kazakov, J. Keller, A.A. Konovalov, A.S. Kozyrev, A.R. Krylov, M.L. Litvak, A.V. Malakhov, T. McClanahan, G.M. Milikh, M.I. Mokrousov, S. Ponomareva, R.Z. Sagdeev, A.B. Sanin, V.V. Shevchenko, V.N. Shvetsov, R. Starr, G.N. Timoshenko, T.M. Tomilina, V.I. Tretyakov, J. Trombka, V.S. Troshin, V.N. Uvarov, A.B. Varennikov, A.A. Vostrukhin, Lunar exploration neutron detector for the NASA Lunar Reconnaissance Orbiter. Space Sci. Rev. 150(1–4), 183–207 (2010a). https://doi.org/10.1007/s11214-009-9608-4

    ADS  Article  Google Scholar 

  • I.G. Mitrofanov, A.B. Sanin, W.V. Boynton, G. Chin, J.B. Garvin, D. Golovin, L.G. Evans, K. Harshman, A.S. Kozyrev, M.L. Litvak, Hydrogen mapping of the lunar south pole using the LRO Neutron Detector Experiment LEND. Science 330(6003), 483 (2010b)

    ADS  Article  Google Scholar 

  • I. Mitrofanov, M. Litvak, A. Sanin, A. Malakhov, D. Golovin, W. Boynton, G. Droege, G. Chin, L. Evans, K. Harshman, F. Fedosov, J. Garvin, A. Kozyrev, T. McClanahan, G. Milikh, M. Mokrousov, R. Starr, R. Sagdeev, V. Shevchenko, V. Shvetsov, V. Tret’yakov, J. Trombka, A. Varenikov, A. Vostrukhin, Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO. J. Geophys. Res. 117(E12), E00H27 (2012b). https://doi.org/10.1029/2011JE003956

    ADS  Article  Google Scholar 

  • I.G. Mitrofanov, M.L. Litvak, A.B. Varenikov, Y.N. Barmakov, A. Behar, Y.I. Bobrovnitsky, E.P. Bogolubov, W.V. Boynton, K. Harshman, E. Kan, A.S. Kozyrev, R.O. Kuzmin, A.V. Malakhov, M.I. Mokrousov, S.N. Ponomareva, V.I. Ryzhkov, A.B. Sanin, G.A. Smirnov, V.N. Shvetsov, G.N. Timoshenko, T.M. Tomilina, V.I. Tret’yakov, A.A. Vostrukhin, Dynamic Albedo of Neutrons (DAN) experiment onboard NASA’s Mars Science Laboratory. Space Sci. Rev. 170(1–4), 559–582 (2012a). https://doi.org/10.1007/s11214-012-9924-y

    ADS  Article  Google Scholar 

  • I.G. Mitrofanov, M.L. Litvak, A.B. Sanin, R.D. Starr, D.I. Lisov, R.O. Kuzmin, A. Behar, W.V. Boynton, C. Hardgrove, K. Harshman, Water and chlorine content in the Martian soil along the first 1900 m of the Curiosity rover traverse as estimated by the DAN instrument. J. Geophys. Res., Planets 119(7), 1579–1596 (2014)

    ADS  Article  Google Scholar 

  • G. Mitrofanov, F.S. Fedosov, A.B. Sanin, B.N. Bakhtin, W. Boynton, A.A. Vostrukhin, D.V. Golovin, A.S. Kosyrev, M.L. Litvak, A.V. Malakhov, T. McClanahan, M.I. Mokrousov, I.O. Nuzhdin, R. Starr, V.I. Tretyakov, V.N. Shvetsov, V.V. Shevchenko, K. Harshman, Physical calibration of the LEND space-based neutron telescope: the sensitivity and the angular resolution. Instrum. Exp. Tech. 59, 578–591 (2016). https://doi.org/10.1134/S0020441216040096

    Article  Google Scholar 

  • S. Niemi, Construction and use of a neutron monitor for multiplicity studies. Ann. Acad. Sci. Fenn., Ser. A VI 214, 1–50 (1966)

    Google Scholar 

  • M.I. Richardson, A.D. Toigo, E. Newman Claire, PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112(E9), E09001 (2007)

    ADS  Article  Google Scholar 

  • A.B. Sanin, I.G. Mitrofanov, M.L. Litvak, A. Malakhov, W.V. Boynton, G. Chin, G. Droege, L.G. Evans, J. Garvin, D.V. Golovin, K. Harshman, T.P. McClanahan, M.I. Mokrousov, E. Mazarico, G. Milikh, G. Neumann, R. Sagdeev, D.E. Smith, R.D. Starr, M.T. Zuber, Testing lunar permanently shadowed regions for water ice: LEND results from LRO. J. Geophys. Res. 117(E12), E00H26 (2012). https://doi.org/10.1029/2011JE003971

    ADS  Article  Google Scholar 

  • A.B. Sanin, I.G. Mitrofanov, M.L. Litvak, B.N. Bakhtin, J.G. Bodnarik, W.V. Boynton, G. Chin, L.G. Evans, K. Harshman, F. Fedosov, D.V. Golovin, A.S. Kozyrev, T.A. Livengood, A.V. Malakhov, T.P. McClanahan, M.I. Mokrousov, R.D. Starr, R.Z. Sagdeev, V.I. Tret’yakov, A.A. Vostrukhin, Hydrogen distribution in the lunar polar regions. Icarus 283, 20–30 (2017)

    ADS  Article  Google Scholar 

  • N. Schwadron et al., Galactic cosmic ray radiation hazard in the unusual extended solar minimum between solar cycles 23 and 24. Space Weather 8, S00E04 (2010)

    Google Scholar 

  • V.F. Sears, Neutron scattering lengths and cross sections. Neutron News 3(3), 26–37 (1992). https://doi.org/10.1080/10448639208218770

    MathSciNet  Article  Google Scholar 

  • J. Semkova, St. Maltchev, B. Tomov, Yu. Matviichuk, Ts. Dachev, R. Koleva, V. Benghin, I. Chernykh, V. Shurshakov, V. Petrov, Charged particle telescope Liulin-Phobos for radiation environment study during upcoming Phobos Sample Return Mission, in Proceedings of the International Conference on Fundamental Space Research, Sunny Beach, Bulgaria, pp. 351–354 (2008). 978-954-322-316-9

    Google Scholar 

  • J. Semkova, R. Koleva, St. Maltchev, N. Bankov, V. Benghin, I. Chernykh, V. Shurshakov, V. Petrov, S. Drobyshev, I. Nikolaev, Depth dose measurements with the Liulin-5 experiment inside the spherical phantom of the Matroshka-R project onboard the International Space Station. Adv. Space Res. 49, 471–478 (2012). https://doi.org/10.1016/j.asr.2011.10.005

    ADS  Article  Google Scholar 

  • J. Semkova, T. Dachev, St. Maltchev, B. Tomov, Yu. Matviichuk, P. Dimitrov, R. Koleva, I. Mitrofanov, A. Malakhov, M. Mokrousov, A. Sanin, M. Litvak, A. Kozyrev, V. Tretyakov, D. Golovin, S. Nikiforov, A. Vostrukhin, F. Fedosov, N. Grebennikova, V. Benghin, V. Shurshakov, Radiation environment investigations during Exomars missions to Mars—objectives, experiments and instrumentation. C. R. Acad. Bulgare Sci. 68(4), 485–496 (2015). http://www.proceedings.bas.bg

    Google Scholar 

  • H.E. Spence et al., CRaTER: the Cosmic Ray Telescope for the Effects of Radiation experiment on the Lunar Reconnaissance Orbiter Mission. Space Sci. Rev. 150, 243–284 (2010). https://doi.org/10.1007/s11214-009-9584-8

    ADS  Article  Google Scholar 

  • E.C. Stone, A.M. Frandsen, R.A. Mewaldt, E.R. Christian, D. Margolies, J.F. Ormes, F. Snow, The Advanced Composition Explorer. Space Sci. Rev. 86(1/4), 1–22 (1998). https://doi.org/10.1023/A:1005082526237

    ADS  Article  Google Scholar 

  • H. Svedhem, J.L. Vago, P. Mitschdörfer, R. de Groot, M. Montagna, P.-Y. Renaud, The ExoMars Trace Gas Orbiter. Space Sci. Rev. (2018, this issue)

  • L.F.A. Teodoro et al., How well do we know the polar hydrogen distribution on the Moon? J. Geophys. Res. Planets 119(3), 574–593 (2014). https://doi.org/10.1002/2013JE004421

    ADS  Article  Google Scholar 

  • A.D. Toigo, C. Lee, C.E. Newman, M.I. Richardson, The impact of resolution on the dynamics of the martian global atmosphere: varying resolution studies with the MarsWRF GCM. Icarus 221, 276–288 (2012)

    ADS  Article  Google Scholar 

  • J. Vago, O. Witasse, H. Svedhem, P. Baglioni, A. Haldemann, G. Gianfiglio, T. Blancquaert, D. McCoy, R. de Groot, ESA ExoMars program: the next step in exploring Mars. Solar Syst. Res. 49(7), 518–528 (2015). https://doi.org/10.1134/S0038094615070199

    ADS  Article  Google Scholar 

  • Ch.R. Webster et al., Mars methane detection and variability at Gale crate. Science 347(6220), 415–417 (2015). https://doi.org/10.1126/science.1261713

    ADS  Article  Google Scholar 

  • C. Zeitlin et al., Overview of the martian radiation environment experiment. Adv. Space Res. 33, 2204–2210 (2004). https://doi.org/10.1016/S0273-1177(03)00514-3

    ADS  Article  Google Scholar 

  • C. Zeitlin et al., Mars Odyssey measurements of galactic cosmic rays and solar particles in Mars orbit, 2002–2008. Space Weather 8, S00E06 (2010). https://doi.org/10.1029/2009SW000563

    Article  Google Scholar 

  • C. Zeitlin et al., Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 340, 1080–1084 (2013)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the participants of the ExoMars project in Russia and Europe. Atmospheric calculations in this article were made under the Russian Science Foundation Grant #14-22-00249. FREND instrument physical concept and first data analysis were supported by Federal Agency for Scientific Organizations “Exploration” theme grant AAAA-A18-118012290370-6. Design of the instrument, its physical calibrations and space operations were supported by Roscosmos State Corporation contracts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Malakhov.

Additional information

ExoMars-16

Edited by Håkan Svedhem and Christopher T. Russell

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mitrofanov, I., Malakhov, A., Bakhtin, B. et al. Fine Resolution Epithermal Neutron Detector (FREND) Onboard the ExoMars Trace Gas Orbiter. Space Sci Rev 214, 86 (2018). https://doi.org/10.1007/s11214-018-0522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0522-5

Keywords

  • Mars
  • Water
  • Hydrogen
  • Nuclear physics
  • Cosmic rays