Advertisement

Space Science Reviews

, 214:86 | Cite as

Fine Resolution Epithermal Neutron Detector (FREND) Onboard the ExoMars Trace Gas Orbiter

  • I. Mitrofanov
  • A. MalakhovEmail author
  • B. Bakhtin
  • D. Golovin
  • A. Kozyrev
  • M. Litvak
  • M. Mokrousov
  • A. Sanin
  • V. Tretyakov
  • A. Vostrukhin
  • A. Anikin
  • L. M. Zelenyi
  • J. Semkova
  • S. Malchev
  • B. Tomov
  • Y. Matviichuk
  • P. Dimitrov
  • R. Koleva
  • T. Dachev
  • K. Krastev
  • V. Shvetsov
  • G. Timoshenko
  • Y. Bobrovnitsky
  • T. Tomilina
  • V. Benghin
  • V. Shurshakov
Article
Part of the following topical collections:
  1. ExoMars-16

Abstract

ExoMars is a two-launch mission undertaken by Roscosmos and European Space Agency. Trace Gas Orbiter, a satellite part of the 2016 launch carries the Fine Resolution Neutron Detector instrument as part of its payload. The instrument aims at mapping hydrogen content in the upper meter of Martian soil with spatial resolution between 60 and 200 km diameter spot. This resolution is achieved by a collimation module that limits the field of view of the instruments detectors. A dosimetry module that surveys the radiation environment in cruise to Mars and on orbit around it is another part of the instrument.

This paper describes the mission and the instrument, its measurement principles and technical characteristics. We perform an initial assessment of our sensitivity and time required to achieve the mission goal. The Martian atmosphere is a parameter that needs to be considered in data analysis of a collimated neutron instrument. This factor is described in a section of this paper. Finally, the first data accumulated during cruise to Mars is presented.

Keywords

Mars Water Hydrogen Nuclear physics Cosmic rays 

Notes

Acknowledgements

The authors are grateful to the participants of the ExoMars project in Russia and Europe. Atmospheric calculations in this article were made under the Russian Science Foundation Grant #14-22-00249. FREND instrument physical concept and first data analysis were supported by Federal Agency for Scientific Organizations “Exploration” theme grant AAAA-A18-118012290370-6. Design of the instrument, its physical calibrations and space operations were supported by Roscosmos State Corporation contracts.

References

  1. W.V. Boynton, W.C. Feldman, S.W. Squyres, T.H. Prettyman, J. Brückner, L.G. Evans, R.C. Reedy, R. Starr, J.R. Arnold, D.M. Drake, P.A.J. Englert, A.E. Metzger, I. Mitrofanov, J.I. Trombka, C. d’Uston, H. Wänke, O. Gasnault, D.K. Hamara, D.M. Janes, R.L. Marcialis, S. Maurice, I. Mikheeva, G.J. Taylor, R. Tokar, C. Shinohara, Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297(5578), 81–85 (2002).  https://doi.org/10.1126/science.1073722 ADSCrossRefGoogle Scholar
  2. W.V. Boynton, W.C. Feldman, I.G. Mitrofanov, L.G. Evans, R.C. Reedy, S.W. Squyres, R. Starr, J.I. Trombka, C. D’Uston, J.R. Arnold, P.A.J. Englert, A.E. Metzger, H. Wänke, J. Brückner, D.M. Drake, C. Shinohara, C. Fellows, D.K. Hamara, K. Harshman, K. Kerry, C. Turner, M. Ward, H. Barthe, K.R. Fuller, S.A. Storms, G.W. Thornton, J.L. Longmire, M.L. Litvak, A.K. Ton’chev, The Mars Odyssey Gamma-Ray Spectrometer instrument suite. Space Sci. Rev. 110(1), 37–83 (2004).  https://doi.org/10.1023/B:SPAC.0000021007.76126.15 ADSCrossRefGoogle Scholar
  3. W.V. Boynton, G.J. Taylor, L.G. Evans, R.C. Reedy, R. Starr, D.M. Janes, K.E. Kerry, D.M. Drake, K.J. Kim, R.M.S. Williams, M.K. Crombie, J.M. Dohm, V. Baker, A.E. Metzger, S. Karunatillake, J.M. Keller, H.E. Newsom, J.R. Arnold, J. Brückner, P.A.J. Englert, O. Gasnault, A.L. Sprague, I. Mitrofanov, S.W. Squyres, J.I. Trombka, L. d’Uston, H. Wänke, D.K. Hamara, Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J. Geophys. Res. 112(E12), E12S99 (2007) ADSCrossRefGoogle Scholar
  4. W.V. Boynton et al., High spatial resolution studies of epithermal neutron emission from the lunar poles: constraints on hydrogen mobility. J. Geophys. Res. 117, E00H33 (2012).  https://doi.org/10.1029/2011JE003979 CrossRefGoogle Scholar
  5. E.W. Cliver, H.V. Cane, Gradual and impulsive Solar energetic particle events. Eos Trans. AGU 83, 61–68 (2002).  https://doi.org/10.1029/2002EO000084 ADSCrossRefGoogle Scholar
  6. Committee for Evaluation of Space Radiation Cancer Risk Model, National Research Council, Review of NASA model, in Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation (National Academies Press, Washington D.C., 2012). Available from: https://www.ncbi.nlm.nih.gov/books/NBK189542/ Google Scholar
  7. F.A. Cucinotta, W. Schimmerling, J.W. Wilson, L.E. Peterson, P.B. Saganti, J.F. Dicello, Uncertainties in estimates of the risks of late effects from space radiation. Adv. Space Res. 34, 1383–1389 (2004) ADSCrossRefGoogle Scholar
  8. T.P. Dachev, J.V. Semkova, B.T. Tomov, Yu.N. Matviichuk, P.G. Dimitrov, R.T. Koleva, St. Malchev, N.G. Bankov, V.A. Shurshakov, V.V. Benghin, E.N. Yarmanova, O.A. Ivanova, D.-P. Häder, M. Lebert, M.T. Schuster, G. Reitz, G. Horneck, Y. Uchihori, H. Kitamura, O. Ploc, J. Cubancak, I. Nikolaev, Overview of the Liulin type instruments for space radiation measurement and their scientific results. Life Sci. Space Res. 4, 92–114 (2015).  https://doi.org/10.1016/j.lssr.2015.01.005 ADSCrossRefGoogle Scholar
  9. D.M. Drake, W.C. Feldman, B.M. Jakosky, Martian neutron leakage spectra. J. Geophys. Res. 93, 6353–6368 (1988) ADSCrossRefGoogle Scholar
  10. V.R. Eke, L.F. Teodoro, D.J. Lawrence, R.C. Elphic, W.C. Feldman, A quantitative comparison of lunar orbital neutron data. Astrophys. J. 747(1), 6 (2012) ADSCrossRefGoogle Scholar
  11. W.C. Feldman, W.V. Boynton, B.M. Jakosky, M.T. Mellon, Redistribution of subsurface neutrons caused by ground ice on Mars. J. Geophys. Res. 98(E11), 20855–20870 (1993) ADSCrossRefGoogle Scholar
  12. W.C. Feldman, W.V. Boynton, R.L. Tokar, T.H. Prettyman, O. Gasnault, S.W. Squyres, R.C. Elphic, D.J. Lawrence, S.L. Lawson, S. Maurice, G.W. McKinney, K.R. Moore, R.C. Reedy, Global distribution of neutrons from Mars: results from Mars Odyssey. Science 297, 75–78 (2002) ADSCrossRefGoogle Scholar
  13. W.C. Feldman, T.H. Prettyman, S. Maurice, J.J. Plaut, D.L. Bish, D.T. Vaniman, M.T. Mellon, A.E. Metzger, S.W. Squyres, S. Karunatillake, W.V. Boynton, R.C. Elphic, H.O. Funsten, D.J. Lawrence, R.L. Tokar, Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109(E9), E09006 (2004) ADSCrossRefGoogle Scholar
  14. W.C. Feldman, A. Pathare, S. Maurice, T.H. Prettyman, D.J. Lawrence, R.E. Milliken, B.J. Travis, Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars. J. Geophys. Res. 116(E11), E11009 (2011) ADSCrossRefGoogle Scholar
  15. F. Forget, A. Spiga, B. Dolla, S. Vinatier, R. Melchiorri, P. Drossart, A. Gendrin, J.-P. Bibring, Y. Langevin, B. Gondet, Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method. J. Geophys. Res. 112(E8), E08S15 (2007) CrossRefGoogle Scholar
  16. F. Forget, F. Montmessin, J.-L. Bertaux, F. González-Galindo, S. Lebonnois, E. Quémerais, A. Reberac, E. Dimarellis, M.A. López-Valverde, Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. J. Geophys. Res. 114(E1), E01004 (2009) ADSCrossRefGoogle Scholar
  17. F. González-Galindo, F. Forget, M.A. López-Valverde, M. Angelats i Coll, E. Millour, A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res. 114(E4), E04001 (2009) ADSCrossRefGoogle Scholar
  18. G. Gronoff, R. Norman, C. Mertens, Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and Planetocosmics for proton and alpha particles. Adv. Space Res. 55, 1799–1805 (2015).  https://doi.org/10.1016/j.asr.2015.01.028 ADSCrossRefGoogle Scholar
  19. R.M. Haberle, J.B. Pollack, J.R. Barnes, R.W. Zurek, C.B. Leovy, J.R. Murphy, H. Lee, J. Schaeffer, Mars atmospheric dynamics as simulated by the NASA AMES General Circulation Model: 1. The zonalmean circulation. J. Geophys. Res. 98, 3093–3123 (1993) ADSCrossRefGoogle Scholar
  20. R.M. Haberle, M.M. Joshi, J.R. Murphy, J.R. Barnes, J.T. Schofield, G. Wilson, M. Lopez-Valverde, J.L. Hollingsworth, A.F.C. Bridger, J. Schaeffer, General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J. Geophys. Res. 104(E4), 8957–8974 (1999) ADSCrossRefGoogle Scholar
  21. D.M. Hassler, The Radiation Assessment Detector (RAD) investigation. Space Sci. Rev. 170, 503–558 (2012) ADSCrossRefGoogle Scholar
  22. D.M. Hassler et al., Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover. Science 343(6169), 1244797 (2014) CrossRefGoogle Scholar
  23. ICRP, 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication, vol. 60 (Pergamon Press, Oxford, 1991) Google Scholar
  24. D.J. Lawrence, R.C. Elphic, W.C. Feldman, H.O. Funsten, T.H. Prettyman, Performance of orbital neutron instruments for spatially resolved hydrogen measurements of airless planetary bodies. Astrobiology 10(2), 183–200 (2010) ADSCrossRefGoogle Scholar
  25. D.J. Lawrence, V.R. Eke, R.C. Elphic, W.C. Feldman, H.O. Funsten, T.H. Prettyman, L. Teodoro, Technical comment on “Hydrogen mapping of the lunar south pole using the LRO Neutron Detector Experiment LEND”. Science 334, 1058 (2011) ADSCrossRefGoogle Scholar
  26. M.L. Litvak, I.G. Mitrofanov, A.S. Kozyrev, A.B. Sanin, V.I. Tretyakov, W.V. Boynton, N.J. Kelly, D. Hamara, C. Shinohara, R.S. Saunders, Comparison between polar regions of Mars from HEND/Odyssey data. Icarus 180, 23–37 (2006) ADSCrossRefGoogle Scholar
  27. M.L. Litvak et al., The Dynamic Albedo of Neutrons (DAN) experiment for NASA’s 2009 Mars Science Laboratory. Astrobiology 8(3), 605–612 (2008).  https://doi.org/10.1089/ast.2007.0157 ADSCrossRefGoogle Scholar
  28. M.L. Litvak et al., Global maps of lunar neutron fluxes from the LEND instrument. J. Geophys. Res. 117, E00H22 (2012).  https://doi.org/10.1029/2011JE003949 Google Scholar
  29. M.L. Litvak, I.G. Mitrofanov, A.B. Sanin, D. Lisov, A. Behar, W.V. Boynton, L. Deflores, F. Fedosov, D. Golovin, C. Hardgrove, Local variations of bulk hydrogen and chlorine-equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity. J. Geophys. Res., Planets 119(6), 1259–1275 (2014) ADSCrossRefGoogle Scholar
  30. M.L. Litvak, I.G. Mitrofanov, A.B. Sanin et al., The variations of neutron component of lunar radiation background from LEND/LRO observations. Planet. Space Sci. 122, 53–65 (2016a).  https://doi.org/10.1016/j.pss.2016.01.006 ADSCrossRefGoogle Scholar
  31. M.L. Litvak, I.G. Mitrofanov, C. Hardgrove, K.M. Stack, A.B. Sanin, D. Lisov, W.V. Boynton, F. Fedosov, D. Golovin, K. Harshman, I. Jun, A.S. Kozyrev, R.O. Kuzmin, A. Malakhov, R. Milliken, M. Mischna, J. Moersch, M. Mokrousov, S. Nikiforov, R. Starr, C. Tate, V.I. Tret’yakov, A. Vostrukhin, Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover. J. Geophys. Res., Planets 121(5), 836–845 (2016b) ADSCrossRefGoogle Scholar
  32. J. Masarik, R.C. Reedy, Gamma ray production and transport in Mars. J. Geophys. Res. 101(E8), 18891–18912 (1996).  https://doi.org/10.1029/96JE01563 ADSCrossRefGoogle Scholar
  33. S. Maurice, W. Feldman, B. Diez, O. Gasnault, D.J. Lawrence, A. Pathare, T. Prettyman, Mars Odyssey neutron data: 1. Data processing and models of water-equivalent-hydrogen distribution. J. Geophys. Res. 116(E11), E11008 (2011) ADSCrossRefGoogle Scholar
  34. S. McKenna-Lawlor, P. Goncalves, A. Keating, G. Reitz, D. Matthia, Overview of energetic particle hazards during prospective manned missions to Mars. Planet. Space Sci. 63–64, 123–132 (2012).  https://doi.org/10.1016/j.pss.2011.06.017 CrossRefGoogle Scholar
  35. I. Mitrofanov, D. Anfimov, A. Kozyrev, M. Litvak, A. Sanin, V. Tret’yakov, A. Krylov, V. Shvetsov, W. Boynton, C. Shinohara, D. Hamara, R.S. Saunders, Maps of subsurface hydrogen from the High Energy Neutron Detector, Mars Odyssey. Science 297, 78–81 (2002) ADSCrossRefGoogle Scholar
  36. I.G. Mitrofanov, M.T. Zuber, M.L. Litvak, W.V. Boynton, D.E. Smith, D. Drake, D. Hamara, A.S. Kozyrev, A.B. Sanin, C. Shinohara, R.S. Saunders, V. Tretyakov, CO2 snow depth and subsurface water-ice abundance in the northern hemisphere of Mars. Science 300, 2081–2084 (2003a) ADSCrossRefGoogle Scholar
  37. I.G. Mitrofanov, M.L. Litvak, A.S. Kozyrev, A.B. Sanin, V.I. Tret’yakov, W.V. Boynton, C. Shinohara, D. Hamara, S. Saunders, D.M. Drake, Search for water in martian soil using global neutron mapping by the Russian HEND Instrument onboard the US 2001 Mars Odyssey spacecraft. Sol. Syst. Res. 37, 366–377 (2003b) ADSCrossRefGoogle Scholar
  38. I.G. Mitrofanov, M.L. Litvak, A.S. Kozyrev, A.B. Sanin, V.I. Tret’yakov, V.Yu. Grin’kov, W.V. Boynton, C. Shinohara, D. Hamara, R.S. Saunders, Soil water content on Mars as estimated from neutron measurements by the HEND instrument onboard the 2001 Mars Odyssey spacecraft. Sol. Syst. Res. 38, 253–257 (2004) ADSCrossRefGoogle Scholar
  39. I.G. Mitrofanov, A.B. Sanin, D.V. Golovin, M.L. Litvak, A.A. Konovalov, A.A. Kozyrev, A.V. Malakhov, M.I. Mokrousov, V.I. Tretyakov, V.S. Troshin, V.N. Uvarov, A.B. Varenikov, A.A. Vostrukhin, V.V. Shevchenko, V.N. Shvetsov, A.R. Krylov, G.N. Timoshenko, Y.I. Bobrovnitsky, T.M. Tomilina, A.S. Grebennikov, L.L. Kazakov, R.Z. Sagdeev, G.N. Milikh, A. Bartels, G. Chin, S. Floyd, J. Garvin, J. Keller, T. McClanahan, J. Trombka, W. Boynton, K. Harshman, R. Starr, L. Evans, Experiment LEND of the NASA Lunar Reconnaissance Orbiter for high-resolution mapping of neutron emission of the Moon. Astrobiology 8, 793–804 (2008) ADSCrossRefGoogle Scholar
  40. I.G. Mitrofanov, A. Bartels, Y.I. Bobrovnitsky, W. Boynton, G. Chin, H. Enos, L. Evans, S. Floyd, J. Garvin, D.V. Golovin, A.S. Grebennikov, K. Harshman, L.L. Kazakov, J. Keller, A.A. Konovalov, A.S. Kozyrev, A.R. Krylov, M.L. Litvak, A.V. Malakhov, T. McClanahan, G.M. Milikh, M.I. Mokrousov, S. Ponomareva, R.Z. Sagdeev, A.B. Sanin, V.V. Shevchenko, V.N. Shvetsov, R. Starr, G.N. Timoshenko, T.M. Tomilina, V.I. Tretyakov, J. Trombka, V.S. Troshin, V.N. Uvarov, A.B. Varennikov, A.A. Vostrukhin, Lunar exploration neutron detector for the NASA Lunar Reconnaissance Orbiter. Space Sci. Rev. 150(1–4), 183–207 (2010a).  https://doi.org/10.1007/s11214-009-9608-4 ADSCrossRefGoogle Scholar
  41. I.G. Mitrofanov, A.B. Sanin, W.V. Boynton, G. Chin, J.B. Garvin, D. Golovin, L.G. Evans, K. Harshman, A.S. Kozyrev, M.L. Litvak, Hydrogen mapping of the lunar south pole using the LRO Neutron Detector Experiment LEND. Science 330(6003), 483 (2010b) ADSCrossRefGoogle Scholar
  42. I. Mitrofanov, M. Litvak, A. Sanin, A. Malakhov, D. Golovin, W. Boynton, G. Droege, G. Chin, L. Evans, K. Harshman, F. Fedosov, J. Garvin, A. Kozyrev, T. McClanahan, G. Milikh, M. Mokrousov, R. Starr, R. Sagdeev, V. Shevchenko, V. Shvetsov, V. Tret’yakov, J. Trombka, A. Varenikov, A. Vostrukhin, Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO. J. Geophys. Res. 117(E12), E00H27 (2012b).  https://doi.org/10.1029/2011JE003956 ADSCrossRefGoogle Scholar
  43. I.G. Mitrofanov, M.L. Litvak, A.B. Varenikov, Y.N. Barmakov, A. Behar, Y.I. Bobrovnitsky, E.P. Bogolubov, W.V. Boynton, K. Harshman, E. Kan, A.S. Kozyrev, R.O. Kuzmin, A.V. Malakhov, M.I. Mokrousov, S.N. Ponomareva, V.I. Ryzhkov, A.B. Sanin, G.A. Smirnov, V.N. Shvetsov, G.N. Timoshenko, T.M. Tomilina, V.I. Tret’yakov, A.A. Vostrukhin, Dynamic Albedo of Neutrons (DAN) experiment onboard NASA’s Mars Science Laboratory. Space Sci. Rev. 170(1–4), 559–582 (2012a).  https://doi.org/10.1007/s11214-012-9924-y ADSCrossRefGoogle Scholar
  44. I.G. Mitrofanov, M.L. Litvak, A.B. Sanin, R.D. Starr, D.I. Lisov, R.O. Kuzmin, A. Behar, W.V. Boynton, C. Hardgrove, K. Harshman, Water and chlorine content in the Martian soil along the first 1900 m of the Curiosity rover traverse as estimated by the DAN instrument. J. Geophys. Res., Planets 119(7), 1579–1596 (2014) ADSCrossRefGoogle Scholar
  45. G. Mitrofanov, F.S. Fedosov, A.B. Sanin, B.N. Bakhtin, W. Boynton, A.A. Vostrukhin, D.V. Golovin, A.S. Kosyrev, M.L. Litvak, A.V. Malakhov, T. McClanahan, M.I. Mokrousov, I.O. Nuzhdin, R. Starr, V.I. Tretyakov, V.N. Shvetsov, V.V. Shevchenko, K. Harshman, Physical calibration of the LEND space-based neutron telescope: the sensitivity and the angular resolution. Instrum. Exp. Tech. 59, 578–591 (2016).  https://doi.org/10.1134/S0020441216040096 CrossRefGoogle Scholar
  46. S. Niemi, Construction and use of a neutron monitor for multiplicity studies. Ann. Acad. Sci. Fenn., Ser. A VI 214, 1–50 (1966) Google Scholar
  47. M.I. Richardson, A.D. Toigo, E. Newman Claire, PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112(E9), E09001 (2007) ADSCrossRefGoogle Scholar
  48. A.B. Sanin, I.G. Mitrofanov, M.L. Litvak, A. Malakhov, W.V. Boynton, G. Chin, G. Droege, L.G. Evans, J. Garvin, D.V. Golovin, K. Harshman, T.P. McClanahan, M.I. Mokrousov, E. Mazarico, G. Milikh, G. Neumann, R. Sagdeev, D.E. Smith, R.D. Starr, M.T. Zuber, Testing lunar permanently shadowed regions for water ice: LEND results from LRO. J. Geophys. Res. 117(E12), E00H26 (2012).  https://doi.org/10.1029/2011JE003971 ADSCrossRefGoogle Scholar
  49. A.B. Sanin, I.G. Mitrofanov, M.L. Litvak, B.N. Bakhtin, J.G. Bodnarik, W.V. Boynton, G. Chin, L.G. Evans, K. Harshman, F. Fedosov, D.V. Golovin, A.S. Kozyrev, T.A. Livengood, A.V. Malakhov, T.P. McClanahan, M.I. Mokrousov, R.D. Starr, R.Z. Sagdeev, V.I. Tret’yakov, A.A. Vostrukhin, Hydrogen distribution in the lunar polar regions. Icarus 283, 20–30 (2017) ADSCrossRefGoogle Scholar
  50. N. Schwadron et al., Galactic cosmic ray radiation hazard in the unusual extended solar minimum between solar cycles 23 and 24. Space Weather 8, S00E04 (2010) Google Scholar
  51. V.F. Sears, Neutron scattering lengths and cross sections. Neutron News 3(3), 26–37 (1992).  https://doi.org/10.1080/10448639208218770 MathSciNetCrossRefGoogle Scholar
  52. J. Semkova, St. Maltchev, B. Tomov, Yu. Matviichuk, Ts. Dachev, R. Koleva, V. Benghin, I. Chernykh, V. Shurshakov, V. Petrov, Charged particle telescope Liulin-Phobos for radiation environment study during upcoming Phobos Sample Return Mission, in Proceedings of the International Conference on Fundamental Space Research, Sunny Beach, Bulgaria, pp. 351–354 (2008). 978-954-322-316-9 Google Scholar
  53. J. Semkova, R. Koleva, St. Maltchev, N. Bankov, V. Benghin, I. Chernykh, V. Shurshakov, V. Petrov, S. Drobyshev, I. Nikolaev, Depth dose measurements with the Liulin-5 experiment inside the spherical phantom of the Matroshka-R project onboard the International Space Station. Adv. Space Res. 49, 471–478 (2012).  https://doi.org/10.1016/j.asr.2011.10.005 ADSCrossRefGoogle Scholar
  54. J. Semkova, T. Dachev, St. Maltchev, B. Tomov, Yu. Matviichuk, P. Dimitrov, R. Koleva, I. Mitrofanov, A. Malakhov, M. Mokrousov, A. Sanin, M. Litvak, A. Kozyrev, V. Tretyakov, D. Golovin, S. Nikiforov, A. Vostrukhin, F. Fedosov, N. Grebennikova, V. Benghin, V. Shurshakov, Radiation environment investigations during Exomars missions to Mars—objectives, experiments and instrumentation. C. R. Acad. Bulgare Sci. 68(4), 485–496 (2015). http://www.proceedings.bas.bg Google Scholar
  55. H.E. Spence et al., CRaTER: the Cosmic Ray Telescope for the Effects of Radiation experiment on the Lunar Reconnaissance Orbiter Mission. Space Sci. Rev. 150, 243–284 (2010).  https://doi.org/10.1007/s11214-009-9584-8 ADSCrossRefGoogle Scholar
  56. E.C. Stone, A.M. Frandsen, R.A. Mewaldt, E.R. Christian, D. Margolies, J.F. Ormes, F. Snow, The Advanced Composition Explorer. Space Sci. Rev. 86(1/4), 1–22 (1998).  https://doi.org/10.1023/A:1005082526237 ADSCrossRefGoogle Scholar
  57. H. Svedhem, J.L. Vago, P. Mitschdörfer, R. de Groot, M. Montagna, P.-Y. Renaud, The ExoMars Trace Gas Orbiter. Space Sci. Rev. (2018, this issue) Google Scholar
  58. L.F.A. Teodoro et al., How well do we know the polar hydrogen distribution on the Moon? J. Geophys. Res. Planets 119(3), 574–593 (2014).  https://doi.org/10.1002/2013JE004421 ADSCrossRefGoogle Scholar
  59. A.D. Toigo, C. Lee, C.E. Newman, M.I. Richardson, The impact of resolution on the dynamics of the martian global atmosphere: varying resolution studies with the MarsWRF GCM. Icarus 221, 276–288 (2012) ADSCrossRefGoogle Scholar
  60. J. Vago, O. Witasse, H. Svedhem, P. Baglioni, A. Haldemann, G. Gianfiglio, T. Blancquaert, D. McCoy, R. de Groot, ESA ExoMars program: the next step in exploring Mars. Solar Syst. Res. 49(7), 518–528 (2015).  https://doi.org/10.1134/S0038094615070199 ADSCrossRefGoogle Scholar
  61. Ch.R. Webster et al., Mars methane detection and variability at Gale crate. Science 347(6220), 415–417 (2015).  https://doi.org/10.1126/science.1261713 ADSCrossRefGoogle Scholar
  62. C. Zeitlin et al., Overview of the martian radiation environment experiment. Adv. Space Res. 33, 2204–2210 (2004).  https://doi.org/10.1016/S0273-1177(03)00514-3 ADSCrossRefGoogle Scholar
  63. C. Zeitlin et al., Mars Odyssey measurements of galactic cosmic rays and solar particles in Mars orbit, 2002–2008. Space Weather 8, S00E06 (2010).  https://doi.org/10.1029/2009SW000563 CrossRefGoogle Scholar
  64. C. Zeitlin et al., Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 340, 1080–1084 (2013) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • I. Mitrofanov
    • 1
  • A. Malakhov
    • 1
    Email author
  • B. Bakhtin
    • 1
  • D. Golovin
    • 1
  • A. Kozyrev
    • 1
  • M. Litvak
    • 1
  • M. Mokrousov
    • 1
  • A. Sanin
    • 1
  • V. Tretyakov
    • 1
  • A. Vostrukhin
    • 1
  • A. Anikin
    • 1
  • L. M. Zelenyi
    • 1
  • J. Semkova
    • 2
  • S. Malchev
    • 2
  • B. Tomov
    • 2
  • Y. Matviichuk
    • 2
  • P. Dimitrov
    • 2
  • R. Koleva
    • 2
  • T. Dachev
    • 2
  • K. Krastev
    • 2
  • V. Shvetsov
    • 3
  • G. Timoshenko
    • 3
  • Y. Bobrovnitsky
    • 4
  • T. Tomilina
    • 4
  • V. Benghin
    • 5
  • V. Shurshakov
    • 5
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Space Research and Technology InstituteBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Joint Institute for Nuclear ResearchDubnaRussia
  4. 4.A. A. Blagonravov Institute of Mechanical EngineeringRussian Academy of SciencesMoscowRussia
  5. 5.Institute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia

Personalised recommendations