Inferring Nighttime Ionospheric Parameters with the Far Ultraviolet Imager Onboard the Ionospheric Connection Explorer

Abstract

The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150–450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. A.B. Christensen, L.J. Paxton, S. Avery, J. Craven, G. Crowley, D.C. Humm, H. Kil, R.R. Meier, C.I. Meng, D. Morrison, B.S. Ogorzalek, P. Straus, D.J. Strickland, R.M. Swenson, R.L. Walterscheid, B. Wolven, Y. Zhang, Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 108, 1451 (2003). https://doi.org/10.1029/2003JA009918

    Article  Google Scholar 

  2. J.M. Comberiate, F. Kamalabadi, L.J. Paxton, A tomographic model for ionospheric imaging with the Global Ultraviolet Imager. Radio Sci. 42(2), RS2011 (2007). https://doi.org/10.1029/2005RS003348

    ADS  Article  Google Scholar 

  3. K.F. Dymond, S.E. Thonnard, R.P. McCoy, R.J. Thomas, An optical remote sensing technique for determining nighttime F region electron density. Radio Sci. 32, 1985–1996 (1997). https://doi.org/10.1029/97RS01887

    ADS  Article  Google Scholar 

  4. S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  5. H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, Dordrecht, 1996)

    Google Scholar 

  6. P.C. Hansen, Analysis of didcrete Ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992). https://doi.org/10.1137/1034115

    MathSciNet  Article  MATH  Google Scholar 

  7. P.C. Hansen, Discrete Inverse Problems: Insight and Algorithms, vol. 7 (SIAM, Philadelphia, 2010)

    Google Scholar 

  8. P.C. Hansen, D.P. O’Leary, The use of the L-curve in the regularization of discrete Ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487–1503 (1993). https://doi.org/10.1137/0914086

    MathSciNet  Article  MATH  Google Scholar 

  9. W.B. Hanson, A comparison of oxygen ion–ion neutralization and radiative recombination mechanisms for producing ultraviolet nightglow. J. Geophys. Res. 75(22), 4343–4346 (1970). https://doi.org/10.1029/JA075i022p04343

    ADS  Article  Google Scholar 

  10. D.G. Hummer, Non-coherent scattering 1. The redistribution functions with Doppler broadening. Mon. Not. R. Astron. Soc. 125(1), 21–37 (1962)

    ADS  Article  MATH  Google Scholar 

  11. T.J. Immel, S.L. England, S.B. Mende, R.A. Heelis, C.R. Englert, J. Edelstein, H.U. Frey, E.J. Korpela, E.R. Taylor, W.W. Craig, S.E. Harris, M. Bester, G.S. Bust, G. Crowley, J.M. Forbes, J.-C. Gérard, J.M. Harlander, J.D. Huba, B. Hubert, F. Kamalabadi, J.J. Makela, A.I. Maute, R.R. Meier, C. Raftery, P. Rochus, O.H.W. Siegmund, A.W. Stephan, G.R. Swenson, S. Frey, D.L. Hysell, A. Saito, K.A. Rider, M.M. Sirk, The Ionospheric Connection Explorer mission: mission goals and design. Space Sci. Rev. 214, 13 (2018). https://doi.org/10.1007/s11214-017-0449-2

    ADS  Article  Google Scholar 

  12. J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Springer, Berlin, 2005)

    Google Scholar 

  13. F. Kamalabadi, Multidimensional image reconstruction in astronomy. IEEE Signal Process. Mag. 27(1), 86–96 (2010)

    ADS  Article  Google Scholar 

  14. F. Kamalabadi, W.C. Karl, J.L. Semeter, D.M. Cotton, T.A. Cook, S. Chakrabarti, A statistical framework for space-based EUV ionospheric tomography. Radio Sci. 34(2), 437–447 (1999). https://doi.org/10.1029/1998RS900026

    ADS  Article  Google Scholar 

  15. F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, S. Thonnard, Tomographic studies of aeronomic phenomena using radio and UV techniques. J. Atmos. Sol.-Terr. Phys. 64(12–14), 1573–1580 (2002). https://doi.org/10.1016/S1364-6826(02)00096-2

    ADS  Article  Google Scholar 

  16. W.C. Karl, Regularization in image restoration and reconstruction, in Handbook of Image and Video Processing (Plenum, New York, 2000)

    Google Scholar 

  17. M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (IOP Publishing, Bristol, 1998)

    Google Scholar 

  18. R.P. McCoy, K.F. Dymond, G.G. Fritz, S.E. Thonnard, R.R. Meier, P.A. Regeon, Special sensor ultraviolet limb imager—an ionospheric and neutral density profiler for the Defense-Meteorological-Satellite-Program satellites. Opt. Eng. 33(2), 423–429 (1994). https://doi.org/10.1117/12.155904

    ADS  Article  Google Scholar 

  19. R.R. Meier, Ultraviolet spectroscopy and remote-sensing of the upper-atmosphere. Space Sci. Rev. 58(1–2), 1–185 (1991). https://doi.org/10.1007/BF01206000

    ADS  Article  Google Scholar 

  20. R.R. Meier, J.M. Picone, Retrieval of absolute thermospheric concentrations from the far UV dayglow: an application of discrete inverse theory. J. Geophys. Res. 99(A4), 6307–6320 (1994). https://doi.org/10.1029/93JA02775

    ADS  Article  Google Scholar 

  21. D.J. Melendez-Alvira, R.R. Meier, J.M. Picone, P.D. Feldman, B.M. McLaughlin, Analysis of the oxygen nightglow measured by the Hopkins Ultraviolet Telescope: implications for ionospheric partial radiative recombination rate coefficients. J. Geophys. Res. 104(A7), 14,901–14,913 (1999). https://doi.org/10.1029/1999JA900136

    ADS  Article  Google Scholar 

  22. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory. Int. Geophys. Ser., vol. 45 (Academic Press, San Diego, 1989)

    Google Scholar 

  23. S.B. Mende, H.U. Frey, K. Rider, C. Chou, S.E. Harris, O.H.W. Siegmund, S.L. England, C. Wilkins, W. Craig, T.J. Immel, P. Turin, N. Darling, J. Loicq, P. Blain, E. Syrstad, B. Thompson, R. Burt, J. Champagne, P. Sevilla, S. Ellis, The far Ultra-Violet Imager on the ICON mission. Space Sci. Rev. (2017). https://doi.org/10.1007/s11214-017-0386-0

    Google Scholar 

  24. D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978)

    Google Scholar 

  25. L.J. Paxton, A.B. Christensen, D.C. Humm, B.S. Ogorzalek, C.T. Pardoe, D. Morrison, M. Weiss, W. Crain, P. Lew, D.J. Mabry, J.O. Goldsten, S.A. Gary, D.F. Persons, M.J. Harold, E.B. Alvarez, C.J. Ercol, D.J. Strickland, C.I. Meng, Global ultraviolet imager (GUVI): measuring composition and energy inputs for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. Proc. SPIE 3756, 265–276 (1999). https://doi.org/10.1117/12.366380

    ADS  Article  Google Scholar 

  26. J. Qin, J.J. Makela, F. Kamalabadi, R.R. Meier, Radiative transfer modeling of the OI 135.6-nm emission in the nighttime ionosphere. J. Geophys. Res. 120, 10,116–10,135 (2015). https://doi.org/10.1002/2015JA021687

    Article  Google Scholar 

  27. J. Qin, F. Kamalabadi, J.J. Makela, Quantifying the inversion accuracy of simplified physical models for the nighttime OI 135.6 nm emission. J. Geophys. Res. 121, 5805–5814 (2016). https://doi.org/10.1002/2016JA022720

    Article  Google Scholar 

  28. T.G. Slanger, P.C. Cosby, D.L. Huestis, R.R. Meier, Oxygen atom Rydberg emission in the equatorial ionosphere from radiative recombination. J. Geophys. Res. A10, 309 (2004)

    Google Scholar 

  29. D.J. Strickland, Transport of resonance radiation in a nonisothermal medium—effect of a varying Doppler width. J. Geophys. Res. 84(A10), 5890–5896 (1979). https://doi.org/10.1029/JA084iA10p05890

    ADS  Article  Google Scholar 

  30. D.J. Strickland, T.M. Donahue, Excitation and radiative transport of OI 1304 a resonance radiation I. The dayglow. Planet. Space Sci. 18(5), 661–689 (1970). https://doi.org/10.1016/0032-0633(70)90049-8

    ADS  Article  Google Scholar 

  31. A.I.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems (Winston, Washington, 1977)

    Google Scholar 

  32. A.N. Tikhonov, Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 4, 1035–1038 (1963)

    MATH  Google Scholar 

  33. B.A. Tinsley, A.B. Christen, J. Bittenco, H. Gouveia, P.D. Angreji, H. Takahash, Excitation of oxygen permitted line emissions in the tropical nightglow. J. Geophys. Res. 78(7), 1174–1186 (1973). https://doi.org/10.1029/JA078i007p01174

    ADS  Article  Google Scholar 

Download references

Acknowledgements

ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Farzad Kamalabadi.

Additional information

The Ionospheric Connection Explorer (ICON) mission

Edited by Doug Rowland and Thomas J. Immel

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamalabadi, F., Qin, J., Harding, B.J. et al. Inferring Nighttime Ionospheric Parameters with the Far Ultraviolet Imager Onboard the Ionospheric Connection Explorer. Space Sci Rev 214, 70 (2018). https://doi.org/10.1007/s11214-018-0502-9

Download citation

Keywords

  • Ionospheric remote sensing
  • Ultraviolet emissions
  • Inverse theory
  • Radiative transfer