Advertisement

Space Science Reviews

, 214:70 | Cite as

Inferring Nighttime Ionospheric Parameters with the Far Ultraviolet Imager Onboard the Ionospheric Connection Explorer

  • Farzad Kamalabadi
  • Jianqi Qin
  • Brian J. Harding
  • Dimitrios Iliou
  • Jonathan J. Makela
  • R. R. Meier
  • Scott L. England
  • Harald U. Frey
  • Stephen B. Mende
  • Thomas J. Immel
Article
  • 164 Downloads
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission

Abstract

The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150–450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.

Keywords

Ionospheric remote sensing Ultraviolet emissions Inverse theory Radiative transfer 

Notes

Acknowledgements

ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I.

References

  1. A.B. Christensen, L.J. Paxton, S. Avery, J. Craven, G. Crowley, D.C. Humm, H. Kil, R.R. Meier, C.I. Meng, D. Morrison, B.S. Ogorzalek, P. Straus, D.J. Strickland, R.M. Swenson, R.L. Walterscheid, B. Wolven, Y. Zhang, Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 108, 1451 (2003).  https://doi.org/10.1029/2003JA009918 CrossRefGoogle Scholar
  2. J.M. Comberiate, F. Kamalabadi, L.J. Paxton, A tomographic model for ionospheric imaging with the Global Ultraviolet Imager. Radio Sci. 42(2), RS2011 (2007).  https://doi.org/10.1029/2005RS003348 ADSCrossRefGoogle Scholar
  3. K.F. Dymond, S.E. Thonnard, R.P. McCoy, R.J. Thomas, An optical remote sensing technique for determining nighttime F region electron density. Radio Sci. 32, 1985–1996 (1997).  https://doi.org/10.1029/97RS01887 ADSCrossRefGoogle Scholar
  4. S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984) CrossRefzbMATHGoogle Scholar
  5. H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, Dordrecht, 1996) CrossRefzbMATHGoogle Scholar
  6. P.C. Hansen, Analysis of didcrete Ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992).  https://doi.org/10.1137/1034115 MathSciNetCrossRefzbMATHGoogle Scholar
  7. P.C. Hansen, Discrete Inverse Problems: Insight and Algorithms, vol. 7 (SIAM, Philadelphia, 2010) CrossRefzbMATHGoogle Scholar
  8. P.C. Hansen, D.P. O’Leary, The use of the L-curve in the regularization of discrete Ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).  https://doi.org/10.1137/0914086 MathSciNetCrossRefzbMATHGoogle Scholar
  9. W.B. Hanson, A comparison of oxygen ion–ion neutralization and radiative recombination mechanisms for producing ultraviolet nightglow. J. Geophys. Res. 75(22), 4343–4346 (1970).  https://doi.org/10.1029/JA075i022p04343 ADSCrossRefGoogle Scholar
  10. D.G. Hummer, Non-coherent scattering 1. The redistribution functions with Doppler broadening. Mon. Not. R. Astron. Soc. 125(1), 21–37 (1962) ADSCrossRefzbMATHGoogle Scholar
  11. T.J. Immel, S.L. England, S.B. Mende, R.A. Heelis, C.R. Englert, J. Edelstein, H.U. Frey, E.J. Korpela, E.R. Taylor, W.W. Craig, S.E. Harris, M. Bester, G.S. Bust, G. Crowley, J.M. Forbes, J.-C. Gérard, J.M. Harlander, J.D. Huba, B. Hubert, F. Kamalabadi, J.J. Makela, A.I. Maute, R.R. Meier, C. Raftery, P. Rochus, O.H.W. Siegmund, A.W. Stephan, G.R. Swenson, S. Frey, D.L. Hysell, A. Saito, K.A. Rider, M.M. Sirk, The Ionospheric Connection Explorer mission: mission goals and design. Space Sci. Rev. 214, 13 (2018).  https://doi.org/10.1007/s11214-017-0449-2 ADSCrossRefGoogle Scholar
  12. J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Springer, Berlin, 2005) zbMATHGoogle Scholar
  13. F. Kamalabadi, Multidimensional image reconstruction in astronomy. IEEE Signal Process. Mag. 27(1), 86–96 (2010) ADSCrossRefGoogle Scholar
  14. F. Kamalabadi, W.C. Karl, J.L. Semeter, D.M. Cotton, T.A. Cook, S. Chakrabarti, A statistical framework for space-based EUV ionospheric tomography. Radio Sci. 34(2), 437–447 (1999).  https://doi.org/10.1029/1998RS900026 ADSCrossRefGoogle Scholar
  15. F. Kamalabadi, G. Bust, K. Dymond, S. Gonzalez, P. Bernhardt, S. Chakrabarti, D. Cotton, A. Stephan, R. McCoy, S. Budzien, S. Thonnard, Tomographic studies of aeronomic phenomena using radio and UV techniques. J. Atmos. Sol.-Terr. Phys. 64(12–14), 1573–1580 (2002).  https://doi.org/10.1016/S1364-6826(02)00096-2 ADSCrossRefGoogle Scholar
  16. W.C. Karl, Regularization in image restoration and reconstruction, in Handbook of Image and Video Processing (Plenum, New York, 2000) Google Scholar
  17. M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (IOP Publishing, Bristol, 1998) CrossRefzbMATHGoogle Scholar
  18. R.P. McCoy, K.F. Dymond, G.G. Fritz, S.E. Thonnard, R.R. Meier, P.A. Regeon, Special sensor ultraviolet limb imager—an ionospheric and neutral density profiler for the Defense-Meteorological-Satellite-Program satellites. Opt. Eng. 33(2), 423–429 (1994).  https://doi.org/10.1117/12.155904 ADSCrossRefGoogle Scholar
  19. R.R. Meier, Ultraviolet spectroscopy and remote-sensing of the upper-atmosphere. Space Sci. Rev. 58(1–2), 1–185 (1991).  https://doi.org/10.1007/BF01206000 ADSCrossRefGoogle Scholar
  20. R.R. Meier, J.M. Picone, Retrieval of absolute thermospheric concentrations from the far UV dayglow: an application of discrete inverse theory. J. Geophys. Res. 99(A4), 6307–6320 (1994).  https://doi.org/10.1029/93JA02775 ADSCrossRefGoogle Scholar
  21. D.J. Melendez-Alvira, R.R. Meier, J.M. Picone, P.D. Feldman, B.M. McLaughlin, Analysis of the oxygen nightglow measured by the Hopkins Ultraviolet Telescope: implications for ionospheric partial radiative recombination rate coefficients. J. Geophys. Res. 104(A7), 14,901–14,913 (1999).  https://doi.org/10.1029/1999JA900136 ADSCrossRefGoogle Scholar
  22. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory. Int. Geophys. Ser., vol. 45 (Academic Press, San Diego, 1989) zbMATHGoogle Scholar
  23. S.B. Mende, H.U. Frey, K. Rider, C. Chou, S.E. Harris, O.H.W. Siegmund, S.L. England, C. Wilkins, W. Craig, T.J. Immel, P. Turin, N. Darling, J. Loicq, P. Blain, E. Syrstad, B. Thompson, R. Burt, J. Champagne, P. Sevilla, S. Ellis, The far Ultra-Violet Imager on the ICON mission. Space Sci. Rev. (2017).  https://doi.org/10.1007/s11214-017-0386-0 Google Scholar
  24. D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978) Google Scholar
  25. L.J. Paxton, A.B. Christensen, D.C. Humm, B.S. Ogorzalek, C.T. Pardoe, D. Morrison, M. Weiss, W. Crain, P. Lew, D.J. Mabry, J.O. Goldsten, S.A. Gary, D.F. Persons, M.J. Harold, E.B. Alvarez, C.J. Ercol, D.J. Strickland, C.I. Meng, Global ultraviolet imager (GUVI): measuring composition and energy inputs for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. Proc. SPIE 3756, 265–276 (1999).  https://doi.org/10.1117/12.366380 ADSCrossRefGoogle Scholar
  26. J. Qin, J.J. Makela, F. Kamalabadi, R.R. Meier, Radiative transfer modeling of the OI 135.6-nm emission in the nighttime ionosphere. J. Geophys. Res. 120, 10,116–10,135 (2015).  https://doi.org/10.1002/2015JA021687 CrossRefGoogle Scholar
  27. J. Qin, F. Kamalabadi, J.J. Makela, Quantifying the inversion accuracy of simplified physical models for the nighttime OI 135.6 nm emission. J. Geophys. Res. 121, 5805–5814 (2016).  https://doi.org/10.1002/2016JA022720 CrossRefGoogle Scholar
  28. T.G. Slanger, P.C. Cosby, D.L. Huestis, R.R. Meier, Oxygen atom Rydberg emission in the equatorial ionosphere from radiative recombination. J. Geophys. Res. A10, 309 (2004) Google Scholar
  29. D.J. Strickland, Transport of resonance radiation in a nonisothermal medium—effect of a varying Doppler width. J. Geophys. Res. 84(A10), 5890–5896 (1979).  https://doi.org/10.1029/JA084iA10p05890 ADSCrossRefGoogle Scholar
  30. D.J. Strickland, T.M. Donahue, Excitation and radiative transport of OI 1304 a resonance radiation I. The dayglow. Planet. Space Sci. 18(5), 661–689 (1970).  https://doi.org/10.1016/0032-0633(70)90049-8 ADSCrossRefGoogle Scholar
  31. A.I.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems (Winston, Washington, 1977) zbMATHGoogle Scholar
  32. A.N. Tikhonov, Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 4, 1035–1038 (1963) zbMATHGoogle Scholar
  33. B.A. Tinsley, A.B. Christen, J. Bittenco, H. Gouveia, P.D. Angreji, H. Takahash, Excitation of oxygen permitted line emissions in the tropical nightglow. J. Geophys. Res. 78(7), 1174–1186 (1973).  https://doi.org/10.1029/JA078i007p01174 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Farzad Kamalabadi
    • 1
  • Jianqi Qin
    • 1
  • Brian J. Harding
    • 1
  • Dimitrios Iliou
    • 2
  • Jonathan J. Makela
    • 1
  • R. R. Meier
    • 3
  • Scott L. England
    • 4
  • Harald U. Frey
    • 5
  • Stephen B. Mende
    • 5
  • Thomas J. Immel
    • 5
  1. 1.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Signal Processing and CommunicationsThe MathWorksNatickUSA
  3. 3.Department of Physics and AstronomyGeorge Mason UniversityFairfaxUSA
  4. 4.Department of Aerospace and Ocean EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  5. 5.Space Sciences LaboratoryUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations