Space Science Reviews

, 214:67 | Cite as

Single Degenerate Models for Type Ia Supernovae: Progenitor’s Evolution and Nucleosynthesis Yields

  • Ken’ichi NomotoEmail author
  • Shing-Chi Leung
Part of the following topical collections:
  1. Supernovae


We review how the single degenerate models for Type Ia supernovae (SNe Ia) works. In the binary star system of a white dwarf (WD) and its non-degenerate companion star, the WD accretes either hydrogen-rich matter or helium and undergoes hydrogen and helium shell-burning. We summarize how the stability and non-linear behavior of such shell-burning depend on the accretion rate and the WD mass and how the WD blows strong wind. We identify the following evolutionary routes for the accreting WD to trigger a thermonuclear explosion. Typically, the accretion rate is quite high in the early stage and gradually decreases as a result of mass transfer. With decreasing rate, the WD evolves as follows: (1) At a rapid accretion phase, the WD increase its mass by stable H burning and blows a strong wind to keep its moderate radius. The wind is strong enough to strip a part of the companion star’s envelope to control the accretion rate and forms circumstellar matter (CSM). If the WD explodes within CSM, it is observed as an “SN Ia-CSM”. (X-rays emitted by the WD are absorbed by CSM.) (2) If the WD continues to accrete at a lower rate, the wind stops and an SN Ia is triggered under steady-stable H shell-burning, which is observed as a super-soft X-ray source: “SN Ia-SSXS”. (3) If the accretion continues at a still lower rate, H shell-burning becomes unstable and many flashes recur. The WD undergoes recurrent nova (RN) whose mass ejection is smaller than the accreted matter. Then the WD evolves to an “SN Ia-RN”. (4) If the companion is a He star (or a He WD), the accretion of He can trigger He and C double detonations at the sub-Chandrasekhar mass or the WD grows to the Chandrasekhar mass while producing a He-wind: “SN Ia-He CSM”. (5) If the accreting WD rotates quite rapidly, the WD mass can exceed the Chandrasekhar mass of the spherical WD, which delays the trigger of an SN Ia. After angular momentum is lost from the WD, the (super-Chandra) WD contracts to become a delayed SN Ia. The companion star has become a He WD and CSM has disappeared: “SN Ia-He WD”. We update nucleosynthesis yields of the carbon deflagration model W7, delayed detonation model WDD2, and the sub-Chandrasekhar mass model to provide some constraints on the yields (such as Mn) from the comparison with the observations. We note the important metallicity effects on 58Ni and 55Mn.


Supernova Progenitor White dwarf Nucleosynthesis 



This work has been supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and JSPS KAKENHI Grant Numbers JP26400222, JP16H02168, JP17K05382.


  1. D. Arnett, A possible model of supernovae: detonation of 12C. Astrophys. Space Sci. 5, 180 (1969) ADSCrossRefGoogle Scholar
  2. D. Arnett, Supernovae and Nucleosynthesis (Princeton University Press, Princeton, 1996) Google Scholar
  3. O.G. Benvenuto, J.A. Panei, K. Nomoto, H. Kitamura, I. Hachisu, Final evolution and delayed explosions of spinning white dwarfs in single degenerate models for Type Ia supernovae. Astrophys. J. Lett. 809, L6 (2015) ADSCrossRefGoogle Scholar
  4. F. Brachwitz, D.J. Dean, W.R. Hix et al., The role of electron captures in Chandrasekhar-mass models for Type Ia Supernovae. Astrophys. J. 536, 934 (2000) ADSCrossRefGoogle Scholar
  5. B. Dilday, D.A. Howell, S.B. Cenko et al., PTF 11kx: a Type Ia supernova with a symbiotic nova progenitor. Science 337, 942 (2012) ADSCrossRefGoogle Scholar
  6. R. Di Stefano, R. Voss, J.S.W. Claeys, Spin-up/spin-down models for Type Ia supernovae. Astrophys. J. Lett. 738, L1 (2011) ADSCrossRefGoogle Scholar
  7. R.J. Foley, J.D. Simon, C.R. Burns et al., Linking Type Ia supernova progenitors and their resulting explosions. Astrophys. J. 752, 101 (2012) ADSCrossRefGoogle Scholar
  8. M.-Y. Fujimoto, D. Sugimoto, Helium shell flashes and evolution of accreting white dwarfs. Astrophys. J. 257, 291 (1982) ADSCrossRefGoogle Scholar
  9. G. Fuller, W. Fowler, M. Newman, Stellar weak interaction rates for intermediate mass nuclei. III—Rate tables for the free nucleons and nuclei with \(A= 21\) to \(A = 60\). Astrophys. J. Suppl. Ser. 48, 279 (1982) ADSCrossRefGoogle Scholar
  10. I. Hachisu, M. Kato, K. Nomoto, A new model for progenitor systems of Type Ia supernovae. Astrophys. J. Lett. 470, 97 (1996) ADSCrossRefGoogle Scholar
  11. I. Hachisu, M. Kato, K. Nomoto, H. Umeda, A new evolutionary path to Type Ia Supernovae: a helium-rich supersoft X-ray source channel. Astrophys. J. 519, 314 (1999a) ADSCrossRefGoogle Scholar
  12. I. Hachisu, M. Kato, K. Nomoto, A wide symbiotic channel to Type Ia Supernovae. Astrophys. J. 522, 487 (1999b) ADSCrossRefGoogle Scholar
  13. I. Hachisu, M. Kato, K. Nomoto, Young and massive binary progenitors of Type Ia supernovae and their circumstellar matter. Astrophys. J. 679, 1390–1404 (2008a) ADSCrossRefGoogle Scholar
  14. I. Hachisu, M. Kato, K. Nomoto, The delay-time distribution of Type Ia supernovae and the single-degenerate model. Astrophys. J. 683, L27 (2008b) CrossRefGoogle Scholar
  15. I. Hachisu, M. Kato, K. Nomoto, Final fates of rotating white dwarfs and their companions in the single degenerate model of Type Ia supernovae. Astrophys. J. Lett. 756, L4 (2012a) ADSCrossRefGoogle Scholar
  16. I. Hachisu, M. Kato, H. Saio, K. Nomoto, A single degenerate progenitor model for Type Ia supernovae highly exceeding the Chandrasekhar mass limit. Astrophys. J. 744, 69 (2012b) ADSCrossRefGoogle Scholar
  17. M. Hamuy, M.M. Phillips, N.B. Suntzeff et al., An asymptotic-giant-branch star in the progenitor system of a Type Ia supernova. Nature 424, 651 (2003) ADSCrossRefGoogle Scholar
  18. Z. Han, Ph. Podsiadlowski, The single-degenerate channel for the progenitors of Type Ia supernovae. Mon. Not. R. Astron. Soc. 350, 1301 (2004) ADSCrossRefGoogle Scholar
  19. M. Hashimoto, K. Nomoto, K. Arai, K. Kaminishi, The (14N) (\(e ^{-}\), \(\nu \)) (14C) (\(\alpha \), \(\gamma \)) (18O) reaction and helium flashes in accreting helium white dwarfs. Astrophys. J. 307, 687 (1986) ADSCrossRefGoogle Scholar
  20. W. Hillebrandt, J.C. Niemeyer, Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191 (2000) ADSCrossRefGoogle Scholar
  21. I. Iben Jr., A.V. Tutukov, Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). Astrophys. J. Suppl. Ser. 54, 335 (1984) ADSCrossRefGoogle Scholar
  22. I. Iben Jr., K. Nomoto, A. Tornambe, A.V. Tutukov, On interacting helium star-white dwarf pairs as supernova precursors. Astrophys. J. 317, 717 (1987) ADSCrossRefGoogle Scholar
  23. M. Ilkov, N. Soker, Type Ia supernovae from very long delayed explosion of core-white dwarf merger. Mon. Not. R. Astron. Soc. 419, 1695 (2012) ADSCrossRefGoogle Scholar
  24. K. Iwamoto, F. Brachwitz, K. Nomoto et al., Nucleosynthesis in Chandrasekhar mass models for Type Ia supernovae and constraints on progenitor systems and burning-front propagation. Astrophys. J. Suppl. Ser. 125, 439 (1999) ADSCrossRefGoogle Scholar
  25. S. Justham, Single-degenerate Type Ia supernovae without hydrogen contamination. Astrophys. J. Lett. 730, L34 (2011) ADSCrossRefGoogle Scholar
  26. Y. Kamiya, M. Tanaka, K. Nomoto et al., Super-Chandrasekhar-mass light curve models for the highly luminous Type Ia supernova 2009dc. Astrophys. J. 756, 191 (2012) ADSCrossRefGoogle Scholar
  27. M. Kato, H. Saio, I. Hachisu, K. Nomoto, Shortest recurrence periods of novae. Astrophys. J. 793, 136 (2014) ADSCrossRefGoogle Scholar
  28. M. Kato, I. Hachisu, H. Saio, Recurrent novae and long-term evolution of mass-accreting white dwarfs—toward the accurate mass retention efficiency (2017). arXiv:1711.01529
  29. Y. Kawai, H. Saio, K. Nomoto, Off-center ignition of nuclear burning in merging white dwarfs. Astrophys. J. 315, 229 (1987) ADSCrossRefGoogle Scholar
  30. Y. Kawai, H. Saio, K. Nomoto, Steady state models of white dwarfs accreting helium or carbon/oxygen-rich matter. Astrophys. J. 315, 229 (1988) ADSCrossRefGoogle Scholar
  31. A. Khokhlov, Mechanisms for the initiation of detonations in the degenerate matter of supernovae. Astron. Astrophys. 245, 114 (1991) ADSGoogle Scholar
  32. H. Kitamura, Pycnonuclear reactions in dense matter near solidification. Astrophys. J. 539, 888 (2000) ADSCrossRefGoogle Scholar
  33. K. Langanke, G. Martinez-Pinedo, Rate tables for the weak processes of pf-SHELL nuclei in stellar environments. At. Data Nucl. Data Tables 79, 1 (2001) ADSCrossRefGoogle Scholar
  34. N. Langer, A. Deutschmann, S. Wellstein, P. Höflich, The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae. Astron. Astrophys. 362, 1046 (2000) ADSGoogle Scholar
  35. S.-C. Leung, K. Nomoto, Dependence of nucleosynthesis on Model Parameters of Type Ia supernovae. Astrophys. J. Suppl. Ser. (2017, submitted). arXiv:1710.04254
  36. S.C. Leung, M.C. Chu, L.M. Lin, A new hydrodynamics code for Type Ia supernovae. Mon. Not. R. Astron. Soc. 454, 1238 (2015a) ADSCrossRefGoogle Scholar
  37. S.C. Leung, M.C. Chu, L.M. Lin, Dark matter admixed Type Ia supernovae. Astrophys. J. 812, 110 (2015b) ADSCrossRefGoogle Scholar
  38. W. Li, J.S. Bloom, P. Podsiadlowski et al., Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480, 348 (2011) ADSCrossRefGoogle Scholar
  39. X.-D. Li, E.P.J. van den Heuvel, Evolution of white dwarf binaries: supersoft X-ray sources and progenitors of Type Ia supernovae. Astron. Astrophys. 322, L9 (1997) ADSGoogle Scholar
  40. M. Limongi, A. Tornambe, He stars and He-accreting CO white dwarfs. Astrophys. J. 371, 317 (1991) ADSCrossRefGoogle Scholar
  41. M. Livio, The progenitors of Type Ia supernovae, in Type Ia Supernovae, Theory and Cosmology, ed. by J.C. Niemeyer, J.W. Truran (Cambridge University Press, Cambridge, 2000), p. 33 Google Scholar
  42. E. Livne, Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae. Astrophys. J. Lett. 354, L53 (1990) ADSCrossRefGoogle Scholar
  43. E. Livne, A.S. Glasner, Numerical simulations of off-center detonations in helium shells. Astrophys. J. 370, 272 (1991) ADSCrossRefGoogle Scholar
  44. D. Maoz, F. Mannucci, G. Nelemans, Observational clues to the progenitors of Type Ia supernovae. Annu. Rev. Astron. Astrophys. 52, 107 (2014) ADSCrossRefGoogle Scholar
  45. K. Mori et al., Impact of new Gamow-Teller strengths on explosive Type Ia supernova nucleosynthesis. Astrophys. J. 833, 179 (2016) ADSCrossRefGoogle Scholar
  46. K. Nariai, K. Nomoto, D. Sugimoto, Nova explosion of mass-accreting white dwarfs. Publ. Astron. Soc. Jpn. 32, 473 (1980) ADSGoogle Scholar
  47. K. Nomoto, Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms. Astrophys. J. 253, 798 (1982a) ADSCrossRefGoogle Scholar
  48. K. Nomoto, Accreting white dwarf models for type 1 supernovae. II. Off-center detonation supernovae. Astrophys. J. 257, 780 (1982b) ADSCrossRefGoogle Scholar
  49. K. Nomoto, I. Iben Jr., Carbon ignition in a rapidly accreting degenerate dwarf—a clue to the nature of the merging process in close binaries. Astrophys. J. 297, 531 (1985) ADSCrossRefGoogle Scholar
  50. K. Nomoto, Y. Kondo, Conditions for accretion-induced collapse of white dwarfs. Astrophys. J. Lett. 367, 19 (1991) ADSCrossRefGoogle Scholar
  51. K. Nomoto, D. Sugimoto, Rejuvenation of helium white dwarfs by mass accretion. Publ. Astron. Soc. Jpn. 31, 287 (1977) ADSGoogle Scholar
  52. K. Nomoto, D. Sugimoto, S. Neo, Carbon deflagration supernova, an alternative to carbon detonation. Astrophys. Space Sci. 39, L37 (1976) ADSCrossRefGoogle Scholar
  53. K. Nomoto, K. Nariai, D. Sugimoto, Rapid mass accretion onto white dwarfs and formation of an extended envelope. Publ. Astron. Soc. Jpn. 31, 287 (1979) ADSGoogle Scholar
  54. K. Nomoto, F.-K. Thielemann, K. Yokoi, Accreting white dwarf models of type I supernovae. III. Carbon deflagration supernovae. Astrophys. J. 286, 644 (1984) ADSCrossRefGoogle Scholar
  55. K. Nomoto, H. Yamaoka, T. Shigeyama, S. Kumagai, T. Tsujimoto, Type I supernovae and evolution of interacting binaries, in Supernovae, Proc. of Session LIV held in Les Houche 1990, ed. by S. Bludmann et al.. NATO ASI Ser. C (North-Holland, Amsterdam, 1994), p. 199. Google Scholar
  56. K. Nomoto, K. Iwamoto, N. Kishimoto, Type Ia supernovae: their origin and possible applications in cosmology. Science 276, 1378 (1997) ADSCrossRefGoogle Scholar
  57. K. Nomoto, H. Umeda, C. Kobayashi et al., Type Ia supernova progenitors, environmental effects, and cosmic supernova rates, in Type Ia Supernovae, Theory and Cosmology, ed. by J.C. Niemeyer, J.W. Truran (Cambridge University Press, Cambridge, 2000a), p. 63 Google Scholar
  58. K. Nomoto, H. Umeda, C. Kobayashi et al., Type Ia supernovae: progenitors and evolution with redshift, in Cosmic Explosions AIP Conference Proceedings, vol. 522 (2000b), p. 35 CrossRefGoogle Scholar
  59. K. Nomoto, T. Suzuki, J. Deng, T. Uenishi, I. Hachisu, Progenitors of Type Ia supernovae: circumstellar interaction, rotation, and steady hydrogen burning, in Supernovae as Cosmological Lighthouses 1604–2004, ed. by Turatto et al.. ASP Conference Series, vol. 342 (2005), p. 105 Google Scholar
  60. K. Nomoto, H. Saio, M. Kato, I. Hachisu, Thermal stability of white dwarfs accreting hydrogen-rich matter and progenitors of Type Ia supernovae. Astrophys. J. 663, 1269 (2007) ADSCrossRefGoogle Scholar
  61. K. Nomoto, Y. Kamiya, N. Nakasato et al., Progenitors of Type Ia supernovae: single degenerate and double degenerates. AIPC News 1111, 267 (2009) ADSGoogle Scholar
  62. K. Nomoto, M. Kamiya, N. Nakasato, Type Ia supernova models and progenitor scenarios, in IAU Symposium 281, Binary Paths to Type Ia Supernovae Explosions (Cambridge University Press, Cambridge, 2013a), p. 253 Google Scholar
  63. K. Nomoto, C. Kobayashi, N. Tominaga, Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457 (2013b) ADSCrossRefGoogle Scholar
  64. K. Nomoto, S.-C. Leung, Thermonuclear explosions of Chandrasekhar mass white dwarfs, in Handbook of Supernovae, vol. 2, ed. by A.W. Alsabti, P. Murdin (Springer) (2017), p. 1275. CrossRefGoogle Scholar
  65. R. Pakmor, S. Hachinger, F.K. Röpke, W. Hillebrandt, Violent mergers of nearly equal-mass white dwarf as progenitors of subluminous Type Ia supernovae. Astron. Astrophys. 528, A117 (2011) ADSCrossRefGoogle Scholar
  66. F. Patat, P. Chandra, R. Chevalier et al., Detection of circumstellar material in a normal Type Ia supernova. Science 317, 924 (2007) ADSCrossRefGoogle Scholar
  67. L. Piersanti, S. Gagliardi, I. Iben, A. Tornambe, Carbon-oxygen white dwarf accreting CO-rich matter. II. Self-regulating accretion process up to the explosive stage. Astrophys. J. 598, 1229 (2003) ADSCrossRefGoogle Scholar
  68. A.Y. Potekhin, G. Chabrier, Thermonuclear fusion in dense stars. Electron screening, conductive cooling, and magnetic field effects. Astron. Astrophys. 538, AA115 (2012) ADSCrossRefGoogle Scholar
  69. H. Saio, K. Nomoto, Off-center carbon ignition in rapidly rotating, accreting carbon-oxygen white dwarfs. Astrophys. J. 615, 444 (2004) ADSCrossRefGoogle Scholar
  70. Y. Sato, N. Nakasato, A. Tanikawa, K. Nomoto, K. Maedak, I. Hachisu, The critical mass ratio of double white dwarf binaries for violent merger-induced Type Ia supernova explosions. Astrophys. J. 821, 67 (2017) ADSCrossRefGoogle Scholar
  71. B.E. Schaefer, A. Pagnotta, An absence of ex-companion stars in the Type Ia supernova remnant SNR 0509-67.5. Nature 481, 164 (2012) ADSCrossRefGoogle Scholar
  72. I.R. Seitenzahl, C.A. Meakin, D.M. Townsley, D.Q. Lamb, J.W. Truran, Spontaneous initiation of detonations in white dwarf environments: determination of critical sizes. Astrophys. J. 696, 515 (2009) ADSCrossRefGoogle Scholar
  73. K. Shen, L. Bildsten, Thermally stable nuclear burning on accreting white dwarfs. Astrophys. J. 660, 1444 (2007) ADSCrossRefGoogle Scholar
  74. T. Shigeyama, K. Nomoto, H. Yamoka, F.-K. Thielemann, Possible models for the Type Ia supernova 1990N. Astrophys. J. Lett. 386, L13 (1992) ADSCrossRefGoogle Scholar
  75. S. Starrfield, W.M. Sparks, J.W. Truran, G. Shaviv, Neon novae recurrent novae and type-I supernovae, in Supernovae, ed. by S.E. Woosley (Springer, Berlin, 1991), p. 602 CrossRefGoogle Scholar
  76. A. Sternberg, A. Gal-Yam, J.D. Simon et al., Circumstellar material in Type Ia supernovae via sodium absorption features. Science 333, 856 (2011) ADSCrossRefGoogle Scholar
  77. D. Sugimoto, M. Fujimoto, A general theory for thermal pulses of finite amplitude in nuclear shell-burnings. Publ. Astron. Soc. Jpn. 30, 467 (1978) ADSGoogle Scholar
  78. D. Sugimoto, M. Fujimoto, K. Nariai, K. Nomoto, in IAU Colloquium 53, White Dwarfs and Variable Degenerate Stars, ed. by H.M. Van Horn, V. Weidemann (University of Rochester, Rochester, 1979), p. 280 Google Scholar
  79. D. Sugimoto, K. Nomoto, Presupernova models and supernovae. Space Sci. Rev. 25, 155 (1980) ADSCrossRefGoogle Scholar
  80. R.E. Taam, Helium runaways in white dwarfs. Astrophys. J. 237, 142 (1980) ADSCrossRefGoogle Scholar
  81. F.-K. Thielemann, K. Nomoto, K. Yokoi, Explosive nucleosynthesis in carbon deflagration models of type I supernovae. Astron. Astrophys. 158, 17 (1986) ADSGoogle Scholar
  82. R.F. Webbink, Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355 (1984) ADSCrossRefGoogle Scholar
  83. S.E. Woosley, R.E. Taam, T.A. Weaver, Models for type I supernova. I. Detonations in white dwarfs. Astrophys. J. 301, 601 (1986) ADSCrossRefGoogle Scholar
  84. S.E. Woosley, T.A. Weaver, Sub-Chandrasekhar mass models for Type Ia supernovae. Astrophys. J. 423, 371 (1994) ADSCrossRefGoogle Scholar
  85. S.C. Yoon, P. Podsiadlowski, S. Rosswog, Remnant evolution after a carbon-oxygen white dwarf merger. Mon. Not. R. Astron. Soc. 380, 933 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI)The University of TokyoKashiwaJapan

Personalised recommendations