Skip to main content
Log in

Very Long Baseline Interferometry: Dependencies on Frequency Stability

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Z. Altamimi, P. Rebischung, L. Métivier, X. Collilieux, ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J. Geophys. Res. 121, 6109–6131 (2016). https://doi.org/10.1002/2016JB013098

    Article  ADS  Google Scholar 

  • J.M. Anderson, G. Beyerle, S. Glaser, L. Liu, B. Männel, T. Nilsson, R. Heinkelmann, H. Schuh, Simulations of VLBI observations of a geodetic satellite providing co-location in space. J. Geod. 2018, in press. https://doi.org/10.1007/s00190-018-1115-5

  • Y. Bar-Sever, B. Haines, W. Bertiger, S. Desai, S. Wu, Geodetic reference antenna in space (GRASP)—a mission to enhance space-based geodesy, in Proc. 2nd Colloquium Scientific and Fundamental Aspects of the Galileo Programme, Padova, Italy (2009)

    Google Scholar 

  • R. Biancale, A. Pollet, D. Coulot, M. Mandea, E-GRASP/eratosthenes: a mission proposal for millimetric TRF realization, in EGU General Assembly Conference Abstracts, vol. 19 (2017), p. 8752

    Google Scholar 

  • J.S. Border, Innovations in Delta Differential One-way Range: from Viking to Mars Science Laboratory, in Proc. 21st Int. Sym. Space Flight Dynamics, Toulouse, France, 28 Sept.–02 Oct., 2009, http://issfd.or/ISSFD_2009/OrbitDeterminationI/Border.pdf

  • D.A. Duev, G. Molera Calvés, S.V. Pogrebenko, L.I. Gurvits, G. Cimó, T. Bocanegra Bahamon, Spacecraft VLBI and Doppler tracking: algorithms and implementation. Astron. Astrophys. 541, A43 (2012). https://doi.org/10.1051/0004-6361/201218885

    Article  ADS  Google Scholar 

  • D.A. Duev, S.V. Pogrebenko, G. Cimo, G. Molera Calvés, T.M. Bocanegra T.M. Bahamon, L.I. Gurvits, M.M. Kettenis, J. Kania, V. Tudose, P. Rosenblatt, J.-C. Marty, V. Lainey, P. de Vicente, J. Quick, M. Nickola, A. Neidhardt, G. Kronschnabl, C. Plötz, R. Haas, M. Lindqvist, A. Orlati, A.V. Ipatov, M.A. Kharinov, A.G. Mikhailov, J.E.J. Lovell, J.N. McCallum, J. Stevens, S.A. Gulyaev, T. Natush, S. Weston, W.H. Wang, B. Xia, W.J. Yang, L-F. Hao, J. Kallunki, O. Witasse, Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: a test case of the Mars express phobos y-by. Astron. Astrophys. (2016). https://doi.org/10.1051/0004-6361/201628869

    Google Scholar 

  • E. Himwich, A. Bertarini, B. Corey, K. Baver, D. Gordon, L. La Porta, Impact of station clocks on UT1-TAI estimates, in Proc. 23rd European VLBI Group for Geodesy and Astrometry Working Meeting, ed. by R. Haas, G. Elgered (Gothenburg, Sweden, 2017), pp. 12–176

    Google Scholar 

  • T. Nilsson, R. Haas, Impact of atmospheric turbulence on geodetic very long baseline interferometry. J. Geophys. Res. 115(B03), 407 (2010). https://doi.org/10.1029/2009JB006579

    Google Scholar 

  • T. Nilsson, B. Soja, M. Karbon, R. Heinkelmann, H. Schuh, Application of Kalman filtering in VLBI data analysis. Earth Planets Space 67, 1–9 (2015)

    Article  Google Scholar 

  • A. Pany, J. Böhm, D. MacMillan, H. Schuh, T. Nilsson, J. Wresnik, Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J. Geod. 85, 39–50 (2011). https://doi.org/10.1007/s00190-010-0415-1

    Article  ADS  Google Scholar 

  • B. Petrachenko, A. Niell, D. Behrend, B. Corey, J. Böhm, P. Charlot, A. Collioud, J. Gipson, R. Haas, T. Hobiger, Y. Koyama, D. MacMillan, T. Nilsson, A. Pany, G. Tuccari, A. Whitney, J. Wresnik, Design Aspects of the VLBI2010 System. Progress Report of the VLBI2010 Committee. NASA Technical Memorandum, NASA/TM-2009-214180, 58 pp. (June 2009)

  • W.T. Petrachenko, A.E. Niell, B.E. Corey, D. Behrend, H. Schuh, J. Wresnik, VLBI2010: next generation VLBI system for geodesy and astrometry, in Geodesy for Planet Earth, International Association of Geodesy Symposia, vol. 136, ed. by S. Kenyon, M.C. Pacino, U. Marti (Springer, Berlin, 2012), pp. 999–1006. ISBN 978-3-642-20337-4

    Chapter  Google Scholar 

  • L. Plank, VLBI satellite tracking for the realization of frame ties. PhD Thesis, Technische Universität Wien, Vienna, Austria (2013)

  • L. Plank, J. Böhm, H. Schuh, Precise station positions from VLBI observations to satellites: a simulation study. J. Geod. 88(7), 659–673 (2014). https://doi.org/10.1007/s00190-014-0712-1

    Article  ADS  Google Scholar 

  • L. Plank, A. Hellerschmied, J. McCallum, J. Böhm, J. Lovell, VLBI observations of GNSS-satellites: from scheduling to analysis. J. Geod. 91(7), 867–880 (2015). https://doi.org/10.1007/s00190-016-0992-8

    Article  ADS  Google Scholar 

  • C. Rieck, R. Haas, P. Jarlemark, K. Jaldehag, VLBI frequency transfer using CONT11, in Proc. of the 26th European Frequency and Time Forum, Gothenburg, Sweden (2012). http://publications.lib.chalmers.se/records/fulltext/171390/local_171390.pdf

    Google Scholar 

  • A.E.E. Rogers, Very long baseline interferometry with large effective bandwidth for phase-delay measurements. Radio Sci. 5(10), 1239–1247 (1970). https://doi.org/10.1029/RS005i010p01239

    Article  ADS  Google Scholar 

  • A.E.E. Rogers, J.M. Moran, Coherence limits for very-long- baseline interferometry. IEEE Trans. Instrum. Meas. IM-30(4), 283–286 (1981)

    Article  ADS  Google Scholar 

  • O.J. Sovers, J.L. Fanselow, C.S. Jacobs, Astrometry and geodesy with radio interferometry: experiments, models, results. Rev. Mod. Phys. 70(4), 1393–1454 (1998)

    Article  ADS  Google Scholar 

  • J. Sun, J. Böhm, T. Nilsson, H. Krásná, S. Böhm, H. Schuh, New VLBI2010 scheduling strategies and implications on the terrestrial reference frames. J. Geod. 88(5), 449–461 (2014). https://doi.org/10.1007/s00190-014-0697-9

    Article  ADS  Google Scholar 

  • G. Tang, J. Cao, S. Han, S. Hu, T. Ren, L. Chen, J. Sun, M. Wang, Y. Li, L. Li, Research on lunar radio measurements by Chang’E-3, in IVS 2014 General Meeting Proceedings “VGOS: The New VLBI Network”, ed. by D. Behrend, K.D. Baver, K.L. Armstrong (Science Press, Beijing, 2014), pp. 473–477. ftp://ivscc.gsfc.nasa.gov/pub/general-meeting/2014/pdf/101_Tang_etal.pdf

    Google Scholar 

  • A.R. Thompson, J.M. Moran, G.W. Swenson, Interferometry and Synthesis in Radio Astronomy, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  • O. Titov, Estimation of the subdiurnal UT1-UTC variations by the least squares collocation method. Astron. Astrophys. Trans. 18(6), 779–792 (2000). https://doi.org/10.1080/10556790008208172

    Article  ADS  Google Scholar 

  • V. Tornatore, R. Haas, S. Casey, D. Duev, S. Pogrebenko, G. Molera Calvés, Direct VLBI observations of global navigation satellite system signals, in International Association of Geodesy Symposia. Proc. IAG General Assembly, Melbourne, 2011, vol. 139 (2014), pp. 247–252. https://doi.org/10.1007/978-3-642-37222-3_32. ISBN/ISSN: 978-3-642-37221-6

    Google Scholar 

  • A.R. Whitney, Precision Geodesy and Astrometry Via Very-Long-Baseline Interferometry. Ph.D. Thesis, MIT (1974)

Download references

Acknowledgements

We are very grateful to the reviewer of this article for providing many very detailed comments and suggestions beyond the normal level of a review. These helped us to significantly improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Nothnagel.

Additional information

High Performance Clocks with Special Emphasis on Geodesy and Geophysics and Applications to Other Bodies of the Solar System

Edited by Rafael Rodrigo, Véronique Dehant, Leonid Gurvits, Michael Kramer, Ryan Park, Peter Wolf and John Zarnecki

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nothnagel, A., Nilsson, T. & Schuh, H. Very Long Baseline Interferometry: Dependencies on Frequency Stability. Space Sci Rev 214, 66 (2018). https://doi.org/10.1007/s11214-018-0498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0498-1

Keywords

Navigation