Space Science Reviews

, 214:62 | Cite as

Nucleosynthesis in Supernovae

  • Friedrich-Karl Thielemann
  • Jordi Isern
  • Albino Perego
  • Peter von Ballmoos
Article
Part of the following topical collections:
  1. Supernovae

Abstract

We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in \(\beta^{+}\)-decays, as e.g. from \(^{26}\mbox{Al}\), \(^{44}\mbox{Ti}\), \(^{56,57}\mbox{Ni}\) and possibly further isotopes of their decay chains (in competition with the production of \(e^{+}e^{-}\) pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the \(^{55}\mbox{Mn}\) puzzle), plus (d) further constraints from galactic evolution, \(\gamma\)-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

Keywords

Massive stars Core-collapse supernovae Type Ia supernovae Nucleosynthesis \(\gamma\)-ray observations Positron sources Galactic chemical evolution 

Notes

Acknowledgements

This research was supported by an ERC Advanced Grant (FISH), the Swiss SNF, the MINECO-FEDER grant ESP2015-66134-R (JI), the grant 2009SGR315 and the CERCA program of the Generalitat de Catalunya (JI), the Italian INFN, and the French CNRS. Thanks go to all our present and past collaborators from Barcelona (Eduardo Bravo), Basel (M. Liebendörfer, M. Hempel, T. Rauscher), Darmstadt (A. Arcones, K. Ebinger, M. Eichler, G. Martinez-Pinedo), Kyoto (N. Nishimura). Kyushu (K. Kotake, K. Nakamura), Mainz (K.-L. Kratz), Michigan (K.-C. Pan), Oklahoma (J. Cowan), Moscow (I. Panov, L. Mashonkina), North Carolina (C. Fröhlich, S. Curtis, B. Wehmeyer), Odessa (T. Mishenina), Tokyo (K. Nomoto, T. Takiwaki), as well as Toulouse (Pierre Jean, Jürgen Knoedlseder), and their respective groups (with joint results displayed in a number of figures).

References

  1. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, V.B. Adya et al., Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017). arXiv:1710.05833.  https://doi.org/10.3847/2041-8213/aa91c9 ADSGoogle Scholar
  2. A.U. Abeysekara, A. Albert, R. Alfaro, C. Alvarez, J.D. Álvarez, R. Arceo, J.C. Arteaga-Velázquez, D. Avila Rojas, H.A. Ayala Solares, A.S. Barber, N. Bautista-Elivar, A. Becerril, E. Belmont-Moreno, S.Y. BenZvi, D. Berley, A. Bernal, J. Braun, C. Brisbois, K.S. Caballero-Mora, T. Capistrán, A. Carramiñana, S. Casanova, M. Castillo, U. Cotti, J. Cotzomi, S. Coutiño de León, C. De León, E. De la Fuente, B.L. Dingus, M.A. DuVernois, J.C. Díaz-Vélez, R.W. Ellsworth, K. Engel, O. Enríquez-Rivera, D.W. Fiorino, N. Fraija, J.A. García-González, F. Garfias, M. Gerhardt, A. González Muñoz, M.M. González, J.A. Goodman, Z. Hampel-Arias, J.P. Harding, S. Hernández, A. Hernández-Almada, J. Hinton, B. Hona, C.M. Hui, P. Hüntemeyer, A. Iriarte, A. Jardin-Blicq, V. Joshi, S. Kaufmann, D. Kieda, A. Lara, R.J. Lauer, W.H. Lee, D. Lennarz, H.L. Vargas, J.T. Linnemann, A.L. Longinotti, G. Luis Raya, R. Luna-García, R. López-Coto, K. Malone, S.S. Marinelli, O. Martinez, I. Martinez-Castellanos, J. Martínez-Castro, H. Martínez-Huerta, J.A. Matthews, P. Miranda-Romagnoli, E. Moreno, M. Mostafá, L. Nellen, M. Newbold, M.U. Nisa, R. Noriega-Papaqui, R. Pelayo, J. Pretz, E.G. Pérez-Pérez, Z. Ren, C.D. Rho, C. Rivière, D. Rosa-González, M. Rosenberg, E. Ruiz-Velasco, H. Salazar, F. Salesa Greus, A. Sandoval, M. Schneider, H. Schoorlemmer, G. Sinnis, A.J. Smith, R.W. Springer, P. Surajbali, I. Taboada, O. Tibolla, K. Tollefson, I. Torres, T.N. Ukwatta, G. Vianello, T. Weisgarber, S. Westerhoff, I.G. Wisher, J. Wood, T. Yapici, G. Yodh, P.W. Younk, A. Zepeda, H. Zhou, F. Guo, J. Hahn, H. Li, H. Zhang, Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 358, 911–914 (2017). arXiv:1711.06223.  https://doi.org/10.1126/science.aan4880 ADSGoogle Scholar
  3. M. Ackermann, M. Ajello, A. Allafort, W.B. Atwood, L. Baldini, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, R.D. Blandford, E.D. Bloom, E. Bonamente, A.W. Borgland, A. Bouvier, J. Bregeon, M. Brigida, P. Bruel, R. Buehler, S. Buson, G.A. Caliandro, R.A. Cameron, P.A. Caraveo, J.M. Casandjian, C. Cecchi, E. Charles, A. Chekhtman, C.C. Cheung, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, J. Conrad, S. Cutini, A. de Angelis, F. de Palma, C.D. Dermer, S.W. Digel, E. Do Couto E Silva, P.S. Drell, A. Drlica-Wagner, C. Favuzzi, S.J. Fegan, E.C. Ferrara, W.B. Focke, P. Fortin, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, S. Germani, N. Giglietto, P. Giommi, F. Giordano, M. Giroletti, T. Glanzman, G. Godfrey, I.A. Grenier, J.E. Grove, S. Guiriec, M. Gustafsson, D. Hadasch, A.K. Harding, M. Hayashida, R.E. Hughes, G. Jóhannesson, A.S. Johnson, T. Kamae, H. Katagiri, J. Kataoka, J. Knödlseder, M. Kuss, J. Lande, L. Latronico, M. Lemoine-Goumard, M. Llena Garde, F. Longo, F. Loparco, M.N. Lovellette, P. Lubrano, G.M. Madejski, M.N. Mazziotta, J.E. McEnery, P.F. Michelson, W. Mitthumsiri, T. Mizuno, A.A. Moiseev, C. Monte, M.E. Monzani, A. Morselli, I.V. Moskalenko, S. Murgia, T. Nakamori, P.L. Nolan, J.P. Norris, E. Nuss, M. Ohno, T. Ohsugi, A. Okumura, N. Omodei, E. Orlando, J.F. Ormes, M. Ozaki, D. Paneque, D. Parent, M. Pesce-Rollins, M. Pierbattista, F. Piron, G. Pivato, T.A. Porter, S. Rainò, R. Rando, M. Razzano, S. Razzaque, A. Reimer, O. Reimer, T. Reposeur, S. Ritz, R.W. Romani, M. Roth, H.F.W. Sadrozinski, C. Sbarra, T.L. Schalk, C. Sgrò, E.J. Siskind, G. Spandre, P. Spinelli, A.W. Strong, H. Takahashi, T. Takahashi, T. Tanaka, J.G. Thayer, J.B. Thayer, L. Tibaldo, M. Tinivella, D.F. Torres, G. Tosti, E. Troja, Y. Uchiyama, T.L. Usher, J. Vandenbroucke, V. Vasileiou, G. Vianello, V. Vitale, A.P. Waite, B.L. Winer, K.S. Wood, M. Wood, Z. Yang, Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Phys. Rev. Lett. 108(1), 011103 (2012). arXiv:1109.0521.  https://doi.org/10.1103/PhysRevLett.108.011103 ADSGoogle Scholar
  4. O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, R. Bellotti, M. Boezio, E.A. Bogomolov, L. Bonechi, M. Bongi, V. Bonvicini, S. Bottai, A. Bruno, F. Cafagna, D. Campana, P. Carlson, M. Casolino, G. Castellini, M.P. de Pascale, G. de Rosa, N. de Simone, V. di Felice, A.M. Galper, L. Grishantseva, P. Hofverberg, S.V. Koldashov, S.Y. Krutkov, A.N. Kvashnin, A. Leonov, V. Malvezzi, L. Marcelli, W. Menn, V.V. Mikhailov, E. Mocchiutti, S. Orsi, G. Osteria, P. Papini, M. Pearce, P. Picozza, M. Ricci, S.B. Ricciarini, M. Simon, R. Sparvoli, P. Spillantini, Y.I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev, S.A. Voronov, Y.T. Yurkin, G. Zampa, N. Zampa, An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009). arXiv:0810.4995.  https://doi.org/10.1038/nature07942 ADSGoogle Scholar
  5. F.A. Aharonian, A.M. Atoyan, H.J. Voelk, High energy electrons and positrons in cosmic rays as an indicator of the existence of a nearby cosmic tevatron. Astron. Astrophys. 294, L41–L44 (1995) ADSGoogle Scholar
  6. A. Alexis, P. Jean, P. Martin, K. Ferrière, Monte Carlo modelling of the propagation and annihilation of nucleosynthesis positrons in the Galaxy. Astron. Astrophys. 564, A108 (2014). arXiv:1402.6110.  https://doi.org/10.1051/0004-6361/201322393 ADSGoogle Scholar
  7. A. Arcones, F.K. Thielemann, Neutrino-driven wind simulations and nucleosynthesis of heavy elements. J. Phys. G, Nucl. Part. Phys. 40(1), 013201 (2013). arXiv:1207.2527.  https://doi.org/10.1088/0954-3899/40/1/013201 ADSGoogle Scholar
  8. D. Argast, M. Samland, F.K. Thielemann, Y.Z. Qian, Neutron star mergers versus core-collapse supernovae as dominant r-process sites in the early Galaxy. Astron. Astrophys. 416, 997–1011 (2004). arXiv:astro-ph/0309237.  https://doi.org/10.1051/0004-6361:20034265 ADSGoogle Scholar
  9. C. Arlandini, F. Käppeler, K. Wisshak, R. Gallino, M. Lugaro, M. Busso, O. Straniero, Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525, 886–900 (1999). arXiv:astro-ph/9906266.  https://doi.org/10.1086/307938 ADSGoogle Scholar
  10. W.D. Arnett, J.N. Bahcall, R.P. Kirshner, S.E. Woosley, Supernova 1987A. Annu. Rev. Astron. Astrophys. 27, 629–700 (1989).  https://doi.org/10.1146/annurev.aa.27.090189.003213 ADSGoogle Scholar
  11. G. Aznar-Siguán, E. García-Berro, P. Lorén-Aguilar, J. José, J. Isern, Detonations in white dwarf dynamical interactions. Mon. Not. R. Astron. Soc. 434, 2539–2555 (2013). arXiv:1306.6559.  https://doi.org/10.1093/mnras/stt1198 ADSGoogle Scholar
  12. P. Banerjee, W.C. Haxton, Y.Z. Qian, Long, cold, early r process? Neutrino-induced nucleosynthesis in He shells revisited. Phys. Rev. Lett. 106(20), 201104 (2011). arXiv:1103.1193.  https://doi.org/10.1103/PhysRevLett.106.201104 ADSGoogle Scholar
  13. J. Barnes, D. Kasen, M.R. Wu, G. Martínez-Pinedo, Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys. J. 829, 110 (2016). arXiv:1605.07218.  https://doi.org/10.3847/0004-637X/829/2/110 ADSGoogle Scholar
  14. W. Benz, F.K. Thielemann, J.G. Hills, Three-dimensional hydrodynamical simulations of stellar collisions. II—white dwarfs. Astrophys. J. 342, 986–998 (1989).  https://doi.org/10.1086/167656 ADSGoogle Scholar
  15. E.G. Berezhko, L.T. Ksenofontov, Energy spectra of electrons and positrons produced in supernova remnants. J. Phys. Conf. Ser. 012, 025 (2013). http://stacks.iop.org/1742-6596/409/i=1/a=012025 Google Scholar
  16. M.G. Bernardini, Gamma-ray bursts and magnetars: observational signatures and predictions. J. High Energy Astrophys. 7, 64–72 (2015).  https://doi.org/10.1016/j.jheap.2015.05.003 ADSGoogle Scholar
  17. C. Boehm, D. Hooper, J. Silk, M. Casse, J. Paul, MeV dark matter: has it been detected? Phys. Rev. Lett. 92(10), 101301 (2004). arXiv:astro-ph/0309686.  https://doi.org/10.1103/PhysRevLett.92.101301 ADSGoogle Scholar
  18. S.E. Boggs, F.A. Harrison, H. Miyasaka, B.W. Grefenstette, A. Zoglauer, C.L. Fryer, S.P. Reynolds, D.M. Alexander, H. An, D. Barret, F.E. Christensen, W.W. Craig, K. Forster, P. Giommi, C.J. Hailey, A. Hornstrup, T. Kitaguchi, J.E. Koglin, K.K. Madsen, P.H. Mao, K. Mori, M. Perri, M.J. Pivovaroff, S. Puccetti, V. Rana, D. Stern, N.J. Westergaard, W.W. Zhang, \(^{44}\mbox{Ti}\) gamma-ray emission lines from SN1987A reveal an asymmetric explosion. Science 348, 670 (2015) ADSGoogle Scholar
  19. L. Bouchet, P. Mandrou, J.P. Roques, G. Vedrenne, B. Cordier, A. Goldwurm, F. Lebrun, J. Paul, R. Sunyaev, E. Churazov, M. Gilfanov, M. Pavlinsky, S. Grebenev, G. Babalyan, I. Dekhanov, N. Khavenson, Sigma discovery of variable e(+)-e(-) annihilation radiation from the near Galactic center variable compact source 1E 1740.7-2942. Astrophys. J. Lett. 383, L45–L48 (1991).  https://doi.org/10.1086/186237 ADSGoogle Scholar
  20. M. Boudaud, A new look at the cosmic ray positron fraction, in PoS ICRC2015 (2016), p. 1183. arXiv:1510.07492 Google Scholar
  21. M. Boudaud et al., A new look at the cosmic ray positron fraction. Astron. Astrophys. 575, A67 (2015). arXiv:1410.3799.  https://doi.org/10.1051/0004-6361/201425197 Google Scholar
  22. F. Brachwitz, D.J. Dean, W.R. Hix, K. Iwamoto, K. Langanke, G. Martínez-Pinedo, K. Nomoto, M.R. Strayer, F.K. Thielemann, H. Umeda, The role of electron captures in Chandrasekhar-mass models for Type IA supernovae. Astrophys. J. 536, 934–947 (2000). arXiv:astro-ph/0001464.  https://doi.org/10.1086/308968 ADSGoogle Scholar
  23. D. Branch, J.C. Wheeler, Supernova Explosions (2017).  https://doi.org/10.1007/978-3-662-55054-0 Google Scholar
  24. E. Bravo, D. García-Senz, Pulsating reverse detonation models of Type Ia supernovae. I. Detonation ignition. Astrophys. J. 695, 1244–1256 (2009). arXiv:0901.3008.  https://doi.org/10.1088/0004-637X/695/2/1244 ADSGoogle Scholar
  25. E. Bravo, D. García-Senz, R.M. Cabezón, I. Domínguez, Pulsating reverse detonation models of Type Ia supernovae. II. Explosion. Astrophys. J. 695, 1257–1272 (2009). arXiv:0901.3013.  https://doi.org/10.1088/0004-637X/695/2/1257 ADSGoogle Scholar
  26. S.W. Bruenn, E.J. Lentz, W.R. Hix, A. Mezzacappa, J.A. Harris, O.E.B. Messer, E. Endeve, J.M. Blondin, M.A. Chertkow, E.J. Lingerfelt, P. Marronetti, K.N. Yakunin, The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12–25 M stars. Astrophys. J. 818, 123 (2016). arXiv:1409.5779.  https://doi.org/10.3847/0004-637X/818/2/123 ADSGoogle Scholar
  27. A. Burrows, Colloquium: perspectives on core-collapse supernova theory. Rev. Mod. Phys. 85, 245 (2013). arXiv:1210.4921 ADSGoogle Scholar
  28. A.C. Calder, B.K. Krueger, A.P. Jackson, D.M. Townsley, The influence of chemical composition on models of Type Ia supernovae. Front. Phys. 8, 168–188 (2013). arXiv:1303.2207.  https://doi.org/10.1007/s11467-013-0301-4 Google Scholar
  29. S. Caroff, High statistics measurement of the positron fraction in primary cosmic rays with the Alpha Magnetic Spectrometer on the International Space Station, in 25th European Cosmic Ray Symposium (ECRS 2016), Turin, Italy, September 04–09, 2016 (2016). arXiv:1612.09579 Google Scholar
  30. R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbuy, P. Bonifacio, P. Molaro, B. Nordström, First stars V—abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron. Astrophys. 416, 1117–1138 (2004). arXiv:astro-ph/0311082.  https://doi.org/10.1051/0004-6361:20034074 ADSGoogle Scholar
  31. G. Cescutti, D. Romano, F. Matteucci, C. Chiappini, R. Hirschi, The role of neutron star mergers in the chemical evolution of the Galactic halo. Astron. Astrophys. 577, A139 (2015). arXiv:1503.02954.  https://doi.org/10.1051/0004-6361/201525698 ADSGoogle Scholar
  32. K.W. Chan, R.E. Lingenfelter, Positrons from supernovae. Astrophys. J. 405, 614–636 (1993).  https://doi.org/10.1086/172393 ADSGoogle Scholar
  33. A. Chieffi, M. Limongi, Pre-supernova evolution of rotating solar metallicity stars in the mass range \(13\mbox{--}120~\mbox{M}_{{\odot}}\) and their explosive yields. Astrophys. J. 764, 21 (2013).  https://doi.org/10.1088/0004-637X/764/1/21 ADSGoogle Scholar
  34. A. Chieffi, M. Limongi, The synthesis of \(^{44}\mbox{Ti}\) and \(^{56}\mbox{Ni}\) in massive stars. Astrophys. J. 836, 79 (2017). arXiv:1701.02914.  https://doi.org/10.3847/1538-4357/836/1/79 ADSGoogle Scholar
  35. E. Churazov, R. Sunyaev, J. Isern, J. Knödlseder, P. Jean, F. Lebrun, N. Chugai, S. Grebenev, E. Bravo, S. Sazonov, M. Renaud, Cobalt-56 \(\gamma\)-ray emission lines from the Type Ia supernova 2014J. Nature 512, 406–408 (2014). arXiv:1405.3332.  https://doi.org/10.1038/nature13672 ADSGoogle Scholar
  36. E. Churazov, R. Sunyaev, J. Isern, I. Bikmaev, E. Bravo, N. Chugai, S. Grebenev, P. Jean, J. Knödlseder, F. Lebrun, E. Kuulkers, Gamma-rays from Type Ia supernova SN2014J. Astrophys. J. 812, 62 (2015). arXiv:1502.00255.  https://doi.org/10.1088/0004-637X/812/1/62 ADSGoogle Scholar
  37. D.D. Clayton, F. Hoyle, Gamma-ray lines from novae. Astrophys. J. Lett. 187, L101 (1974).  https://doi.org/10.1086/181406 ADSGoogle Scholar
  38. D.D. Clayton, S.A. Colgate, G.J. Fishman, Gamma-ray lines from young supernova remnants. Astrophys. J. 155, 75 (1969).  https://doi.org/10.1086/149849 ADSGoogle Scholar
  39. S.A. Colgate, C. McKee, Early supernova luminosity. Astrophys. J. 157, 623 (1969).  https://doi.org/10.1086/150102 ADSGoogle Scholar
  40. J.J. Cowan, C. Sneden, T.C. Beers, J.E. Lawler, J. Simmerer, J.W. Truran, F. Primas, J. Collier, S. Burles, Hubble Space Telescope observations of heavy elements in metal-poor Galactic halo stars. Astrophys. J. 627, 238–250 (2005). arXiv:astro-ph/0502591.  https://doi.org/10.1086/429952 ADSGoogle Scholar
  41. R. Cowsik, B. Burch, T. Madziwa-Nussinov, The origin of the spectral intensities of cosmic-ray positrons. Astrophys. J. 786, 124 (2014). arXiv:1305.1242.  https://doi.org/10.1088/0004-637X/786/2/124 ADSGoogle Scholar
  42. R.M. Crocker, A.J. Ruiter, I.R. Seitenzahl, F.H. Panther, S. Sim, H. Baumgardt, A. Möller, D.M. Nataf, L. Ferrario, J.J. Eldridge, M. White, B.E. Tucker, F. Aharonian, Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations. Nat. Astron. 1, 0135 (2017). arXiv:1607.03495.  https://doi.org/10.1038/s41550-017-0135 ADSGoogle Scholar
  43. M. Dan, S. Rosswog, J. Guillochon, E. Ramirez-Ruiz, How the merger of two white dwarfs depends on their mass ratio: orbital stability and detonations at contact. Mon. Not. R. Astron. Soc. 422, 2417–2428 (2012). arXiv:1201.2406.  https://doi.org/10.1111/j.1365-2966.2012.20794.x ADSGoogle Scholar
  44. M. Dan, J. Guillochon, M. Brüggen, E. Ramirez-Ruiz, S. Rosswog, Thermonuclear detonations ensuing white dwarf mergers. Mon. Not. R. Astron. Soc. 454, 4411–4428 (2015). arXiv:1508.02402.  https://doi.org/10.1093/mnras/stv2289 ADSGoogle Scholar
  45. A. De Angelis, V. Tatischeff, M. Tavani, U. Oberlack, I. Grenier, L. Hanlon, R. Walter, A. Argan, P. von Ballmoos, A. Bulgarelli, I. Donnarumma, M. Hernanz, I. Kuvvetli, M. Pearce, A. Zdziarski, A. Aboudan, M. Ajello, G. Ambrosi, D. Bernard, E. Bernardini, V. Bonvicini, A. Brogna, M. Branchesi, C. Budtz-Jorgensen, A. Bykov, R. Campana, M. Cardillo, P. Coppi, D. De Martino, R. Diehl, M. Doro, V. Fioretti, S. Funk, G. Ghisellini, E. Grove, C. Hamadache, D.H. Hartmann, M. Hayashida, J. Isern, G. Kanbach, J. Kiener, J. Knödlseder, C. Labanti, P. Laurent, O. Limousin, F. Longo, K. Mannheim, M. Marisaldi, M. Martinez, M.N. Mazziotta, J. McEnery, S. Mereghetti, G. Minervini, A. Moiseev, A. Morselli, K. Nakazawa, P. Orleanski, J.M. Paredes, B. Patricelli, J. Peyré, G. Piano, M. Pohl, H. Ramarijaona, R. Rando, I. Reichardt, M. Roncadelli, R. Silva, F. Tavecchio, D.J. Thompson, R. Turolla, A. Ulyanov, A. Vacchi, X. Wu, The e-ASTROGAM mission. Exploring the extreme Universe with gamma rays in the MeV-GeV range. Exp. Astron. 44, 25–82 (2017). arXiv:1611.02232.  https://doi.org/10.1007/s10686-017-9533-6 ADSGoogle Scholar
  46. D.S.P. Dearborn, J.B. Blake, On the source of the Al-26 observed in the interstellar medium. Astrophys. J. Lett. 288, L21–L24 (1985).  https://doi.org/10.1086/184413 ADSGoogle Scholar
  47. S. Della Torre, M. Gervasi, P.G. Rancoita, D. Rozza, A. Treves, Pulsar Wind Nebulae as a source of the observed electron and positron excess at high energy: the case of Vela-X. J. High Energy Astrophys. 8, 27–34 (2015). arXiv:1508.01457.  https://doi.org/10.1016/j.jheap.2015.08.001 ADSGoogle Scholar
  48. P.A. Denissenkov, F. Herwig, U. Battino, C. Ritter, M. Pignatari, S. Jones, B. Paxton, i-Process nucleosynthesis and mass retention efficiency in He-shell flash evolution of rapidly accreting white dwarfs. Astrophys. J. Lett. 834, L10 (2017). arXiv:1610.08541.  https://doi.org/10.3847/2041-8213/834/2/L10 ADSGoogle Scholar
  49. R. Diehl, T. Siegert, W. Hillebrandt, S.A. Grebenev, J. Greiner, M. Krause, M. Kromer, K. Maeda, F. Röpke, S. Taubenberger, Early \(^{56}\mbox{Ni}\) decay gamma rays from SN2014J suggest an unusual explosion. Science 345, 1162–1165 (2014). arXiv:1407.3061.  https://doi.org/10.1126/science.1254738 ADSGoogle Scholar
  50. R. Diehl, T. Siegert, W. Hillebrandt, M. Krause, J. Greiner, K. Maeda, F.K. Röpke, S.A. Sim, W. Wang, X. Zhang, SN2014J gamma rays from the \(^{56}\mbox{Ni}\) decay chain. Astron. Astrophys. 574, A72 (2015). arXiv:1409.5477.  https://doi.org/10.1051/0004-6361/201424991 ADSGoogle Scholar
  51. J. Duflo, A.P. Zuker, Microscopic mass formulas. Phys. Rev. C 52, R23–R27 (1995). arXiv:nucl-th/9505011.  https://doi.org/10.1103/PhysRevC.52.R23 ADSGoogle Scholar
  52. K. Ebinger, S. Sinha, C. Fröhlich, A. Perego, M. Hempel, M. Eichler, J. Casanova, M. Liebendörfer, F.K. Thielemann, Explosion dynamics of parametrized spherically symmetric core-collapse supernova simulations, in 14th International Symposium on Nuclei in the Cosmos (NIC2016), ed. by S. Kubono, T. Kajino, S. Nishimura, T. Isobe, S. Nagataki, T. Shima, Y. Takeda (2017), 020611. arXiv:1610.05629.  https://doi.org/10.7566/JPSCP.14.020611 Google Scholar
  53. D. Eichler, M. Livio, T. Piran, D.N. Schramm, Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126–128 (1989).  https://doi.org/10.1038/340126a0 ADSGoogle Scholar
  54. M. Eichler, A. Arcones, A. Kelic, O. Korobkin, K. Langanke, T. Marketin, G. Martinez-Pinedo, I. Panov, T. Rauscher, S. Rosswog, C. Winteler, N.T. Zinner, F.K. Thielemann, The role of fission in neutron star mergers and its impact on the r-process peaks. Astrophys. J. 808, 30 (2015). arXiv:1411.0974.  https://doi.org/10.1088/0004-637X/808/1/30 ADSGoogle Scholar
  55. M. Eichler, K. Nakamura, T. Takiwaki, T. Kuroda, K. Kotake, M. Hempel, R. Cabezón, M. Liebendörfer, F.K. Thielemann, Nucleosynthesis in 2D core-collapse supernovae of 11.2 and \(17.0~\mbox{M}_{\odot}\) progenitors: implications for Mo and Ru production. J. Phys. G, Nucl. Part. Phys. 014, 001 (2018). arXiv:1708.08393.  https://doi.org/10.1088/1361-6471/aa8891 Google Scholar
  56. C.D. Ellison, C.F. Jones, R. Ramaty, Diffusive shock acceleration of decay positrons in supernovae, in International Cosmic Ray Conference, vol. 4 (1990), p. 68 Google Scholar
  57. A.D. Erlykin, A.W. Wolfendale, Supernova remnants and the origin of the cosmic radiation: the electron component. J. Phys. G, Nucl. Part. Phys. 28, 359–378 (2002).  https://doi.org/10.1088/0954-3899/28/3/301 ADSGoogle Scholar
  58. T. Ertl, H.T. Janka, S.E. Woosley, T. Sukhbold, M. Ugliano, A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism. Astrophys. J. 818, 124 (2016). arXiv:1503.07522.  https://doi.org/10.3847/0004-637X/818/2/124 ADSGoogle Scholar
  59. K. Farouqi, K.L. Kratz, B. Pfeiffer, T. Rauscher, F.K. Thielemann, J.W. Truran, Charged-particle and neutron-capture processes in the high-entropy wind of core-collapse supernovae. Astrophys. J. 712, 1359–1377 (2010). arXiv:1002.2346.  https://doi.org/10.1088/0004-637X/712/2/1359 ADSGoogle Scholar
  60. L. Fimiani, D.L. Cook, T. Faestermann, J.M. Gómez-Guzmán, K. Hain, G. Herzog, K. Knie, G. Korschinek, P. Ludwig, J. Park, R.C. Reedy, G. Rugel, Interstellar Fe 60 on the surface of the Moon. Phys. Rev. Lett. 116(15), 151104 (2016).  https://doi.org/10.1103/PhysRevLett.116.151104 ADSGoogle Scholar
  61. D.P. Finkbeiner, N. Weiner, Exciting dark matter and the INTEGRAL/SPI 511 keV signal. Phys. Rev. D 76(8), 083519 (2007). arXiv:astro-ph/0702587.  https://doi.org/10.1103/PhysRevD.76.083519 ADSGoogle Scholar
  62. R.B. Firestone, Observation of 23 supernovae that exploded \(<300~\mbox{pc}\) from Earth during the past 300 kyr. Astrophys. J. 789, 29 (2014).  https://doi.org/10.1088/0004-637X/789/1/29 ADSGoogle Scholar
  63. T. Fischer, S.C. Whitehouse, A. Mezzacappa, F.K. Thielemann, M. Liebendörfer, Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron. Astrophys. 517, A80 (2010). arXiv:0908.1871.  https://doi.org/10.1051/0004-6361/200913106 ADSMATHGoogle Scholar
  64. S.J. Fossey, B. Cooke, G. Pollack, M. Wilde, T. Wright, Supernova 2014J in M82 = Psn J09554214+6940260. Central Bureau Electronic Telegrams 3792 (2014) Google Scholar
  65. C. Freiburghaus, S. Rosswog, F.K. Thielemann, R-process in neutron star mergers. Astrophys. J. Lett. 525, L121–L124 (1999).  https://doi.org/10.1086/312343 ADSGoogle Scholar
  66. U. Frischknecht, R. Hirschi, M. Pignatari, A. Maeder, G. Meynet, C. Chiappini, F.K. Thielemann, T. Rauscher, C. Georgy, S. Ekström, s-Process production in rotating massive stars at solar and low metallicities. Mon. Not. R. Astron. Soc. 456, 1803–1825 (2016). arXiv:1511.05730.  https://doi.org/10.1093/mnras/stv2723 ADSGoogle Scholar
  67. C. Fröhlich, P. Hauser, M. Liebendörfer, G. Martínez-Pinedo, F.K. Thielemann, E. Bravo, N.T. Zinner, W.R. Hix, K. Langanke, A. Mezzacappa, K. Nomoto, Composition of the innermost core-collapse supernova ejecta. Astrophys. J. 637, 415–426 (2006a). arXiv:astro-ph/0410208.  https://doi.org/10.1086/498224 ADSGoogle Scholar
  68. C. Fröhlich, G. Martínez-Pinedo, M. Liebendörfer, F.K. Thielemann, E. Bravo, W.R. Hix, K. Langanke, N.T. Zinner, Neutrino-induced nucleosynthesis of \(A>64\) nuclei: the \(\nu p\) process. Phys. Rev. Lett. 96(14), 142502 (2006b). arXiv:astro-ph/0511376.  https://doi.org/10.1103/PhysRevLett.96.142502 ADSGoogle Scholar
  69. B. Fryxell, K. Olson, P. Ricker, F.X. Timmes, M. Zingale, D.Q. Lamb, P. MacNeice, R. Rosner, J.W. Truran, H. Tufo, FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273–334 (2000).  https://doi.org/10.1086/317361 ADSGoogle Scholar
  70. S-i. Fujimoto, M.-a. Hashimoto, K. Kotake, S. Yamada, Heavy-element nucleosynthesis in a collapsar. Astrophys. J. 656, 382–392 (2007). arXiv:astro-ph/0602460.  https://doi.org/10.1086/509908 ADSGoogle Scholar
  71. S-i. Fujimoto, N. Nishimura, M.-a. Hashimoto, Nucleosynthesis in magnetically driven jets from collapsars. Astrophys. J. 680, 1350–1358 (2008). arXiv:0804.0969.  https://doi.org/10.1086/529416 ADSGoogle Scholar
  72. G.M. Fuller, W.A. Fowler, M.J. Newman, Stellar weak interaction rates for intermediate mass nuclei. III—rate tables for the free nucleons and nuclei with \(A = 21\) to \(A = 60\). Astrophys. J. Suppl(48), 279–319 (1982).  https://doi.org/10.1086/190779 ADSGoogle Scholar
  73. D. García-Senz, E. Bravo, Type Ia supernova models arising from different distributions of igniting points. Astron. Astrophys. 430, 585–602 (2005). arXiv:astro-ph/0409480.  https://doi.org/10.1051/0004-6361:20041628 ADSGoogle Scholar
  74. D. García-Senz, R.M. Cabezón, A. Arcones, A. Relaño, F.K. Thielemann, High-resolution simulations of the head-on collision of white dwarfs. Mon. Not. R. Astron. Soc. 436, 3413–3429 (2013). arXiv:1309.6884.  https://doi.org/10.1093/mnras/stt1821 ADSGoogle Scholar
  75. R. Georgii, S. Plüschke, R. Diehl, G.G. Lichti, V. Schönfelder, H. Bloemen, W. Hermsen, J. Ryan, K. Bennett, COMPTEL upper limits for the \(^{56}\mbox{Co}\) gamma-ray emission from SN1998bu. Astron. Astrophys. 394, 517–523 (2002). arXiv:astro-ph/0208152.  https://doi.org/10.1051/0004-6361:20021133 ADSGoogle Scholar
  76. D.A. Goldstein, D. Kasen, Evidence for sub-Chandrasekhar mass Type Ia supernovae from an extensive survey of radiative transfer models. Astrophys. J. Lett. 852, L33 (2018). arXiv:1801.00789.  https://doi.org/10.3847/2041-8213/aaa409 ADSGoogle Scholar
  77. J. Gómez-Gomar, J. Isern, P. Jean, Prospects for Type IA supernova explosion mechanism identification with gamma rays. Mon. Not. R. Astron. Soc. 295, 1 (1998). arXiv:astro-ph/9709048.  https://doi.org/10.1046/j.1365-8711.1998.29511115.x ADSGoogle Scholar
  78. S. Goriely, Towards more accurate and reliable predictions for nuclear applications. Eur. Phys. J. A 51, 172 (2015).  https://doi.org/10.1140/epja/i2015-15172-2 ADSGoogle Scholar
  79. S. Goriely, A. Bauswein, O. Just, E. Pllumbi, H.T. Janka, Impact of weak interactions of free nucleons on the r-process in dynamical ejecta from neutron star mergers. Mon. Not. R. Astron. Soc. 452, 3894–3904 (2015). arXiv:1504.04377.  https://doi.org/10.1093/mnras/stv1526 ADSGoogle Scholar
  80. S.A. Grebenev, A.A. Lutovinov, S.S. Tsygankov, C. Winkler, Hard-X-ray emission lines from the decay of \(^{44}\mbox{Ti}\) in the remnant of supernova 1987A. Nature 490, 373–375 (2012). arXiv:1211.2656.  https://doi.org/10.1038/nature11473 ADSGoogle Scholar
  81. B.W. Grefenstette, F.A. Harrison, S.E. Boggs, S.P. Reynolds, C.L. Fryer, K.K. Madsen, D.R. Wik, A. Zoglauer, C.I. Ellinger, D.M. Alexander, H. An, D. Barret, F.E. Christensen, W.W. Craig, K. Forster, P. Giommi, C.J. Hailey, A. Hornstrup, V.M. Kaspi, T. Kitaguchi, J.E. Koglin, P.H. Mao, H. Miyasaka, K. Mori, M. Perri, M.J. Pivovaroff, S. Puccetti, V. Rana, D. Stern, N.J. Westergaard, W.W. Zhang, Asymmetries in core-collapse supernovae from maps of radioactive \(^{44}\mbox{Ti}\) in Cassiopeia A. Nature 506, 339–342 (2014). arXiv:1403.4978.  https://doi.org/10.1038/nature12997 ADSGoogle Scholar
  82. B.W. Grefenstette, C.L. Fryer, F.A. Harrison, S.E. Boggs, T. DeLaney, J.M. Laming, S.P. Reynolds, D.M. Alexander, D. Barret, F.E. Christensen, W.W. Craig, K. Forster, P. Giommi, C.J. Hailey, A. Hornstrup, T. Kitaguchi, J.E. Koglin, L. Lopez, P.H. Mao, K.K. Madsen, H. Miyasaka, K. Mori, M. Perri, M.J. Pivovaroff, S. Puccetti, V. Rana, D. Stern, N.J. Westergaard, D.R. Wik, W.W. Zhang, A. Zoglauer, The distribution of radioactive \(^{44}\mbox{Ti}\) in Cassiopeia A. Astrophys. J. 834, 19 (2017). arXiv:1612.02774.  https://doi.org/10.3847/1538-4357/834/1/19 ADSGoogle Scholar
  83. J. Greiner, P.A. Mazzali, D.A. Kann, T. Krühler, E. Pian, S. Prentice, E.F. Olivares, A. Rossi, S. Klose, S. Taubenberger, F. Knust, P.M.J. Afonso, C. Ashall, J. Bolmer, C. Delvaux, R. Diehl, J. Elliott, R. Filgas, J.P.U. Fynbo, J.F. Graham, A.N. Guelbenzu, S. Kobayashi, G. Leloudas, S. Savaglio, P. Schady, S. Schmidl, T. Schweyer, V. Sudilovsky, M. Tanga, A.C. Updike, H. van Eerten, K. Varela, A very luminous magnetar-powered supernova associated with an ultra-long \(\gamma\)-ray burst. Nature 523, 189–192 (2015). arXiv:1509.03279.  https://doi.org/10.1038/nature14579 ADSGoogle Scholar
  84. N. Guessoum, P. Jean, N. Prantzos, Microquasars as sources of positron annihilation radiation. Astron. Astrophys. 457, 753–762 (2006). arXiv:astro-ph/0607296.  https://doi.org/10.1051/0004-6361:20065240 ADSGoogle Scholar
  85. G. Halevi, P. Mösta, \(r\)-Process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments (2018). ArXiv e-prints arXiv:1801.08943
  86. J.A. Harris, W.R. Hix, M.A. Chertkow, C.T. Lee, E.J. Lentz, O.E.B. Messer, Implications for post-processing nucleosynthesis of core-collapse supernova models with Lagrangian particles. Astrophys. J. 843, 2 (2017). arXiv:1701.08876.  https://doi.org/10.3847/1538-4357/aa76de ADSGoogle Scholar
  87. A. Heger, S.E. Woosley, Nucleosynthesis and evolution of massive metal-free stars. Astrophys. J. 724, 341–373 (2010). arXiv:0803.3161.  https://doi.org/10.1088/0004-637X/724/1/341 ADSGoogle Scholar
  88. M. Hempel, J. Schaffner-Bielich, A statistical model for a complete supernova equation of state. Nucl. Phys. A 837, 210 (2010). arXiv:0911.4073 ADSGoogle Scholar
  89. J.C. Higdon, R.E. Lingenfelter, The superbubble origin for galactic cosmic rays. Adv. Space Res. 37, 1913–1917 (2006).  https://doi.org/10.1016/j.asr.2005.07.071 ADSGoogle Scholar
  90. W. Hillebrandt, M. Kromer, F.K. Röpke, A.J. Ruiter, Towards an understanding of Type Ia supernovae from a synthesis of theory and observations. Front. Phys. 8, 116–143 (2013). arXiv:1302.6420.  https://doi.org/10.1007/s11467-013-0303-2 Google Scholar
  91. Y. Hirai, Y. Ishimaru, T.R. Saitoh, M.S. Fujii, J. Hidaka, T. Kajino, Enrichment of r-process elements in dwarf spheroidal galaxies in chemo-dynamical evolution model. Astrophys. J. 814, 41 (2015). arXiv:1509.08934.  https://doi.org/10.1088/0004-637X/814/1/41 ADSGoogle Scholar
  92. W.R. Hix, E.J. Lentz, S.W. Bruenn, A. Mezzacappa, O.E.B. Messer, E. Endeve, J.M. Blondin, J.A. Harris, P. Marronetti, K.N. Yakunin, The multi-dimensional character of core-collapse supernovae. Acta Phys. Pol. B 47, 645 (2016). arxiv:1602.05553.  https://doi.org/10.5506/APhysPolB.47.645 ADSGoogle Scholar
  93. P. Hoeflich, E.Y. Hsiao, C. Ashall, C.R. Burns, T.R. Diamond, M.M. Phillips, D. Sand, M.D. Stritzinger, N. Suntzeff, C. Contreras, K. Krisciunas, N. Morrell, L. Wang, Light and color curve properties of Type Ia supernovae: theory versus observations. Astrophys. J. 846, 58 (2017). arXiv:1707.05350.  https://doi.org/10.3847/1538-4357/aa84b2 ADSGoogle Scholar
  94. S. Honda, W. Aoki, Y. Ishimaru, S. Wanajo, S.G. Ryan, Neutron-capture elements in the very metal poor star HD 122563. Astrophys. J. 643, 1180–1189 (2006). arXiv:astro-ph/0602107.  https://doi.org/10.1086/503195 ADSGoogle Scholar
  95. D. Hooper, P. Blasi, P.D. Serpico, Pulsars as the sources of high energy cosmic ray positrons. J. Cosmol. Astropart. Phys. 0901, 025 (2009). arXiv:0810.1527.  https://doi.org/10.1088/1475-7516/2009/01/025 ADSGoogle Scholar
  96. D. Hooper, I. Cholis, T. Linden, K. Fang, HAWC observations strongly favor pulsar interpretations of the cosmic-ray positron excess. Phys. Rev. D 96(10), 103013 (2017). arXiv:1702.08436.  https://doi.org/10.1103/PhysRevD.96.103013 ADSGoogle Scholar
  97. F. Hoyle, W.A. Fowler, Nucleosynthesis in supernovae. Astrophys. J. 132, 565–590 (1960).  https://doi.org/10.1086/146963 ADSGoogle Scholar
  98. L. Hüdepohl, B. Müller, H.T. Janka, A. Marek, G.G. Raffelt, Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys. Rev. Lett. 104(25), 251101 (2010). arXiv:0912.0260.  https://doi.org/10.1103/PhysRevLett.104.251101 ADSGoogle Scholar
  99. G.J. Hueter, R.E. Lingenfelter, A fireball model for the March 25, 1978 gamma ray burst, in Positron-Electron Pairs in Astrophysics, ed. by M.L. Burns, A.K. Harding, R. Ramaty. American Institute of Physics Conference Series, vol. 101 (1983), pp. 89–93.  https://doi.org/10.1063/1.34134 Google Scholar
  100. I. Iben Jr., A.V. Tutukov, Supernovae of Type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). Astrophys. J. Suppl. Ser. 54, 335–372 (1984).  https://doi.org/10.1086/190932 ADSGoogle Scholar
  101. J. Isern, E. Bravo, A. Hirschmann, The science of \(\gamma\)-ray spectroscopy. Adv. Space Res. 38, 1434–1438 (2006).  https://doi.org/10.1016/j.asr.2005.07.037 ADSGoogle Scholar
  102. J. Isern, P. Jean, E. Bravo, R. Diehl, J. Knödlseder, A. Domingo, A. Hirschmann, P. Hoeflich, F. Lebrun, M. Renaud, S. Soldi, N. Elias-Rosa, M. Hernanz, B. Kulebi, X. Zhang, C. Badenes, I. Domínguez, D. Garcia-Senz, C. Jordi, G. Lichti, G. Vedrenne, P. Von Ballmoos, Observation of SN2011fe with INTEGRAL. I. Pre-maximum phase. Astron. Astrophys. 552, A97 (2013). arXiv:1302.3381.  https://doi.org/10.1051/0004-6361/201220303 ADSGoogle Scholar
  103. J. Isern, P. Jean, E. Bravo, J. Knödlseder, F. Lebrun, E. Churazov, R. Sunyaev, A. Domingo, C. Badenes, D.H. Hartmann, P. Hoeflich, M. Renaud, S. Soldi, N. Elias-Rosa, M. Hernanz, I. Domínguez, D. García-Senz, G.G. Lichti, G. Vedrenne, P. Von Ballmoos, Gamma-ray emission from SN2014J near maximum optical light. Astron. Astrophys. 588, A67 (2016). arXiv:1602.02918.  https://doi.org/10.1051/0004-6361/201526941 ADSGoogle Scholar
  104. W. Iwakami, K. Kotake, N. Ohnishi, S. Yamada, K. Sawada, Three-dimensional simulations of standing accretion shock instability in core-collapse supernovae. Astrophys. J. 678, 1207 (2008). arXiv:0710.2191 ADSGoogle Scholar
  105. K. Iwamoto, K. Nomoto, P. Höflich, H. Yamaoka, S. Kumagai, T. Shigeyama, Theoretical light curves for the Type IC supernova SN 1994I. Astrophys. J. Lett. 437, L115–L118 (1994).  https://doi.org/10.1086/187696 ADSGoogle Scholar
  106. K. Iwamoto, F. Brachwitz, K. Nomoto, N. Kishimoto, H. Umeda, W.R. Hix, F.K. Thielemann, Nucleosynthesis in Chandrasekhar mass models for Type IA supernovae and constraints on progenitor systems and burning-front propagation. Astrophys. J. Suppl. Ser. 125, 439–462 (1999). arXiv:astro-ph/0002337.  https://doi.org/10.1086/313278 ADSGoogle Scholar
  107. A.F. Iyudin, R. Diehl, H. Bloemen, W. Hermsen, G.G. Lichti, D. Morris, J. Ryan, V. Schoenfelder, H. Steinle, M. Varendorff, C. de Vries, C. Winkler, COMPTEL observations of Ti-44 gamma-ray line emission from CAS A. Astron. Astrophys. 284, L1–L4 (1994) ADSGoogle Scholar
  108. A. Janiuk, Nucleosynthesis of elements in gamma-ray burst engines. Astron. Astrophys. 568, A105 (2014). arXiv:1406.4440.  https://doi.org/10.1051/0004-6361/201423822 ADSGoogle Scholar
  109. H.T. Janka, Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012). arXiv:1206.2503.  https://doi.org/10.1146/annurev-nucl-102711-094901 ADSGoogle Scholar
  110. H.T. Janka, T. Melson, A. Summa, Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016). arXiv:1602.05576.  https://doi.org/10.1146/annurev-nucl-102115-044747 ADSGoogle Scholar
  111. P. Jean, J. Knödlseder, W. Gillard, N. Guessoum, K. Ferrière, A. Marcowith, V. Lonjou, J.P. Roques, Spectral analysis of the Galactic \(\mbox{e}^{+}\mbox{e}^{-}\) annihilation emission. Astron. Astrophys. 445(2), 579–589 (2006) ADSGoogle Scholar
  112. J.A. Jiang, M. Doi, K. Maeda, T. Shigeyama, K. Nomoto, N. Yasuda, S.W. Jha, M. Tanaka, T. Morokuma, N. Tominaga, Ž. Ivezić, P. Ruiz-Lapuente, M.D. Stritzinger, P.A. Mazzali, C. Ashall, J. Mould, D. Baade, N. Suzuki, A.J. Connolly, F. Patat, L. Wang, P. Yoachim, D. Jones, H. Furusawa, S. Miyazaki, A hybrid Type Ia supernova with an early flash triggered by helium-shell detonation. Nature 550, 80–83 (2017). arXiv:1710.01824.  https://doi.org/10.1038/nature23908 ADSGoogle Scholar
  113. S. Jones, F.K. Röpke, R. Pakmor, I.R. Seitenzahl, S.T. Ohlmann, P.V.F. Edelmann, Do electron-capture supernovae make neutron stars? First multidimensional hydrodynamic simulations of the oxygen deflagration. Astron. Astrophys. 593, A72 (2016). arXiv:1602.05771.  https://doi.org/10.1051/0004-6361/201628321 ADSGoogle Scholar
  114. O. Just, A. Bauswein, R.A. Pulpillo, S. Goriely, H.T. Janka, Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon. Not. R. Astron. Soc. 448, 541–567 (2015). arXiv:1406.2687.  https://doi.org/10.1093/mnras/stv009 ADSGoogle Scholar
  115. A.I. Karakas, J.C. Lattanzio, The Dawes review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Publ. Astron. Soc. Aust. 31, e030 (2014). arXiv:1405.0062.  https://doi.org/10.1017/pasa.2014.21 ADSGoogle Scholar
  116. A. Kelic, M.V. Ricciardi, K.H. Schmidt, New insight into the fission process from experiments with relativistic heavy-ion beams, in Dynamical Aspects of Nuclear Fission, ed. by J. Kliman, M.G. Itkis, Š. Gmuca (2008), pp. 203–215.  https://doi.org/10.1142/9789812837530_0016 Google Scholar
  117. W.E. Kerzendorf, S. Taubenberger, I.R. Seitenzahl, A.J. Ruiter, Very late photometry of SN 2011fe. Astrophys. J. Lett. 796, L26 (2014). arXiv:1406.6050.  https://doi.org/10.1088/2041-8205/796/2/L26 ADSGoogle Scholar
  118. K. Knie, G. Korschinek, T. Faestermann, E.A. Dorfi, G. Rugel, A. Wallner, \(^{60}\mbox{Fe}\) anomaly in a deep-sea manganese crust and implications for a nearby supernova source. Phys. Rev. Lett. 93(17), 171103 (2004).  https://doi.org/10.1103/PhysRevLett.93.171103 ADSGoogle Scholar
  119. C. Kobayashi, K. Nomoto, I. Hachisu, Subclasses of Type Ia supernovae as the origin of [\(\alpha /\mbox{Fe}\)] ratios in dwarf spheroidal galaxies. Astrophys. J. Lett. 804, L24 (2015). arXiv:1503.06739.  https://doi.org/10.1088/2041-8205/804/1/L24 ADSGoogle Scholar
  120. O. Korobkin, S. Rosswog, A. Arcones, C. Winteler, On the astrophysical robustness of the neutron star merger r-process. Mon. Not. R. Astron. Soc. 426, 1940–1949 (2012). arXiv:1206.2379.  https://doi.org/10.1111/j.1365-2966.2012.21859.x ADSGoogle Scholar
  121. M. Krafczyk, A precision measurement of the cosmic ray positron fraction on the international space station. PhD thesis, Massachusetts Institute of Technology (2016) Google Scholar
  122. K. Kretschmer, R. Diehl, M. Krause, A. Burkert, K. Fierlinger, O. Gerhard, J. Greiner, W. Wang, Kinematics of massive star ejecta in the Milky Way as traced by \(^{26}\mbox{Al}\). Astron. Astrophys. 559, A99 (2013). arXiv:1309.4980.  https://doi.org/10.1051/0004-6361/201322563 ADSGoogle Scholar
  123. M. Kromer, S.A. Sim, M. Fink, F.K. Röpke, I.R. Seitenzahl, W. Hillebrandt, Double-detonation sub-Chandrasekhar supernovae: synthetic observables for minimum helium shell mass models. Astrophys. J. 719, 1067–1082 (2010). arXiv:1006.4489.  https://doi.org/10.1088/0004-637X/719/2/1067 ADSGoogle Scholar
  124. M. Kuhlen, J. Guedes, A. Pillepich, P. Madau, L. Mayer, An off-center density peak in the Milky Way’s dark matter halo? Astrophys. J. 765, 10 (2013). arXiv:1208.4844.  https://doi.org/10.1088/0004-637X/765/1/10 ADSGoogle Scholar
  125. D. Kushnir, B. Katz, S. Dong, E. Livne, R. Fernández, Head-on collisions of white dwarfs in triple systems could explain Type Ia supernovae. Astrophys. J. Lett. 778, L37 (2013). arXiv:1303.1180.  https://doi.org/10.1088/2041-8205/778/2/L37 ADSGoogle Scholar
  126. K. Langanke, G. Martínez-Pinedo, Rate tables for the weak processes of pf-SHELL nuclei in stellar environments. At. Data Nucl. Data Tables 79, 1 (2001) ADSGoogle Scholar
  127. J.M. Lattimer, F. Douglas Swesty, A generalized equation of state for hot, dense matter. Nucl. Phys. A 535, 331–376 (1991).  https://doi.org/10.1016/0375-9474(91)90452-C ADSGoogle Scholar
  128. J.M. Lattimer, D.N. Schramm, Black-hole-neutron-star collisions. Astrophys. J. Lett. 192, L145–L147 (1974).  https://doi.org/10.1086/181612 ADSGoogle Scholar
  129. E.J. Lentz, S.W. Bruenn, W.R. Hix, A. Mezzacappa, O.E.B. Messer, E. Endeve, J.M. Blondin, J.A. Harris, P. Marronetti, K.N. Yakunin, Three-dimensional core-collapse supernova simulated using a \(15~\mbox{M}_{{\odot}}\) progenitor. Astrophys. J. Lett. 807, L31 (2015). arXiv:1505.05110.  https://doi.org/10.1088/2041-8205/807/2/L31 ADSGoogle Scholar
  130. S.C. Leung, K. Nomoto, Explosive nucleosynthesis in near-Chandrasekhar mass white dwarf models for Type Ia supernovae: dependence on model parameters (2017). ArXiv e-prints arXiv:1710.04254
  131. G.G. Lichti, K. den Bennett, J.W. Herder, R. Diehl, D. Morris, J. Ryan, V. Schoenfelder, H. Steinle, A.W. Strong, C. Winkler, COMPTEL upper limits on gamma-ray line emission from Supernova 1991T. Astron. Astrophys. 292, 569–579 (1994) ADSGoogle Scholar
  132. M. Liebendörfer, A simple parameterization of the consequences of deleptonization for simulations of stellar core collapse. Astrophys. J. 633, 1042–1051 (2005). arXiv:astro-ph/0504072.  https://doi.org/10.1086/466517 ADSGoogle Scholar
  133. M. Liebendörfer, A. Mezzacappa, F.K. Thielemann, Conservative general relativistic radiation hydrodynamics in spherical symmetry and comoving coordinates. Phys. Rev. D 104, 003 (2001). arXiv:astro-ph/0012201.  https://doi.org/10.1103/PhysRevD.63.104003 MathSciNetGoogle Scholar
  134. M. Liebendörfer, O.E.B. Messer, A. Mezzacappa, S.W. Bruenn, C.Y. Cardall, F.K. Thielemann, A finite difference representation of neutrino radiation hydrodynamics in spherically symmetric general relativistic spacetime. Astrophys. J. Suppl. Ser. 150, 263–316 (2004). arXiv:astro-ph/0207036.  https://doi.org/10.1086/380191 ADSGoogle Scholar
  135. M. Liebendörfer, S.C. Whitehouse, T. Fischer, The isotropic diffusion source approximation for supernova neutrino transport. Astrophys. J. 698, 1174–1190 (2009). arXiv:0711.2929.  https://doi.org/10.1088/0004-637X/698/2/1174 ADSGoogle Scholar
  136. M. Limongi, A. Chieffi, The nucleosynthesis of \(^{26}\mbox{Al}\) and \(^{60}\mbox{Fe}\) in solar metallicity stars extending in mass from 11 to \(120~\mbox{M}_{\odot}\): the hydrostatic and explosive contributions. Astrophys. J. 647, 483–500 (2006). arXiv:astro-ph/0604297.  https://doi.org/10.1086/505164 ADSGoogle Scholar
  137. M. Limongi, A. Chieffi, Presupernova evolution and explosive nucleosynthesis of zero metal massive stars. Astrophys. J. Suppl. Ser. 199, 38 (2012). arXiv:1202.4581.  https://doi.org/10.1088/0067-0049/199/2/38 ADSGoogle Scholar
  138. T. Linden, S. Profumo, Probing the pulsar origin of the anomalous positron fraction with AMS-02 and atmospheric Cherenkov telescopes. Astrophys. J. 772, 18 (2013). arXiv:1304.1791.  https://doi.org/10.1088/0004-637X/772/1/18 ADSGoogle Scholar
  139. R.L. Lingenfelter, R. Ramaty, Primary cosmic ray positrons and galactic annihilation radiation, in International Cosmic Ray Conference, vol. 1 (1979), p. 501 Google Scholar
  140. E. Livne, Successive detonations in accreting white dwarfs as an alternative mechanism for Type I supernovae. Astrophys. J. Lett. 354, L53–L55 (1990).  https://doi.org/10.1086/185721 ADSGoogle Scholar
  141. P. Ludwig, S. Bishop, R. Egli, V. Chernenko, B. Deneva, T. Faestermann, N. Famulok, L. Fimiani, J.M. Gómez-Guzmán, K. Hain, G. Korschinek, M. Hanzlik, S. Merchel, G. Rugel, Time-resolved 2-million-year-old supernova activity discovered in Earth’s microfossil record. Proc. Natl. Acad. Sci. USA 113, 9232–9237 (2016).  https://doi.org/10.1073/pnas.1601040113 ADSGoogle Scholar
  142. A.I. MacFadyen, S.E. Woosley, Collapsars: gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262–289 (1999). arXiv:astro-ph/9810274.  https://doi.org/10.1086/307790 ADSGoogle Scholar
  143. A.I. MacFadyen, S.E. Woosley, A. Heger, Supernovae, jets, and collapsars. Astrophys. J. 550, 410–425 (2001). arXiv:astro-ph/9910034.  https://doi.org/10.1086/319698 ADSGoogle Scholar
  144. K. Maeda, K. Nomoto, Bipolar supernova explosions: nucleosynthesis and implications for abundances in extremely metal-poor stars. Astrophys. J. 598, 1163–1200 (2003). arXiv:astro-ph/0304172.  https://doi.org/10.1086/378948 ADSGoogle Scholar
  145. K. Maeda, Y. Terada, Progenitors of Type Ia supernovae. Int. J. Mod. Phys. D 25, 1630024 (2016). arXiv:1609.03639 ADSGoogle Scholar
  146. K. Maeda, F.K. Röpke, M. Fink, W. Hillebrandt, C. Travaglio, F.K. Thielemann, Nucleosynthesis in two-dimensional delayed detonation models of Type Ia supernova explosions. Astrophys. J. 712, 624–638 (2010). arXiv:1002.2153.  https://doi.org/10.1088/0004-637X/712/1/624 ADSGoogle Scholar
  147. A. Maeder, G. Meynet, Rotating massive stars: from first stars to gamma ray bursts. Rev. Mod. Phys. 84, 25–63 (2012).  https://doi.org/10.1103/RevModPhys.84.25 ADSGoogle Scholar
  148. W.A. Mahoney, J.C. Ling, High-resolution spectrum of the Galactic center. Astron. Astrophys. Suppl. Ser. 97, 159–163 (1993) ADSGoogle Scholar
  149. M.A. Malkov, P.H. Diamond, R.Z. Sagdeev, Positive charge prevalence in cosmic rays: room for dark matter in the positron spectrum. Phys. Rev. D 94(6), 063006 (2016). arXiv:1607.01820.  https://doi.org/10.1103/PhysRevD.94.063006 ADSGoogle Scholar
  150. D. Maoz, F. Mannucci, G. Nelemans, Observational clues to the progenitors of Type Ia supernovae. Annu. Rev. Astron. Astrophys. 52, 107–170 (2014). arXiv:1312.0628.  https://doi.org/10.1146/annurev-astro-082812-141031 ADSGoogle Scholar
  151. T. Marketin, L. Huther, G. Martínez-Pinedo, Large-scale evaluation of \(\beta\)-decay rates of r-process nuclei with the inclusion of first-forbidden transitions. Phys. Rev. C 93(2), 025805 (2016). arXiv:1507.07442.  https://doi.org/10.1103/PhysRevC.93.025805 ADSGoogle Scholar
  152. K.S. Marquardt, S.A. Sim, A.J. Ruiter, I.R. Seitenzahl, S.T. Ohlmann, M. Kromer, R. Pakmor, F.K. Röpke, Type Ia supernovae from exploding oxygen-neon white dwarfs. Astron. Astrophys. 580, A118 (2015). arXiv:1506.05809.  https://doi.org/10.1051/0004-6361/201525761 ADSGoogle Scholar
  153. D. Martin, A. Perego, A. Arcones, F.K. Thielemann, O. Korobkin, S. Rosswog, Neutrino-driven winds in the aftermath of a neutron star merger: nucleosynthesis and electromagnetic transients. Astrophys. J. 813, 2 (2015). arXiv:1506.05048.  https://doi.org/10.1088/0004-637X/813/1/2 ADSGoogle Scholar
  154. D. Martin, A. Perego, W. Kastaun, A. Arcones, The role of weak interactions in dynamic ejecta from binary neutron star mergers. Class. Quantum Gravity 35(3), 034001 (2018). arXiv:1710.04900.  https://doi.org/10.1088/1361-6382/aa9f5a ADSGoogle Scholar
  155. G. Martínez-Pinedo, T. Fischer, A. Lohs, L. Huther, Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Phys. Rev. Lett. 109(25), 251104 (2012). arXiv:1205.2793.  https://doi.org/10.1103/PhysRevLett.109.251104 ADSGoogle Scholar
  156. S.M. Matz, G.H. Share, M.D. Leising, E.L. Chupp, W.T. Vestrand, Gamma-ray line emission from SN1987A. Nature 331, 416–418 (1988).  https://doi.org/10.1038/331416a0 ADSGoogle Scholar
  157. J.C. McKinney, A. Tchekhovskoy, R.D. Blandford, Alignment of magnetized accretion disks and relativistic jets with spinning black holes. Science 339, 49 (2013). arXiv:1211.3651 ADSGoogle Scholar
  158. C.A. Meakin, I. Seitenzahl, D. Townsley, G.C. Jordan IV., J. Truran, D. Lamb, Study of the detonation phase in the gravitationally confined detonation model of Type Ia supernovae. Astrophys. J. 693, 1188–1208 (2009). arXiv:0806.4972.  https://doi.org/10.1088/0004-637X/693/2/1188 ADSGoogle Scholar
  159. T. Melson, H.T. Janka, R. Bollig, F. Hanke, A. Marek, B. Müller, Neutrino-driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino-nucleon scattering. Astrophys. J. Lett. 808, L42 (2015). arXiv:1504.07631.  https://doi.org/10.1088/2041-8205/808/2/L42 ADSGoogle Scholar
  160. J.d.J. Mendoza-Temis, M.R. Wu, K. Langanke, G. Martínez-Pinedo, A. Bauswein, H.T. Janka, Nuclear robustness of the r process in neutron-star mergers. Phys. Rev. C 92(5), 055805 (2015).  https://doi.org/10.1103/PhysRevC.92.055805 ADSGoogle Scholar
  161. B.D. Metzger, Kilonovae. Living Rev. Relativ. 20, 3 (2017). arXiv:1610.09381.  https://doi.org/10.1007/s41114-017-0006-z ADSGoogle Scholar
  162. P.A. Milne, L.S. The, M.D. Leising, Late light curves of Type Ia supernovae. Astrophys. J. 559, 1019–1031 (2001). arXiv:astro-ph/0104185.  https://doi.org/10.1086/322352 ADSGoogle Scholar
  163. T. Mishenina, T. Gorbaneva, M. Pignatari, F.K. Thielemann, S.A. Korotin, Mn abundances in the stars of the Galactic disc with metallicities \(-1.0 < \mbox{[Fe/H]} < 0.3\). Mon. Not. R. Astron. Soc. 454, 1585–1594 (2015). arXiv:1509.05341.  https://doi.org/10.1093/mnras/stv2038 ADSGoogle Scholar
  164. P. Möller, B. Pfeiffer, K.L. Kratz, New calculations of gross \(\beta\)-decay properties for astrophysical applications: speeding-up the classical r process. Phys. Rev. C 67(5), 055802 (2003).  https://doi.org/10.1103/PhysRevC.67.055802 ADSGoogle Scholar
  165. K. Moore, D.M. Townsley, L. Bildsten, The effects of curvature and expansion on helium detonations on white dwarf surfaces. Astrophys. J. 776, 97 (2013). arXiv:1308.4193.  https://doi.org/10.1088/0004-637X/776/2/97 ADSGoogle Scholar
  166. T.J. Moriya, N. Tominaga, N. Langer, K. Nomoto, S.I. Blinnikov, E.I. Sorokina, Electron-capture supernovae exploding within their progenitor wind. Astron. Astrophys. 569, A57 (2014). arXiv:1407.4563.  https://doi.org/10.1051/0004-6361/201424264 ADSGoogle Scholar
  167. D.J. Morris, K. Bennett, H. Bloemen, R. Diehl, W. Hermsen, G.G. Lichti, M.L. McConnell, J.M. Ryan, V. Schönfelder, Reassessment of the \(^{56}\mbox{Co}\) emission from SN 1991T, in Proceedings of the Fourth Compton Symposium, ed. by C.D. Dermer, M.S. Strickman, J.D. Kurfess. American Institute of Physics Conference Series, vol. 410 (1997), pp. 1084–1088.  https://doi.org/10.1063/1.54174 Google Scholar
  168. I.V. Moskalenko, A.W. Strong, Production and propagation of cosmic ray positrons and electrons. Astrophys. J. 493, 694–707 (1998). arXiv:astro-ph/9710124.  https://doi.org/10.1086/305152 ADSGoogle Scholar
  169. P. Mösta, S. Richers, C.D. Ott, R. Haas, A.L. Piro, K. Boydstun, E. Abdikamalov, C. Reisswig, E. Schnetter, Magnetorotational core-collapse supernovae in three dimensions. Astrophys. J. Lett. 785, L29 (2014). arXiv:1403.1230.  https://doi.org/10.1088/2041-8205/785/2/L29 ADSGoogle Scholar
  170. P. Mösta, C.D. Ott, D. Radice, L.F. Roberts, E. Schnetter, R. Haas, A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528, 376–379 (2015). arXiv:1512.00838.  https://doi.org/10.1038/nature15755 ADSGoogle Scholar
  171. P. Mösta, L.F. Roberts, G. Halevi, C.D. Ott, J. Lippuner, R. Haas, E. Schnetter, R-process nucleosynthesis from three-dimensional magnetorotational core-collapse supernovae (2017). ArXiv e-prints arXiv:1712.09370
  172. B. Müller, S. Wanajo, H.T. Janka, A. Heger, D. Gay, S.A. Sim, Simulations of electron capture and low-mass iron core supernovae. Mem. Soc. Astron. Ital. 88, 288 (2017). arXiv:1710.02641 ADSGoogle Scholar
  173. S. Nagataki, Grb-Sn connection: central engine of long GRBs and explosive nucleosynthesis. Int. J. Mod. Phys. D 20, 1975–1978 (2011).  https://doi.org/10.1142/S0218271811020032 ADSGoogle Scholar
  174. S. Nagataki, R. Takahashi, A. Mizuta, T. Takiwaki, Numerical study of gamma-ray burst jet formation in collapsars. Astrophys. J. 659, 512–529 (2007). arXiv:astro-ph/0608233.  https://doi.org/10.1086/512057 ADSGoogle Scholar
  175. K. Nakamura, T. Takiwaki, T. Kuroda, K. Kotake, Systematic features of axisymmetric neutrino-driven core-collapse supernova models in multiple progenitors. Publ. Astron. Soc. Jpn. 67, 107 (2015). arXiv:1406.2415 ADSGoogle Scholar
  176. T. Nakamura, H. Umeda, K. Nomoto, F.K. Thielemann, A. Burrows, Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars. Astrophys. J. 517, 193–208 (1999). arXiv:astro-ph/9809307.  https://doi.org/10.1086/307167 ADSGoogle Scholar
  177. T. Nakamura, H. Umeda, K. Iwamoto, K. Nomoto, H. Ma, W.R. Hix, F.K. Thielemann, Explosive nucleosynthesis in hypernovae. Astrophys. J. 555, 880–899 (2001). arXiv:astro-ph/0011184.  https://doi.org/10.1086/321495 ADSGoogle Scholar
  178. N. Nishimura, T. Takiwaki, F.K. Thielemann, The r-process nucleosynthesis in the various jet-like explosions of magnetorotational core-collapse supernovae. Astrophys. J. 810, 109 (2015). arXiv:1501.06567.  https://doi.org/10.1088/0004-637X/810/2/109 ADSGoogle Scholar
  179. N. Nishimura, H. Sawai, T. Takiwaki, S. Yamada, F.K. Thielemann, The intermediate r-process in core-collapse supernovae driven by the magneto-rotational instability. Astrophys. J. Lett. 836, L21 (2017). arXiv:1611.02280.  https://doi.org/10.3847/2041-8213/aa5dee ADSGoogle Scholar
  180. K. Nomoto, Accreting white dwarf models for Type 1 supernovae. II—off-center detonation supernovae. Astrophys. J. 257, 780–792 (1982).  https://doi.org/10.1086/160031 ADSGoogle Scholar
  181. K. Nomoto, Nucleosynthesis in hypernovae associated with gamma ray bursts, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2017).  https://doi.org/10.1007/978-3-319-20794-0_86-1 Google Scholar
  182. K. Nomoto, F.K. Thielemann, K. Yokoi, Accreting white dwarf models of Type I supernovae. III—carbon deflagration supernovae. Astrophys. J. 286, 644–658 (1984).  https://doi.org/10.1086/162639 ADSGoogle Scholar
  183. K. Nomoto, N. Tominaga, H. Umeda, C. Kobayashi, K. Maeda, Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl. Phys. A 777, 424–458 (2006). arXiv:astro-ph/0605725.  https://doi.org/10.1016/j.nuclphysa.2006.05.008 ADSGoogle Scholar
  184. K. Nomoto, K. Maeda, M. Tanaka, T. Suzuki, Gamma-ray bursts and magnetar-forming supernovae. Astrophys. Space Sci. 336, 129–137 (2011).  https://doi.org/10.1007/s10509-011-0658-1 ADSGoogle Scholar
  185. K. Nomoto, C. Kobayashi, N. Tominaga, Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).  https://doi.org/10.1146/annurev-astro-082812-140956 ADSGoogle Scholar
  186. H. Norgaard, Al-26 from red giants. Astrophys. J. 236, 895–898 (1980).  https://doi.org/10.1086/157815 ADSGoogle Scholar
  187. E. O’Connor, C.D. Ott, Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011). arXiv:1010.5550.  https://doi.org/10.1088/0004-637X/730/2/70 ADSGoogle Scholar
  188. E. O’Connor, C.D. Ott, The progenitor dependence of the pre-explosion neutrino emission in core-collapse supernovae. Astrophys. J. 762, 126 (2013). arXiv:1207.1100.  https://doi.org/10.1088/0004-637X/762/2/126 ADSGoogle Scholar
  189. M. Oertel, M. Hempel, T. Klähn, S. Typel, Equations of state for supernovae and compact stars. Rev. Mod. Phys. 89(1), 015007 (2017). arXiv:1610.03361.  https://doi.org/10.1103/RevModPhys.89.015007 ADSGoogle Scholar
  190. M. Ono, M. Hashimoto, S. Fujimoto, K. Kotake, S. Yamada, Explosive nucleosynthesis in magnetohydrodynamical jets from collapsars. II—heavy-element nucleosynthesis of s, p, r-processes. Prog. Theor. Phys. 128, 741–765 (2012). arXiv:1203.6488 ADSGoogle Scholar
  191. R. Pakmor, M. Kromer, F.K. Röpke, S.A. Sim, A.J. Ruiter, W. Hillebrandt, Sub-luminous Type Ia supernovae from the mergers of equal-mass white dwarfs with mass \(\sim0.9~\mbox{M}_{\odot}\). Nature 463, 61–64 (2010). arXiv:0911.0926.  https://doi.org/10.1038/nature08642 ADSGoogle Scholar
  192. R. Pakmor, M. Kromer, S. Taubenberger, S.A. Sim, F.K. Röpke, W. Hillebrandt, Normal Type Ia supernovae from violent mergers of white dwarf binaries. Astrophys. J. Lett. 747, L10 (2012). arXiv:1201.5123.  https://doi.org/10.1088/2041-8205/747/1/L10 ADSGoogle Scholar
  193. R. Pakmor, M. Kromer, S. Taubenberger, V. Springel, Helium-ignited violent mergers as a unified model for normal and rapidly declining Type Ia supernovae. Astrophys. J. Lett. 770, L8 (2013). arXiv:1302.2913.  https://doi.org/10.1088/2041-8205/770/1/L8 ADSGoogle Scholar
  194. K.C. Pan, M. Liebendörfer, M. Hempel, F.K. Thielemann, Two-dimensional core-collapse supernova simulations with the isotropic diffusion source approximation for neutrino transport. Astrophys. J. 817, 72 (2016). arXiv:1505.02513.  https://doi.org/10.3847/0004-637X/817/1/72 ADSGoogle Scholar
  195. K.C. Pan, M. Liebendörfer, S.M. Couch, F.K. Thielemann, Equation of state dependent dynamics and multimessenger signals from stellar-mass black hole formation (2017). ArXiv e-prints arXiv:1710.01690
  196. I.V. Panov, I.Y. Korneev, F.K. Thielemann, The r-process in the region of transuranium elements and the contribution of fission products to the nucleosynthesis of nuclei with \(A \le130\). Astron. Lett. 34, 189–197 (2008).  https://doi.org/10.1007/s11443-008-3006-1 ADSGoogle Scholar
  197. O. Papish, H.B. Perets, Supernovae from direct collisions of white dwarfs and the role of helium shell ignition. Astrophys. J. 822, 19 (2016). arXiv:1502.03453.  https://doi.org/10.3847/0004-637X/822/1/19 ADSGoogle Scholar
  198. A. Perego, S. Rosswog, R.M. Cabezón, O. Korobkin, R. Käppeli, A. Arcones, M. Liebendörfer, Neutrino-driven winds from neutron star merger remnants. Mon. Not. R. Astron. Soc. 443, 3134–3156 (2014). arXiv:1405.6730.  https://doi.org/10.1093/mnras/stu1352 ADSGoogle Scholar
  199. A. Perego, M. Hempel, C. Fröhlich, K. Ebinger, M. Eichler, J. Casanova, M. Liebendörfer, F.K. Thielemann, PUSHing core-collapse supernovae to explosions in spherical symmetry I: the model and the case of SN 1987A. Astrophys. J. 806, 275 (2015). arXiv:1501.02845.  https://doi.org/10.1088/0004-637X/806/2/275 ADSGoogle Scholar
  200. A. Perego, R.M. Cabezón, R. Käppeli, An advanced leakage scheme for neutrino treatment in astrophysical simulations. Astrophys. J. Suppl. Ser. 223, 22 (2016). arXiv:1511.08519.  https://doi.org/10.3847/0067-0049/223/2/22 ADSGoogle Scholar
  201. T. Piran, The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143–1210 (2004). arXiv:astro-ph/0405503.  https://doi.org/10.1103/RevModPhys.76.1143 ADSGoogle Scholar
  202. T. Plewa, A.C. Calder, D.Q. Lamb, Type Ia supernova explosion: gravitationally confined detonation. Astrophys. J. Lett. 612, L37–L40 (2004). arXiv:astro-ph/0405163.  https://doi.org/10.1086/424036 ADSGoogle Scholar
  203. N. Prantzos, Astrophysical gamma-ray lines: a probe of stellar nucleosynthesis and star formation. ESA SP 552, 15 (2004). arXiv:astro-ph/0404501 ADSGoogle Scholar
  204. N. Prantzos, C. Boehm, A.M. Bykov, R. Diehl, K. Ferrière, N. Guessoum, P. Jean, J. Knoedlseder, A. Marcowith, I.V. Moskalenko, A. Strong, G. Weidenspointner, The 511 keV emission from positron annihilation in the Galaxy. Rev. Mod. Phys. 83, 1001–1056 (2011). arXiv:1009.4620.  https://doi.org/10.1103/RevModPhys.83.1001 ADSGoogle Scholar
  205. S. Profumo, Dissecting cosmic-ray electron-positron data with Occam’s Razor: the role of known pulsars. Cent. Eur. J. Phys. 10, 1–31 (2011). arXiv:0812.4457.  https://doi.org/10.2478/s11534-011-0099-z Google Scholar
  206. J. Pruet, R.D. Hoffman, S.E. Woosley, H.T. Janka, R. Buras, Nucleosynthesis in early supernova winds. II. The role of neutrinos. Astrophys. J. 644, 1028–1039 (2006). arXiv:astro-ph/0511194.  https://doi.org/10.1086/503891 ADSGoogle Scholar
  207. W.R. Purcell, L.X. Cheng, D.D. Dixon, R.L. Kinzer, J.D. Kurfess, M. Leventhal, M.A. Saunders, J.G. Skibo, D.M. Smith, J. Tueller, OSSE mapping of galactic 511 keV positron annihilation line emission. Astrophys. J. 491, 725–748 (1997).  https://doi.org/10.1086/304994 ADSGoogle Scholar
  208. Y.Z. Qian, S.E. Woosley, Nucleosynthesis in neutrino-driven winds. I. The physical conditions. Astrophys. J. 471, 331 (1996). arXiv:astro-ph/9611094.  https://doi.org/10.1086/177973 ADSGoogle Scholar
  209. R. Ramaty, F.W. Stecker, D. Misra, Low-energy cosmic ray positrons and 0.51-Mev gamma rays from the galaxy. J. Geophys. Res. 75, 1141 (1970).  https://doi.org/10.1029/JA075i007p01141 ADSGoogle Scholar
  210. C. Raskin, F.X. Timmes, E. Scannapieco, S. Diehl, C. Fryer, On Type Ia supernovae from the collisions of two white dwarfs. Mon. Not. R. Astron. Soc. 399, L156–L159 (2009). arXiv:0907.3915.  https://doi.org/10.1111/j.1745-3933.2009.00743.x ADSGoogle Scholar
  211. T. Rauscher, N. Dauphas, I. Dillmann, C. Fröhlich, Z. Fülöp, G. Gyürky, Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep. Prog. Phys. 76(6), 066201 (2013). arXiv:1303.2666.  https://doi.org/10.1088/0034-4885/76/6/066201 ADSGoogle Scholar
  212. M. Renaud, J. Vink, A. Decourchelle, F. Lebrun, P.R. den Hartog, R. Terrier, C. Couvreur, J. Knödlseder, P. Martin, N. Prantzos, A.M. Bykov, The signature of \(^{44}\mbox{Ti}\) in Cassiopeia A revealed by IBIS/ISGRI on INTEGRAL. Astrophys. J. Lett. 647, L41–L44 (2006). arXiv:astro-ph/0606736.  https://doi.org/10.1086/507300 ADSGoogle Scholar
  213. L.F. Roberts, S. Reddy, G. Shen, Medium modification of the charged-current neutrino opacity and its implications. Phys. Rev. C 86(6), 065803 (2012). arXiv:1205.4066.  https://doi.org/10.1103/PhysRevC.86.065803 ADSGoogle Scholar
  214. I.U. Roederer, H. Schatz, J.E. Lawler, T.C. Beers, J.J. Cowan, A. Frebel, I.I. Ivans, C. Sneden, J.S. Sobeck, New detections of arsenic, selenium, and other heavy elements in two metal-poor stars. Astrophys. J. 791, 32 (2014). arXiv:1406.4554.  https://doi.org/10.1088/0004-637X/791/1/32 ADSGoogle Scholar
  215. F.K. Roepke, Combustion in thermonuclear supernova explosions, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2017). arXiv:1703.09274.  https://doi.org/10.1007/978-3-319-20794-0_58-1 Google Scholar
  216. S. Rosswog, D. Kasen, J. Guillochon, E. Ramirez-Ruiz, Collisions of white dwarfs as a new progenitor channel for Type Ia supernovae. Astrophys. J. Lett. 705, L128–L132 (2009). arXiv:0907.3196.  https://doi.org/10.1088/0004-637X/705/2/L128 ADSGoogle Scholar
  217. S. Rosswog, O. Korobkin, A. Arcones, F.K. Thielemann, T. Piran, The long-term evolution of neutron star merger remnants—I. The impact of r-process nucleosynthesis. Mon. Not. R. Astron. Soc. 439, 744–756 (2014). arXiv:1307.2939.  https://doi.org/10.1093/mnras/stt2502 ADSGoogle Scholar
  218. I. Seitenzahl, D. Townsley, Nucleosynthesis in thermonuclear supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2017).  https://doi.org/10.1007/978-3-319-20794-0_87-1 Google Scholar
  219. I.R. Seitenzahl, F. Ciaraldi-Schoolmann, F.K. Röpke, Type Ia supernova diversity: white dwarf central density as a secondary parameter in three-dimensional delayed detonation models. Mon. Not. R. Astron. Soc. 414, 2709–2715 (2011). arXiv:1012.4929.  https://doi.org/10.1111/j.1365-2966.2011.18588.x ADSGoogle Scholar
  220. I.R. Seitenzahl, F. Ciaraldi-Schoolmann, F.K. Röpke, M. Fink, W. Hillebrandt, M. Kromer, R. Pakmor, A.J. Ruiter, S.A. Sim, S. Taubenberger, Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 1156–1172 (2013). arXiv:1211.3015.  https://doi.org/10.1093/mnras/sts402 ADSGoogle Scholar
  221. I.R. Seitenzahl, M. Kromer, S.T. Ohlmann, F. Ciaraldi-Schoolmann, K. Marquardt, M. Fink, W. Hillebrandt, R. Pakmor, F.K. Röpke, A.J. Ruiter, S.A. Sim, S. Taubenberger, Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T. Astron. Astrophys. 592, A57 (2016). arXiv:1606.00089.  https://doi.org/10.1051/0004-6361/201527251 ADSGoogle Scholar
  222. Y. Sekiguchi, M. Shibata, Formation of black hole and accretion disk in a massive high-entropy stellar core collapse. Astrophys. J. 737, 6 (2011). arXiv:1009.5303.  https://doi.org/10.1088/0004-637X/737/1/6 ADSGoogle Scholar
  223. G.H. Share, M.D. Leising, D.C. Messina, W.R. Purcell, Limits on a variable source of 511 keV annihilation radiation near the Galactic center. Astrophys. J. Lett. 358, L45–L48 (1990).  https://doi.org/10.1086/185776 ADSGoogle Scholar
  224. K.J. Shen, L. Bildsten, The ignition of carbon detonations via converging shock waves in white dwarfs. Astrophys. J. 785, 61 (2014). arXiv:1305.6925.  https://doi.org/10.1088/0004-637X/785/1/61 ADSGoogle Scholar
  225. K.J. Shen, D. Kasen, N.N. Weinberg, L. Bildsten, E. Scannapieco, Thermonuclear Ia supernovae from helium shell detonations: explosion models and observables. Astrophys. J. 715, 767–774 (2010). arXiv:1002.2258.  https://doi.org/10.1088/0004-637X/715/2/767 ADSGoogle Scholar
  226. K.J. Shen, S. Toonen, O. Graur, The evolution of the Type Ia supernova luminosity function. Astrophys. J. Lett. 851, L50 (2017). arXiv:1710.09384.  https://doi.org/10.3847/2041-8213/aaa015 ADSGoogle Scholar
  227. S. Shen, R.J. Cooke, E. Ramirez-Ruiz, P. Madau, L. Mayer, J. Guedes, The history of R-process enrichment in the Milky Way. Astrophys. J. 807, 115 (2015). arXiv:1407.3796.  https://doi.org/10.1088/0004-637X/807/2/115 ADSGoogle Scholar
  228. S. Shibagaki, T. Kajino, G.J. Mathews, S. Chiba, S. Nishimura, G. Lorusso, Relative contributions of the weak, main, and fission-recycling r-process. Astrophys. J. 816, 79 (2016). arXiv:1505.02257.  https://doi.org/10.3847/0004-637X/816/2/79 ADSGoogle Scholar
  229. T. Siegert, R. Diehl, M.G.H. Krause, J. Greiner, Revisiting INTEGRAL/SPI observations of \(^{44}\mbox{Ti}\) from Cassiopeia A. Astron. Astrophys. 579, A124 (2015). arXiv:1505.05999.  https://doi.org/10.1051/0004-6361/201525877 ADSGoogle Scholar
  230. T. Siegert, R. Diehl, G. Khachatryan, M.G.H. Krause, F. Guglielmetti, J. Greiner, A.W. Strong, X. Zhang, Gamma-ray spectroscopy of positron annihilation in the Milky Way. Astron. Astrophys. 586, A84 (2016). arXiv:1512.00325.  https://doi.org/10.1051/0004-6361/201527510 ADSGoogle Scholar
  231. S.A. Sim, F.K. Röpke, W. Hillebrandt, M. Kromer, R. Pakmor, M. Fink, A.J. Ruiter, I.R. Seitenzahl, Detonations in sub-Chandrasekhar-mass C+O white dwarfs. Astrophys. J. Lett. 714, L52–L57 (2010). arXiv:1003.2917.  https://doi.org/10.1088/2041-8205/714/1/L52 ADSGoogle Scholar
  232. S. Sinha, C. Fröhlich, K. Ebinger, A. Perego, M. Hempel, M. Eichler, M. Liebendörfer, F.K. Thielemann, PUSHing core-collapse supernovae to explosions in spherical symmetry: nucleosynthesis yields, in 14th International Symposium on Nuclei in the Cosmos (NIC2016), ed. by S. Kubono, T. Kajino, S. Nishimura, T. Isobe, S. Nagataki, T. Shima, Y. Takeda (2017), 020608, arXiv:1701.05203.  https://doi.org/10.7566/JPSCP.14.020608 Google Scholar
  233. G. Skinner, Positron annihilation in the galaxy and integral observations (2013). http://www.iaps.inaf.it/sz/integral2013/talks-posters/39-gks_rome_final.pdf
  234. C. Sneden, A. McWilliam, G.W. Preston, J.J. Cowan, D.L. Burris, B.J. Armosky, The ultra–metal-poor, neutron-capture–rich giant star CS 22892-052. Astrophys. J. 467, 819 (1996).  https://doi.org/10.1086/177656 ADSGoogle Scholar
  235. C. Sneden, J.J. Cowan, R. Gallino, Neutron-capture elements in the early galaxy. Annu. Rev. Astron. Astrophys. 46, 241–288 (2008).  https://doi.org/10.1146/annurev.astro.46.060407.145207 ADSGoogle Scholar
  236. C. Sneden, J.J. Cowan, C. Kobayashi, M. Pignatari, J.E. Lawler, E.A. Den Hartog, M.P. Wood, Iron-group abundances in the metal-poor main-sequence turnoff star HD 84937. Astrophys. J. 817, 53 (2016). arXiv:1511.05985.  https://doi.org/10.3847/0004-637X/817/1/53 ADSGoogle Scholar
  237. M. Sørensen, H. Svensmark, U. Gråe Jørgensen, Near-Earth supernova activity during the past 35 Myr (2017). ArXiv e-prints arXiv:1708.08248
  238. P.A. Sturrock, A model of pulsars. Astrophys. J. 164, 529 (1971).  https://doi.org/10.1086/150865 ADSGoogle Scholar
  239. T. Suda, Y. Katsuta, S. Yamada, T. Suwa, C. Ishizuka, Y. Komiya, K. Sorai, M. Aikawa, M.Y. Fujimoto, Stellar abundances for the galactic archeology (SAGA) database—compilation of the characteristics of known extremely metal-poor stars. Publ. Astron. Soc. Jpn. 60, 1159–1171 (2008). arXiv:0806.3697.  https://doi.org/10.1093/pasj/60.5.1159 ADSGoogle Scholar
  240. T. Suda, S. Yamada, Y. Katsuta, Y. Komiya, C. Ishizuka, W. Aoki, M.Y. Fujimoto, The Stellar Abundances for Galactic Archaeology (SAGA) data base—II. implications for mixing and nucleosynthesis in extremely metal-poor stars and chemical enrichment of the Galaxy. Mon. Not. R. Astron. Soc. 412, 843–874 (2011). arXiv:1010.6272.  https://doi.org/10.1111/j.1365-2966.2011.17943.x ADSGoogle Scholar
  241. T. Sukhbold, T. Ertl, S.E. Woosley, J.M. Brown, H.T. Janka, Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821, 38 (2016). arXiv:1510.04643.  https://doi.org/10.3847/0004-637X/821/1/38 ADSGoogle Scholar
  242. R. Sunyaev, A. Kaniovsky, V. Efremov, M. Gilfanov, E. Churazov, S. Grebenev, A. Kuznetsov, A. Melioranskiy, N. Yamburenko, S. Yunin, D. Stepanov, I. Chulkov, N. Pappe, M. Boyarskiy, E. Gavrilova, V. Loznikov, A. Prudkoglyad, V. Rodin, C. Reppin, W. Pietsch, J. Engelhauser, J. Truemper, W. Voges, E. Kendziorra, M. Bezler, R. Staubert, A.C. Brinkman, J. Heise, W.A. Mels, R. Jager, G.K. Skinner, O. Al-Emam, T.G. Patterson, A.P. Willmore, M. Gilfanov, E. Churazov, Discovery of hard X-ray emission from supernova 1987A. Nature 330, 227–229 (1987).  https://doi.org/10.1038/330227a0 ADSGoogle Scholar
  243. R. Surman, G.C. McLaughlin, W.R. Hix, Nucleosynthesis in the outflow from gamma-ray burst accretion disks. Astrophys. J. 643, 1057–1064 (2006). arXiv:astro-ph/0509365.  https://doi.org/10.1086/501116 ADSGoogle Scholar
  244. Y. Suwa, N. Tominaga, K. Maeda, Importance of \(^{56}\mbox{Ni}\) production on diagnosing explosion mechanism of core-collapse supernova (2017). ArXiv e-prints arXiv:1704.04780
  245. K. Takahashi, J. Witti, H.T. Janka, Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The r-process. Astron. Astrophys. 286 (1994) Google Scholar
  246. T. Takiwaki, K. Kotake, Y. Suwa, A comparison of two- and three-dimensional neutrino-hydrodynamics simulations of core-collapse supernovae. Astrophys. J. 786, 83 (2014). arXiv:1308.5755.  https://doi.org/10.1088/0004-637X/786/2/83 ADSGoogle Scholar
  247. N.R. Tanvir, A.J. Levan, A.S. Fruchter, J. Hjorth, R.A. Hounsell, K. Wiersema, R.L. Tunnicliffe, A ‘kilonova’ associated with the short-duration \(\gamma \)-ray burst GRB 130603B. Nature 500, 547–549 (2013). arXiv:1306.4971.  https://doi.org/10.1038/nature12505 ADSGoogle Scholar
  248. B.J. Teegarden, S.D. Barthelmy, N. Gehrels, J. Tueller, M. Leventhal, Resolution of the 1,238-keV gamma-ray line from supernova 1987A. Nature 339, 122 (1989).  https://doi.org/10.1038/339122a0 ADSGoogle Scholar
  249. F.K. Thielemann, K. Nomoto, K. Yokoi, Explosive nucleosynthesis in carbon deflagration models of Type I supernovae. Astron. Astrophys. 158, 17–33 (1986) ADSGoogle Scholar
  250. F.K. Thielemann, K. Nomoto, M.A. Hashimoto, Core-collapse supernovae and their ejecta. Astrophys. J. 460, 408 (1996).  https://doi.org/10.1086/176980 ADSGoogle Scholar
  251. F.K. Thielemann, F. Brachwitz, P. Höflich, G. Martinez-Pinedo, K. Nomoto, The physics of Type Ia supernovae. New Astron. Rev. 48, 605–610 (2004).  https://doi.org/10.1016/j.newar.2003.12.038 ADSGoogle Scholar
  252. F.K. Thielemann, R. Hirschi, M. Liebendörfer, R. Diehl, Massive stars and their supernovae, in Lecture Notes in Physics, vol. 812, ed. by R. Diehl, D.H. Hartmann, N. Prantzos (Springer, Berlin, 2011), pp. 153–232. arXiv:1008.2144 Google Scholar
  253. F.K. Thielemann, M. Eichler, I.V. Panov, M. Pignatrari, B. Wehmeyer, Making the heaviest elements in a rare class of supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2017a).  https://doi.org/10.1007/978-3-319-20794-0_81-1 Google Scholar
  254. F.K. Thielemann, M. Eichler, I.V. Panov, B. Wehmeyer, Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. Sci. 67, 253–274 (2017b). arXiv:1710.02142.  https://doi.org/10.1146/annurev-nucl-101916-123246 ADSGoogle Scholar
  255. S. Ting, The first five years of the alpha magnetic spectrometer on the international space station. CERN Colloquium of 08/12/2016 (2016). https://indico.cern.ch/event/592392/
  256. L. Titarchuk, P. Chardonnet, The observed galactic annihilation line: possible signature of accreting small-mass black holes in the galactic center. Astrophys. J. 641, 293–301 (2006). arXiv:astro-ph/0511333.  https://doi.org/10.1086/499394 ADSGoogle Scholar
  257. N. Tominaga, M. Tanaka, K. Nomoto, P.A. Mazzali, J. Deng, K. Maeda, H. Umeda, M. Modjaz, M. Hicken, P. Challis, R.P. Kirshner, W.M. Wood-Vasey, C.H. Blake, J.S. Bloom, M.F. Skrutskie, A. Szentgyorgyi, E.E. Falco, N. Inada, T. Minezaki, Y. Yoshii, K. Kawabata, M. Iye, G.C. Anupama, D.K. Sahu, T.P. Prabhu, The unique Type Ib supernova 2005bf: a WN star explosion model for peculiar light curves and spectra. Astrophys. J. Lett. 633, L97–L100 (2005). arXiv:astro-ph/0509557.  https://doi.org/10.1086/498570 ADSGoogle Scholar
  258. C. Travaglio, W. Hillebrandt, M. Reinecke, F.K. Thielemann, Nucleosynthesis in multi-dimensional SN Ia explosions. Astron. Astrophys. 425, 1029–1040 (2004). arXiv:astro-ph/0406281.  https://doi.org/10.1051/0004-6361:20041108 ADSGoogle Scholar
  259. C. Travaglio, F.K. Röpke, R. Gallino, W. Hillebrandt, Type Ia supernovae as sites of the p-process: two-dimensional models coupled to nucleosynthesis. Astrophys. J. 739, 93 (2011). arXiv:1106.0582.  https://doi.org/10.1088/0004-637X/739/2/93 ADSGoogle Scholar
  260. C. Travaglio, R. Gallino, T. Rauscher, F.K. Röpke, W. Hillebrandt, Testing the role of SNe Ia for galactic chemical evolution of p-nuclei with two-dimensional models and with s-process seeds at different metallicities. Astrophys. J. 799, 54 (2015). arXiv:1411.2399.  https://doi.org/10.1088/0004-637X/799/1/54 ADSGoogle Scholar
  261. J.W. Truran, W.D. Arnett, A.G.W. Cameron, Nucleosynthesis in supernova shock waves. Can. J. Phys. 45, 2315 (1967) ADSGoogle Scholar
  262. J. Tueller, S. Barthelmy, N. Gehrels, B.J. Teegarden, M. Leventhal, C.J. MacCallum, Observations of gamma-ray line profiles from SN 1987A. Astrophys. J. Lett. 351, L41–L44 (1990).  https://doi.org/10.1086/185675 ADSGoogle Scholar
  263. C. Tur, A. Heger, S.M. Austin, Production of \(^{26}\mbox{Al}\), \(^{44}\mbox{Ti}\), and \(^{60}\mbox{Fe}\) in core-collapse supernovae: sensitivity to the rates of the triple alpha and \(^{12}\mbox{C}({\alpha }, {\gamma})^{16}\mbox{O}\) reactions. Astrophys. J. 718, 357–367 (2010). arXiv:0908.4283.  https://doi.org/10.1088/0004-637X/718/1/357 ADSGoogle Scholar
  264. M. Ugliano, H.T. Janka, A. Marek, A. Arcones, Progenitor-explosion connection and remnant birth masses for neutrino-driven supernovae of iron-core progenitors. Astrophys. J. 757, 69 (2012). arXiv:1205.3657.  https://doi.org/10.1088/0004-637X/757/1/69 ADSGoogle Scholar
  265. H. Umeda, K. Nomoto, How much \(^{56}\mbox{Ni}\) can be produced in core-collapse supernovae? Evolution and explosions of \(30\mbox{--}100~M_{ {\odot}}\) stars. Astrophys. J. 673, 1014 (2008). arXiv:0707.2598 ADSGoogle Scholar
  266. F. van de Voort, E. Quataert, P.F. Hopkins, D. Kereš, C.A. Faucher-Giguère, Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy. Mon. Not. R. Astron. Soc. 447, 140–148 (2015). arXiv:1407.7039.  https://doi.org/10.1093/mnras/stu2404 ADSGoogle Scholar
  267. G. Vedrenne, J.P. Roques, V. Schönfelder, P. Mandrou, G.G. von Lichti, A. Kienlin, B. Cordier, S. Schanne, J. Knödlseder, G. Skinner, P. Jean, F. Sanchez, P. Caraveo, B. Teegarden, P. von Ballmoos, L. Bouchet, P. Paul, J. Matteson, S. Boggs, C. Wunderer, P. Leleux, G. Weidenspointner, P. Durouchoux, R. Diehl, A. Strong, M. Cassé, M.A. Clair, SPI: the spectrometer aboard INTEGRAL. Astron. Astrophys. 411, L63–L70 (2003).  https://doi.org/10.1051/0004-6361:20031482 ADSGoogle Scholar
  268. J. Vink, J.M. Laming, J.S. Kaastra, J.A.M. Bleeker, H. Bloemen, U. Oberlack, Detection of the 67.9 and 78.4 keV lines associated with the radioactive decay of \(^{44}\mbox{Ti}\) in Cassiopeia A. Astrophys. J. Lett. 560, L79–L82 (2001). arXiv:astro-ph/0107468.  https://doi.org/10.1086/324172 ADSGoogle Scholar
  269. P. von Ballmoos, J. Alvarez, N. Barrière, S. Boggs, A. Bykov, J.M. Del Cura Velayos, F. Frontera, L. Hanlon, M. Hernanz, E. Hinglais, J. Isern, P. Jean, J. Knödlseder, L. Kuiper, M. Leising, B. Pirard, J.P. Prost, R.M.C. da Silva, T Takahashi, J. Tomsick, R. Walter, A. Zoglauer, A DUAL mission for nuclear astrophysics. Exp. Astron. 34, 583–622 (2012).  https://doi.org/10.1007/s10686-011-9286-6 ADSGoogle Scholar
  270. R. Waldman, D. Sauer, E. Livne, H. Perets, A. Glasner, P. Mazzali, J.W. Truran, A. Gal-Yam, Helium shell detonations on low-mass white dwarfs as a possible explanation for SN 2005E. Astrophys. J. 738, 21 (2011). arXiv:1009.3829.  https://doi.org/10.1088/0004-637X/738/1/21 ADSGoogle Scholar
  271. A. Wallner, T. Faestermann, J. Feige, C. Feldstein, K. Knie, G. Korschinek, W. Kutschera, A. Ofan, M. Paul, F. Quinto, G. Rugel, P. Steier, Abundance of live \(^{244}\mbox{Pu}\) in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nat. Commun. 6, 5956 (2015). arXiv:1509.08054 ADSGoogle Scholar
  272. A. Wallner, J. Feige, N. Kinoshita, M. Paul, L.K. Fifield, R. Golser, M. Honda, U. Linnemann, H. Matsuzaki, S. Merchel, G. Rugel, S.G. Tims, P. Steier, T. Yamagata, S.R. Winkler, Recent near-Earth supernovae probed by global deposition of interstellar radioactive \(^{60}\mbox{Fe}\). Nature 532, 69–72 (2016).  https://doi.org/10.1038/nature17196 ADSGoogle Scholar
  273. S. Wanajo, The rp-process in neutrino-driven winds. Astrophys. J. 647, 1323–1340 (2006). arXiv:astro-ph/0602488.  https://doi.org/10.1086/505483 ADSGoogle Scholar
  274. S. Wanajo, K. Nomoto, H.T. Janka, F.S. Kitaura, B. Müller, Nucleosynthesis in electron capture supernovae of asymptotic giant branch stars. Astrophys. J. 695, 208–220 (2009). arXiv:0810.3999.  https://doi.org/10.1088/0004-637X/695/1/208 ADSGoogle Scholar
  275. S. Wanajo, H.T. Janka, B. Müller, Electron-capture supernovae as the origin of elements beyond iron. Astrophys. J. Lett. 726, L15 (2011). arXiv:1009.1000.  https://doi.org/10.1088/2041-8205/726/2/L15 ADSGoogle Scholar
  276. S. Wanajo, Y. Sekiguchi, N. Nishimura, K. Kiuchi, K. Kyutoku, M. Shibata, Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys. J. Lett. 789, L39 (2014). arXiv:1402.7317.  https://doi.org/10.1088/2041-8205/789/2/L39 ADSGoogle Scholar
  277. W. Wang, C.S.J. Pun, K.S. Cheng, Could electron-positron annihilation lines in the Galactic center result from pulsar winds? Astron. Astrophys. 446, 943–948 (2006). arXiv:astro-ph/0509760.  https://doi.org/10.1051/0004-6361:20053559 ADSGoogle Scholar
  278. R.F. Webbink, Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae. Astrophys. J. 277, 355–360 (1984).  https://doi.org/10.1086/161701 ADSGoogle Scholar
  279. B. Wehmeyer, M. Pignatari, F.K. Thielemann, Galactic evolution of rapid neutron capture process abundances: the inhomogeneous approach. Mon. Not. R. Astron. Soc. 452, 1970–1981 (2015). arXiv:1501.07749.  https://doi.org/10.1093/mnras/stv1352 ADSGoogle Scholar
  280. C. Winteler, R. Käppeli, A. Perego, A. Arcones, N. Vasset, N. Nishimura, M. Liebendörfer, F.K. Thielemann, Magnetorotationally driven supernovae as the origin of early galaxy r-process elements? Astrophys. J. Lett. 750, L22 (2012). arXiv:1203.0616.  https://doi.org/10.1088/2041-8205/750/1/L22 ADSGoogle Scholar
  281. A. Wongwathanarat, H.T. Janka, E. Müller, E. Pllumbi, S. Wanajo, Production and distribution of \(^{44}\mbox{Ti}\) and \(^{56}\mbox{Ni}\) in a three-dimensional supernova model resembling Cassiopeia A. Astrophys. J. 842, 13 (2017). arXiv:1610.05643.  https://doi.org/10.3847/1538-4357/aa72de ADSGoogle Scholar
  282. S.E. Woosley, A. Heger, Nucleosynthesis and remnants in massive stars of solar metallicity. Phys. Rep. 442, 269–283 (2007). arXiv:astro-ph/0702176.  https://doi.org/10.1016/j.physrep.2007.02.009 ADSGoogle Scholar
  283. S.E. Woosley, T.A. Weaver, Sub-Chandrasekhar mass models for Type IA supernovae. Astrophys. J. 423, 371–379 (1994).  https://doi.org/10.1086/173813 ADSGoogle Scholar
  284. S.E. Woosley, T.A. Weaver, The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181 (1995).  https://doi.org/10.1086/192237 ADSGoogle Scholar
  285. S.E. Woosley, R.G. Eastman, T.A. Weaver, P.A. Pinto, SN 1993J: a Type IIb supernova. Astrophys. J. 429, 300–318 (1994a).  https://doi.org/10.1086/174319 ADSGoogle Scholar
  286. S.E. Woosley, J.R. Wilson, G.J. Mathews, R.D. Hoffman, B.S. Meyer, The r-process and neutrino-heated supernova ejecta. Astrophys. J. 433, 229–246 (1994b).  https://doi.org/10.1086/174638 ADSGoogle Scholar
  287. S.E. Woosley, A. Heger, T.A. Weaver, The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).  https://doi.org/10.1103/RevModPhys.74.1015 ADSGoogle Scholar
  288. M.R. Wu, R. Fernández, G. Martínez-Pinedo, B.D. Metzger, Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers. Mon. Not. R. Astron. Soc. 463, 2323–2334 (2016). arxiv:1607.05290.  https://doi.org/10.1093/mnras/stw2156 ADSGoogle Scholar
  289. Y. Yamamoto, F. Si, H. Nagakura, S. Yamada, Post-shock-revival evolution in the neutrino-heating mechanism of core-collapse supernovae. Astrophys. J. 771, 27 (2013). arXiv:1209.4824.  https://doi.org/10.1088/0004-637X/771/1/27 ADSGoogle Scholar
  290. T. Yamasaki, S. Yamada, Effects of rotation on the revival of a stalled shock in supernova explosions. Astrophys. J. 623, 1000–1010 (2005). arXiv:astro-ph/0412625.  https://doi.org/10.1086/428496 ADSGoogle Scholar
  291. T. Yoshida, Y. Suwa, H. Umeda, M. Shibata, K. Takahashi, Explosive nucleosynthesis of ultra-stripped Type Ic supernovae: application to light trans-iron elements. Mon. Not. R. Astron. Soc. 471, 4275–4285 (2017). arXiv:1707.02685.  https://doi.org/10.1093/mnras/stx1738 ADSGoogle Scholar
  292. W. Zheng, I. Shivvers, A.V. Filippenko, K. Itagaki, K.I. Clubb, O.D. Fox, M.L. Graham, P.L. Kelly, J.C. Mauerhan, Estimating the first-light time of the Type Ia supernova 2014J in M82. Astrophys. J. Lett. 783, L24 (2014). arXiv:1401.7968.  https://doi.org/10.1088/2041-8205/783/1/L24 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Friedrich-Karl Thielemann
    • 1
    • 2
  • Jordi Isern
    • 3
  • Albino Perego
    • 4
  • Peter von Ballmoos
    • 5
  1. 1.Dept of PhysicsUniv. of BaselBaselSwitzerland
  2. 2.GSI DarmstadtDarmstadtGermany
  3. 3.Institut de Ciències de l’Espai (ICE, CSIC) & Institut d’Estudis Espacials de Catalunya (IEEC)BarcelonaSpain
  4. 4.INFNSezione di Milano-Bicocca, gruppo collegato di ParmaParmaItaly
  5. 5.Institut de Recherche en Astrophysique et Planétologie (UPS/CNRS)ToulouseFrance

Personalised recommendations