Advertisement

Space Science Reviews

, 214:57 | Cite as

Type Ia Supernova Cosmology

  • B. Leibundgut
  • M. Sullivan
Article
  • 234 Downloads
Part of the following topical collections:
  1. Supernovae

Abstract

The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

Keywords

Cosmology Supernovae 

Notes

Acknowledgements

B.L. acknowledges support for this work by the Deutsche Forschungsgemeinschaft through the TransRegio Project TRR33 “The Dark Universe”.

References

  1. R. Amanullah, J. Johansson, A. Goobar et al., Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 μm. Mon. Not. R. Astron. Soc. 453, 3300 (2015) ADSCrossRefGoogle Scholar
  2. P. Astier, C. Balland, M. Brescia et al., Extending the supernova Hubble diagram to \(z \sim 1.5\) with the Euclid space mission. Astron. Astrophys. 572, A80 (2014) CrossRefGoogle Scholar
  3. N.A. Bahcall, J.P. Ostriker, S. Perlmutter, P.J. Steinhardt, The cosmic triangle: revealing the state of the universe. Science 284, 1481 (1999) ADSCrossRefGoogle Scholar
  4. R.L. Barone-Nugent, C. Lidman, J.S.B. Wyithe et al., Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology. Mon. Not. R. Astron. Soc. 425, 1007 (2012) ADSCrossRefGoogle Scholar
  5. M. Betoule, R. Kessler, J. Guy et al., Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 568, A22 (2014) CrossRefGoogle Scholar
  6. S. Blondin, T.M. Davis, K. Krisciunas et al., Time dilation in Type Ia supernova spectra at high redshift. Astrophys. J. 682, 724 (2008) ADSCrossRefGoogle Scholar
  7. D. Branch, The Hubble diagram for Type I supernovae. Astrophys. J. 258, 35 (1982) ADSCrossRefGoogle Scholar
  8. D. Branch, G.A. Tammann, Type Ia supernovae as standard candles. Annu. Rev. Astron. Astrophys. 30, 359 (1992) ADSCrossRefGoogle Scholar
  9. D. Branch, Type Ia supernovae and the Hubble constant. Annu. Rev. Astron. Astrophys. 36, 17 (1998) ADSCrossRefGoogle Scholar
  10. D. Branch, J.C. Wheeler, Supernova Explosions: Astron. Astrophys. Library. (Springer, Germany, 2017). ISBN 978-3-662-55052-6 CrossRefGoogle Scholar
  11. C.R. Burns, M. Stritzinger, M.M. Phillips et al., The Carnegie supernova project: light-curve fitting with SNooPy. Astron. J. 141, 19 (2011) ADSCrossRefGoogle Scholar
  12. M.J. Childress, C. Lidman, T.M. Davis et al., OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release. Mon. Not. R. Astron. Soc. 472, 273 (2017) ADSGoogle Scholar
  13. A. Cikota, F. Patat, S. Cikota, J. Spyromilio, G. Rau, Common continuum polarization properties: a possible link between proto-planetary nebulae and Type Ia supernova progenitors. Mon. Not. R. Astron. Soc. 471, 2111 (2017) ADSGoogle Scholar
  14. A. Conley, M. Sullivan, E.Y. Hsiao et al., SiFTO: an empirical method for fitting SN Ia light curves. Astrophys. J. 681, 482 (2008) ADSCrossRefGoogle Scholar
  15. A. Conley, J. Guy, M. Sullivan et al., Supernova constraints and systematic uncertainties from the first three years of the supernova legacy survey. Astrophys. J. Suppl. Ser. 192, 1 (2011) ADSCrossRefGoogle Scholar
  16. G. Contardo, B. Leibundgut, W.D. Vacca, Epochs of maximum light and bolometric light curves of Type Ia supernovae. Astron. Astrophys. 359, 876 (2000) ADSGoogle Scholar
  17. T. de Jaeger, L. Galbany, A.V. Filippenko et al., SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method. Mon. Not. R. Astron. Soc. 472, 4233 (2017a) ADSCrossRefGoogle Scholar
  18. T. de Jaeger, S. González-Gaitán, M. Hamuy et al., A Type II supernova Hubble diagram from the CSP-I, SDSS-II, and SNLS surveys. Astrophys. J. 835, 166 (2017b) ADSCrossRefGoogle Scholar
  19. S. Dhawan, B. Leibundgut, J. Spyromilio, K. Maguire, Near-infrared light curves of Type Ia supernovae: studying properties of the second maximum. Mon. Not. R. Astron. Soc. 448, 1345 (2015) ADSCrossRefGoogle Scholar
  20. S. Dhawan, B. Leibundgut, J. Spyromilio, S. Blondin, A reddening-free method to estimate the 56Ni mass of Type Ia supernovae. Astron. Astrophys. 588, A84 (2016) ADSCrossRefGoogle Scholar
  21. S. Dhawan, B. Leibundgut, J. Spyromilio, S. Blondin, Two classes of fast-declining Type Ia supernovae. Astron. Astrophys. 602, A118 (2017) ADSCrossRefGoogle Scholar
  22. S. Dhawan, S.W. Jha, B. Leibundgut, Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles. Astron. Astrophys. 609, A72 (2018) ADSCrossRefGoogle Scholar
  23. B. Dilday, D.A. Howell, B. Cenko et al., PTF 11kx: a Type Ia supernova with a symbiotic nova progenitor. Science 237, 942 (2012) ADSCrossRefGoogle Scholar
  24. H.K. Fakhouri, K. Boone, G. Aldering et al., Improving cosmological distance measurements using twin Type Ia supernovae. Astrophys. J. 815, 58 (2015) ADSCrossRefGoogle Scholar
  25. U. Feindt, M. Kerschhaggl, M. Kowalski et al., Measuring cosmic bulk flows with Type Ia supernovae from the Nearby Supernova Factory. Astron. Astrophys. 560, A90 (2013) CrossRefGoogle Scholar
  26. A.V. Filippenko, M.W. Richmond, T. Matheson et al., The peculiar Type Ia SN 1991T—detonation of a white dwarf? Astrophys. J. Lett. 384, L15 (1992) ADSCrossRefGoogle Scholar
  27. M. Fink, M. Kromer, I.R. Seitenzahl et al., Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae. Mon. Not. R. Astron. Soc. 438, 1762 (2014) ADSCrossRefGoogle Scholar
  28. R.J. Foley, P.J. Challis, R. Chornock et al., Type Iax supernovae: a new class of stellar explosions. Astrophys. J. 767, 57 (2013) ADSCrossRefGoogle Scholar
  29. W.L. Freedman, B.F. Madore, B.K. Gibson et al., Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553, 47 (2001) ADSCrossRefGoogle Scholar
  30. W.L. Freedman, C.R. Burns, M.M. Phillips et al., The Carnegie supernova project: first near-infrared Hubble diagram to \(z \sim 0.7\). Astrophys. J. 704, 1036 (2009) ADSCrossRefGoogle Scholar
  31. E.E.E. Gall, R. Kotak, B. Leibundgut et al., An updated Type II supernova Hubble diagram (2017). arXiv:1705.10806
  32. P. Garnavich, Discovery of cosmic acceleration, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2017).  https://doi.org/10.1007/978-3-319-20794-0_104-1 Google Scholar
  33. G. Goldhaber, D.E. Groom, A. Kim et al., Timescale stretch parameterization of Type Ia supernova B-band light curves. Astrophys. J. 558, 359 (2001) ADSCrossRefGoogle Scholar
  34. A. Goobar, S. Perlmutter, Feasibility of measuring the cosmological constant lambda and mass density omega using Type Ia supernovae. Astrophys. J. 450, 14 (1995) ADSCrossRefGoogle Scholar
  35. A. Goobar, B. Leibundgut, Supernova cosmology: legacy and future. Annu. Rev. Nucl. Part. Sci. 61, 251 (2011) ADSCrossRefGoogle Scholar
  36. J. Guy, P. Astier, S. Baumont et al., SALT2: using distant supernovae to improve the use of Type Ia supernovae as distance indicators. Astron. Astrophys. 466, 11 (2007) ADSCrossRefGoogle Scholar
  37. M. Hamuy, M.M. Phillips, N.B. Suntzeff et al., The Hubble diagram of the Calán/Tololo Type Ia supernovae and the value of \(H_{0}\). Astron. J. 112, 2398 (1996) ADSCrossRefGoogle Scholar
  38. T.W.-S. Holoien, K.Z. Stanek, C.S. Kochanek et al., The ASAS-SN bright supernova catalogue—I. 2013–2014. Mon. Not. R. Astron. Soc. 464, 2672 (2017a) ADSCrossRefGoogle Scholar
  39. T.W.-S. Holoien, J.S. Brown, K.Z. Stanek et al., The ASAS-SN bright supernova catalogue—II. 2015. Mon. Not. R. Astron. Soc. 467, 1098 (2017b) ADSGoogle Scholar
  40. T.W.-S. Holoien, J.S. Brown, K.Z. Stanek et al., The ASAS-SN bright supernova catalogue—III. 2016. Mon. Not. R. Astron. Soc. 471, 4966 (2017c) ADSCrossRefGoogle Scholar
  41. D.A. Howell, M. Sullivan, P.E. Nugent et al., The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443, 308 (2006) ADSCrossRefGoogle Scholar
  42. E.M.L. Humphreys, M.J. Reid, J.M. Moran, L.J. Greenhill, A.L. Argon, Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant. Astrophys. J. 775, 13 (2013) ADSCrossRefGoogle Scholar
  43. S. Jha, A.G. Riess, R.P. Kirshner, Improved distances to Type Ia supernovae with Multicolor Light-Curve Shapes: MLCS2k2. Astrophys. J. 659, 122 (2007) ADSCrossRefGoogle Scholar
  44. S.W. Jha, Type Iax supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2017).  https://doi.org/10.1007/978-3-319-20794-0_42-1 Google Scholar
  45. D.O. Jones, D.M. Scolnic, A.G. Riess et al., Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters (2018). arXiv:1710.00846
  46. W.E. Kerzendorf, G. Strampelli, K.J. Shen et al., A Search for a Surviving White Dwarf Companion in SN 1006 (2017). arXiv:1709.06566
  47. K. Krisciunas, M.M. Phillips, N.B. Suntzeff, Hubble diagrams of Type Ia supernovae in the near-infrared. Astrophys. J. Lett. 602, L81 (2004) ADSCrossRefGoogle Scholar
  48. K. Krisciunas, The infrared Hubble diagram of Type Ia supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016).  https://doi.org/10.1007/978-3-319-20794-0_103-1 Google Scholar
  49. B. Leibundgut, Cosmological implications from observations of Type Ia supernovae. Annu. Rev. Astron. Astrophys. 39, 67 (2001) ADSCrossRefzbMATHGoogle Scholar
  50. B. Leibundgut, Supernovae and cosmology. Gen. Relativ. Gravit. 40, 221 (2008) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. B. Leibundgut, History of supernovae as distance indicators, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016).  https://doi.org/10.1007/978-3-319-20794-0_99-1 Google Scholar
  52. B. Leibundgut, R. Schommer, M. Phillips et al., Time dilation in the light curve of the distant Type Ia supernova SN 1995K. Astrophys. J. Lett. 466, L21 (1996) ADSCrossRefGoogle Scholar
  53. W. Li, A.V. Filippenko, R. Chornock et al., SN 2002cx: the most peculiar known Type Ia supernova. Publ. Astron. Soc. Pac. 115, 453 (2003) ADSCrossRefGoogle Scholar
  54. W. Li, A.V. Filippenko, E. Gates et al., The unique Type Ia supernova 2000cx in NGC 524. Publ. Astron. Soc. Pac. 113, 1178 (2001) ADSCrossRefGoogle Scholar
  55. W. Li, J.S. Bloom, P. Podsiadlowski et al., Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480, 348 (2011) ADSCrossRefGoogle Scholar
  56. K. Maguire, M. Sullivan, F. Patat et al., A statistical analysis of circumstellar material in Type Ia supernovae. Mon. Not. R. Astron. Soc. 436, 222 (2013) ADSCrossRefGoogle Scholar
  57. K. Maguire, Type Ia supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016).  https://doi.org/10.1007/978-3-319-20794-0_36-1 Google Scholar
  58. K.S. Mandel, D.M. Scolnic, H. Shariff, R.J. Foley, R.P. Kirshner, Star formation, supernovae, iron, and \(\alpha \): consistent cosmic and galactic histories. Astrophys. J. 842, 93 (2017) ADSCrossRefGoogle Scholar
  59. G. Narayan, A. Rest, B.E. Tucker et al., Light curves of 213 Type Ia supernovae from the ESSENCE survey. Astrophys. J. Suppl. Ser. 224, 3 (2016) ADSCrossRefGoogle Scholar
  60. P. Nugent, M. Phillips, E. Baron, D. Branch, P. Hauschildt, Evidence for a spectroscopic sequence among Type 1a supernovae. Astrophys. J. Lett. 455, 147 (1995) ADSCrossRefGoogle Scholar
  61. P. Nugent, M. Hamuy, Cosmology with Type IIP supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016).  https://doi.org/10.1007/978-3-319-20794-0_108-1 Google Scholar
  62. P.E. Nugent, M. Sullivan, S.B. Cenko et al., Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star. Nature 480, 344 (2011) ADSCrossRefGoogle Scholar
  63. F. Patat, P. Chandra, R. Chevalier et al., Detection of circumstellar material in a normal Type Ia supernova. Science 317, 924 (2007) ADSCrossRefGoogle Scholar
  64. S. Perlmutter, G. Aldering, G. Goldhaber et al., Measurements of \(\varOmega \) and \(\varLambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999) ADSCrossRefzbMATHGoogle Scholar
  65. S. Perlmutter, B.P. Schmidt, Measuring cosmology with supernovae, in Supernovae and Gamma-Ray Bursters. Lecture Notes in Physics, vol. 598 (2003), p. 195 CrossRefGoogle Scholar
  66. M.M. Phillips, The absolute magnitudes of Type Ia supernovae. Astrophys. J. Lett. 413, L105 (1993) ADSCrossRefGoogle Scholar
  67. M.M. Phillips, L.A. Wells, N.B. Suntzeff et al., SN 1991T—further evidence of the heterogeneous nature of type Ia supernovae. Astron. J. 103, 1632 (1992) ADSCrossRefGoogle Scholar
  68. M.M. Phillips, W. Li, J.A. Frieman et al., The peculiar SN 2005hk: do some Type Ia supernovae explode as deflagrations? Publ. Astron. Soc. Pac. 119, 360 (2007) ADSCrossRefGoogle Scholar
  69. M.M. Phillips, J.D. Simon, N. Morrell et al., On the source of the dust extinction in Type Ia supernovae and the discovery of anomalously strong Na I absorption. Astrophys. J. 779, 38 (2013) ADSCrossRefGoogle Scholar
  70. M.M. Phillips, C.R. Burns, The peak luminosity–decline rate relationship for Type Ia supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016).  https://doi.org/10.1007/978-3-319-20794-0_100-1 Google Scholar
  71. Planck Collaboration, P.A.R. Ade, N. Aghanim et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016) CrossRefGoogle Scholar
  72. A. Rest, D. Scolnic, R.J. Foley et al., Cosmological constraints from measurements of Type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 survey. Astrophys. J. 795, 44 (2014) ADSCrossRefGoogle Scholar
  73. A.G. Riess, A.V. Filippenko, D.C. Leonard et al., Time dilation from spectral feature age measurements of Type Ia supernovae. Astron. J. 114, 722 (1997) ADSCrossRefGoogle Scholar
  74. A.G. Riess, A.V. Filippenko, P. Challis et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  75. A.G. Riess, L.M. Macri, S.L. Hoffmann et al., A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016) ADSCrossRefGoogle Scholar
  76. A.G. Riess, Confirming cosmic acceleration in the decade that followed from SNe Ia at \(z>1\), in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016).  https://doi.org/10.1007/978-3-319-20794-0_105-1 Google Scholar
  77. M. Rigault, G. Aldering, M. Kowalski et al., Confirmation of a star formation bias in Type Ia supernova distances and its effect on the measurement of the Hubble constant. Astrophys. J. 802, 20 (2015) ADSCrossRefGoogle Scholar
  78. A. Saha, L.M. Macri, The Hubble constant from supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016).  https://doi.org/10.1007/978-3-319-20794-0_102-1 Google Scholar
  79. A. Sandage, The ability of the 200-inch telescope to discriminate between selected world models. Astrophys. J. 133, 355 (1961) ADSMathSciNetCrossRefGoogle Scholar
  80. A.R. Sandage, Cosmology: a search for two numbers. Phys. Today 23, 34 (1970) CrossRefGoogle Scholar
  81. R.A. Scalzo, A.J. Ruiter, S.A. Sim, The ejected mass distribution of Type Ia supernovae: a significant rate of non-Chandrasekhar-mass progenitors. Mon. Not. R. Astron. Soc. 445, 2535 (2014a) ADSCrossRefGoogle Scholar
  82. R. Scalzo, G. Aldering, P. Antilogus et al., Type Ia supernova bolometric light curves and ejected mass estimates from the Nearby Supernova Factory. Mon. Not. R. Astron. Soc. 440, 1498 (2014b) ADSCrossRefGoogle Scholar
  83. B.P. Schmidt, N.B. Suntzeff, M.M. Phillips et al., The High-Z supernova search: measuring cosmic deceleration and global curvature of the universe using Type Ia supernovae. Astrophys. J. 507, 46 (1998) ADSCrossRefGoogle Scholar
  84. D. Scolnic, A. Rest, A. Riess et al., Systematic uncertainties associated with the cosmological analysis of the first Pan-STARRS1 Type Ia supernova sample. Astrophys. J. 795, 45 (2014) ADSCrossRefGoogle Scholar
  85. D.M. Scolnic, R. Kessler, Measuring Type Ia supernova populations of stretch and color and predicting distance biases. Astrophys. J. 822, 35L (2016) ADSCrossRefGoogle Scholar
  86. D.M. Scolnic, D.O. Jones, A. Rest et al., The Complete Light-curve Sample of Spectroscopically Confirmed Type Ia Supernovae from Pan-STARRS1 and Cosmological Constraints from The Combined Pantheon Sample (2017). arXiv:1710.00845
  87. H. Shariff, X. Jiao, R. Trotta, D.A. van Dyk, BAHAMAS: new analysis of Type Ia supernovae reveals inconsistencies with standard cosmology. Astrophys. J. 827, 1 (2016) ADSCrossRefGoogle Scholar
  88. S.J. Smartt, S. Valenti, M. Fraser et al., PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015) CrossRefGoogle Scholar
  89. V. Stanishev, A. Goobar, R. Amanullah et al., Type Ia Supernova Cosmology in the Near-Infrared (2015). arXiv:1505.07707
  90. A. Sternberg, A. Gal-Yam, J.D. Simon et al., Circumstellar material in Type Ia supernovae via sodium absorption features. Science 333, 856 (2011) ADSCrossRefGoogle Scholar
  91. A. Sternberg, A. Gal-Yam, J.D. Simon et al., Multi-epoch high-spectral-resolution observations of neutral sodium in 14 Type Ia supernova. Mon. Not. R. Astron. Soc. 443, 1849 (2014) ADSCrossRefGoogle Scholar
  92. M. Stritzinger, B. Leibundgut, Lower limits on the Hubble constant from models of type Ia supernovae. Astron. Astrophys. 431, 423 (2005) ADSCrossRefGoogle Scholar
  93. M. Stritzinger, B. Leibundgut, S. Walch, G. Contardo, Constraints on the progenitor systems of type Ia supernovae. Astron. Astrophys. 450, 241 (2006) ADSCrossRefGoogle Scholar
  94. S. Taubenberger, The extremes of thermonuclear supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016).  https://doi.org/10.1007/978-3-319-20794-0_31-1 Google Scholar
  95. S. Taubenberger, S. Benetti, M. Childress et al., High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios. Mon. Not. R. Astron. Soc. 412, 2735 (2011) ADSCrossRefGoogle Scholar
  96. R. Tripp, A two-parameter luminosity correction for Type Ia supernovae. Astron. Astrophys. 331, 815 (1998) ADSGoogle Scholar
  97. O.C. Wilson, Possible applications of supernovae to the study of the nebular red shifts. Astrophys. J. 90, 634 (1939) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.European Southern ObservatoryGarchingGermany
  2. 2.Excellence Cluster UniverseTechnische Universität MünchenGarchingGermany
  3. 3.Department of Physics and AstronomyUniversity of SouthamptonHampshireUK

Personalised recommendations