Advertisement

Space Science Reviews

, 214:41 | Cite as

Cosmic Ray Production in Supernovae

  • A. M. BykovEmail author
  • D. C. Ellison
  • A. Marcowith
  • S. M. Osipov
Article
Part of the following topical collections:
  1. Supernovae

Abstract

We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above \(10^{18}\mbox{ eV}\) over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.

Keywords

Supernovae Cosmic rays Supernova remnants Interstellar medium Magnetic turbulence 

Notes

Acknowledgements

A.M.B., D.C.E. and A.M. thank the staff of ISSI for their generous hospitality and assistance. The authors thank the referees for the constructive comments. A.M. Bykov and S.M. Osipov were supported by the RSF grant 16-12-10225. Some of the modeling was performed at the “Tornado” subsystem of the St. Petersburg Polytechnic University supercomputing center. A.M. Bykov thanks R.A. Chevalier and J.C. Raymond for discussions, R. Margutti for the Fig. 1, and M.A. Grekov for his support with computations.

References

  1. M.G. Aartsen, M. Ackermann, J. Adams et al., Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett. 113(10), 101101 (2014).  https://doi.org/10.1103/PhysRevLett.113.101101 ADSCrossRefGoogle Scholar
  2. A.A. Abdo, M. Ackermann, M. Ajello et al., Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT. Science 327, 1103 (2010a) ADSCrossRefGoogle Scholar
  3. A.A. Abdo, M. Ackermann, M. Ajello et al., Observation of supernova remnant IC 443 with the Fermi Large Area Telescope. Astrophys. J. 712, 459–468 (2010b) ADSCrossRefGoogle Scholar
  4. A.U. Abeysekara, A. Albert, R. Alfaro et al., HAWC contributions to the 35th International Cosmic Ray Conference (ICRC2017). arXiv:1708.02572 (2017)
  5. A. Abramowski, F. Aharonian et al. (HESS Collaboration), Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 531, 476–479 (2016).  https://doi.org/10.1038/nature17147 ADSCrossRefGoogle Scholar
  6. F. Acero, M. Lemoine-Goumard, M. Renaud et al., Study of TeV shell supernova remnants at gamma-ray energies. Astron. Astrophys. 580, 74 (2015).  https://doi.org/10.1051/0004-6361/201525932 CrossRefGoogle Scholar
  7. F. Acero, M. Ackermann, M. Ajello et al., The first Fermi LAT Supernova Remnant Catalog. Astrophys. J. Suppl. Ser. 224, 8 (2016).  https://doi.org/10.3847/0067-0049/224/1/8 ADSCrossRefGoogle Scholar
  8. A. Achterberg, R.D. Blandford, S.P. Reynolds, Evidence for enhanced MHD turbulence outside sharp-rimmed supernova remnants. Astron. Astrophys. 281, 220–230 (1994) ADSGoogle Scholar
  9. M. Ackermann, M. Ajello, A. Allafort et al., A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science 334, 1103 (2011).  https://doi.org/10.1126/science.1210311 ADSCrossRefGoogle Scholar
  10. M. Ackermann, M. Ajello, A. Allafort et al., Detection of the characteristic pion-decay signature in supernova remnants. Science 339, 807–811 (2013a).  https://doi.org/10.1126/science.1231160 ADSCrossRefGoogle Scholar
  11. M. Ackermann, M. Ajello, A. Allafort et al., Detection of the characteristic pion-decay signature in supernova remnants. Science 339, 807–811 (2013b).  https://doi.org/10.1126/science.1231160 ADSCrossRefGoogle Scholar
  12. F. Aharonian, A. Neronov, High-energy gamma rays from the massive black hole in the Galactic Center. Astrophys. J. 619, 306–313 (2005).  https://doi.org/10.1086/426426 ADSCrossRefGoogle Scholar
  13. F. Aharonian, A. Akhperjanian, M. Beilicke et al., An unidentified TeV source in the vicinity of Cygnus OB2. Astron. Astrophys. 393, 37–40 (2002).  https://doi.org/10.1051/0004-6361:20021171 ADSCrossRefGoogle Scholar
  14. F. Aharonian, A. Bykov, E. Parizot et al., Cosmic rays in galactic and extragalactic magnetic fields. Space Sci. Rev. 166, 97–132 (2012) ADSCrossRefGoogle Scholar
  15. H.S. Ahn, P. Allison, M.G. Bagliesi et al., Discrepant hardening observed in cosmic-ray elemental spectra. Astrophys. J. 714, 89–93 (2010).  https://doi.org/10.1088/2041-8205/714/1/L89 ADSCrossRefGoogle Scholar
  16. M.L. Ahnen, S. Ansoldi, L.A. Antonelli et al., A cut-off in the TeV gamma-ray spectrum of the SNR Cassiopeia A. Mon. Not. R. Astron. Soc. 472, 2956–2962 (2017).  https://doi.org/10.1093/mnras/stx2079 ADSCrossRefGoogle Scholar
  17. K.D. Alexander, A.M. Soderberg, L.B. Chomiuk, A new model for the radio emission from SN 1994I and an associated search for radio transients in M51. Astrophys. J. 806, 106 (2015).  https://doi.org/10.1088/0004-637X/806/1/106 ADSCrossRefGoogle Scholar
  18. R. Aloisio, V. Berezinsky, P. Blasi et al., A dip in the UHECR spectrum and the transition from galactic o extragalactic cosmic rays. Astropart. Phys. 27, 76–91 (2007).  https://doi.org/10.1016/j.astropartphys.2006.09.004 ADSCrossRefGoogle Scholar
  19. E. Amato, The origin of galactic cosmic rays. Int. J. Mod. Phys. D 23, 30013 (2014).  https://doi.org/10.1142/S0218271814300134 ADSMathSciNetCrossRefGoogle Scholar
  20. W.D. Apel, J.C. Arteaga-Velàzquez, K. Bekk et al., Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADE-Grande. Phys. Rev. D 87(8), 081101 (2013).  https://doi.org/10.1103/PhysRevD.87.081101 ADSCrossRefGoogle Scholar
  21. S. Archambault, A. Archer, W. Benbow et al., Gamma-ray observations of Tycho’s supernova remnant with VERITAS and Fermi. Astrophys. J. 836, 23 (2017).  https://doi.org/10.3847/1538-4357/836/1/23 ADSCrossRefGoogle Scholar
  22. J. Arons, Magnetars in the Metagalaxy: an origin for ultra-high-energy cosmic rays in the nearby Universe. Astrophys. J. 589, 871–892 (2003).  https://doi.org/10.1086/374776 ADSCrossRefGoogle Scholar
  23. K. Asano, P. Mészáros, Ultrahigh-energy cosmic ray production by turbulence in gamma-ray burst jets and cosmogenic neutrinos. Phys. Rev. D 94(2), 023005 (2016).  https://doi.org/10.1103/PhysRevD.94.023005 ADSCrossRefGoogle Scholar
  24. W.I. Axford, The acceleration of galactic cosmic rays, in Origin of Cosmic Rays, ed. by G. Setti, G. Spada, A.W. Wolfendale. IAU Symposium, vol. 94 (1981), pp. 339–358 CrossRefGoogle Scholar
  25. W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in Proc. 15th ICRC, Plovdiv, vol. 11 (1977), p. 132 Google Scholar
  26. W. Baade, F. Zwicky, Remarks on super-novae and cosmic rays. Phys. Rev. 46, 76–77 (1934).  https://doi.org/10.1103/PhysRev.46.76.2 ADSCrossRefGoogle Scholar
  27. J. Ballet, X-ray synchrotron emission from supernova remnants. Adv. Space Res. 37, 1902–1908 (2006).  https://doi.org/10.1016/j.asr.2005.03.047 ADSCrossRefGoogle Scholar
  28. N. Bartel, B. Karimi, M.F. Bietenholz, VLBI of supernovae and gamma-ray bursts. Astron. Rep. 61, 299–306 (2017).  https://doi.org/10.1134/S1063772917040011 ADSCrossRefGoogle Scholar
  29. A.R. Bell, The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978) ADSCrossRefGoogle Scholar
  30. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004) ADSCrossRefGoogle Scholar
  31. A.R. Bell, The interaction of cosmic rays and magnetized plasma. Mon. Not. R. Astron. Soc. 358, 181–187 (2005) ADSCrossRefGoogle Scholar
  32. A.R. Bell, S.G. Lucek, Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 321, 433–438 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04063.x ADSCrossRefGoogle Scholar
  33. A.R. Bell, K.M. Schure, B. Reville et al., Cosmic-ray acceleration and escape from supernova remnants. Mon. Not. R. Astron. Soc. 431, 415–429 (2013) ADSCrossRefGoogle Scholar
  34. E.G. Berezhko, D.C. Ellison, A simple model of nonlinear diffusive shock acceleration. Astrophys. J. 526, 385 (1999) ADSCrossRefGoogle Scholar
  35. E.G. Berezhko, V.K. Elshin, L.T. Ksenofontov, Cosmic ray acceleration in supernova remnants. Sov. Phys. JETP 82, 1–21 (1996) ADSGoogle Scholar
  36. S.F. Berezhnev, D. Besson, N.M. Budnev et al., The Tunka-133 EAS Cherenkov light array: status of 2011. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 692, 98–105 (2012).  https://doi.org/10.1016/j.nima.2011.12.091 ADSCrossRefGoogle Scholar
  37. V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel et al., Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990) Google Scholar
  38. D.R. Bergman, J.W. Belz, Cosmic rays: the second knee and beyond. J. Phys. G, Nucl. Part. Phys. 34, 359–400 (2007).  https://doi.org/10.1088/0954-3899/34/10/R01 ADSCrossRefGoogle Scholar
  39. M.F. Bietenholz, N. Bartel, M.P. Rupen, Supernova 1986J Very Long Baseline interferometry. II. The evolution of the shell and the central source. Astrophys. J. 712, 1057–1069 (2010).  https://doi.org/10.1088/0004-637X/712/2/1057 ADSCrossRefGoogle Scholar
  40. W.R. Binns, E.R. Christian, A.C. Cummings et al., Constraints on galactic cosmic-ray origins from elemental composition measurements, in APS April Meeting Abstracts (2014).  https://doi.org/10.1103/BAPS.2014.APRIL.E9.4 Google Scholar
  41. W.R. Binns, M.H. Israel, E.R. Christian et al., Observation of the 60Fe nucleosynthesis-clock isotope in galactic cosmic rays. Science 352, 677–680 (2016).  https://doi.org/10.1126/science.aad6004 ADSCrossRefGoogle Scholar
  42. C.-I. Björnsson, S.T. Keshavarzi, Inhomogeneities and the modeling of radio supernovae. Astrophys. J. 841, 12 (2017).  https://doi.org/10.3847/1538-4357/aa6cad ADSCrossRefGoogle Scholar
  43. R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987) ADSCrossRefGoogle Scholar
  44. R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. 221, 29–32 (1978) ADSCrossRefGoogle Scholar
  45. R. Blandford, P. Simeon, Y. Yuan, Cosmic ray origins: an introduction. Nucl. Phys. B, Proc. Suppl. 256, 9–22 (2014).  https://doi.org/10.1016/j.nuclphysbps.2014.10.002 ADSCrossRefGoogle Scholar
  46. P. Blasi, The origin of galactic cosmic rays. Astron. Astrophys. Rev. 21, 70 (2013).  https://doi.org/10.1007/s00159-013-0070-7 ADSCrossRefGoogle Scholar
  47. P. Blasi, R.I. Epstein, A.V. Olinto, Ultra-high-energy cosmic rays from young neutron star winds. Astrophys. J. 533, 123–126 (2000).  https://doi.org/10.1086/312626 ADSCrossRefGoogle Scholar
  48. S. Blinnikov, Radiative shock waves and their role in solving puzzles of Superluminous Supernovae. arXiv:1611.00513 (2016a)
  49. S.I. Blinnikov, Light produced by shocks and shocks produced by light: superluminous supernovae and GRB afterglows. Astron. Astrophys. Trans. 29, 129–142 (2016b) ADSGoogle Scholar
  50. C.D. Bochenek, V.V. Dwarkadas, J.M. Silverman et al., X-ray emission from SN 2012ca: a Type Ia-CSM supernova explosion in a dense surrounding medium. Mon. Not. R. Astron. Soc. 473, 336–344 (2018).  https://doi.org/10.1093/mnras/stx2029 ADSCrossRefGoogle Scholar
  51. P.J. Boyle, F. Gahbauer, C. Höppner et al., Cosmic ray composition at high energies: the TRACER project. Adv. Space Res. 42, 409–416 (2008).  https://doi.org/10.1016/j.asr.2007.03.063 ADSCrossRefGoogle Scholar
  52. D. Branch, J.C. Wheeler, Supernova Explosions (Springer, Berlin, 2017).  https://doi.org/10.1007/978-3-662-55054-0 CrossRefGoogle Scholar
  53. R. Brose, I. Telezhinsky, M. Pohl, Transport of magnetic turbulence in supernova remnants. Astron. Astrophys. 593, 20 (2016).  https://doi.org/10.1051/0004-6361/201527345 ADSCrossRefGoogle Scholar
  54. R. Budnik, B. Katz, A. MacFadyen et al., Cosmic rays from transrelativistic supernovae. Astrophys. J. 673, 928–933 (2008) ADSCrossRefGoogle Scholar
  55. S. Buitink, A. Corstanje, H. Falcke et al., A large light-mass component of cosmic rays at \(10^{17}\mbox{--}10^{17.5}\) electronvolts from radio observations. Nature 531, 70–73 (2016).  https://doi.org/10.1038/nature16976 ADSCrossRefGoogle Scholar
  56. A.M. Bykov, Particle acceleration and nonthermal phenomena in superbubbles. Space Sci. Rev. 99, 317–326 (2001) ADSCrossRefGoogle Scholar
  57. A.M. Bykov, Nonthermal particles and photons in starburst regions and superbubbles. Astron. Astrophys. Rev. 22, 77 (2014).  https://doi.org/10.1007/s00159-014-0077-8 ADSCrossRefGoogle Scholar
  58. A.M. Bykov, I.N. Toptygin, Theory of charge particle acceleration by a shock wave ensemble in a turbulent medium. Sov. Phys. JETP 71, 702–708 (1990) Google Scholar
  59. A.M. Bykov, D.C. Ellison, S.M. Osipov et al., X-ray stripes in Tycho’s supernova remnant: synchrotron footprints of a nonlinear cosmic-ray-driven instability. Astrophys. J. 735, 40 (2011).  https://doi.org/10.1088/2041-8205/735/2/L40 ADSCrossRefGoogle Scholar
  60. A.M. Bykov, A. Brandenburg, M.A. Malkov et al., Microphysics of cosmic ray driven plasma instabilities. Space Sci. Rev. 178, 201–232 (2013).  https://doi.org/10.1007/s11214-013-9988-3 ADSCrossRefGoogle Scholar
  61. A.M. Bykov, D.C. Ellison, S.M. Osipov et al., Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities. Astrophys. J. 789, 137 (2014).  https://doi.org/10.1088/0004-637X/789/2/137 ADSCrossRefGoogle Scholar
  62. A.M. Bykov, D.C. Ellison, P.E. Gladilin et al., Ultrahard spectra of PeV neutrinos from supernovae in compact star clusters. Mon. Not. R. Astron. Soc. 453, 113–121 (2015).  https://doi.org/10.1093/mnras/stv1606 ADSCrossRefGoogle Scholar
  63. A.M. Bykov, D.C. Ellison, P.E. Gladilin et al., Supernovae in compact star clusters as sources of high-energy cosmic rays and neutrinos. Adv. Space Res. (2017).  https://doi.org/10.1016/j.asr.2017.05.043. 1706.01135. Google Scholar
  64. A.M. Bykov, D.C. Ellison, S.M. Osipov, Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification. Phys. Rev. E 95(3), 033207 (2017a).  https://doi.org/10.1103/PhysRevE.95.033207 ADSCrossRefGoogle Scholar
  65. A.M. Bykov, S.M. Osipov, D.C. Ellison, Magnetic field amplification in nonlinear trans-relativistic shocks. (2017b in preparation) Google Scholar
  66. D. Caprioli, P. Blasi, E. Amato, On the escape of particles from cosmic ray modified shocks. Mon. Not. R. Astron. Soc. 396, 2065–2073 (2009) ADSCrossRefGoogle Scholar
  67. G. Cassam-Chenaï, J.P. Hughes, E.M. Reynoso et al., Morphological evidence for azimuthal variations of the cosmic-ray ion acceleration at the blast wave of SN 1006. Astrophys. J. 680, 1180–1197 (2008) ADSCrossRefGoogle Scholar
  68. D. Castro, P. Slane, D.C. Ellison et al., Fermi-LAT observations and a broadband study of supernova remnant CTB 109. Astrophys. J. 756, 88 (2012).  https://doi.org/10.1088/0004-637X/756/1/88 ADSCrossRefGoogle Scholar
  69. C.J. Cesarsky, T. Montmerle, Gamma rays from active regions in the galaxy—the possible contribution of stellar winds. Space Sci. Rev. 36, 173–193 (1983).  https://doi.org/10.1007/BF00167503 ADSCrossRefGoogle Scholar
  70. S. Chakraborti, A. Ray, Baryon loaded relativistic blast waves in supernovae. Astrophys. J. 729, 57 (2011).  https://doi.org/10.1088/0004-637X/729/1/57 ADSCrossRefGoogle Scholar
  71. S. Chakraborti, A. Ray, A.M. Soderberg et al., Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae. Nat. Commun. 2, 175 (2011) CrossRefGoogle Scholar
  72. P. Chandra, R.A. Chevalier, N. Chugai et al., X-ray and radio emission from type IIn supernova SN 2010jl. Astrophys. J. 810, 32 (2015).  https://doi.org/10.1088/0004-637X/810/1/32 ADSCrossRefGoogle Scholar
  73. R.A. Chevalier, Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258, 790–797 (1982) ADSCrossRefGoogle Scholar
  74. R.A. Chevalier, Common envelope evolution leading to supernovae with dense interaction. Astrophys. J. 752, 2 (2012).  https://doi.org/10.1088/2041-8205/752/1/L2 ADSCrossRefGoogle Scholar
  75. R.A. Chevalier, A.W. Clegg, Wind from a starburst galaxy nucleus. Nature 317, 44 (1985).  https://doi.org/10.1038/317044a0 ADSCrossRefGoogle Scholar
  76. R.A. Chevalier, C.M. Irwin, Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. 729, 6 (2011).  https://doi.org/10.1088/2041-8205/729/1/L6 ADSCrossRefGoogle Scholar
  77. N.N. Chugai, I.J. Danziger, Supernova 1988Z—low-mass ejecta colliding with the clumpy wind. Mon. Not. R. Astron. Soc. 268, 173 (1994).  https://doi.org/10.1093/mnras/268.1.173 ADSCrossRefGoogle Scholar
  78. J.S. Clark, M.P. Muno, I. Negueruela et al., Unveiling the X-ray point source population of the young massive cluster Westerlund 1. Astron. Astrophys. 477, 147–163 (2008).  https://doi.org/10.1051/0004-6361:20077186 ADSCrossRefGoogle Scholar
  79. F. Comerón, A.A. Djupvik, N. Schneider et al., Red supergiants and the past of Cygnus OB2. Astron. Astrophys. 586, 46 (2016).  https://doi.org/10.1051/0004-6361/201527517 ADSCrossRefGoogle Scholar
  80. D.P. Cox, The three-phase interstellar medium revisited. Annu. Rev. Astron. Astrophys. 43, 337–385 (2005).  https://doi.org/10.1146/annurev.astro.43.072103.150615 ADSCrossRefGoogle Scholar
  81. A. De Angelis, V. Tatischeff, M. Tavani et al., The e-ASTROGAM mission. Exploring the extreme Universe with gamma rays in the MeV–GeV range. Exp. Astron. 44, 25–82 (2017).  https://doi.org/10.1007/s10686-017-9533-6 ADSCrossRefGoogle Scholar
  82. A. Decourchelle, D.C. Ellison, J. Ballet, Thermal X-ray emission and cosmic-ray production in young supernova remnants. Astrophys. J. 543, 57 (2000) ADSCrossRefGoogle Scholar
  83. G. Di Sciascio (LHAASO Collaboration), The LHAASO experiment: from gamma-ray astronomy to cosmic rays. Nucl. Part. Phys. Proc. 279, 166–173 (2016).  https://doi.org/10.1016/j.nuclphysbps.2016.10.024 CrossRefGoogle Scholar
  84. L.O. Drury, Escaping the accelerator: how, when and in what numbers do cosmic rays get out of supernova remnants? Mon. Not. R. Astron. Soc. 415, 1807–1814 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18824.x ADSCrossRefGoogle Scholar
  85. V.V. Dwarkadas, The evolution of supernovae in circumstellar wind-blown bubbles. I. Introduction and one-dimensional calculations. Astrophys. J. 630, 892–910 (2005) ADSCrossRefGoogle Scholar
  86. V.V. Dwarkadas, R.A. Chevalier, Interaction of type IA supernovae with their surroundings. Astrophys. J. 497, 807 (1998) ADSCrossRefGoogle Scholar
  87. D.C. Ellison, A.M. Bykov, Gamma-ray emission of accelerated particles escaping a supernova remnant in a molecular cloud. Astrophys. J. 731, 87 (2011) ADSCrossRefGoogle Scholar
  88. D.C. Ellison, R. Ramaty, Shock acceleration of electrons and ions in solar flares. Astrophys. J. 298, 400–408 (1985) ADSCrossRefGoogle Scholar
  89. D.C. Ellison, E. Moebius, G. Paschmann, Particle injection and acceleration at earth’s bow shock—comparison of upstream and downstream events. Astrophys. J. 352, 376–394 (1990) ADSCrossRefGoogle Scholar
  90. D.C. Ellison, M.G. Baring, F.C. Jones, Acceleration rates and injection efficiencies in oblique shocks. Astrophys. J. 453, 873 (1995) ADSCrossRefGoogle Scholar
  91. D.C. Ellison, L.O. Drury, J. Meyer, Galactic cosmic rays from supernova remnants. II. Shock acceleration of gas and dust. Astrophys. J. 487, 197 (1997) ADSCrossRefGoogle Scholar
  92. D.C. Ellison, D.J. Patnaude, P. Slane et al., Particle acceleration in supernova remnants and the production of thermal and nonthermal radiation. Astrophys. J. 661, 879–891 (2007) ADSCrossRefGoogle Scholar
  93. D.C. Ellison, P. Slane, D.J. Patnaude et al., Core-collapse model of broadband emission from SNR RX J1713.7-3946 with thermal X-rays and gamma rays from escaping cosmic rays. Astrophys. J. 744, 39 (2012) ADSCrossRefGoogle Scholar
  94. D.C. Ellison, D.C. Warren, A.M. Bykov, Monte Carlo simulations of nonlinear particle acceleration in parallel trans-relativistic shocks. Astrophys. J. 776, 46 (2013).  https://doi.org/10.1088/0004-637X/776/1/46 ADSCrossRefGoogle Scholar
  95. K.A. Eriksen, J.P. Hughes, C. Badenes et al., Evidence for particle acceleration to the knee of the cosmic ray spectrum in Tycho’s supernova remnant. Astrophys. J. 728, 28 (2011).  https://doi.org/10.1088/2041-8205/728/2/L28 ADSCrossRefGoogle Scholar
  96. S.W. Falk, W.D. Arnett, Radiation dynamics, envelope ejection, and supernova light curves. Astrophys. J. Suppl. Ser. 33, 515–562 (1977) ADSCrossRefGoogle Scholar
  97. R. Farber, M. Ruszkowski, H.-Y.K. Yang et al., Impact of cosmic ray transport on galactic winds. arXiv:1707.04579 (2017)
  98. E. Fermi, On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949).  https://doi.org/10.1103/PhysRev.75.1169 ADSzbMATHCrossRefGoogle Scholar
  99. E. Fermi, Galactic magnetic fields and the origin of cosmic radiation. Astrophys. J. 119, 1 (1954).  https://doi.org/10.1086/145789 ADSCrossRefGoogle Scholar
  100. G. Ferrand, A. Marcowith, On the shape of the spectrum of cosmic rays accelerated inside superbubbles. Astron. Astrophys. 510, 101 (2010).  https://doi.org/10.1051/0004-6361/200913520 ADSzbMATHCrossRefGoogle Scholar
  101. G. Ferrand, A. Decourchelle, S. Safi-Harb, Three-dimensional simulations of the thermal X-ray emission from young supernova remnants including efficient particle acceleration. Astrophys. J. 760, 34 (2012).  https://doi.org/10.1088/0004-637X/760/1/34 ADSCrossRefGoogle Scholar
  102. R.B. Fiorito, D. Eichler, D.C. Ellison, A study of the phase velocity and growth of waves at parallel shocks. Astrophys. J. 364, 582–589 (1990).  https://doi.org/10.1086/169441 ADSCrossRefGoogle Scholar
  103. C. Fransson, C.-I. Björnsson, Radio emission and particle acceleration in SN 1993J. Astrophys. J. 509, 861–878 (1998).  https://doi.org/10.1086/306531 ADSCrossRefGoogle Scholar
  104. Y. Fujita, K. Murase, S.S. Kimura, Sagittarius A* as an origin of the Galactic PeV cosmic rays? J. Cosmol. Astropart. Phys. 4, 037 (2017).  https://doi.org/10.1088/1475-7516/2017/04/037 ADSCrossRefGoogle Scholar
  105. S. Funk, Ground- and space-based gamma-ray astronomy. Annu. Rev. Nucl. Part. Sci. 65, 245–277 (2015).  https://doi.org/10.1146/annurev-nucl-102014-022036 ADSCrossRefGoogle Scholar
  106. S. Gabici, F.A. Aharonian, Hadronic gamma-rays from RX J1713.7-3946? Mon. Not. R. Astron. Soc. 445, 70–73 (2014).  https://doi.org/10.1093/mnrasl/slu132 ADSCrossRefGoogle Scholar
  107. A. Gal-Yam, Luminous supernovae. Science 337, 927 (2012).  https://doi.org/10.1126/science.1203601 ADSCrossRefGoogle Scholar
  108. V.L. Ginzburg, S.I. Syrovatskii, The Origin of Cosmic Rays (Macmillan Co., New York, 1964) CrossRefGoogle Scholar
  109. A. Giuliani, M. Cardillo, M. Tavani et al., Neutral pion emission from accelerated protons in the supernova remnant W44. Astrophys. J. 742, 30 (2011).  https://doi.org/10.1088/2041-8205/742/2/L30 ADSCrossRefGoogle Scholar
  110. I.A. Grenier, J.H. Black, A.W. Strong, The nine lives of cosmic rays in galaxies. Annu. Rev. Astron. Astrophys. 53, 199–246 (2015).  https://doi.org/10.1146/annurev-astro-082214-122457 ADSCrossRefGoogle Scholar
  111. Y.-Q. Guo, Z. Tian, Z. Wang et al., The galactic center: a petaelectronvolt cosmic-ray acceleration factory. Astrophys. J. 836, 233 (2017).  https://doi.org/10.3847/1538-4357/aa5f58 ADSCrossRefGoogle Scholar
  112. C. Heiles, Clustered supernovae versus the gaseous disk and halo. Astrophys. J. 354, 483–491 (1990).  https://doi.org/10.1086/168709 ADSCrossRefGoogle Scholar
  113. E.A. Helder, J. Vink, A.M. Bykov et al., Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev. 173, 369–431 (2012).  https://doi.org/10.1007/s11214-012-9919-8 ADSCrossRefGoogle Scholar
  114. A.M. Hillas, Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J. Phys. G, Nucl. Part. Phys. 31, 95 (2005) ADSCrossRefGoogle Scholar
  115. A. Horesh, C. Stockdale, D.B. Fox et al., An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind. Mon. Not. R. Astron. Soc. 436, 1258–1267 (2013).  https://doi.org/10.1093/mnras/stt1645 ADSCrossRefGoogle Scholar
  116. J.P. Hughes, C.E. Rakowski, A. Decourchelle, Electron heating and cosmic rays at a supernova shock from Chandra X-ray observations of 1E 0102.2-7219. Astrophys. J. 543, 61–65 (2000) ADSCrossRefGoogle Scholar
  117. F.C. Jones, D.C. Ellison, The plasma physics of shock acceleration. Space Sci. Rev. 58, 259–346 (1991) ADSCrossRefGoogle Scholar
  118. H. Kang, Effects of wave-particle interactions on diffusive shock acceleration at supernova remnants. J. Korean Astron. Soc. 46, 49–63 (2013) ADSCrossRefGoogle Scholar
  119. H. Kang, D. Ryu, T.W. Jones, Self-similar evolution of cosmic-ray modified shocks: the cosmic-ray spectrum. Astrophys. J. 695, 1273–1288 (2009) ADSCrossRefGoogle Scholar
  120. J. Katsuta, Y. Uchiyama, S. Funk, Extended gamma-ray emission from the G25.0+0.0 region: a star-forming region powered by the newly found OB association? Astrophys. J. 839, 129 (2017).  https://doi.org/10.3847/1538-4357/aa6aa3 ADSCrossRefGoogle Scholar
  121. B. Katz, N. Sapir, E. Waxman, X-rays, gamma-rays and neutrinos from collisionless shocks in supernova wind breakouts. arXiv:1106.1898 (2011)
  122. N. Kimani, K. Sendlinger, A. Brunthaler et al., Radio evolution of supernova SN 2008iz in M 82. Astron. Astrophys. 593, 18 (2016).  https://doi.org/10.1051/0004-6361/201628800 CrossRefGoogle Scholar
  123. J. Knödlseder, Cygnus OB2—a young globular cluster in the Milky Way. Astron. Astrophys. 360, 539–548 (2000) ADSGoogle Scholar
  124. M.I. Krauss, A.M. Soderberg, L. Chomiuk et al., Expanded Very Large Array observations of the radio evolution of SN 2011dh. Astrophys. J. 750, 40 (2012).  https://doi.org/10.1088/2041-8205/750/2/L40 ADSCrossRefGoogle Scholar
  125. M. Krumholz, Star Formation (2017) Google Scholar
  126. G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl. Akad. Nauk SSSR 234, 1306–1308 (1977) ADSGoogle Scholar
  127. S.R. Kulkarni, D.A. Frail, M.H. Wieringa et al., Radio emission from the unusual supernova 1998bw and its association with the \(\gamma\)-ray burst of 25 April 1998. Nature 395, 663–669 (1998).  https://doi.org/10.1038/27139 ADSCrossRefGoogle Scholar
  128. E. Kundu, P. Lundqvist, M.A. Pérez-Torres et al., Constraining magnetic field amplification in SN shocks using radio observations of SNe 2011fe and 2014J. Astrophys. J. 842, 17 (2017).  https://doi.org/10.3847/1538-4357/aa704c ADSCrossRefGoogle Scholar
  129. C.J. Lada, E.A. Lada, Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003).  https://doi.org/10.1146/annurev.astro.41.011802.094844 ADSCrossRefGoogle Scholar
  130. P.O. Lagage, C.J. Cesarsky, The maximum energy of cosmic rays accelerated by supernova shocks. Astron. Astrophys. 125, 249–257 (1983) ADSzbMATHGoogle Scholar
  131. S.-H. Lee, D.C. Ellison, S. Nagataki, A generalized model of nonlinear diffusive shock acceleration coupled to an evolving supernova remnant. Astrophys. J. 750, 156 (2012) ADSCrossRefGoogle Scholar
  132. M. Lemoine, Acceleration and propagation of ultrahigh energy cosmic rays. J. Phys. Conf. Ser. 409, 012007 (2013).  https://doi.org/10.1088/1742-6596/409/1/012007 CrossRefGoogle Scholar
  133. W. Li, J. Leaman, R. Chornock et al., Nearby supernova rates from the Lick Observatory Supernova Search—II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc. 412, 1441–1472 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18160.x ADSCrossRefGoogle Scholar
  134. R.E. Lingenfelter, Cosmic rays from supernova remnants and superbubbles. Adv. Space Res. (2017).  https://doi.org/10.1016/j.asr.2017.04.006 Google Scholar
  135. P. Lipari, Spectral features in the cosmic ray fluxes. arXiv:1707.02504 (2017)
  136. Y. Lithwick, P. Goldreich, Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279–296 (2001).  https://doi.org/10.1086/323470 ADSCrossRefGoogle Scholar
  137. R.-Y. Liu, X.-Y. Wang, A. Prosekin et al., Modeling the gamma-ray emission in the Galactic Center with a fading cosmic-ray accelerator. Astrophys. J. 833, 200 (2016).  https://doi.org/10.3847/1538-4357/833/2/200 ADSCrossRefGoogle Scholar
  138. A. Loeb, E. Waxman, The cumulative background of high energy neutrinos from starburst galaxies. J. Cosmol. Astropart. Phys. 5, 003 (2006).  https://doi.org/10.1088/1475-7516/2006/05/003 ADSCrossRefGoogle Scholar
  139. M.-M. Mac Low, R. McCray, Superbubbles in disk galaxies. Astrophys. J. 324, 776–785 (1988).  https://doi.org/10.1086/165936 ADSCrossRefGoogle Scholar
  140. M. Malkov, Newly-discovered anomalies in galactic cosmic rays: time for exotic scenarios? arXiv:1703.05772 (2017)
  141. M.A. Malkov, L.O. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001) ADSCrossRefGoogle Scholar
  142. M.A. Malkov, P.H. Diamond, R.Z. Sagdeev et al., Analytic solution for self-regulated collective escape of cosmic rays from their acceleration sites. Astrophys. J. 768, 73 (2013).  https://doi.org/10.1088/0004-637X/768/1/73 ADSCrossRefGoogle Scholar
  143. J.M. Marcaide, I. Martí-Vidal, M.A. Perez-Torres et al., 1.6 GHz VLBI observations of SN 1979C: almost-free expansion. Astron. Astrophys. 503, 869–872 (2009).  https://doi.org/10.1051/0004-6361/200912485 ADSCrossRefGoogle Scholar
  144. A. Marcowith, F. Casse, Postshock turbulence and diffusive shock acceleration in young supernova remnants. Astron. Astrophys. 515, 90 (2010).  https://doi.org/10.1051/0004-6361/200913022 ADSCrossRefGoogle Scholar
  145. A. Marcowith, M. Renaud, V. Dwarkadas et al., Cosmic-ray acceleration and gamma-ray signals from radio supernovæ. Nucl. Phys. B, Proc. Suppl. 256, 94–100 (2014).  https://doi.org/10.1016/j.nuclphysbps.2014.10.011 ADSCrossRefGoogle Scholar
  146. A. Marcowith, A. Bret, A. Bykov et al., The microphysics of collisionless shock waves. Rep. Prog. Phys. 79(4), 046901 (2016).  https://doi.org/10.1088/0034-4885/79/4/046901 ADSCrossRefGoogle Scholar
  147. R. Margutti, D. Milisavljevic, A.M. Soderberg et al., Relativistic supernovae have shorter-lived central engines or more extended progenitors: the case of SN 2012ap. Astrophys. J. 797, 107 (2014).  https://doi.org/10.1088/0004-637X/797/2/107 ADSCrossRefGoogle Scholar
  148. I. Martí-Vidal, J.M. Marcaide, A. Alberdi et al., Radio emission of SN1993J: the complete picture. II. Simultaneous fit of expansion and radio light curves. Astron. Astrophys. 526, 143 (2011).  https://doi.org/10.1051/0004-6361/201014517 ADSCrossRefGoogle Scholar
  149. P. Martin, J. Knödlseder, G. Meynet et al., Predicted gamma-ray line emission from the Cygnus complex. Astron. Astrophys. 511, 86 (2010).  https://doi.org/10.1051/0004-6361/200912864 CrossRefGoogle Scholar
  150. J.P. Meyer, D.C. Ellison, The origin of present day cosmic rays: fresh SN ejecta or interstellar medium material? I. Cosmic ray composition and SN nucleosynthesis. A conflict with the early Galactic evolution of Be? arXiv:astro-ph/9905037 (1999)
  151. J. Meyer, L.O. Drury, D.C. Ellison, Galactic cosmic rays from supernova remnants. I. A cosmic-ray composition controlled by volatility and mass-to-charge ratio. Astrophys. J. 487, 182 (1997) ADSCrossRefGoogle Scholar
  152. T.J. Moriya, K. Maeda, Constraining physical properties of type IIn supernovae through rise times and peak luminosities. Astrophys. J. 790, 16 (2014).  https://doi.org/10.1088/2041-8205/790/2/L16 ADSCrossRefGoogle Scholar
  153. T.J. Moriya, S.I. Blinnikov, N. Tominaga et al., Light-curve modelling of superluminous supernova 2006gy: collision between supernova ejecta and a dense circumstellar medium. Mon. Not. R. Astron. Soc. 428, 1020–1035 (2013).  https://doi.org/10.1093/mnras/sts075 ADSCrossRefGoogle Scholar
  154. V. Morozova, A.L. Piro, S. Valenti, Unifying type II supernova light curves with dense circumstellar material. Astrophys. J. 838, 28 (2017).  https://doi.org/10.3847/1538-4357/aa6251 ADSCrossRefGoogle Scholar
  155. K. Murase, T.A. Thompson, B.C. Lacki et al., New class of high-energy transients from crashes of supernova ejecta with massive circumstellar material shells. Phys. Rev. D 84(4), 043003 (2011).  https://doi.org/10.1103/PhysRevD.84.043003 ADSCrossRefGoogle Scholar
  156. K. Murase, T.A. Thompson, E.O. Ofek, Probing cosmic ray ion acceleration with radio-submm and gamma-ray emission from interaction-powered supernovae. Mon. Not. R. Astron. Soc. 440, 2528–2543 (2014).  https://doi.org/10.1093/mnras/stu384 ADSCrossRefGoogle Scholar
  157. T. Nugis, H.J.G.L.M. Lamers, Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters. Astron. Astrophys. 360, 227–244 (2000) ADSGoogle Scholar
  158. S. Ohm, Gamma-rays from starburst galaxies. AIP Conf. Proc. 1505, 64–71 (2012).  https://doi.org/10.1063/1.4772221 ADSCrossRefGoogle Scholar
  159. S. Ohm, Starburst galaxies as seen by gamma-ray telescopes. C. R. Phys. 17, 585–593 (2016).  https://doi.org/10.1016/j.crhy.2016.04.003 ADSCrossRefGoogle Scholar
  160. E. Parizot, A. Marcowith, E. van der Swaluw et al., Superbubbles and energetic particles in the Galaxy. I. Collective effects of particle acceleration. Astron. Astrophys. 424, 747–760 (2004).  https://doi.org/10.1051/0004-6361:20041269 ADSCrossRefGoogle Scholar
  161. E. Parizot, A. Marcowith, J. Ballet et al., Observational constraints on energetic particle diffusion in young supernova remnants: amplified magnetic field and maximum energy. Astron. Astrophys. 453, 387–395 (2006).  https://doi.org/10.1051/0004-6361:20064985 ADSCrossRefGoogle Scholar
  162. D.J. Patnaude, S.-H. Lee, P.O. Slane et al., The impact of progenitor mass loss on the dynamical and spectral evolution of supernova remnants. arXiv:1708.04984 (2017)
  163. M. Perez-Torres, A. Alberdi, R.J. Beswick et al., Core-collapse and Type Ia supernovae with the SKA, in Advancing Astrophysics with the Square Kilometre Array (AASKA14) (2015), p. 60 Google Scholar
  164. M. Petropoulou, S. Coenders, G. Vasilopoulos et al., Point-source and diffuse high-energy neutrino emission from Type IIn supernovae. Mon. Not. R. Astron. Soc. 470, 1881–1893 (2017).  https://doi.org/10.1093/mnras/stx1251 ADSCrossRefGoogle Scholar
  165. S.F. Portegies Zwart, S.L.W. McMillan, M. Gieles, Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).  https://doi.org/10.1146/annurev-astro-081309-130834 ADSCrossRefGoogle Scholar
  166. V. Ptuskin, Propagation of galactic cosmic rays. Astropart. Phys. 39, 44–51 (2012).  https://doi.org/10.1016/j.astropartphys.2011.11.004 ADSzbMATHCrossRefGoogle Scholar
  167. V.S. Ptuskin, V.N. Zirakashvili, On the spectrum of high-energy cosmic rays produced by supernova remnants in the presence of strong cosmic-ray streaming instability and wave dissipation. Astron. Astrophys. 429, 755–765 (2005) ADSCrossRefGoogle Scholar
  168. J.C. Raymond, Shock waves in supernova ejecta. Space Sci. Rev. 214, 27 (2018).  https://doi.org/10.1007/s11214-017-0461-6 CrossRefGoogle Scholar
  169. S. Recchia, P. Blasi, G. Morlino, Cosmic ray-driven winds in the Galactic environment and the cosmic ray spectrum. Mon. Not. R. Astron. Soc. 470, 865–881 (2017).  https://doi.org/10.1093/mnras/stx1214 ADSCrossRefGoogle Scholar
  170. S.P. Reynolds, Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008).  https://doi.org/10.1146/annurev.astro.46.060407.145237 ADSCrossRefGoogle Scholar
  171. M. Ross, V.V. Dwarkadas, SNaX: a database of supernova X-ray light curves. Astron. J. 153, 246 (2017).  https://doi.org/10.3847/1538-3881/aa6d50 ADSCrossRefGoogle Scholar
  172. R. Rothenflug, J. Ballet, G. Dubner et al., Geometry of the non-thermal emission in SN 1006. Azimuthal variations of cosmic-ray acceleration. Astron. Astrophys. 425, 121–131 (2004) ADSCrossRefGoogle Scholar
  173. K.L.J. Rygl, A. Brunthaler, A. Sanna et al., Parallaxes and proper motions of interstellar masers toward the Cygnus X star-forming complex. I. Membership of the Cygnus X region. Astron. Astrophys. 539, 79 (2012).  https://doi.org/10.1051/0004-6361/201118211 CrossRefGoogle Scholar
  174. K.M. Schure, A.R. Bell, Cosmic ray acceleration in young supernova remnants. Mon. Not. R. Astron. Soc. 435, 1174–1185 (2013).  https://doi.org/10.1093/mnras/stt1371 ADSCrossRefGoogle Scholar
  175. K.M. Schure, A.R. Bell, L. O’C Drury et al., Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev. 173, 491–519 (2012) ADSCrossRefGoogle Scholar
  176. R. Simoni, N. Maxted, M. Renaud et al., Upper limits on gamma-ray emission from supernovae serendipitously observed with H.E.S.S, in Supernova 1987A:30 Years Later—Cosmic Rays and Nuclei from Supernovae and Their Aftermaths, ed. by A. Marcowith, M. Renaud, G. Dubner et al.. IAU Symposium, vol. 331 (2017), pp. 325–328.  https://doi.org/10.1017/S1743921317004628 Google Scholar
  177. P. Slane, S.-H. Lee, D.C. Ellison et al., Erratum: “A CR-hydro-NEI model of the structure and broadband emission from Tycho’s supernova remnant”. Astrophys. J. 799, 238 (2015a).  https://doi.org/10.1088/0004-637X/799/2/238 ADSCrossRefGoogle Scholar
  178. P. Slane, A. Bykov, D.C. Ellison et al., Supernova remnants interacting with molecular clouds: X-ray and gamma-ray signatures. Space Sci. Rev. 188, 187–210 (2015b).  https://doi.org/10.1007/s11214-014-0062-6 ADSCrossRefGoogle Scholar
  179. V.I. Slysh, Radio supernovae and particle acceleration. Astron. Astrophys. Trans. 1, 171–193 (1992).  https://doi.org/10.1080/10556799208260465 ADSCrossRefGoogle Scholar
  180. N. Smith, Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014).  https://doi.org/10.1146/annurev-astro-081913-040025 ADSCrossRefGoogle Scholar
  181. N. Smith, Luminous blue variables and the fates of very massive stars. Philos. Trans. R. Soc. Lond. Ser. A 375, 20160268 (2017).  https://doi.org/10.1098/rsta.2016.0268 ADSCrossRefGoogle Scholar
  182. A.M. Soderberg, S.R. Kulkarni, E. Berger et al., The radio and X-ray-luminous Type Ibc supernova 2003L. Astrophys. J. 621, 908–920 (2005).  https://doi.org/10.1086/427649 ADSCrossRefGoogle Scholar
  183. A.M. Soderberg, S.R. Kulkarni, E. Nakar et al., Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 442, 1014–1017 (2006) ADSCrossRefGoogle Scholar
  184. A.M. Soderberg, S. Chakraborti, G. Pignata et al., A relativistic type Ibc supernova without a detected \(\gamma \)-ray burst. Nature 463, 513–515 (2010) ADSCrossRefGoogle Scholar
  185. E. Sorokina, S. Blinnikov, K. Nomoto et al., Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. Astrophys. J. 829, 17 (2016).  https://doi.org/10.3847/0004-637X/829/1/17 ADSCrossRefGoogle Scholar
  186. L.G. Sveshnikova, The knee in the Galactic cosmic ray spectrum and variety in Supernovae. Astron. Astrophys. 409, 799–807 (2003).  https://doi.org/10.1051/0004-6361:20030909 ADSCrossRefGoogle Scholar
  187. V. Tatischeff, Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J. Astron. Astrophys. 499, 191–213 (2009).  https://doi.org/10.1051/0004-6361/200811511 ADSCrossRefGoogle Scholar
  188. M. Tavani, A. Giuliani, A.W. Chen et al., Direct evidence for hadronic cosmic-ray acceleration in the supernova remnant IC 443. Astrophys. J. 710, 151–155 (2010).  https://doi.org/10.1088/2041-8205/710/2/L151 ADSCrossRefGoogle Scholar
  189. I. Telezhinsky, V.V. Dwarkadas, M. Pohl, Time-dependent escape of cosmic rays from supernova remnants, and their interaction with dense media. arXiv:1112.3194 (2011)
  190. S. Thoudam et al., Cosmic-ray energy spectrum and composition up to the ankle: the case for a second Galactic component. Astron. Astrophys. 595, 33 (2016).  https://doi.org/10.1051/0004-6361/201628894 CrossRefGoogle Scholar
  191. S.V. Troitsky, Cosmic particles with energies above \(10^{19}~\mbox{eV}\): a brief summary of results. Phys. Usp. 56, 304–310 (2013).  https://doi.org/10.3367/UFNe.0183.201303i.0323 ADSCrossRefGoogle Scholar
  192. Y. Uchiyama, R.D. Blandford, S. Funk et al., Gamma-ray emission from crushed clouds in supernova remnants. Astrophys. J. 723, 122–126 (2010) ADSCrossRefGoogle Scholar
  193. A. ud-Doula, S.P. Owocki, Dynamical simulations of magnetically channeled line-driven stellar winds. I. Isothermal, nonrotating, radially driven flow. Astrophys. J. 576, 413–428 (2002).  https://doi.org/10.1086/341543 ADSCrossRefGoogle Scholar
  194. A.J. van Marle, F. Casse, A. Marcowith, On magnetic field amplification and particle acceleration near non-relativistic astrophysical shocks: particles in MHD Cells simulations. arXiv:1709.08482 (2017)
  195. J. Vink, Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev. 20, 49 (2012).  https://doi.org/10.1007/s00159-011-0049-1 ADSCrossRefGoogle Scholar
  196. J.S. Vink, Winds from stripped low-mass Helium stars and Wolf-Rayet stars. arXiv:1710.02010 (2017)
  197. R. Walder, D. Folini, G. Meynet, Magnetic fields in massive stars, their winds, and their nebulae. Space Sci. Rev. 166, 145–185 (2012).  https://doi.org/10.1007/s11214-011-9771-2 ADSCrossRefGoogle Scholar
  198. L. Wang, X. Cui, H. Zhu et al., Investigations of supernovae and supernova remnants in the era of SKA, in Advancing Astrophysics with the Square Kilometre Array (AASKA14) (2015), p. 64 Google Scholar
  199. D.C. Warren, D.C. Ellison, A.M. Bykov et al., Electron and ion acceleration in relativistic shocks with applications to GRB afterglows. Mon. Not. R. Astron. Soc. 452, 431–443 (2015).  https://doi.org/10.1093/mnras/stv1304 ADSCrossRefGoogle Scholar
  200. D.C. Warren, D.C. Ellison, M.V. Barkov et al., Nonlinear particle acceleration and thermal particles in GRB afterglows. Astrophys. J. 835, 248 (2017).  https://doi.org/10.3847/1538-4357/aa56c3 ADSCrossRefGoogle Scholar
  201. E. Waxman, Cosmological gamma-ray bursts and the highest energy cosmic rays. Phys. Rev. Lett. 75, 386–389 (1995).  https://doi.org/10.1103/PhysRevLett.75.386 ADSCrossRefGoogle Scholar
  202. K.W. Weiler, R.A. Sramek, N. Panagia et al., Radio supernovae. Astrophys. J. 301, 790–812 (1986).  https://doi.org/10.1086/163944 ADSCrossRefGoogle Scholar
  203. K.W. Weiler, N. Panagia, R.A. Sramek, Radio emission from supernovae. II—SN 1986J: a different kind of type II. Astrophys. J. 364, 611–625 (1990).  https://doi.org/10.1086/169444 ADSCrossRefGoogle Scholar
  204. K.W. Weiler, S.D. van Dyk, J.L. Discenna et al., The 10 year radio light curves for SN 1979C. Astrophys. J. 380, 161–166 (1991).  https://doi.org/10.1086/170571 ADSCrossRefGoogle Scholar
  205. K.W. Weiler, N. Panagia, M.J. Montes et al., Radio emission from supernovae and gamma-ray bursters. Annu. Rev. Astron. Astrophys. 40, 387–438 (2002).  https://doi.org/10.1146/annurev.astro.40.060401.093744 ADSCrossRefGoogle Scholar
  206. K.W. Weiler, N. Panagia, C. Stockdale et al., Radio emission from SN 1994I in NGC 5194 (M 51): the best-studied Type Ib/c radio supernova. Astrophys. J. 740, 79 (2011).  https://doi.org/10.1088/0004-637X/740/2/79 ADSCrossRefGoogle Scholar
  207. A. Weinstein, E. Aliu, S. Casanova et al., Creating a high-resolution picture of Cygnus with the Cherenkov Telescope Array. arXiv:1509.02189 (2015)
  208. N.J. Wright, R.J. Parker, S.P. Goodwin et al., Constraints on massive star formation: Cygnus OB2 was always an association. Mon. Not. R. Astron. Soc. 438, 639–646 (2014).  https://doi.org/10.1093/mnras/stt2232 ADSCrossRefGoogle Scholar
  209. N.J. Wright, J.E. Drew, M. Mohr-Smith, The massive star population of Cygnus OB2. Mon. Not. R. Astron. Soc. 449, 741–760 (2015).  https://doi.org/10.1093/mnras/stv323 ADSCrossRefGoogle Scholar
  210. N. Yadav, A. Ray, S. Chakraborti, Low-frequency radio observations of SN 2011dh and the evolution of its post-shock plasma properties. Mon. Not. R. Astron. Soc. 459, 595–602 (2016).  https://doi.org/10.1093/mnras/stw594 ADSCrossRefGoogle Scholar
  211. T.M. Yoast-Hull, J.S. Gallagher, F. Halzen et al., Gamma-ray puzzle in Cygnus X: implications for high-energy neutrinos. Phys. Rev. D 96(4), 043011 (2017).  https://doi.org/10.1103/PhysRevD.96.043011 ADSCrossRefGoogle Scholar
  212. G. Zimbardo, E. Amato, A. Bovet et al., Superdiffusive transport in laboratory and astrophysical plasmas. J. Plasma Phys. 81(6), 495810601 (2015).  https://doi.org/10.1017/S0022377815001117 CrossRefGoogle Scholar
  213. V.N. Zirakashvili, V.S. Ptuskin, Type IIn supernovae as sources of high energy astrophysical neutrinos. Astropart. Phys. 78, 28–34 (2016).  https://doi.org/10.1016/j.astropartphys.2016.02.004 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. M. Bykov
    • 1
    • 2
    • 3
    Email author
  • D. C. Ellison
    • 4
  • A. Marcowith
    • 5
  • S. M. Osipov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.International Space Science InstituteBernSwitzerland
  4. 4.Department of PhysicsNorth Carolina State UniversityRaleighUSA
  5. 5.Laboratoire Univers et Particules de Montpellier CNRS/Universite de MontpellierMontpellierFrance

Personalised recommendations