Advertisement

Space Science Reviews

, 214:42 | Cite as

Daytime O/N2 Retrieval Algorithm for the Ionospheric Connection Explorer (ICON)

  • Andrew W. Stephan
  • R. R. Meier
  • Scott L. England
  • Stephen B. Mende
  • Harald U. Frey
  • Thomas J. Immel
Article
  • 140 Downloads
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission

Abstract

The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as \(\Sigma\)O/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure \(\Sigma\)O/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives.

Keywords

ICON Explorer mission Thermosphere Composition Ultraviolet airglow 

Notes

Acknowledgements

ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I. We acknowledge the input and feedback from the many scientists who have contributed to the evolution of this work, with specific acknowledgement to the support provided by Douglas P. Drob and J. Michael Picone. RRM thanks the Civil Service Retirement System for partial support.

References

  1. J.M. Ajello, D.E. Shemansky, A reexamination of important N2 cross sections by electron impact with application to the dayglow: the Lyman–Birge–Hopfield band system and NI (119.99 nm). J. Geophys. Res. 90(A10), 9845–9861 (1985).  https://doi.org/10.1029/JA090iA10p09845 ADSCrossRefGoogle Scholar
  2. P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd edn. (McGraw-Hill, New York, 1992) Google Scholar
  3. G. Crowley, R.R. Meier, Disturbed O/N2 ratios and their transport to middle and low latitudes, in Midlatitude Ionospheric Dynamics and Disturbances, ed. by P.M. Kintner et al.(Am. Geophys Union, Washington, 2008).  https://doi.org/10.1029/181GM20 Google Scholar
  4. K.F. Dymond, A.C. Nicholas, S.A. Budzien, C. Coker, A.W. Stephan, D.H. Chua, The Special Sensor Ultraviolet Limb Imager instruments. J. Geophys. Res. Space Phys. 122, 2674–2685 (2017).  https://doi.org/10.1002/2016JA022763 ADSGoogle Scholar
  5. R.W. Eastes, W.E. McClintock, A.G. Burns et al., The Global-scale Observations of the Limb and Disk (GOLD) mission. Space Sci. Rev. (2017).  https://doi.org/10.1007/s11214-017-0392-2 Google Scholar
  6. S.T. Gibson, B.R. Lewis, Understanding diatomic photodissociation with a coupled-channel Schrodinger equation model. J. Electron Spectrosc. Relat. Phenom. 80, 9–12 (1996).  https://doi.org/10.1016/0368-2048(96)02910-6 CrossRefGoogle Scholar
  7. S.T. Gibson, H.P.F. Gies, A.J. Blake, D.G. McCoy, P.J. Rogers, Temperature dependence in the Schumann-Runge photoabsorption continuum of oxygen. J. Quant. Spectrosc. Radiat. Transf. 30, 385–393 (1983).  https://doi.org/10.1016/0022-4073(83)90101-2 ADSCrossRefGoogle Scholar
  8. T.J. Immel, S.L. England, S.B. Mende, R.A. Heelis, C.R. Englert, J. Edelstein, H.U. Frey, E.J. Korpela, E.R. Taylor, W.W. Craig, S.E. Harris, M. Bester, G.S. Bust, G. Crowley, J.M. Forbes, J.-C. Ǵerard, H.M. Harlander, J.D. Huba, B. Hubert, F. Kamalabadi, J.J. Makela, A.I. Maute, R.R. Meier, C. Raftery, P. Rochus, O.H.W. Siegmund, A.W. Stephan, G.R. Swenson, S. Frey, D.L. Hysell, A. Saito, K.A. Rider, M.M. Sirk, The ionospheric connection explorer mission: mission goals and design. Space Sci. Rev. 214, 13 (2018).  https://doi.org/10.1007/s11214-017-0449-2 ADSCrossRefGoogle Scholar
  9. T.J. Immel, G. Crowley, J.D. Craven, R.G. Roble, Dayside enhancements of thermospheric O/N2 following magnetic storm onset. J. Geophys. Res. 106(A8), 15471–15488 (2001).  https://doi.org/10.1029/2000JA000096 ADSCrossRefGoogle Scholar
  10. F. Kamalabadi, J. Qin, B. Harding, D. Iliou, J. Makela, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Inferring nighttime ionospheric parameters with the Far Ultraviolet Imager onboard the Ionospheric Connection Explorer. Space Sci. Rev. (2018) Google Scholar
  11. J.L. Lean, R.R. Meier, J.M. Picone, J.T. Emmert, Ionospheric total electron content: global and hemispheric climatology. J. Geophys. Res. 116, A10318 (2011a).  https://doi.org/10.1029/2011JA016567 ADSGoogle Scholar
  12. J.L. Lean, T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, J.S. Evans, Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. 116, A01102 (2011b).  https://doi.org/10.1029/2010JA015901 ADSGoogle Scholar
  13. D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. II(2), 431–441 (1963).  https://doi.org/10.1137/0111030 MathSciNetCrossRefzbMATHGoogle Scholar
  14. R.R. Meier, Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev. 58, 1–186 (1991).  https://doi.org/10.1007/BF01206000 ADSCrossRefGoogle Scholar
  15. R.R. Meier, J.M. Picone, Retrieval of absolute thermospheric concentrations from the far UV dayglow: an application of discrete inverse theory. J. Geophys. Res. 99(A4), 6307–6320 (1994).  https://doi.org/10.1029/93JA02775 ADSCrossRefGoogle Scholar
  16. R. Meier, G. Crowley, D.J. Strickland, A.B. Christensen, L.J. Paxton, D. Morrison, C.L. Hackert, First look at the 20 November 2003 superstorm with TIMED/GUVI: comparisons with a thermospheric global circulation model. J. Geophys. Res. 110, A09S41 (2005).  https://doi.org/10.1029/2004JA010990 ADSCrossRefGoogle Scholar
  17. R.R. Meier et al., Remote sensing of Earth’s limb by TIMED/GUVI: retrieval of thermospheric composition and temperature. Earth Space Sci. 2, 1–37 (2015).  https://doi.org/10.1002/2014EA000035 ADSCrossRefGoogle Scholar
  18. D.J. Melendez-Alvira, R.R. Meier, J.M. Picone, P.D. Feldman, B.M. McLaughlin, Analysis of the oxygen nightglow measured by the Hopkins Ultraviolet Telescope: implications for ionospheric partial radiative recombination rate coefficients. J. Geophys. Res. 14, 901 (1999).  https://doi.org/10.1029/1999JA900136 Google Scholar
  19. S.B. Mende, H.U. Frey, K. Rider, C. Chou, S.E. Harris, O.H.W. Siegmund, S.L. England, C.W. Wilkins, W.W. Craig, P. Turin, N. Darling, T.J. Immel, J. Loicq, P. Blain, E. Syrstadt, B. Thompson, R. Burt, J. Champagne, P. Sevilla, S. Ellis, The far ultra-violet imager on the ICON mission. Space Sci. Rev. (2017).  https://doi.org/10.1007/s11214-017-0386-0 Google Scholar
  20. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory. Int. Geophys. Ser., vol. 45 (Academic Press, San Diego, 1989). 289 pp. zbMATHGoogle Scholar
  21. L.J. Paxton et al., SSUSI: horizon-to- horizon and limb viewing spectrographic imager for remote sensing of environmental parameters, in Proc. SPIE 1764, Ultraviolet Technology IV (1992).  https://doi.org/10.1117/12.140846 Google Scholar
  22. J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), 1468 (2002).  https://doi.org/10.1029/2002JA009430 CrossRefGoogle Scholar
  23. P.G. Richards, R.R. Meier, P.J. Wilkinson, On the consistency of satellite measurements of thermospheric composition and solar EUV irradiance with Australian ionosonde electron density data. J. Geophys. Res. 115, A10309 (2010).  https://doi.org/10.1029/2010JA015368 ADSCrossRefGoogle Scholar
  24. M.M. Sirk et al., Design and performance of the ICON EUV spectrograph. Space Sci. Rev. (2017).  https://doi.org/10.1007/s11214-017-0384-2 Google Scholar
  25. A.W. Stephan, E.J. Korpela, M.M. Sirk, S.L. England, T.J. Immel, Daytime ionosphere retrieval algorithm for the Ionospheric Connection Explorer (ICON). Space Sci. Rev. (2017).  https://doi.org/10.1007/s11214-017-0385-1 Google Scholar
  26. A.W. Stephan, R.R. Meier, L.J. Paxton, Comparison of Global Ultraviolet Imager limb and disk observations of column O/N2 during a geomagnetic storm. J. Geophys. Res. 113, A01301 (2008).  https://doi.org/10.1029/2007JA012599 ADSCrossRefGoogle Scholar
  27. D.J. Strickland et al., Atmospheric Ultraviolet Radiance Integrated Code (AURIC): theory, software architecture, inputs, and selected results. J. Quant. Spectrosc. Radiat. Transf. 62, 689–742 (1999).  https://doi.org/10.1016/S0022-4073(98)00098-3 ADSCrossRefGoogle Scholar
  28. D.J. Strickland, J.D. Craven, R.E. Daniell Jr., Six days of thermospheric-ionospheric weather over the Northern Hemisphere in late September 1981. J. Geophys. Res. 106(A12), 30291–30306 (2001).  https://doi.org/10.1029/2001JA001113 ADSCrossRefGoogle Scholar
  29. D.J. Strickland, J.S. Evans, L.J. Paxton, Satellite remote sensing of thermospheric O/N2 and solar EUV: 1. Theory. J. Geophys. Res. 100(A7), 12217–12226 (1995).  https://doi.org/10.1029/95JA00574 ADSCrossRefGoogle Scholar
  30. D.J. Strickland, J.S. Evans, J. Correira, Comment on “Long-term variation in the thermosphere: TIMED/GUVI observations” by Y. Zhang and L.J. Paxton. J. Geophys. Res. 117, A07302 (2012).  https://doi.org/10.1029/2011JA017350 ADSCrossRefGoogle Scholar
  31. T.N. Woods et al., XUV Photometer System (XPS): improved solar irradiance algorithm using CHIANTI spectral models. Sol. Phys. 250, 235–267 (2008).  https://doi.org/10.1007/s11207-008-9196-6 ADSCrossRefGoogle Scholar
  32. Y. Zhang, L.J. Paxton, Reply to comment by D.J. Strickland et al. on “Long-term variation in the thermosphere: TIMED/GUVI observations”. J. Geophys. Res. 117, A07304 (2012).  https://doi.org/10.1029/2012JA017594 ADSGoogle Scholar
  33. Y. Zhang, L.J. Paxton, D. Morrison, B. Wolven, H. Kil, C.-I. Meng, S.B. Mende, T.J. Immel, O/N2 changes during 1–4 October 2002 storms: IMAGE SI-13 and TIMED/GUVI observations. J. Geophys. Res. 109, A10308 (2004).  https://doi.org/10.1029/2004JA010441 ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Andrew W. Stephan
    • 1
  • R. R. Meier
    • 2
    • 3
  • Scott L. England
    • 4
  • Stephen B. Mende
    • 5
  • Harald U. Frey
    • 5
  • Thomas J. Immel
    • 5
  1. 1.U.S. Naval Research LaboratoryWashingtonUSA
  2. 2.George Mason UniversityFairfaxUSA
  3. 3.U.S. Naval Research Laboratory (Voluntary Emeritus)WashingtonUSA
  4. 4.Virginia Polytechnic and State UniversityBlacksburgUSA
  5. 5.Space Sciences LaboratoryUniversity of California-BerkeleyBerkeleyUSA

Personalised recommendations