Neutrinos from Supernovae

Abstract

Neutrinos are fundamental particles in the collapse of massive stars. Because of their weakly interacting nature, neutrinos can travel undisturbed through the stellar core and be direct probes of the still uncertain and fascinating supernova mechanism. Intriguing recent developments on the role of neutrinos during the stellar collapse are reviewed, as well as our current understanding of the flavor conversions in the stellar envelope. The detection perspectives of the next burst and of the diffuse supernova background will be also outlined. High-energy neutrinos in the GeV-PeV range can follow the MeV neutrino emission. Various scenarios concerning the production of high-energy neutrinos are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. S. Abbar, H. Duan, Neutrino flavor instabilities in a time-dependent supernova model. Phys. Lett. B 751, 43–47 (2015)

    ADS  Article  Google Scholar 

  2. F. An et al., Neutrino physics with JUNO. J. Phys. G 43(3), 030401 (2016)

    ADS  Article  Google Scholar 

  3. S. Ando, J.F. Beacom, Revealing the supernova-gamma-ray burst connection with TeV neutrinos. Phys. Rev. Lett. 95, 061103 (2005). astro-ph/0502521

    ADS  Article  Google Scholar 

  4. H. Andresen, B. Mueller, E. Mueller, H.T. Janka, Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae. Mon. Not. R. Astron. Soc. 468(2), 2032–2051 (2017)

    ADS  Article  Google Scholar 

  5. P. Antonioli et al., SNEWS: the supernova early warning system. New J. Phys. 6, 114 (2004)

    ADS  Article  Google Scholar 

  6. K. Asano, T. Terasawa, Slow heating model of gamma-ray burst: photon spectrum and delayed emission. Astrophys. J. 705, 1714–1720 (2009). 0905.1392

    ADS  Article  Google Scholar 

  7. J.N. Bahcall, P. Mészáros, 5-GeV to 10-GeV neutrinos from gamma-ray burst fireballs. Phys. Rev. Lett. 85, 1362–1365 (2000). hep-ph/0004019

    ADS  Article  Google Scholar 

  8. I. Bartos, B. Dasgupta, S. Marka, Probing the structure of jet driven core-collapse supernova and long gamma ray burst progenitors with high energy neutrinos. Phys. Rev. D 86, 083007 (2012). 1206.0764

    ADS  Article  Google Scholar 

  9. I. Bartos, A.M. Beloborodov, K. Hurley, S. Márka, Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore. Phys. Rev. Lett. 110(24), 241101 (2013). 1301.4232

    ADS  Article  Google Scholar 

  10. J.F. Beacom, The diffuse supernova neutrino background. Annu. Rev. Nucl. Part. Sci. 60, 439–462 (2010)

    ADS  Article  Google Scholar 

  11. J.F. Beacom, P. Vogel, Can a supernova be located by its neutrinos? Phys. Rev. D 60, 033007 (1999)

    ADS  Article  Google Scholar 

  12. J.H. Beall, W. Bednarek, Neutrinos from early phase, pulsar driven supernovae. Astrophys. J. 569, 343–348 (2002). astro-ph/0108447

    ADS  Article  Google Scholar 

  13. A.M. Beloborodov, Collisional mechanism for GRB emission. Mon. Not. R. Astron. Soc. 407, 1033 (2010). 0907.0732

    ADS  Article  Google Scholar 

  14. H.A. Bethe, W.R. James, Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 295, 14–23 (1985)

    ADS  Article  Google Scholar 

  15. A. Bhattacharya, R. Enberg, M.H. Reno, I. Sarcevic, Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events. J. Cosmol. Astropart. Phys. 1506(06), 034 (2015). 1407.2985

    ADS  Article  Google Scholar 

  16. K. Blum, D. Kushnir, Neutrino signal of collapse-induced thermonuclear supernovae: the case for prompt black hole formation in SN1987A. Astrophys. J. 828(1), 31 (2016). 1601.03422

    ADS  Article  Google Scholar 

  17. O. Bromberg, E. Nakar, T. Piran, R. Sari, The propagation of relativistic jets in external media. Astrophys. J. 740, 100 (2011). 1107.1326

    ADS  Article  Google Scholar 

  18. A.M. Bykov, P. Meszaros, Electron acceleration and efficiency in nonthermal gamma-ray sources. Astrophys. J. 461, L37–L40 (1996). astro-ph/9602016

    ADS  Article  Google Scholar 

  19. S. Chakraborty, R. Hansen, I. Izaguirre, G. Raffelt, Collective neutrino flavor conversion: recent developments. Nucl. Phys. B 908, 366–381 (2016a)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. S. Chakraborty, R.S. Hansen, I. Izaguirre, G. Raffelt, Self-induced neutrino flavor conversion without flavor mixing. J. Cosmol. Astropart. Phys. 1603(03), 042 (2016b)

    ADS  MATH  Article  Google Scholar 

  21. R.A. Chevalier, Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258, 790–797 (1982)

    ADS  Article  Google Scholar 

  22. R.A. Chevalier, C. Fransson, Thermal and non-thermal emission from circumstellar interaction (2016). 1612.07459

  23. R.A. Chevalier, C.M. Irwin, Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. 729, L6 (2011). 1101.1111

    ADS  Article  Google Scholar 

  24. B. Dasgupta, E.P. O’Connor, C.D. Ott, The role of collective neutrino flavor oscillations in core-collapse supernova shock revival. Phys. Rev. D 85, 065008 (2012)

    ADS  Article  Google Scholar 

  25. B. Dasgupta, A. Mirizzi, M. Sen, Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions. J. Cosmol. Astropart. Phys. 1702(02), 019 (2017)

    ADS  Article  Google Scholar 

  26. E.V. Derishev, V.V. Kocharovsky, V.V. Kocharovsky, The neutron component in fireballs of gamma-ray bursts: dynamics and observable imprints. Astrophys. J. 521, 640–649 (1999)

    ADS  Article  Google Scholar 

  27. E.V. Derishev, F.A. Aharonian, V.V. Kocharovsky, V.V. Kocharovsky, Particle acceleration through multiple conversions from charged into neutral state and back. Phys. Rev. D 68, 043003 (2003). astro-ph/0301263

    ADS  Article  Google Scholar 

  28. A.S. Dighe, A.Yu. Smirnov, Identifying the neutrino mass spectrum from the neutrino burst from a supernova. Phys. Rev. D 62, 033007 (2000)

    ADS  Article  Google Scholar 

  29. H. Duan, S. Shalgar, Flavor instabilities in the neutrino line model. Phys. Lett. B 747, 139–143 (2015)

    ADS  Article  Google Scholar 

  30. H. Duan, G.M. Fuller, J. Carlson, Y.Z. Qian, Simulation of coherent non-linear neutrino flavor transformation in the supernova environment. 1. Correlated neutrino trajectories. Phys. Rev. D 74, 105014 (2006)

    ADS  Article  Google Scholar 

  31. H. Duan, G.M. Fuller, Y.Z. Qian, Collective neutrino oscillations. Annu. Rev. Nucl. Part. Sci. 60, 569–594 (2010)

    ADS  Article  Google Scholar 

  32. H. Duan, A. Friedland, G.C. McLaughlin, R. Surman, The influence of collective neutrino oscillations on a supernova r-process. J. Phys. G 38, 035201 (2011)

    ADS  Article  Google Scholar 

  33. R. Enberg, M.H. Reno, I. Sarcevic, High energy neutrinos from charm in astrophysical sources. Phys. Rev. D 79, 053006 (2009). 0808.2807

    ADS  Article  Google Scholar 

  34. T. Ertl, H.T. Janka, S.E. Woosley, T. Sukhbold, M. Ugliano, A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism. Astrophys. J. 818(2), 124 (2016)

    ADS  Article  Google Scholar 

  35. A. Esteban-Pretel, A. Mirizzi, S. Pastor, R. Tomàs, G.G. Raffelt, P.D. Serpico, G. Sigl, Role of dense matter in collective supernova neutrino transformations. Phys. Rev. D 78, 085012 (2008)

    ADS  Article  Google Scholar 

  36. K. Fang, K. Kotera, K. Murase, A.V. Olinto, Testing the newborn pulsar origin of ultrahigh energy cosmic rays with EeV neutrinos. Phys. Rev. D 90(10), 103005 (2014). 1311.2044

    ADS  Article  Google Scholar 

  37. P. Fernández, GADZOOKS! (SuperK-Gd): status and physics potential (2016). PoS ICRC2015:1131

  38. G. Fogli, E. Lisi, A. Marrone, I. Tamborra, Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns. J. Cosmol. Astropart. Phys. 0910, 002 (2009)

    ADS  Article  Google Scholar 

  39. G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, I. Tamborra, Low-energy spectral features of supernova (anti)neutrinos in inverted hierarchy. Phys. Rev. D 78, 097301 (2008)

    ADS  Article  Google Scholar 

  40. T.K. Gaisser, T. Stanev, Energetic (>GeV) neutrinos as a probe of acceleration in the new supernova. Phys. Rev. Lett. 58, 1695 (1987). Erratum: Phys. Rev. Lett. 59, 844(E) (1987)

    ADS  Article  Google Scholar 

  41. F. Halzen, G.G. Raffelt, Reconstructing the supernova bounce time with neutrinos in IceCube. Phys. Rev. D 80, 087301 (2009)

    ADS  Article  Google Scholar 

  42. S. Horiuchi, K. Nakamura, T. Takiwaki, K. Kotake, M. Tanaka, The red supergiant and supernova rate problems: implications for core-collapse supernova physics. Mon. Not. R. Astron. Soc. 445, L99 (2014). 1409.0006

    ADS  Article  Google Scholar 

  43. S. Horiuchi, K. Sumiyoshi, K. Nakamura, T. Fischer, A. Summa, T. Takiwaki, H.T. Janka, K. Kotake, Diffuse supernova neutrino background from extensive core-collapse simulations of \(8\mbox{--}100~{\mathrm{M}}_{\odot}\) progenitors (2017). 1709.06567

  44. F. Iocco, K. Murase, S. Nagataki, P.D. Serpico, High energy neutrino signals from the epoch of reionization. Astrophys. J. 675, 937–945 (2008). 0707.0515

    ADS  Article  Google Scholar 

  45. I. Izaguirre, G. Raffelt, I. Tamborra, Fast pairwise conversion of supernova neutrinos: a dispersion-relation approach. Phys. Rev. Lett. 118(2), 021101 (2017)

    ADS  Article  Google Scholar 

  46. H.T. Janka, Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012)

    ADS  Article  Google Scholar 

  47. H.T. Janka, Neutrino emission from supernovae (2017). 1702.08713

  48. H.T. Janka, T. Melson, A. Summa, Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016)

    ADS  Article  Google Scholar 

  49. M. Kachelriess, R. Tomàs, R. Buras, H.T. Janka, A. Marek, M. Rampp, Exploiting the neutronization burst of a galactic supernova. Phys. Rev. D 71, 063003 (2005)

    ADS  Article  Google Scholar 

  50. K. Kashiyama, E. Quataert, Fast luminous blue transients from newborn black holes. Mon. Not. R. Astron. Soc. 451(3), 2656–2662 (2015). 1504.05582

    ADS  Article  Google Scholar 

  51. K. Kashiyama, K. Murase, P. Mészáros, Neutron-proton-converter acceleration mechanism at subphotospheres of relativistic outflows. Phys. Rev. Lett. 111, 131103 (2013). 1304.1945

    ADS  Article  Google Scholar 

  52. K. Kashiyama, K. Hotokezaka, K. Murase, Radio transients from newborn black holes (2017). 1710.10765

  53. B. Katz, N. Sapir, E. Waxman, X-rays, gamma-rays and neutrinos from collisionless shocks in supernova wind breakouts (2011). 1106.1898

  54. S. Kobayashi, P. Meszaros, Gravitational radiation from gamma-ray burst progenitors. Astrophys. J. 589, 861–870 (2003). astro-ph/0210211

    ADS  Article  Google Scholar 

  55. R.F. Lang, C. McCabe, S. Reichard, M. Selvi, I. Tamborra, Supernova neutrino physics with xenon dark matter detectors: a timely perspective. Phys. Rev. D 94(10), 103009 (2016)

    ADS  Article  Google Scholar 

  56. E.J. Lentz, S.W. Bruenn, W.R. Hix, A. Mezzacappa, O.E.B. Messer, E. Endeve, J.M. Blondin, J.A. Harris, P. Marronetti, K.N. Yakunin, Three-dimensional core-collapse supernova simulated using a \(15~M_{\odot}\) progenitor. Astrophys. J. 807(2), L31 (2015)

    ADS  Article  Google Scholar 

  57. A. Levinson, O. Bromberg, Relativistic photon mediated shocks. Phys. Rev. Lett. 100, 131101 (2008). 0711.3281

    ADS  Article  Google Scholar 

  58. C. Lunardini, Diffuse supernova neutrinos at underground laboratories. Astropart. Phys. 79, 49–77 (2016)

    ADS  Article  Google Scholar 

  59. C. Lunardini, I. Tamborra, Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence. J. Cosmol. Astropart. Phys. 1207, 012 (2012)

    ADS  Article  Google Scholar 

  60. A. MacFadyen, S.E. Woosley, Collapsars: gamma-ray bursts and explosions in ‘failed supernovae’. Astrophys. J. 524, 262 (1999). astro-ph/9810274

    ADS  Article  Google Scholar 

  61. T. Matsumoto, D. Nakauchi, K. Ioka, A. Heger, T. Nakamura, Can direct collapse black holes launch gamma-ray bursts and grow to supermassive black holes? Astrophys. J. 810(1), 64 (2015). 1506.05802

    ADS  Article  Google Scholar 

  62. T. Melson, H.T. Janka, R. Bollig, F. Hanke, A. Marek, B. Mueller, Neutrino-driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino-nucleon scattering. Astrophys. J. 808(2), L42 (2015)

    ADS  Article  Google Scholar 

  63. P. Meszaros, M.J. Rees, Multi GeV neutrinos from internal dissipation in GRB fireballs. Astrophys. J. 541, L5–L8 (2000). astro-ph/0007102

    ADS  Article  Google Scholar 

  64. P. Mészáros, E. Waxman, TeV neutrinos from successful and choked gamma-ray bursts. Phys. Rev. Lett. 87, 171102 (2001). astro-ph/0103275

    ADS  Article  Google Scholar 

  65. S.P. Mikheev, A.Yu. Smirnov, Neutrino oscillations in a variable density medium and neutrino bursts due to the gravitational collapse of stars. Sov. Phys. JETP 64, 4–7 (1986). Zh. Eksp. Teor. Fiz. 91, 7 (1986). 0706.0454

    Google Scholar 

  66. A. Mirizzi, I. Tamborra, H.T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Huedepohl, S. Chakraborty, Supernova neutrinos: production, oscillations and detection. Riv. Nuovo Cimento 39(1–2), 1–112 (2016)

    Google Scholar 

  67. A. Mizuta, K. Ioka, Opening angles of collapsar jets. Astrophys. J. 777, 162 (2013). 1304.0163

    ADS  Article  Google Scholar 

  68. V. Morozova, A.L. Piro, S. Valenti, Unifying type II supernova light curves with dense circumstellar material. Astrophys. J. 838(1), 28 (2017). 1610.08054

    ADS  Article  Google Scholar 

  69. T. Muehlbeier, H. Nunokawa, R. Zukanovich Funchal, Revisiting the triangulation method for pointing to supernova and failed supernova with neutrinos. Phys. Rev. D 88, 085010 (2013)

    ADS  Article  Google Scholar 

  70. K. Murase, Detecting high-energy neutrinos from the next galactic supernova (2017). 1705.04750

  71. K. Murase, K. Ioka, TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars. Phys. Rev. Lett. 111(12), 121102 (2013). 1306.2274

    ADS  Article  Google Scholar 

  72. K. Murase, K. Ioka, S. Nagataki, T. Nakamura, High energy neutrinos and cosmic-rays from low-luminosity gamma-ray bursts? Astrophys. J. 651, L5–L8 (2006). astro-ph/0607104

    ADS  Article  Google Scholar 

  73. K. Murase, P. Mészáros, B. Zhang, Probing the birth of fast rotating magnetars through high-energy neutrinos. Phys. Rev. D 79, 103001 (2009). 0904.2509

    ADS  Article  Google Scholar 

  74. K. Murase, T.A. Thompson, B.C. Lacki, J.F. Beacom, New class of high-energy transients from crashes of supernova ejecta with massive circumstellar material shells. Phys. Rev. D 84, 043003 (2011). 1012.2834

    ADS  Article  Google Scholar 

  75. K. Murase, K. Asano, T. Terasawa, P. Meszaros, The role of stochastic acceleration in the prompt emission of gamma-ray bursts: application to hadronic injection. Astrophys. J. 746, 164 (2012). 1107.5575

    ADS  Article  Google Scholar 

  76. K. Murase, K. Kashiyama, P. Mészáros, Subphotospheric neutrinos from gamma-ray bursts: the role of neutrons. Phys. Rev. Lett. 111, 131102 (2013). 1301.4236

    ADS  Article  Google Scholar 

  77. K. Murase, B. Dasgupta, T.A. Thompson, Quasithermal neutrinos from rotating protoneutron stars born during core collapse of massive stars. Phys. Rev. D 89(4), 043012 (2014a). 1303.2612

    ADS  Article  Google Scholar 

  78. K. Murase, T.A. Thompson, E.O. Ofek, Probing cosmic-ray ion acceleration with radio-submm and gamma-ray emission from interaction-powered supernovae. Mon. Not. R. Astron. Soc. 440(3), 2528–2543 (2014b). 1311.6778

    ADS  Article  Google Scholar 

  79. K. Nakazato, Imprint of explosion mechanism on supernova relic neutrinos. Phys. Rev. D 88(8), 083012 (2013). 1306.4526

    ADS  Article  Google Scholar 

  80. E. O’Connor, C.D. Ott, Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011)

    ADS  Article  Google Scholar 

  81. E. Pllumbi, I. Tamborra, S. Wanajo, H.T. Janka, L. Huedepohl, Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova. Astrophys. J. 808(2), 188 (2015)

    ADS  Article  Google Scholar 

  82. Y.Z. Qian, S.E. Woosley, Nucleosynthesis in neutrino driven winds: 1. The physical conditions. Astrophys. J. 471, 331–351 (1996). astro-ph/9611094

    ADS  Article  Google Scholar 

  83. G. Raffelt, S. Sarikas, D. de Sousa Seixas, Axial symmetry breaking in self-induced flavor conversion of supernova neutrino fluxes. Phys. Rev. Lett. 111(9), 091101 (2013)

    ADS  Article  Google Scholar 

  84. G.G. Raffelt, What have we learned from SN 1987A? Mod. Phys. Lett. A 5, 2581–2592 (1990)

    ADS  Article  Google Scholar 

  85. S. Razzaque, P. Meszaros, E. Waxman, Neutrino tomography of gamma-ray bursts and massive stellar collapses. Phys. Rev. D 68, 083001 (2003). astro-ph/0303505

    ADS  Article  Google Scholar 

  86. S. Razzaque, P. Meszaros, E. Waxman, TeV neutrinos from core collapse supernovae and hypernovae. Phys. Rev. Lett. 93, 181101 (2004). Erratum: Phys. Rev. Lett. 94, 109903 (2005). astro-ph/0407064

    ADS  Article  Google Scholar 

  87. M.J. Rees, P. Meszaros, Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. 430, L93–L96 (1994). astro-ph/9404038

    ADS  Article  Google Scholar 

  88. M.J. Rees, P. Meszaros, Dissipative photosphere models of gamma-ray bursts and x-ray flashes. Astrophys. J. 628, 847–852 (2005). astro-ph/0412702

    ADS  Article  Google Scholar 

  89. L.F. Roberts, C.D. Ott, R. Haas, E.P. O’Connor, P. Diener, E. Schnetter, General-relativistic three-dimensional multi-group neutrino radiation-hydrodynamics simulations of core-collapse supernovae. Astrophys. J. 831, 98 (2016). 1604.07848

    ADS  Article  Google Scholar 

  90. R.F. Sawyer, Speed-up of neutrino transformations in a supernova environment. Phys. Rev. D 72, 045003 (2005)

    ADS  Article  Google Scholar 

  91. R.F. Sawyer, Neutrino cloud instabilities just above the neutrino sphere of a supernova. Phys. Rev. Lett. 116(8), 081101 (2016)

    ADS  Article  Google Scholar 

  92. K. Scholberg, Supernova neutrino detection. Annu. Rev. Nucl. Part. Sci. 62, 81–103 (2012)

    ADS  Article  Google Scholar 

  93. N. Senno, K. Murase, P. Mészáros, Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Phys. Rev. D 93(8), 083003 (2016). 1512.08513

    ADS  Article  Google Scholar 

  94. P.D. Serpico, S. Chakraborty, T. Fischer, L. Huedepohl, H.T. Janka, A. Mirizzi, Probing the neutrino mass hierarchy with the rise time of a supernova burst. Phys. Rev. D 85, 085031 (2012)

    ADS  Article  Google Scholar 

  95. N. Smith, Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014). 1402.1237

    ADS  Article  Google Scholar 

  96. T. Sukhbold, T. Ertl, S.E. Woosley, J.M. Brown, H.T. Janka, Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821(1), 38 (2016)

    ADS  Article  Google Scholar 

  97. K. Sumiyoshi, S. Yamada, H. Suzuki, S. Chiba, Neutrino signals from the formation of black hole: a probe of equation of state of dense matter. Phys. Rev. Lett. 97, 091101 (2006). astro-ph/0608509

    ADS  Article  Google Scholar 

  98. Y. Suwa, K. Murase, Probing the central engine of long gamma-ray bursts and hypernovae with gravitational waves. Phys. Rev. D 80, 123008 (2009). 0906.3833

    ADS  Article  Google Scholar 

  99. L.G. Sveshnikova, The knee in galactic cosmic ray spectrum and variety in supernovae. Astron. Astrophys. 409, 799–808 (2003). astro-ph/0303159

    ADS  Article  Google Scholar 

  100. T. Takiwaki, K. Kotake, Y. Suwa, Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows. Mon. Not. R. Astron. Soc. 461(1), L112–L116 (2016)

    ADS  Article  Google Scholar 

  101. I. Tamborra, S. Ando, Inspecting the supernova-gamma-ray-burst connection with high-energy neutrinos. Phys. Rev. D 93(5), 053010 (2016). 1512.01559

    ADS  Article  Google Scholar 

  102. I. Tamborra, F. Hanke, B. Mueller, H.T. Janka, G. Raffelt, Neutrino signature of supernova hydrodynamical instabilities in three dimensions. Phys. Rev. Lett. 111(12), 121104 (2013)

    ADS  Article  Google Scholar 

  103. I. Tamborra, F. Hanke, H.T. Janka, B. Mueller, G.G. Raffelt, A. Marek, Self-sustained asymmetry of lepton-number emission: a new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophys. J. 792(2), 96 (2014a)

    ADS  Article  Google Scholar 

  104. I. Tamborra, G. Raffelt, F. Hanke, H.T. Janka, B. Mueller, Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations. Phys. Rev. D 90(4), 045032 (2014b)

    ADS  Article  Google Scholar 

  105. I. Tamborra, L. Huedepohl, G. Raffelt, H.T. Janka, Flavor-dependent neutrino angular distribution in core-collapse supernovae. Astrophys. J. 839, 132 (2017)

    ADS  Article  Google Scholar 

  106. T.A. Thompson, P. Chang, E. Quataert, Magnetar spindown, hyper-energetic supernovae, and gamma ray bursts. Astrophys. J. 611, 380–393 (2004). astro-ph/0401555

    ADS  Article  Google Scholar 

  107. R. Tomàs, D. Semikoz, G.G. Raffelt, M. Kachelriess, A.S. Dighe, Supernova pointing with low-energy and high-energy neutrino detectors. Phys. Rev. D 68, 093013 (2003)

    ADS  Article  Google Scholar 

  108. I. Vurm, A.M. Beloborodov, J. Poutanen, Gamma-ray bursts from magnetized collisionally-heated jets. Astrophys. J. 738, 77 (2011). 1104.0394

    ADS  Article  Google Scholar 

  109. J. Wallace, A. Burrows, J.C. Dolence, Detecting the supernova breakout burst in terrestrial neutrino detectors. Astrophys. J. 817(2), 182 (2016)

    ADS  Article  Google Scholar 

  110. E. Waxman, B. Katz, Shock breakout theory (2016). 1607.01293

  111. O. Yaron et al., Confined dense circumstellar material surrounding a regular type II supernova: the unique flash-spectroscopy event of SN 2013fs. Nat. Phys. 13, 510 (2017). 1701.02596

    Article  Google Scholar 

  112. V.N. Zirakashvili, V.S. Ptuskin, Type IIn supernovae as sources of high energy astrophysical neutrinos. Astropart. Phys. 78, 28–34 (2016). 1510.08387

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the organizers of the ISSI SN Workshop held in October 2016 for their kind invitation and warm hospitality. I.T. acknowledges support from the Knud Højgaard Foundation, the Villum Foundation (Project No. 13164) and the Danish National Research Foundation (DNRF91). The work of K.M. is supported by Alfred P. Sloan Foundation and NSF Grant No. PHY-1620777.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Irene Tamborra.

Additional information

Supernovae

Edited by Andrei Bykov, Roger Chevalier, John Raymond, Friedrich-Karl Thielemann, Maurizio Falanga and Rudolf von Steiger

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tamborra, I., Murase, K. Neutrinos from Supernovae. Space Sci Rev 214, 31 (2018). https://doi.org/10.1007/s11214-018-0468-7

Download citation

Keywords

  • Core-collapse supernova
  • Neutrinos
  • Flavor oscillations
  • Neutrino telescopes