Advertisement

Space Science Reviews

, 214:27 | Cite as

Circumstellar Interaction in Supernovae in Dense Environments—An Observational Perspective

  • Poonam ChandraEmail author
Article
Part of the following topical collections:
  1. Supernovae

Abstract

In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass loss from the progenitor, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance in the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, and asymmetry in the explosion seem to be common properties of this class of SNe.

Keywords

Radiation mechanisms: general Radiative transfer Stars: mass-loss Supernovae: general X-rays: general Radio continuum: general 

Notes

Acknowledgements

I thank referee for useful comments, which helped improve this chapter. I acknowledge the support from the Department of Science and Technology via SwaranaJayanti Fellowship award (file no. DST/SJF/PSA-01/2014-15). The chapter has benefited immensely from discussions with Roger Chevalier, Claes Fransson, and Nikolai Chugai at various stages. I am highly indebted to Roger Chevalier for proof reading the manuscript.

References

  1. J.P. Anderson, S.M. Habergham, P.A. James, M. Hamuy, Progenitor mass constraints for core-collapse supernovae from correlations with host galaxy star formation. Mon. Not. R. Astron. Soc. 424, 1372–1391 (2012). arXiv:1205.3802.  https://doi.org/10.1111/j.1365-2966.2012.21324.x ADSCrossRefGoogle Scholar
  2. F.E. Bauer, V.V. Dwarkadas, W.N. Brandt, S. Immler, S. Smartt, N. Bartel, M.F. Bietenholz, Supernova 1996cr: SN 1987A’s wild cousin? Astrophys. J. 688, 1210–1234 (2008). arXiv:0804.3597.  https://doi.org/10.1086/589761 ADSCrossRefGoogle Scholar
  3. A.R. Bell, The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443–455 (1978).  https://doi.org/10.1093/mnras/182.3.443 ADSCrossRefGoogle Scholar
  4. C. Bilinski, N. Smith, W. Li, G.G. Williams, W. Zheng, A.V. Filippenko, Constraints on type IIn supernova progenitor outbursts from the Lick Observatory Supernova Search. Mon. Not. R. Astron. Soc. 450, 246–265 (2015). arXiv:1503.04252.  https://doi.org/10.1093/mnras/stv566 ADSCrossRefGoogle Scholar
  5. R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 221, L29–L32 (1978).  https://doi.org/10.1086/182658 ADSCrossRefGoogle Scholar
  6. G. Brown, H.A. Bethe, How a supernova explodes. Sci. Am. 252, 60–68 (1985).  https://doi.org/10.1038/scientificamerican0585-60 ADSGoogle Scholar
  7. P. Chandra, R.A. Chevalier, Swift-XRT observations of type IIn supernova ASASSN-17kr a.k.a. SN 2017gas. The Astronomer’s Telegram 10705 (2017) Google Scholar
  8. P. Chandra, A. Ray, S. Bhatnagar, Synchrotron aging and the radio spectrum of SN 1993J. Astrophys. J. Lett. 604, L97–L100 (2004). arXiv:astro-ph/0402391.  https://doi.org/10.1086/383615 ADSCrossRefGoogle Scholar
  9. P. Chandra, A. Ray, E.M. Schlegel, F.K. Sutaria, W. Pietsch, Chandra’s Tryst with SN 1995N. Astrophys. J. 629, 933–943 (2005). arXiv:astro-ph/0505051.  https://doi.org/10.1086/431573 ADSCrossRefGoogle Scholar
  10. P. Chandra, C.J. Stockdale, R.A. Chevalier, S.D. Van Dyk, A. Ray, M.T. Kelley, K.W. Weiler, N. Panagia, R.A. Sramek, Eleven years of radio monitoring of the type IIn supernova SN 1995N. Astrophys. J. 690, 1839–1846 (2009). arXiv:0809.2810.  https://doi.org/10.1088/0004-637X/690/2/1839 ADSCrossRefGoogle Scholar
  11. P. Chandra, R.A. Chevalier, N. Chugai, C. Fransson, C.M. Irwin, A.M. Soderberg, S. Chakraborti, S. Immler, Radio and X-ray observations of SN 2006jd: another strongly interacting type IIn supernova. Astrophys. J. 755, 110 (2012a). arXiv:1205.0250.  https://doi.org/10.1088/0004-637X/755/2/110 ADSCrossRefGoogle Scholar
  12. P. Chandra, R.A. Chevalier, C.M. Irwin, N. Chugai, C. Fransson, A.M. Soderberg, Strong evolution of X-ray absorption in the type IIn supernova SN 2010jl. Astrophys. J. Lett. 750, L2 (2012b). arXiv:1203.1614.  https://doi.org/10.1088/2041-8205/750/1/L2 ADSCrossRefGoogle Scholar
  13. P. Chandra, R.A. Chevalier, N. Chugai, C. Fransson, A.M. Soderberg, X-ray and radio emission from type IIn supernova SN 2010jl. Astrophys. J. 810, 32 (2015). arXiv:1507.06059.  https://doi.org/10.1088/0004-637X/810/1/32 ADSCrossRefGoogle Scholar
  14. R.A. Chevalier, The interaction of the radiation from a type II supernova with a circumstellar shell. Astrophys. J. 251, 259–265 (1981).  https://doi.org/10.1086/159460 ADSCrossRefGoogle Scholar
  15. R.A. Chevalier, Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258, 790–797 (1982a).  https://doi.org/10.1086/160126 ADSCrossRefGoogle Scholar
  16. R.A. Chevalier, The radio and X-ray emission from type II supernovae. Astrophys. J. 259, 302–310 (1982b).  https://doi.org/10.1086/160167 ADSCrossRefGoogle Scholar
  17. R.A. Chevalier, Synchrotron self-absorption in radio supernovae. Astrophys. J. 499, 810–819 (1998).  https://doi.org/10.1086/305676 ADSCrossRefGoogle Scholar
  18. R.A. Chevalier, Common envelope evolution leading to supernovae with dense interaction. Astrophys. J. Lett. 752, L2 (2012). arXiv:1204.3300.  https://doi.org/10.1088/2041-8205/752/1/L2 ADSCrossRefGoogle Scholar
  19. R. Chevalier, J.M. Blondin, Hydrodynamic instabilities in supernova remnants: early radiative cooling. Astrophys. J. 444, 312–317 (1995).  https://doi.org/10.1086/175606 ADSCrossRefGoogle Scholar
  20. R.A. Chevalier, C. Fransson, Emission from circumstellar interaction in normal type II supernovae. Astrophys. J. 420, 268–285 (1994).  https://doi.org/10.1086/173557 ADSCrossRefGoogle Scholar
  21. R.A. Chevalier, C. Fransson, Supernova interaction with a circumstellar medium, in Supernovae and Gamma-Ray Bursters, ed. by K. Weiler. Lecture Notes in Physics, vol. 598 (Springer, Berlin, 2003), pp. 171–194. arXiv:astro-ph/0110060 CrossRefGoogle Scholar
  22. R.A. Chevalier, C. Fransson, Thermal and non-thermal emission from circumstellar interaction. arXiv:1612.07459 (2016)
  23. R.A. Chevalier, C.M. Irwin, Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. Lett. 729, L6 (2011). arXiv:1101.1111.  https://doi.org/10.1088/2041-8205/729/1/L6 ADSCrossRefGoogle Scholar
  24. N.N. Chugai, Late stage radiation source in type-II supernovae—radioactivity or shock heating. Sov. Astron. Lett. 16, 457 (1990) ADSGoogle Scholar
  25. N.N. Chugai, R.A. Chevalier, Late emission from the Type Ib/c SN 2001em: overtaking the hydrogen envelope. Astrophys. J. 641, 1051–1059 (2006). arXiv:astro-ph/0510362.  https://doi.org/10.1086/500539 ADSCrossRefGoogle Scholar
  26. N.N. Chugai, I.J. Danziger, Supernova 1988Z—low-mass ejecta colliding with the clumpy wind. Mon. Not. R. Astron. Soc. 268, 173 (1994).  https://doi.org/10.1093/mnras/268.1.173 ADSCrossRefGoogle Scholar
  27. N.N. Chugai, I.J. Danziger, A massive circumstellar envelope around the Type-IIn supernova SN 1995G. Astron. Lett. 29, 649–657 (2003). arXiv:astro-ph/0306330.  https://doi.org/10.1134/1.1615333 ADSCrossRefGoogle Scholar
  28. N.N. Chugai, S.I. Blinnikov, R.J. Cumming, P. Lundqvist, A. Bragaglia, A.V. Filippenko, D.C. Leonard, T. Matheson, J. Sollerman, The Type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope. Mon. Not. R. Astron. Soc. 352, 1213–1231 (2004). arXiv:astro-ph/0405369.  https://doi.org/10.1111/j.1365-2966.2004.08011.x ADSCrossRefGoogle Scholar
  29. J. Cooke, M. Sullivan, E.J. Barton, J.S. Bullock, R.G. Carlberg, A. Gal-Yam, E. Tollerud, Type IIn supernovae at redshift \(z\sim2\) from archival data. Nature 460, 237–239 (2009). arXiv:0907.1928.  https://doi.org/10.1038/nature08082 ADSCrossRefGoogle Scholar
  30. B. Dilday, D.A. Howell, S.B. Cenko, J.M. Silverman, P.E. Nugent, M. Sullivan, S. Ben-Ami, L. Bildsten, M. Bolte, M. Endl, A.V. Filippenko, O. Gnat, A. Horesh, E. Hsiao, M.M. Kasliwal, D. Kirkman, K. Maguire, G.W. Marcy, K. Moore, Y. Pan, J.T. Parrent, P. Podsiadlowski, R.M. Quimby, A. Sternberg, N. Suzuki, D.R. Tytler, D. Xu, J.S. Bloom, A. Gal-Yam, I.M. Hook, S.R. Kulkarni, N.M. Law, E.O. Ofek, D. Polishook, D. Poznanski, PTF 11kx: a type Ia supernova with a symbiotic nova progenitor. Science 337, 942 (2012). arXiv:1207.1306.  https://doi.org/10.1126/science.1219164 ADSCrossRefGoogle Scholar
  31. V.V. Dwarkadas, J. Gruszko, What are published X-ray light curves telling us about young supernova expansion? Mon. Not. R. Astron. Soc. 419, 1515–1524 (2012). arXiv:1109.2616.  https://doi.org/10.1111/j.1365-2966.2011.19808.x ADSCrossRefGoogle Scholar
  32. V.V. Dwarkadas, C. Romero-Cañizales, R. Reddy, F.E. Bauer, X-ray and radio emission from the luminous supernova 2005kd. Mon. Not. R. Astron. Soc. 462, 1101–1110 (2016). arXiv:1607.06104.  https://doi.org/10.1093/mnras/stw1717 ADSCrossRefGoogle Scholar
  33. O.D. Fox, S.D. Van Dyk, E. Dwek, N. Smith, A.V. Filippenko, J. Andrews, R.G. Arendt, R.J. Foley, P.L. Kelly, A.A. Miller, I. Shivvers, The candidate progenitor of the type IIn SN 2010jl is not an optically luminous star. Astrophys. J. 836, 222 (2017). arXiv:1611.00369.  https://doi.org/10.3847/1538-4357/836/2/222 ADSCrossRefGoogle Scholar
  34. C. Fransson, Comptonization and UV emission lines from Type II supernovae. Astron. Astrophys. 133, 264–284 (1984) ADSGoogle Scholar
  35. C. Fransson, P. Lundqvist, R.A. Chevalier, Circumstellar interaction in SN 1993J. Astrophys. J. 461, 993 (1996).  https://doi.org/10.1086/177119 ADSCrossRefGoogle Scholar
  36. C. Fransson, M. Ergon, P.J. Challis, R.A. Chevalier, K. France, R.P. Kirshner, G.H. Marion, D. Milisavljevic, N. Smith, F. Bufano, A.S. Friedman, T. Kangas, J. Larsson, S. Mattila, S. Benetti, R. Chornock, I. Czekala, A. Soderberg, J. Sollerman, High-density circumstellar interaction in the luminous type IIn SN 2010jl: the first 1100 days. Astrophys. J. 797, 118 (2014). arXiv:1312.6617.  https://doi.org/10.1088/0004-637X/797/2/118 ADSCrossRefGoogle Scholar
  37. M. Fraser, C. Inserra, A. Jerkstrand, R. Kotak, G. Pignata, S. Benetti, M.T. Botticella, F. Bufano, M. Childress, S. Mattila, A. Pastorello, S.J. Smartt, M. Turatto, F. Yuan, J.P. Anderson, D.D.R. Bayliss, F.E. Bauer, T.W. Chen, F. Förster Burón, A. Gal-Yam, J.B. Haislip, C. Knapic, L. Le Guillou, S. Marchi, P. Mazzali, M. Molinaro, J.P. Moore, D. Reichart, R. Smareglia, K.W. Smith, A. Sternberg, M. Sullivan, K. Takáts, B.E. Tucker, S. Valenti, O. Yaron, D.R. Young, G. Zhou, SN 2009ip à la PESSTO: no evidence for core collapse yet. Mon. Not. R. Astron. Soc. 433, 1312–1337 (2013). arXiv:1303.3453.  https://doi.org/10.1093/mnras/stt813 ADSCrossRefGoogle Scholar
  38. A.W. Fullerton, D.L. Massa, R.K. Prinja, The discordance of mass-loss estimates for galactic O-type stars. Astrophys. J. 637, 1025–1039 (2006). arXiv:astro-ph/0510252.  https://doi.org/10.1086/498560 ADSCrossRefGoogle Scholar
  39. A. Gal-Yam, D.C. Leonard, D.B. Fox, S.B. Cenko, A.M. Soderberg, D.S. Moon, D.J. Sand, Caltech Core Collapse Program, W. Li, A.V. Filippenko, G. Aldering, Y. Copin, On the progenitor of SN 2005gl and the nature of type IIn supernovae. Astrophys. J. 656, 372–381 (2007). arXiv:astro-ph/0608029.  https://doi.org/10.1086/510523 ADSCrossRefGoogle Scholar
  40. J.L. Hoffman, D.C. Leonard, R. Chornock, A.V. Filippenko, A.J. Barth, T. Matheson, The dual-axis circumstellar environment of the type IIn supernova 1997eg. Astrophys. J. 688, 1186–1209 (2008). arXiv:0709.3258.  https://doi.org/10.1086/592261 ADSCrossRefGoogle Scholar
  41. R.M. Humphreys, K. Davidson, The luminous blue variables: astrophysical geysers. Publ. Astron. Soc. Pac. 106, 1025–1051 (1994).  https://doi.org/10.1086/133478 ADSCrossRefGoogle Scholar
  42. R.M. Humphreys, K. Davidson, N. Smith, \(\eta\) Carinae’s second eruption and the light curves of the \(\eta\) Carinae variables. Publ. Astron. Soc. Pac. 111, 1124–1131 (1999).  https://doi.org/10.1086/316420 ADSCrossRefGoogle Scholar
  43. S. Immler, X-ray emission from supernovae, in Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters, ed. by S. Immler, K. Weiler, R. McCray. American Institute of Physics Conference Series, vol. 937 (2007), pp. 246–255.  https://doi.org/10.1063/1.3682910 Google Scholar
  44. S. Katsuda, K. Maeda, T. Nozawa, D. Pooley, S. Immler, SN 2005ip: a luminous type IIn supernova emerging from a dense circumstellar medium as revealed by X-ray observations. Astrophys. J. 780, 184 (2014). arXiv:1311.7180.  https://doi.org/10.1088/0004-637X/780/2/184 ADSCrossRefGoogle Scholar
  45. S. Katsuda, K. Maeda, A. Bamba, Y. Terada, Y. Fukazawa, K. Kawabata, M. Ohno, Y. Sugawara, Y. Tsuboi, S. Immler, Two distinct-absorption X-ray components from type IIn supernovae: evidence for asphericity in the circumstellar medium. Astrophys. J. 832, 194 (2016). arXiv:1609.09093.  https://doi.org/10.3847/0004-637X/832/2/194 ADSCrossRefGoogle Scholar
  46. D.C. Leonard, A.V. Filippenko, A.J. Barth, T. Matheson, Evidence for asphericity in the type IIN supernova SN 1998S. Astrophys. J. 536, 239–254 (2000). arXiv:astro-ph/9908040.  https://doi.org/10.1086/308910 ADSCrossRefGoogle Scholar
  47. W.D. Li, C. Li, A.V. Filippenko, E.C. Moran, Supernova 1998S in NGC 3877. IAU Circ 6829 (1998) Google Scholar
  48. R. Margutti, D. Milisavljevic, A.M. Soderberg, C. Guidorzi, B.J. Morsony, N. Sanders, S. Chakraborti, A. Ray, A. Kamble, M. Drout, J. Parrent, A. Zauderer, L. Chomiuk, Relativistic supernovae have shorter-lived central engines or more extended progenitors: the case of SN 2012ap. Astrophys. J. 797, 107 (2014). arXiv:1402.6344.  https://doi.org/10.1088/0004-637X/797/2/107 ADSCrossRefGoogle Scholar
  49. R. Margutti, A. Kamble, D. Milisavljevic, E. de Zapartas, S.E. Mink, M. Drout, R. Chornock, G. Risaliti, B.A. Zauderer, M. Bietenholz, M. Cantiello, S. Chakraborti, L. Chomiuk, W. Fong, B. Grefenstette, C. Guidorzi, R. Kirshner, J.T. Parrent, D. Patnaude, A.M. Soderberg, N.C. Gehrels, F. Harrison, Ejection of the massive hydrogen-rich envelope timed with the collapse of the stripped SN 2014C. Astrophys. J. 835, 140 (2017). arXiv:1601.06806.  https://doi.org/10.3847/1538-4357/835/2/140 ADSCrossRefGoogle Scholar
  50. C.D. Matzner, C.F. McKee, The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999). arXiv:astro-ph/9807046.  https://doi.org/10.1086/306571 ADSCrossRefGoogle Scholar
  51. J.C. Mauerhan, N. Smith, A.V. Filippenko, K.B. Blanchard, P.K. Blanchard, C.F.E. Casper, S.B. Cenko, K.I. Clubb, D.P. Cohen, K.L. Fuller, G.Z. Li, J.M. Silverman, The unprecedented 2012 outburst of SN 2009ip: a luminous blue variable star becomes a true supernova. Mon. Not. R. Astron. Soc. 430, 1801–1810 (2013). arXiv:1209.6320.  https://doi.org/10.1093/mnras/stt009 ADSCrossRefGoogle Scholar
  52. R. McCray, C. Fransson, The remnant of supernova 1987A. Annu. Rev. Astron. Astrophys. 54, 19–52 (2016).  https://doi.org/10.1146/annurev-astro-082615-105405 ADSCrossRefGoogle Scholar
  53. D. Milisavljevic, R. Margutti, A. Kamble, D.J. Patnaude, J.C. Raymond, J.J. Eldridge, W. Fong, M. Bietenholz, P. Challis, R. Chornock, M.R. Drout, C. Fransson, R.A. Fesen, J.E. Grindlay, R.P. Kirshner, R. Lunnan, J. Mackey, G.F. Miller, J.T. Parrent, N.E. Sanders, A.M. Soderberg, B.A. Zauderer, Metamorphosis of SN 2014C: delayed interaction between a hydrogen poor core-collapse supernova and a nearby circumstellar shell. Astrophys. J. 815, 120 (2015). arXiv:1511.01907.  https://doi.org/10.1088/0004-637X/815/2/120 ADSCrossRefGoogle Scholar
  54. T.K. Nymark, C. Fransson, C. Kozma, X-ray emission from radiative shocks in type II supernovae. Astron. Astrophys. 449, 171–192 (2006). arXiv:astro-ph/0510792.  https://doi.org/10.1051/0004-6361:20054169 ADSCrossRefGoogle Scholar
  55. E.O. Ofek, D. Fox, S.B. Cenko, M. Sullivan, O. Gnat, D.A. Frail, A. Horesh, A. Corsi, R.M. Quimby, N. Gehrels, S.R. Kulkarni, A. Gal-Yam, P.E. Nugent, O. Yaron, A.V. Filippenko, M.M. Kasliwal, L. Bildsten, J.S. Bloom, D. Poznanski, I. Arcavi, R.R. Laher, D. Levitan, B. Sesar, J. Surace, X-ray emission from supernovae in dense circumstellar matter environments: a search for collisionless shocks. Astrophys. J. 763, 42 (2013). arXiv:1206.0748.  https://doi.org/10.1088/0004-637X/763/1/42 ADSCrossRefGoogle Scholar
  56. E.O. Ofek, M. Sullivan, N.J. Shaviv, A. Steinbok, I. Arcavi, A. Gal-Yam, D. Tal, S.R. Kulkarni, P.E. Nugent, S. Ben-Ami, M.M. Kasliwal, S.B. Cenko, R. Laher, J. Surace, J.S. Bloom, A.V. Filippenko, J.M. Silverman, O. Yaron, Precursors prior to type IIn supernova explosions are common: precursor rates, properties, and correlations. Astrophys. J. 789, 104 (2014a). arXiv:1401.5468.  https://doi.org/10.1088/0004-637X/789/2/104 ADSCrossRefGoogle Scholar
  57. E.O. Ofek, A. Zoglauer, S.E. Boggs, N.M. Barriére, S.P. Reynolds, C.L. Fryer, F.A. Harrison, S.B. Cenko, S.R. Kulkarni, A. Gal-Yam, I. Arcavi, E. Bellm, J.S. Bloom, F. Christensen, W.W. Craig, W. Even, A.V. Filippenko, B. Grefenstette, C.J. Hailey, R. Laher, K. Madsen, E. Nakar, P.E. Nugent, D. Stern, M. Sullivan, J. Surace, W.W. Zhang, SN 2010jl: optical to hard X-ray observations reveal an explosion embedded in a ten solar mass cocoon. Astrophys. J. 781, 42 (2014b). arXiv:1307.2247.  https://doi.org/10.1088/0004-637X/781/1/42 ADSCrossRefGoogle Scholar
  58. A.G. Pacholczyk, Radio Astrophysics. Nonthermal Processes in Galactic and Extragalactic Sources. Series of Books in Astronomy and Astrophysics (Freeman, San Francisco, 1970) Google Scholar
  59. N. Panagia, M. Felli, The spectrum of the free-free radiation from extended envelopes. Astron. Astrophys. 39, 1–5 (1975) ADSGoogle Scholar
  60. A. Pastorello, S.J. Smartt, S. Mattila, J.J. Eldridge, D. Young, K. Itagaki, H. Yamaoka, H. Navasardyan, S. Valenti, F. Patat, I. Agnoletto, T. Augusteijn, S. Benetti, E. Cappellaro, T. Boles, J.M. Bonnet-Bidaud, M.T. Botticella, F. Bufano, C. Cao, J. Deng, M. Dennefeld, N. Elias-Rosa, A. Harutyunyan, F.P. Keenan, T. Iijima, V. Lorenzi, P.A. Mazzali, X. Meng, S. Nakano, T.B. Nielsen, J.V. Smoker, V. Stanishev, M. Turatto, D. Xu, L. Zampieri, A giant outburst two years before the core-collapse of a massive star. Nature 447, 829–832 (2007). arXiv:astro-ph/0703663.  https://doi.org/10.1038/nature05825 ADSCrossRefGoogle Scholar
  61. F. Patat, S. Taubenberger, S. Benetti, A. Pastorello, A. Harutyunyan, Asymmetries in the type IIn SN 2010jl. Astron. Astrophys. 527, L6 (2011). arXiv:1011.5926.  https://doi.org/10.1051/0004-6361/201016217 ADSCrossRefGoogle Scholar
  62. M. Perez-Torres, A. Alberdi, R.J. Beswick, P. Lundqvist, R. Herrero-Illana, C. Romero-Cañizales, S. Ryder, M. della Valle, J. Conway, J.M. Marcaide, S. Mattila, T. Murphy, E. Ros, Core-collapse and Type Ia supernovae with the SKA, in Advancing Astrophysics with the Square Kilometre Array, AASKA14 (2015), 60. arXiv:1409.1827 Google Scholar
  63. J. Puls, J.S. Vink, F. Najarro, Mass loss from hot massive stars. Astron. Astrophys. Rev. 16, 209–325 (2008). arXiv:0811.0487.  https://doi.org/10.1007/s00159-008-0015-8 ADSCrossRefGoogle Scholar
  64. E. Quataert, J. Shiode, Wave-driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core-collapse supernovae. Mon. Not. R. Astron. Soc. 423, L92–L96 (2012). arXiv:1202.5036.  https://doi.org/10.1111/j.1745-3933.2012.01264.x ADSCrossRefGoogle Scholar
  65. R.M. Quimby, F. Yuan, C. Akerlof, J.C. Wheeler, Rates of superluminous supernovae at \(z \sim 0.2\). Mon. Not. R. Astron. Soc. 431, 912–922 (2013). arXiv:1302.0911.  https://doi.org/10.1093/mnras/stt213 ADSCrossRefGoogle Scholar
  66. M. Ross, Dwarkadas VV: SNaX—a database of supernova X-ray lightcurves. arXiv:1704.05866 (2017)
  67. I. Salamanca, R. Cid-Fernandes, G. Tenorio-Tagle, E. Telles, R.J. Terlevich, C. Munoz-Tunon, The circumstellar medium of the peculiar supernova SN1997ab. Mon. Not. R. Astron. Soc. 300, L17–L21 (1998). arXiv:astro-ph/9809208.  https://doi.org/10.1046/j.1365-8711.1998.02093.x ADSCrossRefGoogle Scholar
  68. N.E. Sanders, A.M. Soderberg, R.J. Foley, R. Chornock, D. Milisavljevic, R. Margutti, M.R. Drout, M. Moe, E. Berger, W.R. Brown, R. Lunnan, S.J. Smartt, M. Fraser, R. Kotak, L. Magill, K.W. Smith, D. Wright, K. Huang, Y. Urata, J.S. Mulchaey, A. Rest, D.J. Sand, L. Chomiuk, A.S. Friedman, R.P. Kirshner, G.H. Marion, J.L. Tonry, W.S. Burgett, K.C. Chambers, K.W. Hodapp, R.P. Kudritzki, P.A. Price, PS1-12sk is a peculiar supernova from a He-rich progenitor system in a brightest cluster galaxy environment. Astrophys. J. 769, 39 (2013). arXiv:1303.1818.  https://doi.org/10.1088/0004-637X/769/1/39 ADSCrossRefGoogle Scholar
  69. E.M. Schlegel, R. Petre, A Chandra ACIS observation of the X-ray-luminous SN 1988Z. Astrophys. J. 646, 378–384 (2006). arXiv:astro-ph/0604106.  https://doi.org/10.1086/504890 ADSCrossRefGoogle Scholar
  70. E.M. Schlegel, A. Kong, P. Kaaret, R. DiStefano, S. Murray, Chandra ACIS and XMM-Newton EPIC observations of the X-ray-luminous SN 1978K in NGC 1313. Astrophys. J. 603, 644–651 (2004). arXiv:astro-ph/0311434.  https://doi.org/10.1086/381571 ADSCrossRefGoogle Scholar
  71. N. Smith, Episodic post-shock dust formation in the colliding winds of Eta Carinae. Mon. Not. R. Astron. Soc. 402, 145–151 (2010). arXiv:0910.4395.  https://doi.org/10.1111/j.1365-2966.2009.15901.x ADSCrossRefGoogle Scholar
  72. N. Smith, Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014). arXiv:1402.1237.  https://doi.org/10.1146/annurev-astro-081913-040025 ADSCrossRefGoogle Scholar
  73. N. Smith, Interacting supernovae: types IIn and Ibn. arXiv:1612.02006 (2016)
  74. N. Smith, R. Tombleson, Luminous blue variables are antisocial: their isolation implies that they are kicked mass gainers in binary evolution. Mon. Not. R. Astron. Soc. 447, 598–617 (2015). arXiv:1406.7431.  https://doi.org/10.1093/mnras/stu2430 ADSCrossRefGoogle Scholar
  75. N. Smith, K.H. Hinkle, N. Ryde, Red supergiants as potential type IIn supernova progenitors: spatially resolved \(4.6~\upmu\mbox{m}\) CO emission around VY CMa and Betelgeuse. Astron. J. 137, 3558–3573 (2009). arXiv:0811.3037.  https://doi.org/10.1088/0004-6256/137/3/3558 ADSCrossRefGoogle Scholar
  76. N. Smith, R. Chornock, J.M. Silverman, A.V. Filippenko, R.J. Foley, Spectral evolution of the extraordinary type IIn supernova 2006gy. Astrophys. J. 709, 856–883 (2010). arXiv:0906.2200.  https://doi.org/10.1088/0004-637X/709/2/856 ADSCrossRefGoogle Scholar
  77. N. Smith, W. Li, A.A. Miller, J.M. Silverman, A.V. Filippenko, J.C. Cuillandre, M.C. Cooper, T. Matheson, S.D. Van Dyk, A massive progenitor of the luminous type IIn supernova 2010jl. Astrophys. J. 732, 63 (2011). arXiv:1011.4150.  https://doi.org/10.1088/0004-637X/732/2/63 ADSCrossRefGoogle Scholar
  78. N. Smith, J.M. Silverman, A.V. Filippenko, M.C. Cooper, T. Matheson, F. Bian, B.J. Weiner, J.M. Comerford, Systematic blueshift of line profiles in the type IIn supernova 2010jl: evidence for post-shock dust formation? Astron. J. 143, 17 (2012). arXiv:1108.2869.  https://doi.org/10.1088/0004-6256/143/1/17 ADSCrossRefGoogle Scholar
  79. N. Smith, J.E. Andrews, J.C. Mauerhan, Massive stars dying alone: the extremely remote environment of SN 2009ip. Mon. Not. R. Astron. Soc. 463, 2904–2911 (2016). arXiv:1607.01056.  https://doi.org/10.1093/mnras/stw2190 ADSCrossRefGoogle Scholar
  80. J. Sollerman, R.J. Cumming, P. Lundqvist, A very low mass of \(^{56}\mathrm{Ni}\) in the ejecta of SN 1994W. Astrophys. J. 493, 933–939 (1998). arXiv:astro-ph/9709061.  https://doi.org/10.1086/305163 ADSCrossRefGoogle Scholar
  81. G. Svirski, E. Nakar, R. Sari, Optical to X-ray supernova light curves following shock breakout through a thick wind. Astrophys. J. 759, 108 (2012). arXiv:1202.3437.  https://doi.org/10.1088/0004-637X/759/2/108 ADSCrossRefGoogle Scholar
  82. R.F. Temple, S. Raychaudhury, I.R. Stevens, X-ray observations of the edge-on star-forming galaxy NGC 891 and its supernova SN1986J. Mon. Not. R. Astron. Soc. 362, 581–591 (2005). arXiv:astro-ph/0506657.  https://doi.org/10.1111/j.1365-2966.2005.09336.x ADSCrossRefGoogle Scholar
  83. M. Turatto, E. Cappellaro, I.J. Danziger, S. Benetti, C. Gouiffes, M. della Valle, The type II supernova 1988Z in MCG + 03-28-022—increasing evidence of interaction of supernova ejecta with a circumstellar wind. Mon. Not. R. Astron. Soc. 262, 128–140 (1993).  https://doi.org/10.1093/mnras/262.1.128 ADSCrossRefGoogle Scholar
  84. S.D. van Dyk, K.W. Weiler, R.A. Sramek, N. Panagia, SN 1988Z: the most distant radio supernova. Astrophys. J. Lett. 419, L69 (1993).  https://doi.org/10.1086/187139 ADSCrossRefGoogle Scholar
  85. S.D. van Dyk, K.W. Weiler, R.A. Sramek, E.M. Schlegel, A.V. Filippenko, N. Panagia, B. Leibundgut, Type “IIn” supernovae: a search for radio emission. Astron. J. 111, 1271 (1996).  https://doi.org/10.1086/117872 ADSCrossRefGoogle Scholar
  86. J.S. Vink, A. de Koter, H.J.G.L.M. Lamers, Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001). arXiv:astro-ph/0101509.  https://doi.org/10.1051/0004-6361:20010127 ADSCrossRefGoogle Scholar
  87. L. Wang, X. Cui, H. Zhu, W. Tian, Investigations of supernovae and supernova remnants in the era of SKA, in Advancing Astrophysics with the Square Kilometre Array, AASKA14, 64 (2015). arXiv:1501.04645 Google Scholar
  88. K.W. Weiler, N. Panagia, M.J. Montes, R.A. Sramek, Radio emission from supernovae and gamma-ray bursters. Annu. Rev. Astron. Astrophys. 40, 387–438 (2002).  https://doi.org/10.1146/annurev.astro.40.060401.093744 ADSCrossRefGoogle Scholar
  89. K.W. Weiler, N. Panagia, R.A. Sramek, Radio emission from supernovae. II—SN 1986J: a different kind of type II. Astrophys. J. 364, 611–625 (1990).  https://doi.org/10.1086/169444 ADSCrossRefGoogle Scholar
  90. C.L. Williams, N. Panagia, S.D. Van Dyk, C.K. Lacey, K.W. Weiler, R.A. Sramek, Radio emission from SN 1988Z and very massive star evolution. Astrophys. J. 581, 396–403 (2002). arXiv:astro-ph/0208190.  https://doi.org/10.1086/344087 ADSCrossRefGoogle Scholar
  91. S.E. Woosley, S. Blinnikov, A. Heger, Pulsational pair instability as an explanation for the most luminous supernovae. Nature 450, 390–392 (2007). arXiv:0710.3314.  https://doi.org/10.1038/nature06333 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Centre for Radio Astrophysics, Tata Institute of Fundamental ResearchPune University Campus, GaneshkhindPuneIndia
  2. 2.Department of AstronomyStockholm UniversityStockholmSweden

Personalised recommendations