Skip to main content

Extreme Space Weather Events: From Cradle to Grave

Abstract

Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called “100-year” solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth’s lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. J. Allen, H. Sauer, L. Frank, P. Reiff, Effects of the March 1989 solar activity. Eos 70(46), 1479–1488 (1989)

    Article  ADS  Google Scholar 

  2. D.N. Baker, S. Kanekal, J.B. Blake, B. Klecker, G. Rostoker, Satellite anomalies linked to electron increase in the magnetosphere. Eos 75(35), 401–405 (1994)

    Article  ADS  Google Scholar 

  3. D.N. Baker, J.H. Allen, S.G. Kanekal, G.D. Reeves, Disturbed space environment may have been related to pager satellite failure. Eos 79(40), 477–483 (1998)

    Article  ADS  Google Scholar 

  4. D.N. Baker, X. Li, A. Pulkkinen, C.M. Ngwira, M.L. Mays, A.B. Galvin, K.D.C. Simunac, A major solar eruptive event in July 2012: defining extreme space weather scenarios. Space Weather 11(10), 585–591 (2013)

    Article  ADS  Google Scholar 

  5. M. Calisto, P.T. Verronen, E. Rozanov, T. Peter, Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics. Atmos. Chem. Phys. 12(18), 8679–8686 (2012)

    Article  ADS  Google Scholar 

  6. P. Cannon, M. Angling, L. Barclay, C. Curry, C. Dyer, R. Edwards, G. Greene, M. Hapgood, R.B. Horne, D. Jackson et al., Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering (2013)

  7. R.C. Carrington, Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc. 20, 13–15 (1859)

    Article  ADS  Google Scholar 

  8. E.W. Cliver, W.F. Dietrich, The 1859 space weather event revisited: limits of extreme activity. J. Space Weather Space Clim. 3, 31 (2013)

    Article  ADS  Google Scholar 

  9. P.J. Crutzen, I.S.A. Isaksen, G.C. Reid, Solar proton events: stratospheric sources of nitric oxide. Science 189(4201), 457–459 (1975)

    Article  ADS  Google Scholar 

  10. K.A. Duderstadt, J.E. Dibb, N.A. Schwadron, H.E. Spence, S.C. Solomon, V.A. Yudin, C.H. Jackman, C.E. Randall, Nitrate ion spikes in ice cores not suitable as proxies for solar proton events. J. Geophys. Res. Atmos. 121(6), 2994–3016 (2016)

    Article  ADS  Google Scholar 

  11. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47 (1961)

    Article  ADS  Google Scholar 

  12. V.V. Hambaryan, R. Neuhäuser, A galactic short gamma-ray burst as cause for the 14c peak in ad 774/5. Mon. Not. R. Astron. Soc. 430(1), 32–36 (2013)

    Article  ADS  Google Scholar 

  13. M.R. Hayashi, K. Shibata, R. Matsumoto, Astrophys. J. 468, L37 (1996)

    Article  ADS  Google Scholar 

  14. H. Hu, Y.D. Liu, R. Wang, C. Möstl, Z. Yang, Sun-to-Earth characteristics of the 2012 July 12 coronal mass ejection and associated geo-effectiveness. Astrophys. J. 829(2), 97 (2016)

    Article  ADS  Google Scholar 

  15. K.E.J. Huttunen, S.P. Kilpua, A. Pulkkinen, A. Viljanen, E. Tanskanen, Solar wind drivers of large geomagnetically induced currents during the solar cycle 23. Space Weather 6(10), S10002 (2008)

    Article  ADS  Google Scholar 

  16. C.H. Jackman, R.D. McPeters, The effect of solar proton events on ozone and other constituents, in Solar Variability and Its Effects on Climate (2004)

    Google Scholar 

  17. C.H. Jackman, E.L. Fleming, S. Chandra, D.B. Considine, J.E. Rosenfield, Past, present, and future modeled ozone trends with comparisons to observed trends. J. Geophys. Res., Atmos. 101(D22), 28753–28767 (1996)

    Article  ADS  Google Scholar 

  18. C.H. Jackman, R.D. McPeters, G.J. Labow, E.L. Fleming, C.J. Praderas, J.M. Russell, Northern Hemisphere atmospheric effects due to the July 2000 solar proton event. Geophys. Res. Lett. 28(15), 2883–2886 (2001)

    Article  ADS  Google Scholar 

  19. C.H. Jackman, R.G. Roble, E.L. Fleming, Mesospheric dynamical changes induced by the solar proton events in October–November 2003. Geophys. Res. Lett. 34(4), L04812 (2007)

    Article  ADS  Google Scholar 

  20. C.H. Jackman, D.R. Marsh, F.M. Vitt, R.R. Garcia, E.L. Fleming, G.J. Labow, C.E. Randall, M. López-Puertas, B. Funke, T. von Clarmann et al., Short-and medium-term atmospheric constituent effects of very large solar proton events. Atmos. Chem. Phys. 8(3), 765–785 (2008)

    Article  ADS  Google Scholar 

  21. C.H. Jackman, D.R. Marsh, F.M. Vitt, R.R. Garcia, C.E. Randall, E.L. Fleming, S.M. Frith, Long-term middle atmospheric influence of very large solar proton events. J. Geophys. Res., Atmos. 114(D11), D11304 (2009)

    Article  ADS  Google Scholar 

  22. C.H. Jackman, D.R. Marsh, F.M. Vitt, R.G. Roble, C.E. Randall, P.F. Bernath, B. Funke, M. López-Puertas, S. Versick, G.P. Stiller et al., Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005. Atmos. Chem. Phys. 11(13), 6153–6166 (2011)

    Article  ADS  Google Scholar 

  23. S. Jonas, W. Murtagh, M. Bonadonna, Released for public comment: space weather benchmarks and operations-to-research plan. Space Weather 15(2), 282 (2017)

    Article  ADS  Google Scholar 

  24. J.G. Kappenman, Geomagnetic disturbances and impacts upon power system operation, in Electric Power Generation, Transmission, and Distribution 3rd edn. (CRC Press, Boca Raton, 2012), pp. 1–22

    Google Scholar 

  25. C. Karoff, M.F. Knudsen, P. De Cat, A. Bonanno, A. Fogtmann-Schulz, J. Fu, A. Frasca, F. Inceoglu, J. Olsen, Y. Zhang et al., Observational evidence for enhanced magnetic activity of superflare stars. Nat. Commun. 7, 11058 (2016)

    Article  ADS  Google Scholar 

  26. J. Linker, T. Torok, C. Downs, R. Lionello, V. Titov, R.M. Caplan, Z. Mikić, P. Riley, MHD simulation of the Bastille day event, in AIP Conference Proceedings, vol. 1720 (AIP Publishing, New York, 2016)

    Google Scholar 

  27. Y.D. Liu, J.G. Luhmann, P. Kajdič, E.K.J. Kilpua, N. Lugaz, N.V. Nitta, C. Möstl, B. Lavraud, S.D. Bale, C.J. Farrugia et al., Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 5, 3481 (2014)

    ADS  Google Scholar 

  28. Y.D. Liu, H. Hu, R. Wang, Z. Yang, B. Zhu, Y.A. Liu, J.G. Luhmann, J.D. Richardson, Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys. J. Lett. 809(2), 34 (2015)

    Article  ADS  Google Scholar 

  29. J.J. Love, Credible occurrence probabilities for extreme geophysical events: earthquakes, volcanic eruptions, magnetic storms. Geophys. Res. Lett. 39, 10301 (2012). https://doi.org/10.1029/2012GL051431

    ADS  Google Scholar 

  30. J.J. Love, E.J. Rigler, A. Pulkkinen, P. Riley, On the lognormality of historical magnetic storm intensity statistics: implications for extreme-event probabilities. Geophys. Res. Lett. 42(16), 6544–6553 (2015)

    Article  ADS  Google Scholar 

  31. J.J. Love, A. Pulkkinen, P.A. Bedrosian, S. Jonas, A. Kelbert, E.J. Rigler, C.A. Finn, C.C. Balch, R. Rutledge, R.M. Waggel et al., Geoelectric hazard maps for the continental united states. Geophys. Res. Lett. 43(18), 9415–9424 (2016)

    Article  ADS  Google Scholar 

  32. H. Maehara, T. Shibayama, S. Notsu, Y. Notsu, T. Nagao, S. Kusaba, S. Honda, D. Nogami, K. Shibata, Superflares on solar-type stars. Nature 485(7399), 478–481 (2012)

    Article  ADS  Google Scholar 

  33. H. Maehara, T. Shibayama, Y. Notsu, S. Notsu, S. Honda, D. Nogami, K. Shibata, Statistical properties of superflares on solar-type stars based on 1-min cadence data. Earth Planets Space 67(1), 1 (2015)

    Article  Google Scholar 

  34. K.G. McCracken, G.A.M. Dreschhoff, E.J. Zeller, D.F. Smart, M.A. Shea, Solar cosmic ray events for the period 1561–1994: 1. Identification in polar ice, 1561–1950. J. Geophys. Res. 106(15), 21585–21598 (2001). 2001JGR...10621585M

    Article  ADS  Google Scholar 

  35. D. McMorrow, Impacts of Severe Space Weather on the Electric Grid (JASON, Virginia, 2011)

    Google Scholar 

  36. F. Miyake, K. Nagaya, K. Masuda, T. Nakamura, A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402), 240–242 (2012)

    ADS  Google Scholar 

  37. F. Miyake, K. Masuda, T. Nakamura, Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 4, 1748 (2013)

    Article  ADS  Google Scholar 

  38. F. Miyake, K. Masuda, M. Hakozaki, T. Nakamura, F. Tokanai, K. Kato, K. Kimura, T. Mitsutani, Verification of the cosmic-ray event in AD 993–994 by using a Japanese Hinoki tree. Radiocarbon 56(3), 1189–1194 (2014)

    Article  Google Scholar 

  39. C.M. Ngwira, A. Pulkkinen, M.M. Kuznetsova, A. Glocer, Modeling extreme Carrington-type space weather events using three-dimensional global MHD simulations. J. Geophys. Res. Space Phys. 119(6), 4456–4474 (2014)

    Article  ADS  Google Scholar 

  40. N.V. Nitta, M.J. Aschwanden, P.F. Boerner, S.L. Freeland, J.R. Lemen, J-P. Wuelser, Soft \(x\)-ray fluxes of major flares far behind the limb as estimated using STEREO EUV images. Sol. Phys. 288(1), 241–254 (2013)

    Article  ADS  Google Scholar 

  41. NRC, Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (National Academies Press, Washington, DC, 2008)

    Google Scholar 

  42. E.J. Oughton, A. Skelton, R.B. Horne, A.W. Thomson, C.T. Gaunt, Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather 15(1), 65–83 (2017)

    Article  ADS  Google Scholar 

  43. R. Pirjola, Geomagnetically induced currents during magnetic storms. IEEE Trans. Plasma Sci. 28(6), 1867–1873 (2000)

    Article  ADS  Google Scholar 

  44. A. Pulkkinen, Geomagnetically induced currents modeling and forecasting. Space Weather 13(11), 734–736 (2015)

    Article  ADS  Google Scholar 

  45. A. Pulkkinen, E. Bernabeu, J. Eichner, A. Viljanen, C. Ngwira, Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth Planets Space 67(1), 1–8 (2015)

    Article  Google Scholar 

  46. P. Riley, CME dynamics in a structured solar wind, in Solar Wind Nine, Am. Inst. Phys. Conf. Proc., vol. 471, ed. by S.R. Habbal, R. Esser, V. Hollweg, P.A. Isenberg (1999), p. 131

    Google Scholar 

  47. P. Riley, On the probability of occurrence of extreme space weather events. Space Weather 10(2), S02012 (2012)

    Article  ADS  Google Scholar 

  48. P. Riley, J.J. Love, Extreme geomagnetic storms: probabilistic forecasts and their uncertainties. Space Weather 15(1), 53–64 (2017)

    Article  ADS  Google Scholar 

  49. P. Riley, J.T. Gosling, V.J. Pizzo, A two-dimensional simulation of the radial and latitudinal evolution of a solar wind disturbance driven by a fast, high-pressure coronal mass ejection. J. Geophys. Res. 102(A7), 14677 (1997)

    Article  ADS  Google Scholar 

  50. P. Riley, C. Schatzman, H.V. Cane, I.G. Richardson, N. Gopalswamy, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648–653 (2006). https://doi.org/10.1086/505383

    Article  ADS  Google Scholar 

  51. P. Riley, R. Lionello, J.A. Linker, Z. Mikic, J. Luhmann, J. Wijaya, Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Sol. Phys. 274, 361–3775 (2012). https://doi.org/10.1007/s11207-010-9698-x

    Article  ADS  Google Scholar 

  52. P. Riley, R.M. Caplan, J. Giacalone, D. Lario, Y. Liu, Properties of the fast forward shock driven by the July 23 2012 extreme coronal mass ejection. Astrophys. J. 819, 57 (2016). https://doi.org/10.3847/0004-637X/819/1/57

    Article  ADS  Google Scholar 

  53. P. Riley, M. Ben-Nun, J.A. Linker, M.J. Owens, T.S. Horbury, Forecasting the properties of the solar wind using simple pattern recognition. Space Weather 15(3), 526–540 (2017)

    Article  ADS  Google Scholar 

  54. C.J. Rodger, M.A. Clilverd, P.T. Verronen, T. Ulich, M.J. Jarvis, E. Turunen, Dynamic geomagnetic rigidity cutoff variations during a solar proton event. J. Geophys. Res. Space Phys. 111(A4), A04222 (2006)

    Article  ADS  Google Scholar 

  55. C.T. Russell, R.A. Mewaldt, J.G. Luhmann, G.M. Mason, T.T. von Rosenvinge, C.M.S. Cohen, R.A. Leske, R. Gomez-Herrero, A. Klassen, A.B. Galvin, K.D.C. Simunac, The very unusual interplanetary coronal mass ejection of 2012 July 23: a blast wave mediated by solar energetic particles. Astrophys. J. 770, 38 (2013). https://doi.org/10.1088/0004-637X/770/1/38

    Article  ADS  Google Scholar 

  56. A. Ruzmaikin, J. Feynman, I. Jun, Distribution of extreme solar energetic proton fluxes. J. Atmos. Sol.-Terr. Phys. 73, 300–307 (2011). https://doi.org/10.1016/j.jastp.2009.12.016

    Article  ADS  Google Scholar 

  57. A. Seppälä, P.T. Verronen, E. Kyrölä, S. Hassinen, L. Backman, A. Hauchecorne, J.L. Bertaux, D. Fussen, Solar proton events of October–November 2003: ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat. Geophys. Res. Lett. 31(19), L19107 (2004)

    Article  ADS  Google Scholar 

  58. M.A. Shea, D.F. Smart, Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci. Rev. 171(1–4), 161–188 (2012)

    Article  ADS  Google Scholar 

  59. M.A. Shea, D.F. Smart, K.G. McCracken, G.A.M. Dreschhoff, H.E. Spence, Solar proton events for 450 years: the Carrington event in perspective. Adv. Space Res. 38, 232–238 (2006). https://doi.org/10.1016/j.asr.2005.02.100

    Article  ADS  Google Scholar 

  60. K. Shibata, H. Isobe, A. Hillier, A.R. Choudhuri, H. Maehara, T.T. Ishii, T. Shibayama, S. Notsu, Y. Notsu, T. Nagao et al., Can superflares occur on our Sun? Publ. Astron. Soc. Jpn. 65(3), 49 (2013)

    Article  ADS  Google Scholar 

  61. B.-M. Sinnhuber, M. Weber, A. Amankwah, J.P. Burrows, Total ozone during the unusual Antarctic winter of 2002. Geophys. Res. Lett. 30(11), 1580 (2003)

    Article  ADS  Google Scholar 

  62. G. Siscoe, N.U. Crooker, C.R. Clauer, Dst of the Carrington storm of 1859. Adv. Space Res. 38, 173–179 (2006). https://doi.org/10.1016/j.asr.2005.02.102

    Article  ADS  Google Scholar 

  63. W. Swider, T.J. Keneshea, Decrease of ozone and atomic oxygen in the lower mesosphere during a PCA event. Planet. Space Sci. 21(11), 1969–1973 (1973)

    Article  ADS  Google Scholar 

  64. N.N. Taleb, The Black Swan: The Impact of the Highly Improbable (Random House, New York, 2007)

    Google Scholar 

  65. B.C. Thomas, C.H. Jackman, A. Melott, L Modeling atmospheric effects of the September 1859 solar flare. Geophys. Res. Lett. 34(6), L06810 (2007)

    Article  ADS  Google Scholar 

  66. F. Toffoletto, R. Wolf, J. Yang, Dst during extreme events—how low can it get? in AGU Fall Meeting Abstracts (2016)

    Google Scholar 

  67. US Dept. of Commerce NOAA, Space Weather Prediction Center, Solar proton events affecting the earth environment (2010) (accessed July 11, 2017). ftp://ftp.swpc.noaa.gov/pub/indices/SPE.txt

  68. I.G. Usoskin, G.A. Kovaltsov, Occurrence of extreme solar particle events: assessment from historical proxy data. Astrophys. J. 757(1), 92 (2012)

    Article  ADS  Google Scholar 

  69. S. Vennerstrom, L. Lefevre, M. Dumbović, N. Crosby, O. Malandraki, I. Patsou, F. Clette, A. Veronig, B. Vršnak, K. Leer, T. Moretto, Extreme geomagnetic storms—1868–2010. Sol. Phys. 291, 1447–1481 (2016). https://doi.org/10.1007/s11207-016-0897-y

    Article  ADS  Google Scholar 

  70. P.T. Verronen, R. Lehmann, Analysis and parameterisation of ionic reactions affecting middle atmospheric HOx and NOy during solar proton events. Ann. Geophys. 31, 909–956 (2013)

    Article  ADS  Google Scholar 

  71. P.T. Verronen, A. Seppälä, E. Kyrölä, J. Tamminen, H.M. Pickett, E. Turunen, Production of odd hydrogen in the mesosphere during the January 2005 solar proton event. Geophys. Res. Lett. 33(24), L24811 (2006)

    Article  ADS  Google Scholar 

  72. P.T. Verronen, C.J. Rodger, M.A. Clilverd, H.M. Pickett, E. Turunen, Latitudinal extent of the January 2005 solar proton event in the Northern Hemisphere from satellite observations of hydroxyl. Ann. Geophys. 25, 2203–2215 (2007)

    Article  ADS  Google Scholar 

  73. F.M. Vitt, C.H. Jackman, A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model. J. Geophys. Res., Atmos. 101(D3), 6729–6739 (1996)

    Article  ADS  Google Scholar 

  74. B. Vršnak, D. Maričić, A.L. Stanger, A.M. Veronig, M. Temmer, D. Roša, Acceleration phase of coronal mass ejections: I. Temporal and spatial scales. Sol. Phys. 241(1), 85–98 (2007)

    Article  ADS  Google Scholar 

  75. D.F. Webb, J.H. Allen, Spacecraft and ground anomalies related to the October-November 2003 solar activity. Space Weather 2(3) (2004)

  76. E.W. Wolff, A.E. Jones, S.J.-B. Bauguitte, R.A. Salmon, The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements. Atmos. Chem. Phys. 8(18), 5627–5634 (2008). https://doi.org/10.5194/acp-8-5627-2008. http://www.atmos-chem-phys.net/8/5627/2008/

    Article  ADS  Google Scholar 

  77. R.C. Whitten, I.G. Poppoff, Physics of the Lower Ionosphere (Prentice Hall, New York, 1965)

    Google Scholar 

  78. J.J. Zhang, C. Wang, T.R. Sun, Y.D. Liu, Risk assessment of the extreme interplanetary shock of 23 July 2012 on low-latitude power networks. Space Weather 14(3), 259–270 (2016)

    Article  ADS  Google Scholar 

  79. B. Zhu, Y.D. Liu, J.G. Luhmann, H. Hu, R. Wang, Z. Yang, Solar energetic particle event associated with the 2012 July 23 extreme solar storm. Astrophys. J. 827(2), 146 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the International Space Science Institute (ISSI) for their gracious hospitality while hosting our team for a workshop on space weather. PR would also like to acknowledge support from NASA’s Living with a Star program. Finally, we would like to extend our sincerest thanks to a reviewer who provided extremely detailed and constructive comments on a draft of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pete Riley.

Additional information

The Scientific Foundation of Space Weather

Edited by Rudolf von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen and Astrid Veronig

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riley, P., Baker, D., Liu, Y.D. et al. Extreme Space Weather Events: From Cradle to Grave. Space Sci Rev 214, 21 (2018). https://doi.org/10.1007/s11214-017-0456-3

Download citation

Keywords

  • Extreme space weather events
  • Coronal mass ejections
  • Geomagnetic storms
  • Carrington event