Skip to main content
Log in

The Ionospheric Connection Explorer Mission: Mission Goals and Design

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. This connection is made in the ionosphere, which has long been known to exhibit variability associated with the sun and solar wind. However, it has been recognized in the 21st century that equally significant changes in ionospheric conditions are apparently associated with energy and momentum propagating upward from our own atmosphere. ICON’s goal is to weigh the competing impacts of these two drivers as they influence our space environment. Here we describe the specific science objectives that address this goal, as well as the means by which they will be achieved. The instruments selected, the overall performance requirements of the science payload and the operational requirements are also described. ICON’s development began in 2013 and the mission is on track for launch in 2018. ICON is developed and managed by the Space Sciences Laboratory at the University of California, Berkeley, with key contributions from several partner institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • P. Alken, A quiet time empirical model of equatorial vertical plasma drift in the Peruvian sector based on 150 km echoes. J. Geophys. Res. 114, 02308 (2009). doi:10.1029/2008JA013751

    Article  Google Scholar 

  • M. Blanc, A.D. Richmond, The ionospheric disturbance dynamo. J. Geophys. Res. 85, 1669–1688 (1980)

    Article  ADS  Google Scholar 

  • S.W. Bougher, T.E. Cravens, J. Grebowsky, J. Luhmann, The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci. Rev. 195, 423–456 (2015). doi:10.1007/s11214-014-0053-7

    Article  ADS  Google Scholar 

  • S. Bowyer, J. Edelstein, M. Lampton, Very high sensitivity extreme ultraviolet spectrometer for diffuse radiation. Astrophys. J. 485(2), 523 (1997)

    Article  ADS  Google Scholar 

  • J. Burt, B. Smith, The deep space climate observatory: the DSCOVR mission, in Aerospace Conference, 2012 IEEE (IEEE Publications, New York, New York, 2012), pp. 1–13

    Google Scholar 

  • G.S. Bust, T.W. Garner, T.L. Gaussiran, Ionospheric data assimilation three-dimensional (IDA3D): a global, multisensor, electron density specification algorithm. J. Geophys. Res. 109, 11312 (2004). doi:10.1029/2003JA010234

    Article  Google Scholar 

  • G.S. Bust, S. Datta-Barua, Scientific investigations using IDA4D and EMPIRE, in Modeling the Ionosphere–Thermosphere System, ed. by J. Huba, R. Schunk, G. Khazanov (Wiley, Chichester, 2014). doi:10.1002/9781118704417.ch23

    Google Scholar 

  • S. Chapman, The solar and lunar diurnal variation of the Earth’s magnetism. Philos. Trans. R. Soc. 218(A), 1–118 (1919)

    Article  ADS  Google Scholar 

  • S. Chapman, R. Lindzen, in Atmospheric Tides. Thermal and Gravitational (Reidel, Dordrecht, 1970)

    Google Scholar 

  • A.B. Christensen, L.J. Paxton, S. Avery, J. Craven, G. Crowley, D.C. Humm, H. Kil, R.R. Meier, C.-I. Meng, D. Morrison, B.S. Ogorzalek, P. Straus, D.J. Strickland, R.M. Swenson, R.L. Walterscheid, B. Wolven, Y. Zhang, Initial observations with the global ultraviolet imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 108 (2003). doi:10.1029/2003JA009918, pp. 16

  • G.D. Earle, M.C. Kelley, Spectral studies of the sources of ionospheric electric fields. J. Geophys. Res. 92, 213–224 (1987). doi:10.1029/JA092iA01p00213

    Article  ADS  Google Scholar 

  • S.L. England, A review of the effects of non-migrating atmospheric tides on the Earth’s low-latitude ionosphere. Space Sci. Rev. 168, 211–236 (2012). doi:10.1007/s11214-011-9842-4

    Article  ADS  Google Scholar 

  • S.L. England, T.J. Immel, E. Sagawa, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly. J. Geophys. Res. 111, 10–19 (2006a). doi:10.1029/2006JA011795

    Article  Google Scholar 

  • S.L. England, S. Maus, T.J. Immel, S.B. Mende, Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys. Res. Lett. 33, 21105 (2006b). doi:10.1029/2006GL027465

    Article  ADS  Google Scholar 

  • S.L. England, T.J. Immel, J.D. Huba, Modeling the longitudinal variation in the post-sunset far-ultraviolet OI airglow using the SAMI2 model. J. Geophys. Res. 113, 01309 (2008). doi:10.1029/2007JA012536

    Article  Google Scholar 

  • S.L. England, X. Zhang, T.J. Immel, J.M. Forbes, R. DeMajistre, The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability. Earth Planets Space 61, 493–503 (2009). doi:10.1186/BF03353166

    Article  ADS  Google Scholar 

  • S.L. England, T.J. Immel, J.D. Huba, M.E. Hagan, A. Maute, R. DeMajistre, Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res. 115, 05308 (2010). doi:10.1029/2009JA014894

    Article  Google Scholar 

  • C.R. Englert, J.M. Harlander, C.M. Brown, K.D. Marr, I.J. Miller, J.E. Stump, J. Hancock, J.Q. Peterson, J. Kumler, W.H. Morrow, T.A. Mooney, S. Ellis, S.B. Mende, S.E. Harris, M.H. Stevens, J.J. Makela, B.J. Harding, T.J. Immel, Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): instrument design and calibration. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0358-4

    Google Scholar 

  • J.A. Fejer, Semidiurnal currents and electron drifts in the ionosphere. J. Atmos. Terr. Phys. 4, 184–203 (1953). doi:10.1016/0021-9169(53)90054-3

    Article  ADS  Google Scholar 

  • J.M. Forbes, The upper mesosphere and lower thermosphere: a review of experiment and theory, in Tidal and Planetary Waves, ed. by R.M. Johnson, T.L. Killeen Geophys. Monogr. Ser., vol. 87 (American Geophys. Union Press, Washington, D.C., 1995)

    Google Scholar 

  • J.M. Forbes, M.E. Hagan, Thermospheric extensions of the classical expansion functions for semidiurnal tides. J. Geophys. Res. 87, 5253–5259 (1982). doi:10.1029/JA087iA07p05253

    Article  ADS  Google Scholar 

  • J.M. Forbes, X. Zhang, M.E. Hagan, S.L. England, G. Liu, F. Gasperini, On the specification of upward-propagating tides for ICON science investigations. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0401-5

    Google Scholar 

  • T.J. Fuller-Rowell, D. Rees, H. Rishbeth, A.G. Burns, T.L. Killeen, R.G. Roble, Modelling of composition changes during F-region storms—a reassessment. J. Atmos. Terr. Phys. 53, 541–550 (1991)

    Article  ADS  Google Scholar 

  • T.J. Fuller-Rowell, G.H. Millward, A.D. Richmond, M.V. Codrescu, Storm-time changes in the upper atmosphere at low latitudes. J. Atmos. Sol.-Terr. Phys. 64, 1383–1391 (2002)

    Article  ADS  Google Scholar 

  • L.P. Goncharenko, J.L. Chau, H.-L. Liu, A.J. Coster, Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett. 37, 10101 (2010). doi:10.1029/2010GL043125

    Article  ADS  Google Scholar 

  • M.E. Hagan, J.M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., Atmos. 107, 6-1 (2002). doi:10.1029/2001JD001236

    Article  Google Scholar 

  • M.E. Hagan, A. Maute, R.G. Roble, A.D. Richmond, T.J. Immel, S.L. England, The effects of deep tropical clouds on the Earth’s ionosphere. Geophys. Res. Lett. 34, 20109 (2007). doi:10.1029/2007GL030142

    Article  ADS  Google Scholar 

  • L.A. Hall, H.E. Hinteregger, Solar radiation in the extreme ultraviolet and its variation with solar rotation. J. Geophys. Res. 75, 6959–6965 (1970). doi:10.1029/JA075i034p06959

    Article  ADS  Google Scholar 

  • B.J. Harding, J.J. Makela, C.R. Englert, K.D. Marr, J.M. Harlander, S.L. England, T.J. Immel, The MIGHTI wind retrieval algorithm: Description and verification. Space Sci. Rev. 212(1–2), 585–600 (2017), this issue. doi:10.1007/s11214-017-0359-3

    Article  ADS  Google Scholar 

  • J.M. Harlander, C.R. Englert, C.M. Brown, K.D. Marr, I.J. Miller, V. Zastera, B.W. Bach, S.B. Mende, Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): monolithic interferometer design and test. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0374-4

    Google Scholar 

  • W.A. Hartman, R.A. Heelis, Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J. Geophys. Res. 112 (2007). doi:10.1029/2006JA011773

  • R.A. Heelis, Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Terr. Phys. 66, 825–838 (2004). doi:10.1016/j.jastp.2004.01.034

    Article  ADS  Google Scholar 

  • R.A. Heelis, R. Stoneback, G.D. Earle, R.A. Haaser, M.A. Abdu, Medium-scale equatorial plasma irregularities observed by coupled ion-neutral dynamics investigation sensors aboard the communication navigation outage forecast system in a prolonged solar minimum. J. Geophys. Res. 115, 10321 (2010). doi:10.1029/2010JA015596

    Article  Google Scholar 

  • R.A. Heelis, R.A. Stoneback, M.D. Perdue, M.P. Depew, Z.A. Morgan, M.D. Mankey, C.R. Lippincott, L.L. Harmon, B.J. Holt, Ion velocity measurements for the Ionospheric Connections Explorer. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0383-3

    Google Scholar 

  • C.O. Hines, Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 38, 1441–1481 (1960)

    Article  ADS  Google Scholar 

  • C.O. Hines, The upper atmosphere in motion. Q. J. R. Meteorol. Soc. 89, 1–42 (1963). doi:10.1002/qj.49708937902

    Article  ADS  Google Scholar 

  • C.O. Hines, Diurnal tide in the upper atmosphere. J. Geophys. Res. 71, 1453–1459 (1966). doi:10.1029/JZ071i005p01453

    Article  ADS  Google Scholar 

  • C.-S. Huang, F.J. Rich, W.J. Burke, Storm time electric fields in the equatorial ionosphere observed near the dusk meridian. J. Geophys. Res. 115, 08313 (2010). doi:10.1029/2009JA015150

    Article  Google Scholar 

  • J.D. Huba, G. Joyce, S. Sazykin, R. Wolf, R. Spiro, Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere. Geophys. Res. Lett. 32 (2005). doi:10.1029/2005GL024162

  • J.D. Huba, A. Maute, G. Crowley, SAMI3-ICON: model of the ionosphere/plasmasphere system. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0415-z

    Google Scholar 

  • T.J. Immel, G. Crowley, J.D. Craven, R.G. Roble, Dayside enhancements of thermospheric O/N2 following magnetic storm onset. J. Geophys. Res. 106, 15471–15488 (2001)

    Article  ADS  Google Scholar 

  • T.J. Immel, S.B. Mende, H.U. Frey, N. Østgaard, G.R. Gladstone, Effect of the 14 July 2000 solar flare on Earth’s FUV emissions. J. Geophys. Res. 180, 1155 (2003). doi:10.1029/2001JA009060

    Article  Google Scholar 

  • T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, The control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33, 15108 (2006). doi:10.1029/2006GL026161

    Article  ADS  Google Scholar 

  • T.J. Immel, S.L. England, X. Zhang, J.M. Forbes, R. DeMajistre, Upward propagating tidal effects across the E- and F-regions of the ionosphere. Earth Planets Space 61, 505–512 (2009)

    Article  ADS  Google Scholar 

  • B.M. Jakosky, R.P. Lin, J.M. Grebowsky, J.G. Luhmann, D.F. Mitchell, G. Beutelschies, T. Priser, M. Acuna, L. Andersson, D. Baird, D. Baker, R. Bartlett, M. Benna, S. Bougher, D. Brain, D. Carson, S. Cauffman, P. Chamberlin, J.-Y. Chaufray, O. Cheatom, J. Clarke, J. Connerney, T. Cravens, D. Curtis, G. Delory, S. Demcak, A. DeWolfe, F. Eparvier, R. Ergun, A. Eriksson, J. Espley, X. Fang, D. Folta, J. Fox, C. Gomez-Rosa, S. Habenicht, J. Halekas, G. Holsclaw, M. Houghton, R. Howard, M. Jarosz, N. Jedrich, M. Johnson, W. Kasprzak, M. Kelley, T. King, M. Lankton, D. Larson, F. Leblanc, F. Lefevre, R. Lillis, P. Mahaffy, C. Mazelle, W. McClintock, J. McFadden, D.L. Mitchell, F. Montmessin, J. Morrissey, W. Peterson, W. Possel, J.-A. Sauvaud, N. Schneider, W. Sidney, S. Sparacino, A.I.F. Stewart, R. Tolson, D. Toublanc, C. Waters, T. Woods, R. Yelle, R. Zurek, The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev. 195, 3–48 (2015). doi:10.1007/s11214-015-0139-x

    Article  ADS  Google Scholar 

  • F. Kamalabadi, J. Qin, B. Harding, D. Iliou, J. Makela, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Inferring nighttime ionospheric parameters with the Far Ultraviolet Imager onboard the Ionospheric Connection Explorer. Space Sci. Rev. (2017), this issue

  • S. Kato, Horizontal wind systems in the ionospheric E region deduced from the dynamo theory of geomagnetic Sq variation, Part II. J. Geomagn. Geoelectr. 8, 24–37 (1956)

    Article  ADS  Google Scholar 

  • S. Kato, Diurnal atmospheric oscillation, 1, eigenvalues and Hough functions. J. Geophys. Res. 71, 3201–3209 (1966)

    Article  ADS  Google Scholar 

  • M.C. Kelley, The Earth’s Ionosphere, Plasma Physics and Electrodynamics, 1st edn. (Academic Press, Inc., San Diego, 1989)

    Google Scholar 

  • M.C. Kelley, R.R. Ilma, M. Nicolls, P. Erickson, L. Goncharenko, J.L. Chau, N. Aponte, J.U. Kozyra, Spectacular low- and mid-latitude electrical fields and neutral winds during a superstorm. J. Atmos. Sol.-Terr. Phys. 72, 285–291 (2010). doi:10.1016/j.jastp.2008.12.006

    Article  ADS  Google Scholar 

  • H. Kil, S.-J. Oh, M.C. Kelley, L.J. Paxton, S.L. England, E. Talaat, K.-W. Min, S.-Y. Su, Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT-1. Geophys. Res. Lett. 34, 14110 (2007). doi:10.1029/2007GL030018

    Article  ADS  Google Scholar 

  • M.O. Lampton, O.H.W. Siegmund, R. Raffanti, Delay line anodes for microchannel plate spectrometers. Rev. Sci. Instrum. 58, 2298–2305 (1987)

    Article  ADS  Google Scholar 

  • M.F. Larsen, Winds and shears in the mesosphere and lower thermosphere: results from four decades of chemical release wind measurements. J. Geophys. Res. 107, 1215 (2002). doi:10.1029/2001JA000218

    Google Scholar 

  • C.H. Lin, W. Wang, M.E. Hagan, C.C. Hsiao, T.J. Immel, M.L. Hsu, J.Y. Liu, L.J. Paxton, T.W. Fang, C.H. Liu, Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys. Res. Lett. 34, 11112 (2007). doi:10.1029/2007GL029265

    Article  ADS  Google Scholar 

  • H. Lühr, K. Häusler, C. Stolle, Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys. Res. Lett. 34, 16102 (2007). doi:10.1029/2007GL030639

    Article  ADS  Google Scholar 

  • N. Maruyama, A.D. Richmond, T.J. Fuller-Rowell, M.V. Codrescu, S. Sazykin, F.R. Tof- foletto, R.W. Spiro, G.H. Millward, Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 32, 17105 (2005). doi:10.1029/2005GL023763

    Article  ADS  Google Scholar 

  • N. Maruyama, S. Sazykin, R.W. Spiro, D. Anderson, A. Anghel, R.A. Wolf, F.R. Toffoletto, T.J. Fuller-Rowell, M.V. Codrescu, A.D. Richmond, G.H. Millward, Modeling storm-time electrodynamics of the low-latitude ionosphere thermosphere system: can long lasting disturbance electric fields be accounted for? J. Atmos. Sol.-Terr. Phys. 69, 1182–1199 (2007). doi:10.1016/j.jastp.2006.08.020

    Article  ADS  Google Scholar 

  • A. Maute, Thermosphere–ionosphere-electrodynamics general circulation model for the Ionospheric Connection Explorer: TIEGCM-ICON. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0330-3

    Google Scholar 

  • H.G. Mayr, P. Bauer, H.C. Brinton, L.H. Brace, W.E. Potter, Diurnal and seasonal variations in atomic and molecular oxygen inferred from Atmosphere Explorer-C. Geophys. Res. Lett. 3, 77–80 (1976)

    Article  ADS  Google Scholar 

  • S.B. Mende, Observing the magnetosphere through global auroral imaging: 2. Observing techniques. J. Geophys. Res. 121, 10 (2016). doi:10.1002/2016JA022607

    Google Scholar 

  • S.B. Mende, H. Heetderks, H.U. Frey, M. Stock, M. Lampton, S.P. Geller, R. Abiad, O.H.W. Siegmund, S. Habraken, E. Renotte, C. Jamar, P. Rochus, J.-C. Gérard, R. Sigler, H. Lauche, Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman-\(\alpha\) and OI 135.6 nm. Space Sci. Rev. 91, 287–318 (2000)

    Article  ADS  Google Scholar 

  • S.B. Mende, H.U. Frey, K. Rider, C. Chou, S.E. Harris, O.H.W. Siegmund, S.L. England, C.W. Wilkins, W.W. Craig, P. Turin, N. Darling, T.J. Immel, J. Loicq, P. Blain, E. Syrstadt, B. Thompson, R. Burt, J. Champagne, P. Sevilla, S. Ellis, The Far Ultra-Violet imager on the ICON mission. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0386-0

    Google Scholar 

  • C.G. Park, D.L. Carpenter, D.B. Wiggin, Electron density in the plasmasphere – Whistler data on solar cycle, annual, and diurnal variations. J. Geophys. Res. 83, 3137–3144 (1978). doi:10.1029/JA083iA07p03137

    Article  ADS  Google Scholar 

  • N.M. Pedatella, J. Oberheide, E.K. Sutton, H.-L. Liu, J.L. Anderson, K. Raeder, Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere. J. Geophys. Res. 121, 3621–3633 (2016). doi:10.1002/2016JA022528

    Article  Google Scholar 

  • A.D. Richmond, Modeling equatorial ionospheric electric fields. J. Atmos. Terr. Phys. 57, 1103–1115 (1995). doi:10.1016/0021-9169(94)00126-9

    Article  ADS  Google Scholar 

  • A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19, 601–604 (1992)

    Article  ADS  Google Scholar 

  • K. Rider, T.J. Immel, E.R. Taylor, W.W. Craig, ICON: where Earth’s weather meets space weather, in 2015 IEEE Aerospace Conference (IEEE, New York, 2015), pp. 1–10. doi:10.1109/AERO.2015.7119120

    Google Scholar 

  • H. Rishbeth, Thermospheric winds and the F-region, a review. J. Atmos. Terr. Phys. 34, 1–47 (1972)

    Article  ADS  Google Scholar 

  • H. Rishbeth, T.J. Fuller-Rowell, D. Rees, Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: a computational study. Planet. Space Sci. 35, 1157–1165 (1987). doi:10.1016/0032-0633(87)90022-5

    Article  ADS  Google Scholar 

  • R.G. Roble, G.G. Shepherd, An analysis of wind imaging interferometer observations of O(1S) equatorial emission rates using the thermosphere–ionosphere–mesosphere-electrodynamics general circulation model. J. Geophys. Res. 102, 2467–2474 (1997)

    Article  ADS  Google Scholar 

  • R.G. Roble, E.C. Ridley, A.D. Richmond, R.E. Dickinson, A coupled thermo- sphere/ionosphere general circulation model. Geophys. Res. Lett. 15, 1325–1328 (1988)

    Article  ADS  Google Scholar 

  • E. Sagawa, T.J. Immel, H.U. Frey, S.B. Mende, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J. Geophys. Res. 110, 11302 (2005)

    Article  Google Scholar 

  • R.W. Schunk, A.F. Nagy, Electron temperature in the f region of the ionosphere: theory and observation. Rev. Geophys. 16, 355–399 (1978)

    Article  ADS  Google Scholar 

  • M.M. Sirk, E.J. Korpela, Y. Ishikawa, J. Edelstein, E.H. Wishnow, C. Smith, J. McCauley, J.B. McPhate, J. Curtis, T. Curtis, S.R. Gibson, S. Jelinsky, J.A. Lynn, M. Marckwordt, N. Miller, M. Raffanti, W. Van Shourt, A.W. Stephan, T.J. Immel, Design and performance of the ICON EUV spectrograph. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0384-2

    Google Scholar 

  • T.G. Slanger, G. Black, Electronic-to-vibrational energy transfer efficiency in the O(1D)-N2 and O(1D)-CO systems. J. Chem. Phys. 60, 468–477 (1974). doi:10.1063/1.1681064

    Article  ADS  Google Scholar 

  • T.G. Slanger, G. Black, O/1S/ quenching by O/3P/. J. Chem. Phys. 64, 3763–3766 (1976). doi:10.1063/1.432691

    Article  ADS  Google Scholar 

  • J.J. Sojka, J. Jensen, M. David, R.W. Schunk, T. Woods, F. Eparvier, Modeling the ionospheric E and F1 regions: using SDO-EVE observations as the solar irradiance driver. J. Geophys. Res. 118, 5379–5391 (2013). doi:10.1002/jgra.50480

    Article  Google Scholar 

  • A.W. Stephan, E.J. Korpela, M.M. Sirk, S.L. England, T.J. Immel, Daytime ionosphere retrieval algorithm for the Ionospheric Connection Explorer (ICON). Space Sci. Rev. (2017a), this issue. doi:10.1007/s11214-017-0385-1

    Google Scholar 

  • A.W. Stephan, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Daytime O/N2 retrieval algorithm for the Ionospheric Connection Explorer (ICON). Space Sci. Rev. (2017b), this issue

  • M.H. Stevens, C.R. Englert, J.M. Harlander, S.L. England, K.D. Marr, J.M. Harlander, C.M. Brown, T.J. Immel, Retrieval of lower thermospheric temperatures from O2 A band emission: The MIGHTI experiment on ICON. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0434-9

    Google Scholar 

  • E.R. Talaat, R.S. Lieberman, Direct observations of nonmigrating diurnal tides in the equatorial thermosphere. Geophys. Res. Lett. 37, 04803 (2010). doi:10.1029/2009GL041845

    Article  ADS  Google Scholar 

  • F. Toffoletto, S. Sazykin, R. Spiro, R. Wolf, Inner magnetospheric modeling with the Rice Convection Model. Space Sci. Rev. 107, 175–196 (2003). doi:10.1023/A:1025532008047

    Article  ADS  Google Scholar 

  • M.R. Torr, D.G. Torr, R.A. Ong, H.E. Hinteregger, Ionization frequencies for major thermospheric constituents as a function of Solar Cycle 21. Geophys. Res. Lett. 6, 771–774 (1979). doi:10.1029/GL006i010p00771

    Article  ADS  Google Scholar 

  • B. Tsurutani, A. Mannucci, B. Iijima, M.A. Abdu, J.H.A. Sobral, W. Gonzalez, F. Guarnieri, T. Tsuda, A. Saito, K. Yumoto, B. Fejer, T.J. Fuller-Rowell, J. Kozyra, J.C. Foster, A. Coster, V.M. Vasyliunas, Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res. 109(A18), 8302 (2004). doi:10.1029/2003JA010342

    Article  Google Scholar 

  • E.H. Vestine, Winds in the upper atmosphere deduced from the dynamo theory of geomagnetic disturbance. J. Geophys. Res. 59(1), 93–128 (1954)

    Article  ADS  Google Scholar 

  • H. Volland, H.G. Mayr, Theoretical aspects of tidal and planetary wave propagation at thermospheric heights. Rev. Geophys. Space Phys. 15, 203–226 (1977). doi:10.1029/RG015i002p00203

    Article  ADS  Google Scholar 

  • C.W. Wilkins, S.B. Mende, H.U. Frey, Time-delay integration imaging with ICON’s Far-Ultraviolet spectrograph. Space Sci. Rev. (2017), this issue

  • R.F. Woodman, R.G. Rastogi, C. Calderon, Solar cycle effects on the electric fields in the equatorial ionosphere. J. Geophys. Res. 82, 5257–5261 (1977). doi:10.1029/JA082i032p05257

    Article  ADS  Google Scholar 

  • Y. Zhang, S. England, L.J. Paxton, Thermospheric composition variations due to nonmigrating tides and their effect on ionosphere. Geophys. Res. Lett. 37, 17103 (2010). doi:10.1029/2010GL044313

    ADS  Google Scholar 

Download references

Acknowledgements

ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I. The authors wish to acknowledge the key contributions of Bill Donakowski (Payload Mechanical Engineer) and Bill Gibson (NASA Standing Review Board) who passed on before ICON was delivered. The discoveries of this mission will stand as a testament to their disciplined expertise and commitment to space science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Immel.

Additional information

The Ionospheric Connection Explorer (ICON) mission

Edited by Doug Rowland and Thomas J. Immel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Immel, T.J., England, S.L., Mende, S.B. et al. The Ionospheric Connection Explorer Mission: Mission Goals and Design. Space Sci Rev 214, 13 (2018). https://doi.org/10.1007/s11214-017-0449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-017-0449-2

Keywords

Navigation