Image Simulation and Assessment of the Colour and Spatial Capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter

Abstract

This study aims to assess the spatial and visible/near-infrared (VNIR) colour/spectral capabilities of the 4-band Colour and Stereo Surface Imaging System (CaSSIS) aboard the ExoMars 2016 Trace Grace Orbiter (TGO). The instrument response functions for the CaSSIS imager was used to resample spectral libraries, modelled spectra and to construct spectrally (i.e., in I/F space) and spatially consistent simulated CaSSIS image cubes of various key sites of interest and for ongoing scientific investigations on Mars. Coordinated datasets from Mars Reconnaissance Orbiter (MRO) are ideal, and specifically used for simulating CaSSIS. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) provides colour information, while the Context Imager (CTX), and in a few cases the High-Resolution Imaging Science Experiment (HiRISE), provides the complementary spatial information at the resampled CaSSIS unbinned/unsummed pixel resolution (4.6 m/pixel from a 400-km altitude). The methodology used herein employs a Gram-Schmidt spectral sharpening algorithm to combine the ∼18–36 m/pixel CRISM-derived CaSSIS colours with I/F images primarily derived from oversampled CTX images. One hundred and eighty-one simulated CaSSIS 4-colour image cubes (at 18–36 m/pixel) were generated (including one of Phobos) based on CRISM data. From these, thirty-three “fully”-simulated image cubes of thirty unique locations on Mars (i.e., with 4 colour bands at 4.6 m/pixel) were made. All simulated image cubes were used to test both the colour capabilities of CaSSIS by producing standard colour RGB images, colour band ratio composites (CBRCs) and spectral parameters. Simulated CaSSIS CBRCs demonstrated that CaSSIS will be able to readily isolate signatures related to ferrous (Fe2+) iron- and ferric (Fe3+) iron-bearing deposits on the surface of Mars, ices and atmospheric phenomena. Despite the lower spatial resolution of CaSSIS when compared to HiRISE, the results of this work demonstrate that CaSSIS will not only compliment HiRISE-scale studies of various geological and seasonal phenomena, it will also enhance them by providing additional colour and geologic context through its wider and longer full-colour coverage (\(\sim9.4 \times 50\) km), and its increased sensitivity to iron-bearing materials from its two IR bands (RED and NIR). In a few examples, subtle surface changes that were not easily detected by HiRISE were identified in the simulated CaSSIS images. This study also demonstrates the utility of the Gram-Schmidt spectral pan-sharpening technique to extend VNIR colour/spectral capabilities from a lower spatial resolution colour/spectral dataset to a single-band or panchromatic image greyscale image with higher resolution. These higher resolution colour products (simulated CaSSIS or otherwise) are useful as means to extend both geologic context and mapping of datasets with coarser spatial resolutions. The results of this study indicate that the TGO mission objectives, as well as the instrument-specific mission objectives, will be achievable with CaSSIS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. J.B. Adams, Lunar and martian surfaces: Petrologic significance of absorption bands in the near-infrared. Science 159, 1453–1455 (1968)

    ADS  Article  Google Scholar 

  2. J.B. Adams, Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. J. Geophys. Res. 79(32), 4829–4836 (1974)

    ADS  Article  Google Scholar 

  3. J.B. Adams, T.B. McCord, Mars: Interpretation of spectral reflectivity of light and dark regions. J. Geophys. Res. 74(20), 4851–4856 (1969)

    ADS  Article  Google Scholar 

  4. T. Appéré et al., Winter and spring evolution of northern seasonal deposits on Mars from OMEGA/Mars Express. J. Geophys. Res. 116, E05001 (2011). doi:10.1029/2010JE003762

    ADS  Article  Google Scholar 

  5. R.E. Arvidson, J.F. Bell, J.G. Catalano, B.C. Clark, V.K. Fox, R. Gellert, J.P. Grotzinger, E.A. Guinness, K.E. Herkenhoff, A.H. Knoll, M.G.A. Lapotre, Mars reconnaissance orbiter and opportunity observations of the Burns formation: Crater hopping at Meridiani Planum. J. Geophys. Res., Planets 120(3), 429–451 (2015)

    ADS  Article  Google Scholar 

  6. K.S. Auld, J.C. Dixon, A classification of martian gullies from HiRISE imagery. Planet. Space Sci. 131, 88–101 (2016)

    ADS  Article  Google Scholar 

  7. K.M. Aye, M.E. Schwamb, G. Portyankina, C.J. Hansen, Analysis pipeline and results from the PlanetFour citizen science project, in 47th Lunar and Planetary Science Conference (2016), abst. 3056

    Google Scholar 

  8. F. Ayoub, J.P. Avouac, C.E. Newman, M.I. Richardson, A. Lucas, S. Leprince, N.T. Bridges, Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux. Nat. Commun. 5, 5096 (2014)

    Article  Google Scholar 

  9. M. Balme, N. Mangold, D. Baratoux, F. Costard, M. Gosselin, P. Masson, P. Pinet, G. Neukum, Orientation and distribution of recent gullies in the southern hemisphere of Mars: Observations from High Resolution Stereo Camera/Mars Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) data. J. Geophys. Res., Planets 111, E0500 (2006). doi:10.1029/2005JE002607

    Article  Google Scholar 

  10. J.L. Bandfield, V.E. Hamilton, P.R. Christensen, A global view of Martian surface compositions from MGS-TES. Science 287(5458), 1626–1630 (2000)

    ADS  Article  Google Scholar 

  11. P. Becerra, S. Byrne, A.J. Brown, Transient bright “halos” on the South polar residual cap of Mars: Implications for mass-balance. Icarus 251, 211–225 (2015)

    ADS  Article  Google Scholar 

  12. J.F. Bell, M.J. Wolff, P.B. James, R.T. Clancy, S.W. Lee, L.J. Martin, Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: Observations, calibration, and initial results. J. Geophys. Res., Planets 102(E4), 9109–9123 (1997)

    ADS  Article  Google Scholar 

  13. R.A. Beyer, R.L. Kirk, Meter-scale slopes of candidate MSL landing sites from point photoclinometry. Space Sci. Rev. 170(1–4), 775–791 (2012)

    ADS  Article  Google Scholar 

  14. J.L. Bishop, M. Parente, C.M. Weitz, E.Z. Noe Dobrea, L.H. Roach, S.L. Murchie, P.C. McGuire, N.K. McKeown, C.M. Rossi, A.J. Brown, W.M. Calvin, Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. J. Geophys. Res., Planets 114(E2), E00D09 (2009)

    ADS  Google Scholar 

  15. N.T. Bridges, F. Ayoub, J.P. Avouac, S. Leprince, A. Lucas, S. Mattson, Earth-like sand fluxes on Mars. Nature 485(7398), 339–342 (2012a)

    ADS  Article  Google Scholar 

  16. N.T. Bridges, M.C. Bourke, P.E. Geissler, M.E. Banks, C. Colon, S. Diniega, M.P. Golombek, C.J. Hansen, S. Mattson, A.S. McEwen, M.T. Mellon, Planet-wide sand motion on Mars. Geology 40(1), 31–34 (2012b)

    ADS  Article  Google Scholar 

  17. N.T. Bridges, P. Geissler, S. Silvestro, M. Banks, Bedform migration on Mars: Current results and future plans. Aeolian Res. 9, 133–151 (2013)

    ADS  Article  Google Scholar 

  18. J.C. Bridges, D. Loizeau, E. Sefton-Nash, J. Vago, R.M.E. Williams, M. Balme et al., Selection and characterisation of the ExoMars 2020 rover landing sites, in Lunar and Planetary Science 48, 1964 (2017), p. 2378

    Google Scholar 

  19. R.G. Burns, Mineralogical Applications of Crystal Field Theory (Cambridge University Press, New York, 1970)

    Google Scholar 

  20. R.G. Burns, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, vol. 4, ed. by C.M. Pieters, P.A.J. Englert (Cambridge University Press, Cambridge, 1993), pp. 3–29

    Google Scholar 

  21. S. Byrne, C.M. Dundas, M.R. Kennedy, M.T. Mellon, A.S. McEwen, S.C. Cull, I.J. Daubar, D.E. Shean, K.D. Seelos, S.L. Murchie, B.A. Cantor, Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325(5948), 1674–1676 (2009)

    ADS  Article  Google Scholar 

  22. W.M. Calvin, L.H. Roach, F.P. Seelos, K.D. Seelos, R.O. Green, S.L. Murchie, J.F. Mustard, Compact reconnaissance imaging spectrometer for Mars observations of northern Martian latitudes in summer. J. Geophys. Res., Planets 114(E2), E00D11 (2009)

    Google Scholar 

  23. M. Cardinale, S. Silvestro, D.A. Vaz, T. Michaels, M.C. Bourke, G. Komatsu, L. Marinangeli, Present-day aeolian activity in Herschel Crater, Mars. Icarus 265, 139–148 (2016)

    ADS  Article  Google Scholar 

  24. J. Carter, F. Poulet, J.P. Bibring, N. Mangold, S. Murchie, Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. J. Geophys. Res., Planets 118(4), 831–858 (2013)

    ADS  Article  Google Scholar 

  25. J. Carter, C. Quantin, P. Thollot, D. Loizeau, A. Ody, L. Lozach, Oxia planum: A clay-laden landing site proposed for the ExoMars rover mission: Aqueous mineralogy and alteration scenarios, in Lunar and Planetary Science Conference, vol. 47 (2016), p. 2064

    Google Scholar 

  26. C.M. Caudill, L.L. Tornabene, A.S. McEwen, S. Byrne, L. Ojha, S. Mattson, Layered MegaBlocks in the central uplifts of impact craters. Icarus 221(2), 710–720 (2012)

    ADS  Article  Google Scholar 

  27. M.A. Chamberlain, W.V. Boynton, Response of Martian ground ice to orbit-induced climate change. J. Geophys. Res., Planets 112(E6), E06009 (2007)

    ADS  Article  Google Scholar 

  28. M. Chojnacki, D.M. Burr, J.E. Moersch, Valles Marineris dune fields as compared with other martian populations: Diversity of dune compositions, morphologies, and thermophysical properties. Icarus 230, 96–142 (2014)

    ADS  Article  Google Scholar 

  29. M. Chojnacki, J.R. Johnson, J.E. Moersch, L.K. Fenton, T.I. Michaels, J.F. Bell, Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface. Icarus 251, 275–290 (2015)

    ADS  Article  Google Scholar 

  30. M. Chojnacki, A. McEwen, C. Dundas, L. Ojha, A. Urso, S. Sutton, Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars. J. Geophys. Res., Planets 121, 1204–1231 (2016). doi:10.1002/2015JE004991

    ADS  Article  Google Scholar 

  31. M. Chojnacki, A. Urso, L.K. Fenton, T.I. Michaels, Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars. Aeolian Res. 26, 73–88 (2017)

    ADS  Article  Google Scholar 

  32. P.R. Christensen, J.L. Bandfield, M.D. Smith, V.E. Hamilton, R.N. Clark, Identification of a basaltic component on the Martian surface from thermal emission spectrometer data. J. Geophys. Res. 105(E4), 9609–9621 (2000a)

    ADS  Article  Google Scholar 

  33. P.R. Christensen, J.L. Bandfield, R.N. Clark, K.S. Edgett, V.E. Hamilton, T. Hoefen, H.H. Kieffer, R.O. Kuzmin, M.D. Lane, M.C. Malin, R.V. Morris, Detection of crystalline hematite mineralization on Mars by the thermal emission spectrometer: Evidence for near-surface water. J. Geophys. Res., Planets 105(E4), 9623–9642 (2000b)

    ADS  Article  Google Scholar 

  34. P.R. Christensen, J.L. Bandfield, J.F. Bell III, N. Gorelick, V.E. Hamilton, A. Ivanov, B.M. Jakosky, H.H. Kieffer, M.D. Lane, M.C. Malin, T. McConnochie, Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300(5628), 2056–2061 (2003)

    ADS  Article  Google Scholar 

  35. R.N. Clark, G.A. Swayze, A.J. Gallagher, T.V. King, W.M. Calvin, The US Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0 um) (No. 93-592), Geological Survey (US) (1993)

  36. S.J. Conway, T.N. Harrison, R.J. Soare, A. Britton, L. Steele, Reanalysis of global data on orientation and slope of gullies on Mars. Geol. Soc. (Lond.) Spec. Publ. (2017), doi:10.1144/SP467.3, in press

  37. F. Costard, F. Forget, N. Mangold, J.P. Peulvast, Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science 295, 110–113 (2002). doi:10.1126/science.1066698

    ADS  Article  Google Scholar 

  38. G. Cremonese, E. Simioni, C. Re, T. Mudric, A. Lucchetti, M. Massironi et al., First Mars surface stereo reconstruction with the CaSSIS stereo camera, in Lunar and Planetary Science Conference 48, 1964 (2017), p. 1464.

    Google Scholar 

  39. B. D’Aoust, Morphological, Structural and Spectral Mapping of the Central Uplifts of the Alga and Verlaine Craters, Mars. Electronic Thesis and Dissertation Repository, 3441 (2015) http://ir.lib.uwo.ca/etd/3441

  40. I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current martian cratering rate. Icarus 225(1), 506–516 (2013)

    ADS  Article  Google Scholar 

  41. T. de Haas, S.J. Conway, M. Krautblatter, Recent (Late Amazonian) enhanced backweathering rates on Mars: Paracratering evidence from gully-alcoves? J. Geophys. Res., Planets 120, 2169–2189 (2015). doi:10.1002/2015JE004915

    ADS  Article  Google Scholar 

  42. W.A. Delamere, L.L. Tornabene, A.S. McEwen, K. Becker, J.W. Bergstrom, N.T. Bridges, E.M. Eliason, D. Gallagher, K.E. Herkenhoff, L. Keszthelyi, S. Mattson, Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE). Icarus 205(1), 38–52 (2010)

    ADS  Article  Google Scholar 

  43. D.J. Des Marais, J.A. Nuth III, L.J. Allamandola, A.P. Boss, J.D. Farmer, T.M. Hoehler et al., The NASA astrobiology roadmap. Astrobiology 8(4), 715–730 (2003)

    ADS  Article  Google Scholar 

  44. N. Ding, V.J. Bray, A.S. McEwen, S.S. Mattson, C.H. Okubo, M. Chojnacki, L.L. Tornabene, The central uplift of Ritchey crater, Mars. Icarus 252, 255–270 (2015)

    ADS  Article  Google Scholar 

  45. S. Diniega, S. Byrne, N.T. Bridges, C.M. Dundas, A.S. McEwen, Seasonality of present-day Martian dune-gully activity. Geology 38, 1047–1050 (2010). doi:10.1130/G31287.1

    ADS  Article  Google Scholar 

  46. S. Diniega, C.J. Hansen, J.N. McElwaine, C.H. Hugenholtz, C.M. Dundas, A.S. McEwen, M.C. Bourke, A new dry hypothesis for the formation of martian linear gullies. Icarus 225(1), 526–537 (2013)

    ADS  Article  Google Scholar 

  47. S. Diniega, C.J. Hansen, A. Allen, N. Grigsby, Z. Li, T. Perez, M. Chojnacki, Dune-slope activity due to frost and wind, throughout the north polar erg, Mars. Geol. Soc. (Lond.) Spec. Publ. (2017), doi:10.1144/SP467.6, in press

  48. C.M. Dundas, S. Byrne, Modeling sublimation of ice exposed by new impacts in the martian midlatitudes. Icarus 206, 716 (2010)

    ADS  Article  Google Scholar 

  49. C.M. Dundas, A.S. McEwen, S. Diniega, S. Byrne, S. Martinez-Alonso, New and recent gully activity on Mars as seen by HiRISE. Geophys. Res. Lett. 37, L07202 (2010). doi:10.1029/2009gl041351

    ADS  Google Scholar 

  50. C.M. Dundas, S. Diniega, C.J. Hansen, S. Byrne, A.S. McEwen, Seasonal activity and morphological changes in martian gullies. Icarus 220, 124–143 (2012). doi:10.1016/j.icarus.2012.04.005

    ADS  Article  Google Scholar 

  51. C.M. Dundas, S. Byrne, A.S. McEwen, M.T. Mellon, M.R. Kennedy, I.J. Daubar, L. Saper, HiRISE observations of new impact craters exposing Martian ground ice. J. Geophys. Res., Planets 119(1), 109–127 (2014)

    ADS  Article  Google Scholar 

  52. C.M. Dundas, S. Diniega, A.S. McEwen, Long-term monitoring of Martian gully formation and evolution with MRO/HiRISE. Icarus 251, 244–263 (2015). doi:10.1016/j.icarus.2014.05.013

    ADS  Article  Google Scholar 

  53. C.M. Dundas, A.S. McEwen, M.P. Milazzo, How wet is recent Mars? Insights from Gullies and RSL, in Lunar and Planetary Science Conference, vol. 47 (2016), p. 2327

    Google Scholar 

  54. C.M. Dundas, A.S. McEwen, S. Diniega, C.J. Hansen, S. Byrne, J.N. McElwaine, The formation of gullies on Mars today. Geol. Soc. (Lond.) Spec. Publ. (2017), in press. doi:10.1144/SP467.5

    Google Scholar 

  55. C.S. Edwards, B.L. Ehlmann, Carbon sequestration on Mars: Constraints from the Nili Fossae carbonate plains, in AGU Fall Meeting Abstracts (2015)

    Google Scholar 

  56. B.L. Ehlmann, C.S. Edwards, Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014)

    ADS  Article  Google Scholar 

  57. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, F. Poulet, J.L. Bishop, A.J. Brown, W.M. Calvin, R.N. Clark, D.J. Des Marais, R.E. Milliken, L.H. Roach, Orbital identification of carbonate-bearing rocks on Mars. Science 322(5909), 1828–1832 (2008)

    ADS  Article  Google Scholar 

  58. B.L. Ehlmann, J.F. Mustard, G.A. Swayze, R.N. Clark, J.L. Bishop, F. Poulet, D.J. Des Marais, L.H. Roach, R.E. Milliken, J.J. Wray, O. Barnouin-Jha, Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res., Planets 114(E2), E00D08 (2009)

    ADS  Google Scholar 

  59. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37(6), L06201 (2010)

    ADS  Article  Google Scholar 

  60. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, J.P. Bibring, A. Meunier, A.A. Fraeman, Y. Langevin, Subsurface water and clay mineral formation during the early history of Mars. Nature 479(7371), 53–60 (2011)

    ADS  Article  Google Scholar 

  61. G. Erkeling, D. Reiss, H. Hiesinger, F. Poulet, J. Carter, M.A. Ivanova, E. Hauber, R. Jaumann, Two new candidate landing sites for the European 2018 ExoMars mission near Libya Montes alluvial fans, in Lunar and Planetary Science Conference, vol. 44 (2013), p. 2378

    Google Scholar 

  62. R.L. Fergason, R.L. Kirk, G. Cushing, D.M. Galuszka, M.P. Golombek, T.M. Hare, E. Howington-Kraus, D.M. Kipp, B.L. Redding, Analysis of local slopes at the InSight landing site on Mars. Space Sci. Rev. 211, 109–133 (2017)

    ADS  Article  Google Scholar 

  63. J. Fernando, F. Schmidt, S. Douté, Martian surface microtexture from orbital CRISM multi-angular observations: A new perspective for the characterization of the geological processes. Planet. Space Sci. 128, 30–51 (2016)

    ADS  Article  Google Scholar 

  64. J. Fernando, S. Douté, A. McEwen, S. Byrne, N. Thomas, Mars atmospheric dust contamination of surface albedo and color measurements, in Lunar and Planetary Science Conference 48, 2014, (2017), p. 1635

    Google Scholar 

  65. S. Fonti, G.A. Marzo, Mapping the methane on Mars. Astron. Astrophys. 512, A51 (2010)

    ADS  Article  Google Scholar 

  66. V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306(5702), 1758–1761 (2004)

    ADS  Article  Google Scholar 

  67. P.E. Geissler, R. Sullivan, M. Golombek, J.R. Johnson, K. Herkenhoff, N. Bridges, A. Vaughan, J. Maki, T. Parker, J. Bell, Gone with the wind: Eolian erasure of the Mars Rover tracks. J. Geophys. Res., Planets 115(E7), E00F11 (2010)

    ADS  Google Scholar 

  68. R. Gellert et al., Alpha particle X-ray spectrometer (APXS): Results from Gusev crater and calibration report. J. Geophys. Res. 111, E02S05 (2006). doi:10.1029/2005JE002555

    Article  Google Scholar 

  69. A. Gendrin, N. Mangold, J.P. Bibring, Y. Langevin, B. Gondet, F. Poulet, G. Bonello, C. Quantin, J. Mustard, R. Arvidson, S. LeMouélic, Sulfates in Martian layered terrains: The OMEGA/Mars Express view. Science 307(5715), 1587–1591 (2005)

    ADS  Article  Google Scholar 

  70. T.D. Glotch, J.L. Bandfield, L.L. Tornabene, H.B. Jensen, F.P. Seelos, Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophys. Res. Lett. 37(16), L16202 (2010)

    ADS  Article  Google Scholar 

  71. M.P. Golombek, J.A. Grant, T.J. Parker, D.M. Kass, J.A. Crisp, S.W. Squyres, A.F.C. Haldemann, M. Adler, W.J. Lee, N.T. Bridges, R.E. Arvidson, Selection of the Mars exploration rover landing sites. J. Geophys. Res., Planets 108(E12), 8072 (2003)

    ADS  Google Scholar 

  72. M. Golombek, K. Robinson, A. McEwen, N. Bridges, B. Ivanov, L. Tornabene, R. Sullivan, Constraints on ripple migration at Meridiani planum from opportunity and HiRISE observations of fresh craters. J. Geophys. Res., Planets 115(E7), E00F08 (2010)

    Google Scholar 

  73. M. Golombek, J. Grant, D. Kipp, A. Vasavada, R. Kirk, R. Fergason, P. Bellutta, F. Calef, K. Larsen, Y. Katayama, A. Huertas, Selection of the Mars Science Laboratory landing site. Space Sci. Rev. 170(1–4), 641–737 (2012)

    ADS  Article  Google Scholar 

  74. M.P. Golombek, J.A. Grant, K.A. Farley, K. Williford, A. Chen, R.E. Otero, J.W. Ashley, Downselection of landing sites proposed for the Mars 2020 rover mission, in Lunar and Planetary Science Conference, vol. 47 (2016), p. 2324

    Google Scholar 

  75. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R.L. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017)

    ADS  Article  Google Scholar 

  76. T.A. Goudge, J.F. Mustard, J.W. Head, C.I. Fassett, S.M. Wiseman, Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars. J. Geophys. Res., Planets 120, 775 (2015)

    ADS  Article  Google Scholar 

  77. R.V. Gough, V.F. Chevrier, M.A. Tolbert, Formation of liquid water at low temperatures via the deliquescence of calcium chloride: Implications for Antarctica and Mars. Planet. Space Sci. 131, 79–87 (2016)

    ADS  Article  Google Scholar 

  78. J.A. Grant, M.P. Golombek, J.P. Grotzinger, S.A. Wilson, M.M. Watkins, A.R. Vasavada, J.L. Griffes, T.J. Parker, The science process for selecting the landing site for the 2011 Mars Science Laboratory. Planet. Space Sci. 59(11), 1114–1127 (2011)

    ADS  Article  Google Scholar 

  79. R. Greeley, J.D. Iversen, Wind as a Geological Process on Earth, Mars, Venus and Titan. Cambridge Planetary Science Series, vol. 4 (Cambridge University Press, Cambridge, 1985), p. 333

    Google Scholar 

  80. C. Gross, J. Carter, F. Poulet, D. Loizeau, J.L. Bishop, B. Horgan, J. Michalski, Mawrth Vallis—An Auspicious Destination for the ESA and NASA 2020 Landers, in 48th Lunar and Planetary Science Conference, vol. 48 (2017), p. 2194

    Google Scholar 

  81. V.E. Hamilton, P.R. Christensen, Evidence for extensive, olivine-rich bedrock on Mars. Geology 33(6), 433–436 (2005)

    ADS  Article  Google Scholar 

  82. C.J. Hansen, M. Bourke, N.T. Bridges, S. Byrne, C. Colon, S. Diniega, C. Dundas, K. Herkenhoff, A. McEwen, M. Mellon, G. Portyankina, Seasonal erosion and restoration of Mars’ northern polar dunes. Science 331(6017), 575–578 (2011)

    ADS  Article  Google Scholar 

  83. C.J. Hansen, S. Byrne, G. Portyankina, M. Bourke, C. Dundas, A. McEwen, M. Mellon, A. Pommerol, N. Thomas, Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes. Icarus 225(2), 881–897 (2013)

    ADS  Article  Google Scholar 

  84. C.J. Hansen, S. Diniega, N. Bridges, S. Byrne, C. Dundas, A. McEwen, G. Portyankina, Agents of change on Mars’ northern dunes: CO2 ice and wind. Icarus 251, 264–274 (2015)

    ADS  Article  Google Scholar 

  85. T.N. Harrison, M.C. Malin, K.S. Edgett, Present-day gully activity observed by the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX). Bull. Am. Astron. Soc. 41(3), 113, abstract 57.03 (2009)

    Google Scholar 

  86. T.N. Harrison, G.R. Osinski, L.L. Tornabene, E. Jones, Global documentation of gullies with the Mars reconnaissance orbiter context camera and implications for their formation. Icarus 252, 236–254 (2015). doi:10.1016/j.icarus.2015.01.022

    ADS  Article  Google Scholar 

  87. P.O. Hayne, C.J. Hansen, S. Byrne, D.M. Kass, A. Kleinböhl, S. Piqueux, D.J. McCleese, S. Diniega, G. Portyankina, Snowfall variability and surface changes in the polar regions of Mars, LPI Contributions, 1926 (2016)

  88. J. Heinz, D. Schulze-Makuch, S.P. Kounaves, Deliquescence-induced wetting and RSL-like darkening of a Mars analogue soil containing various perchlorate and chloride salts. Geophys. Res. Lett. 43(10), 4880–4884 (2016)

    ADS  Article  Google Scholar 

  89. T.M. Hoefen, R.N. Clark, J.L. Bandfield, M.D. Smith, J.C. Pearl, P.R. Christensen, Discovery of olivine in the Nili Fossae region of Mars. Science 302(5645), 627–630 (2003)

    ADS  Article  Google Scholar 

  90. N.G. Holm, C. Oze, O. Mousis, J.H. Waite, A. Guilbert-Lepoutre, Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology 15(7), 587–600 (2015)

    ADS  Article  Google Scholar 

  91. R.T. Hopkins, L.L. Tornabene, G.R. Osinski, The central uplift of Elorza Crater: Insights into its geology and possible relationships to the Valles Marineris and Tharsis regions. Icarus 284, 284–304 (2017)

    ADS  Article  Google Scholar 

  92. B.H. Horgan, J.F. Bell, Seasonally active slipface avalanches in the north polar sand sea of Mars: Evidence for a wind-related origin. Geophys. Res. Lett. 39(9), L09201 (2012)

    ADS  Article  Google Scholar 

  93. G.R. Hunt, Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42(3), 501–513 (1977)

    ADS  Article  Google Scholar 

  94. G.R. Hunt, R.P. Ashley, Spectra of altered rocks in the visible and near infrared. Econ. Geol. 74(7), 1613–1629 (1979)

    Article  Google Scholar 

  95. G.R. Hunt, J.W. Salisbury, Visible and near-infrared spectra of minerals and rocks—I. Silicate minerals. Mod. Geol. 1, 283–300 (1970)

    Google Scholar 

  96. B.A. Ivanov, H.J. Melosh, A.S. McEwen (HiRISE Team), Small impact crater clusters in high resolution HiRISE images—II, in Lunar Planet. Sci. 40 (2009), Abstract 1410

    Google Scholar 

  97. P.B. James, R.T. Clancy, S.W. Lee, L.J. Martin, R.B. Singer, E. Smith et al., Monitoring Mars with the Hubble space telescope: 1990–1991 observations. Icarus 109(1), 79–101 (1994)

    ADS  Article  Google Scholar 

  98. A. Kereszturi, D. Möhlmann, S. Berczi, T. Ganti, A. Horvath, A. Kuti, A. Sik, E. Szathmary, Indications of brine related local seepage phenomena on the northern hemisphere of Mars. Icarus 207(1), 149–164 (2010)

    ADS  Article  Google Scholar 

  99. H.H. Kieffer, Annual punctuated CO2 slab-ice and jets on Mars, in Second International Conference on Mars Polar Science and Exploration, vol. 1 (2000), p. 93

    Google Scholar 

  100. H.H. Kieffer, Cold jets in the Martian polar caps. J. Geophys. Res., Planets 112(E8), E08005 (2007)

    ADS  Article  Google Scholar 

  101. H.H. Kieffer, P.R. Christensen, T.N. Titus, CO2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap. Nature 442(7104), 793–796 (2006)

    ADS  Article  Google Scholar 

  102. R.L. Kirk, E. Howington-Kraus, B. Redding, D. Galuszka, T.M. Hare, B.A. Archinal, L.A. Soderblom, J.M. Barrett, High-resolution topomapping of candidate MER landing sites with Mars orbiter camera narrow-angle images. J. Geophys. Res., Planets 108(E12), 8088 (2003)

    ADS  Article  Google Scholar 

  103. R.L. Kirk, E. Howington-Kraus, M.R. Rosiek, J.A. Anderson, B.A. Archinal, K.J. Becker et al., Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res., Planets 113(E3), E00A24 (2008)

    Google Scholar 

  104. G. Klingelhöfer, R. Morris, B. Bernhardt, C. Schröder, D. Rodionov, P. De Souza et al., Jarosite and hematite at Meridiani planum from opportunity’s Mössbauer spectrometer. Science 306(5702), 1740–1745 (2004). Retrieved from http://www.jstor.org/stable/3839769

    ADS  Article  Google Scholar 

  105. W.C. Koeppen, V.E. Hamilton, Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J. Geophys. Res., Planets 113(E5), E05001 (2008)

    ADS  Article  Google Scholar 

  106. K.J. Kolb, A.S. McEwen, J.D. Pelletier, Investigating gully flow emplacement mechanisms using apex slopes. Icarus 208, 132–142 (2010)

    ADS  Article  Google Scholar 

  107. S.P. Kounaves, M.H. Hecht, J. Kapit, R.C. Quinn, D.C. Catling, B.C. Clark et al., Soluble sulfate in the martian soil at the Phoenix landing site. Geophys. Res. Lett. 37(9), L09201 (2010)

    ADS  Article  Google Scholar 

  108. C.A. Laben, B.V. Brower, Eastman Kodak Company, Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. U.S. Patent 6011875 (2000)

  109. Y. Langevin, F. Poulet, J.P. Bibring, B. Gondet, Sulfates in the north polar region of Mars detected by OMEGA/Mars express. Science 307(5715), 1584–1586 (2005)

    ADS  Article  Google Scholar 

  110. R.B. Leighton, B.C. Murray, Behavior of carbon dioxide and other volatiles on Mars. Science 153(3732), 136–144 (1966)

    ADS  Article  Google Scholar 

  111. M.C. Malin, K.S. Edgett, Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000). doi:10.1126/science.288.5475.2330

    ADS  Article  Google Scholar 

  112. M.C. Malin, K.S. Edgett, Mars global surveyor Mars orbiter camera: Interplanetary cruise through primary mission. J. Geophys. Res., Planets 106(E10), 23429–23570 (2001)

    ADS  Article  Google Scholar 

  113. M.C. Malin, K.S. Edgett, L.V. Posiolova, S.M. McColley, E.Z.N. Dobrea, Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573–1577 (2006)

    ADS  Article  Google Scholar 

  114. M.C. Malin, J.F. Bell III, B.A. Cantor, M.A. Caplinger, W.M. Calvin, R.T. Clancy, K.S. Edgett, L. Edwards, R.M. Haberle, P.B. James, S.W. Lee, M.A. Ravine, P.C. Thomas, M.J. Wolff, Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007)

    ADS  Article  Google Scholar 

  115. N. Mangold, F. Poulet, J.F. Mustard, J.P. Bibring, B. Gondet, Y. Langevin, V. Ansan, P. Masson, C. Fassett, J.W. Head, H. Hoffmann, Mineralogy of the Nili Fossae region with OMEGA/Mars express data: 2. Aqueous alteration of the crust. J. Geophys. Res., Planets 112(E8), E08S04 (2007)

    Article  Google Scholar 

  116. P.D. Martin, P.C. Pinet, R. Bacon, A. Rousset, F. Bellagh, Martian surface mineralogy from 0.8 to 1.05 μm TIGER spectro-imagery measurements in Terra Sirenum and Tharsis Montes formation. Planet. Space Sci. 44(8), 859–888 (1996)

    ADS  Article  Google Scholar 

  117. G.A. Marzo, A.F. Davila, L.L. Tornabene, J.M. Dohm, A.G. Fairén, C. Gross, T. Kneissl, J.L. Bishop, T.L. Roush, C.P. McKay, Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 208, 667 (2010)

    ADS  Article  Google Scholar 

  118. T. Maurer, How to pan-sharpen images using the Gram-Schmidt pan-sharpen method-a recipe, in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1 (2013), p. W1

    Google Scholar 

  119. T.B. McCord, J.A. Westphal, Mars: Narrow-band photometry from 0.3 to 2.5 microns of surface regions during the 1969 apparition. Astrophys. J. 168, 141–153 (1971)

    ADS  Article  Google Scholar 

  120. T.B. McCord, R.L. Huguenin, D. Mink, C.M. Pieters, Spectral reflectance of martian areas during the 1973 opposition: Photoelectric filter photometry 0.33-I. IO pm. Icarus 31, 25–39 (1977)

    ADS  Article  Google Scholar 

  121. T.B. McCord, R.N. Clark, R.L. Huguenin, Mars: Near-infrared spectral reflectance and compositional implication. J. Geophys. Res. 83(Bll), 5433–5441 (1978)

    ADS  Article  Google Scholar 

  122. A.S. McEwen, L.A. Soderblom, High-resolution color images of Io, in Lunar and Planetary Science XV (1984), p. 529, Abstract

    Google Scholar 

  123. A.S. McEwen, E.M. Eliason, J.W. Bergstrom, N.T. Bridges, C.J. Hansen, W.A. Delamere, J.A. Grant, V.C. Gulick, K.E. Herkenhoff, L. Keszthelyi, R.L. Kirk, Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J. Geophys. Res., Planets 112(E5), E05S02 (2007)

    Article  Google Scholar 

  124. L. Murchie, J.F. Mustard, B.L. Ehlmann, R.E. Milliken, J.L. Bishop, N.K. McKeown, E.Z. Noe Dobrea, F.P. Seelos, D.L. Buczkowski, S.M. Wiseman, R.E. Arvidson, J.J. Wray, G. Swayze, R.N. Clark, D.J. Des Marais, A.S. McEwen, J.-P. Bibring, A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, E00D06 (2009)

    ADS  Google Scholar 

  125. A.S. McEwen, M.E. Banks, N. Baugh, K. Becker, A. Boyd, J.W. Bergstrom, R.A. Beyer, E. Bortolini, N.T. Bridges, S. Byrne, B. Castalia, The high resolution imaging science experiment (HiRISE) during MRO’s primary science phase (PSP). Icarus 205(1), 2–37 (2010)

    ADS  Article  Google Scholar 

  126. A.S. McEwen, L. Ojha, C.M. Dundas, S.S. Mattson, S. Byrne, J.J. Wray, S.C. Cull, S.L. Murchie, N. Thomas, V.C. Gulick, Seasonal flows on warm Martian slopes. Science 333(6043), 740–743 (2011)

    ADS  Article  Google Scholar 

  127. A.S. McEwen, C.M. Dundas, S.S. Mattson, A.D. Toigo, L. Ojha, J.J. Wray, M. Chojnacki, S. Byrne, S.L. Murchie, N. Thomas, Recurring slope lineae in equatorial regions of Mars. Nat. Geosci. 7(1), 53–58 (2014)

    ADS  Article  Google Scholar 

  128. S.M. McLennan, R.B. Anderson, J.F. Bell, J.C. Bridges, F. Calef, J.L. Campbell, B.C. Clark, S. Clegg, P. Conrad, A. Cousin, D.J. Des Marais, Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 343(6169), 1244734 (2014). doi:10.1126/science.1244734

    Article  Google Scholar 

  129. H.Y. McSween, The rocks of Mars, from far and near. Meteorit. Planet. Sci. 37(1), 7–25 (2002)

    ADS  Article  Google Scholar 

  130. R.V. Morris et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. 111, E02S13 (2006a). doi:10.1029/2005JE002584

    Article  Google Scholar 

  131. R.V. Morris et al., Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. 111, E12S15 (2006b). doi:10.1029/2006JE002791

    ADS  Article  Google Scholar 

  132. M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti et al., Strong release of methane on Mars in northern summer 2003. Science 323(5917), 1041–1045 (2009)

    ADS  Article  Google Scholar 

  133. S. Murchie, R. Arvidson, P. Bedini, K. Beisser, J.P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, R.T. Clancy, E.H. Darlington, Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO). J. Geophys. Res., Planets 112(E5), E05S03 (2007)

    Article  Google Scholar 

  134. J.F. Mustard, F. Poulet, J.W. Head, N. Mangold, J.P. Bibring, S.M. Pelkey, C.I. Fassett, Y. Langevin, G. Neukum, Mineralogy of the Nili Fossae region with OMEGA/Mars express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. J. Geophys. Res., Planets 112(E8), E08S03 (2007)

    Article  Google Scholar 

  135. J.F. Mustard, S.L. Murchie, S.M. Pelkey, B.L. Ehlmann, R.E. Milliken, J.A. Grant, J.P. Bibring, F. Poulet, J. Bishop, E.N. Dobrea, L. Roach, Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454(7202), 305–309 (2008)

    ADS  Article  Google Scholar 

  136. J.F. Mustard, B.L. Ehlmann, S.L. Murchie, F. Poulet, N. Mangold, J.W. Head, J.P. Bibring, L.H. Roach, Composition, morphology, and stratigraphy of Noachian crust around the Isidis basin. J. Geophys. Res., Planets 114(E2), E00D12 (2009)

    ADS  Google Scholar 

  137. J.F. Mustard, D. Beaty, D. Bass, Mars 2020 Science Rover: Science goals and mission concept, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 45 (2013)

    Google Scholar 

  138. A.M. Nuhn, L.L. Tornabene, G.R. Osinski, A.S. McEwen, Morphologic and structural mapping of the central uplift of Betio crater, Thaumasia Planum, Mars, in Geological Society of America Special Papers, vol. 518 (2015), pp. 65–83

    Google Scholar 

  139. M.E. Ockert-Bell, J.F. Bell, J.B. Pollack, C.P. McKay, F. Forget, Absorption and scattering properties of the Martian dust in the solar wavelengths. J. Geophys. Res. 102, 9039–9050 (1997). doi:10.1029/96JE03991

    ADS  Article  Google Scholar 

  140. L. Ojha, M.B. Wilhelm, S.L. Murchie, A.S. McEwen, J.J. Wray, J. Hanley, M. Massé, M. Chojnacki, Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8(11), 829–832 (2015)

    ADS  Article  Google Scholar 

  141. C.H. Okubo, L.L. Tornabene, N.L. Lanza, Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes. Icarus 211, 207–221 (2011)

    ADS  Article  Google Scholar 

  142. G.R. Osinski, L.L. Tornabene, R.A. Grieve, Impact ejecta emplacement on terrestrial planets. Earth Planet. Sci. Lett. 310(3), 167–181 (2011)

    ADS  Article  Google Scholar 

  143. M.M. Osterloo, V.E. Hamilton, J.L. Bandfield, T.D. Glotch, A.M. Baldridge, P.R. Christensen, L.L. Tornabene, F.S. Anderson, Chloride-bearing materials in the southern highlands of Mars. Science 319(5870), 1651–1654 (2008)

    ADS  Article  Google Scholar 

  144. M.M. Osterloo, F.S. Anderson, V.E. Hamilton, B.M. Hynek, Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res., Planets 115(E10), E10012 (2010)

    ADS  Article  Google Scholar 

  145. C. Oze, M. Sharma, Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32(10), L10203 (2005)

    ADS  Article  Google Scholar 

  146. M. Pajola, S. Rossato, E. Baratti, C. Mangili, F. Mancarella, K. McBride, M. Coradini, The Simud–Tiu Valles hydrologic system: A multidisciplinary study of a possible site for future Mars on-site exploration. Icarus 268, 355–381 (2016a)

    ADS  Article  Google Scholar 

  147. M. Pajola, S. Rossato, J. Carter, E. Baratti, R. Pozzobon, M.S. Erculiani et al., Eridania Basin: An ancient paleolake floor as the next landing site for the Mars 2020 rover. Icarus 275, 163–182 (2016b)

    ADS  Article  Google Scholar 

  148. M. Pajola, S. Rossato, E. Baratti, R. Pozzobon, C. Quantin, J. Carter, P. Thollot, Boulder abundances and size-frequency distributions on Oxia Planum-Mars: Scientific implications for the 2020 ESA ExoMars rover. Icarus (2017a), doi:10.1016/j.icarus.2017.05.011, in press

  149. M. Pajola, E. Simioni, A. Lucchetti, C. Re, G. Cremonese, N. Thomas, A. Pommerol, L. Tornabene (the CaSSIS Team), Refining the boundary between the Phobos blue/red spectral units with the ExoMars-CaSSIS imagery, in European Planetary Science Congress 2017, vol. 11 (2017b), EPSC2017-68-1

    Google Scholar 

  150. K. Pasquon, J. Gargani, M. Massé, S.J. Conway, Present-day formation and seasonal evolution of linear dune gullies on Mars. Icarus 274, 195–210 (2016). doi:10.1016/j.icarus.2016.03.024

    ADS  Article  Google Scholar 

  151. S.M. Pelkey, J.F. Mustard, S. Murchie, R.T. Clancy, M. Wolff, M. Smith, R. Milliken, J.P. Bibring, A. Gendrin, F. Poulet, Y. Langevin, CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance. J. Geophys. Res., Planets 112(E8), E08S14 (2007)

    Article  Google Scholar 

  152. C. Pilorget, F. Forget, Formation of gullies on Mars by debris flows triggered by CO2 sublimation. Nat. Geosci. 9(1), 65–69 (2016)

    ADS  Article  Google Scholar 

  153. S. Piqueux, S. Byrne, M.I. Richardson, Sublimation of Mars’s southern seasonal CO2 ice cap and the formation of spiders. J. Geophys. Res., Planets 108(E8), 5084 (2003)

    ADS  Article  Google Scholar 

  154. Planetary Data System (PDS), Geosciences Node, Spectral Library: http://speclib.rsl.wustl.edu/, accessed 2017

  155. A. Pommerol, N. Thomas, V. Roloff, L.L. Tornabene, C. Caudill, L. Gambicorti, V. Da Deppo, R. Ziethe, C.J. Hansen, A.S. McEwen, G. Cremonese, The Colour and Stereo Surface Imaging System (CaSSIS) on board ExoMars TGO: expected performance and new opportunities for the study of seasonal processes at high latitude, in The Sixth International Conference on Mars Polar Science and Exploration, vol. 1926 (2016), p. 6057

    Google Scholar 

  156. C. Quantin, J. Flahaut, H. Clenet, P. Allemand, P. Thomas, Composition and structures of the subsurface in the vicinity of Valles Marineris as revealed by central uplifts of impact craters. Icarus 221(1), 436–452 (2012)

    ADS  Article  Google Scholar 

  157. C. Quantin, J. Carter, P. Thollot, J. Broyer, J. Davis, P. Gringrod, M. Pajola, E. Barrati, S. Rossato, P. Allemand, B. Bultel, C. Leyrat, J. Fernando, A. Ody, Oxia Planum—The Landing Site for ExoMars 2018, in 47th Lunar and Planetary Science Conference, vol. 47 (2016), p. 2863

    Google Scholar 

  158. J. Raack, D. Reiss, T. Appéré, M. Vincendon, O. Ruesch, H. Hiesinger, Present-day seasonal gully activity in a south polar pit (Sisyphi Cavi) on Mars. Icarus 251, 226–243 (2015). doi:10.1016/j.icarus.2014.03.040

    ADS  Article  Google Scholar 

  159. D. Reiss, R. Jaumann, Recent debris flows on Mars: Seasonal observations of the Russell Crater dune field. Geophys. Res. Lett. 30(6), 1321 (2003)

    ADS  Article  Google Scholar 

  160. M.S. Rice, J.F.I. BellI, S. Gupta, N.H. Warner, K. Goddard, R.B. Anderson, A detailed geologic characterization of Eberswalde crater. Mars Int. J. Mars Sci. Explor. 8, 15 (2013)

    ADS  Google Scholar 

  161. R. Rieder, R. Gellert, R. Anderson, J. Brückner, B. Clark, G. Dreibus et al., Chemistry of rocks and soils at Meridiani planum from the alpha particle X-ray spectrometer. Science 306(5702), 1746–1749 (2004). Retrieved from http://www.jstor.org/stable/3839770

    ADS  Article  Google Scholar 

  162. L.H. Roach, J.F. Mustard, S.L. Murchie, J.P. Bibring, F. Forget, K.W. Lewis, O. Aharonson, M. Vincendon, J.L. Bishop, Testing evidence of recent hydration state change in sulfates on Mars. J. Geophys. Res., Planets 114(E2), E00D02 (2009)

    Google Scholar 

  163. V. Roloff et al., On-ground performance and calibration of the ExoMars trace gas orbiter CaSSIS imager. Space Sci. Rev. 212, 1871–1896 (2017)

    ADS  Article  Google Scholar 

  164. S.C. Schon, J.W. Head, Gasa impact crater, Mars: Very young gullies formed from impact into latitude-dependent mantle and debris-covered glacier deposits? Icarus 218, 459–477 (2012). doi:10.1016/j.icarus.2012.01.002

    ADS  Article  Google Scholar 

  165. N. Schorghofer, K.S. Edgett, Seasonal surface frost at low latitudes on Mars. Icarus 180(2), 321–334 (2006)

    ADS  Article  Google Scholar 

  166. F.P. Seelos, S.L. Murchie, D.C. Humm, O.S. Barnouin, F. Morgan, H.W. Taylor, C. Hash (CRISM Team), CRISM data processing and analysis products update—Calibration, correction, and visualization, in Lunar and Planetary Institute Science Conference Abstracts, vol. 42 (2011a), p. 1438

    Google Scholar 

  167. F.P. Seelos, S.L. Murchie, A. McGovern, M.P. Milazzo, K.E. Herkenhoff, CRISM/HiRISE correlative spectroscopy, in AGU Fall Meeting Abstracts, vol. 23 (2011b), p. 1714

    Google Scholar 

  168. F.P. Seelos, M.F. Morgan, H.W. Taylor, S.L. Murchie, D.C. Humm, K.D. Seelos, O.S. Barnouin, C.E. Viviano (CRISM Team), CRISM Map Projected Targeted Reduced Data Records (MTRDRs)—High level analysis and visualization data products, in Planetary Data: A Workshop for Users and Software Developers, vol. Open-File Report 2014–1056 (USGS, Flagstaff, 2012), pp. 159–162

    Google Scholar 

  169. K.D. Seelos, F.P. Seelos, C.E. Viviano-Beck, S.L. Murchie, R.E. Arvidson, B.L. Ehlmann, A.A. Fraeman, Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM. Geophys. Res. Lett. 41, 4880–4887 (2014). doi:10.1002/2014GL060310

    ADS  Article  Google Scholar 

  170. F.P. Seelos, C.E. Viviano-Beck, M.F. Morgan, G. Romeo, J.J. Aiello, S.L. Murchie, CRISM Hyperspectral Targeted Observation PDS Product Sets—TERs and MTRDRs, vol. 47 (2016), p. 1783

    Google Scholar 

  171. S. Silvestro, D.A. Vaz, L.K. Fenton, P.E. Geissler, Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae. Geophys. Res. Lett. 38(20), L20201 (2011)

    ADS  Article  Google Scholar 

  172. R.B. Singer, R.N. Clark, T.B. McCord, J.B. Adams, R.L. Huguenin, Mars surface composition from reflectance spectroscopy—A summary. J. Geophys. Res. 84, 8415 (1979)

    ADS  Article  Google Scholar 

  173. S. Silvestro, D.A. Vaz, R.C. Ewing, A.P. Rossi, L.K. Fenton, T.I. Michaels, J. Flahaut, P.E. Geissler, Pervasive aeolian activity along rover Curiosity’s traverse in Gale Crater, Mars. Geology 41(4), 483–486 (2013)

    ADS  Article  Google Scholar 

  174. J.R. Skok, J.F. Mustard, L.L. Tornabene, C. Pan, D. Rogers, S.L. Murchie, A spectroscopic analysis of Martian crater central peaks: Formation of the ancient crust. J. Geophys. Res., Planets 117(E11), E00J18 (2012)

    ADS  Article  Google Scholar 

  175. D.E. Smith, M.T. Zuber, G.A. Neumann, Seasonal variations of snow depth on Mars. Science 294(5549), 2141–2146 (2001)

    ADS  Article  Google Scholar 

  176. V.Z. Sun, R.E. Milliken, The geology and mineralogy of Ritchey crater, Mars: Evidence for post-Noachian clay formation. J. Geophys. Res., Planets 119(4), 810–836 (2014)

    ADS  Article  Google Scholar 

  177. V.Z. Sun, R.E. Milliken, Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks. J. Geophys. Res., Planets 120(12), 2293–2332 (2015)

    ADS  Article  Google Scholar 

  178. N. Thomas et al., The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 212, 1897–1944 (2017)

    ADS  Article  Google Scholar 

  179. L.L. Tornabene, J.E. Moersch, H.Y. McSween, V.E. Hamilton, J.L. Piatek, P.R. Christensen, Surface and crater-exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products. J. Geophys. Res., Planets 113(E10), E10001 (2008)

    ADS  Article  Google Scholar 

  180. L.L. Tornabene, G.R. Osinski, N.G. Barlow, V.J. Bray, C.M. Caudill, B. D’Aoust, N. Ding, R. Hopkins, A.M. Nuhn, A. Mayne, A.S. McEwen, in Meter-to Decameter-Scale Characteristics of Central Uplifts Revealed by the Mars Reconnaissance Orbiter. LPI Contributions (2015), p. 1861, p. 1043

    Google Scholar 

  181. S. Tulyakov, A. Ivanov, N. Thomas, V. Roloff, A. Pommerol, G. Cremonese, T. Weigel, F. Fleuret, Geometric calibration of colour and stereo surface imaging system of ESA’s Trace Gas Orbiter. ArXiv e-prints (2017). 1707.00606

  182. C. Unsalan, K.L. Boyer, A system to detect houses and residential street networks in multispectral satellite images, in Proceedings of the 17th International Conference on Pattern Recognition (ICPR04), vol. 3 (2004)

    Google Scholar 

  183. J. Vago, O. Witasse, H. Svedhem, P. Baglioni, A. Haldemann, G. Gianfiglio, T. Blancquaert, D. McCoy, R. de Groot, ESA ExoMars program: The next step in exploring Mars. Sol. Syst. Res. 49, 518–528 (2015)

    ADS  Article  Google Scholar 

  184. J.L. Vago, F. Westall, A.J. Coates, R. Jaumann, O. Korablev, V. Ciarletti, I. Mitrofanov, J.L. Josset, M.C. De Sanctis, J.P. Bibring, F. Rull, Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17(6–7), 471–510 (2017)

    ADS  Article  Google Scholar 

  185. G.L. Villanueva, M.J. Mumma, R.E. Novak, Y.L. Radeva, H.U. Käufl, A. Smette et al., A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus 223(1), 11–27 (2013)

    ADS  Article  Google Scholar 

  186. M. Vincendon, Identification of Mars gully activity types associated with ice composition. J. Geophys. Res., Planets 120, 1859–1879 (2015). doi:10.1002/2015JE004909

    ADS  Article  Google Scholar 

  187. C.E. Viviano, J.E. Moersch, H.Y. McSween, Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. J. Geophys. Res., Planets 118(9), 1858–1872 (2013)

    ADS  Article  Google Scholar 

  188. C.E. Viviano-Beck, F.P. Seelos, S.L. Murchie, E.G. Kahn, K.D. Seelos, H.W. Taylor, K. Taylor, B.L. Ehlmann, S.M. Wiseman, J.F. Mustard, M.F. Morgan, Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J. Geophys. Res., Planets 119(6), 1403–1431 (2014)

    ADS  Article  Google Scholar 

  189. C.E. Viviano-Beck, S.L. Murchie, A.W. Beck, J.M. Dohm, Compositional and structural constraints on the geologic history of eastern Tharsis Rise, Mars. Icarus 284, 43 (2017)

    ADS  Article  Google Scholar 

  190. C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, M.A. Mischna, P.Y. Meslin et al., Mars methane detection and variability at Gale crater. Science 347(6220), 415–417 (2015)

    ADS  Article  Google Scholar 

  191. R.S. Williams Jr., J.G. Ferrigno, Satellite image atlas of glaciers of the world (No. 1386). US Geological Survey (1988)

  192. M.J. Wolff, M.D. Smith, R.T. Clancy, R. Arvidson, M. Kahre, F. Seelos et al., Wavelength dependence of dust aerosol single scattering albedo as observed by the compact reconnaissance imaging spectrometer. J. Geophys. Res., Planets 114(E2), E00D04 (2009)

    Google Scholar 

  193. J.J. Wray, B.L. Ehlmann, Geology of possible Martian methane source regions. Planet. Space Sci. 59(2), 196–202 (2011)

    ADS  Article  Google Scholar 

  194. J.J. Wray, B.L. Ehlmann, S.W. Squyres, J.F. Mustard, R.L. Kirk, Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys. Res. Lett. 35(12), L12202 (2008)

    ADS  Article  Google Scholar 

  195. J.J. Wray, S.L. Murchie, J.L. Bishop, B.L. Ehlmann, R.E. Milliken, M.B. Wilhelm, K.D. Seelos, M. Chojnacki, Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res., Planets 121(4), 652–677 (2016)

    ADS  Article  Google Scholar 

  196. G. Wulf, M.H. Poelchau, T. Kenkmann, Structural asymmetry in martian impact craters as an indicator for an impact trajectory. Icarus 220(1), 194–204 (2012)

    ADS  Article  Google Scholar 

  197. M.B. Wyatt, H.Y. McSween, Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 417(6886), 263–266 (2002)

    ADS  Article  Google Scholar 

  198. R.W. Zurek, S.E. Smrekar, An overview of the Mars Reconnaissance Orbiter (MRO) science mission. J. Geophys. Res., Planets 112(E5), E05S01 (2007)

    Google Scholar 

  199. R.W. Zurek, A. Chicarro, M.A. Allen, J.L. Bertaux, R.T. Clancy, F. Daerden et al., Assessment of a 2016 mission concept: The search for trace gases in the atmosphere of Mars. Planet. Space Sci. 59(2), 284–291 (2011)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the spacecraft and instrument engineering teams for the successful completion of the instrument. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA’s PRODEX programme. The instrument hardware development was also supported by the Italian Space Agency (ASI) (ASI-INAF agreement no. I/018/12/0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the University of Arizona (Lunar and Planetary Lab.) and NASA are also gratefully acknowledged.

The lead author wishes to personally acknowledge funding and support through the Planetary [ExoMars] Co-Investigator programme from the Canadian Space Agency (CSA) (14EXPUWO-002) and a Canadian NSERC Discovery Grant programme (RGPIN/04215-2014). A special thanks to the science and operations teams of the CRISM, CTX and HiRISE instruments, from which the spectacular coordinated datasets/images, which were required to simulate CaSSIS, would not be possible.

We would also like to acknowledge DTM technician Allison McGraw at University of Arizona for her contribution towards generating the HiRISE and CTX stereo-derived DTMs used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Livio L. Tornabene.

Additional information

ExoMars-16

Edited by Håkan Svedhem and Christopher T. Russell

All simulated CaSSIS data products, including a database and shapfiles providing ancillary information on them, are available for download at https://data.sci.uwo.ca/Simulated_TGO_CaSSIS

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tornabene, L.L., Seelos, F.P., Pommerol, A. et al. Image Simulation and Assessment of the Colour and Spatial Capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter. Space Sci Rev 214, 18 (2018). https://doi.org/10.1007/s11214-017-0436-7

Download citation

Keywords

  • Mars
  • Mars, geology
  • Mars, surface processes
  • Mars, climate
  • Mars, change detection
  • Mars, landing sites
  • Multispectral imaging
  • Image processing
  • Band ratios
  • Pan-sharpening