Space Science Reviews

, 214:18 | Cite as

Image Simulation and Assessment of the Colour and Spatial Capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter

  • Livio L. TornabeneEmail author
  • Frank P. Seelos
  • Antoine Pommerol
  • Nicholas Thomas
  • C. M. Caudill
  • Patricio Becerra
  • John C. Bridges
  • Shane Byrne
  • Marco Cardinale
  • Matthew Chojnacki
  • Susan J. Conway
  • Gabriele Cremonese
  • Colin M. Dundas
  • M. R. El-Maarry
  • Jennifer Fernando
  • Candice J. Hansen
  • Kayle Hansen
  • Tanya N. Harrison
  • Rachel Henson
  • Lucia Marinangeli
  • Alfred S. McEwen
  • Maurizio Pajola
  • Sarah S. Sutton
  • James J. Wray
Part of the following topical collections:
  1. ExoMars-16


This study aims to assess the spatial and visible/near-infrared (VNIR) colour/spectral capabilities of the 4-band Colour and Stereo Surface Imaging System (CaSSIS) aboard the ExoMars 2016 Trace Grace Orbiter (TGO). The instrument response functions for the CaSSIS imager was used to resample spectral libraries, modelled spectra and to construct spectrally (i.e., in I/F space) and spatially consistent simulated CaSSIS image cubes of various key sites of interest and for ongoing scientific investigations on Mars. Coordinated datasets from Mars Reconnaissance Orbiter (MRO) are ideal, and specifically used for simulating CaSSIS. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) provides colour information, while the Context Imager (CTX), and in a few cases the High-Resolution Imaging Science Experiment (HiRISE), provides the complementary spatial information at the resampled CaSSIS unbinned/unsummed pixel resolution (4.6 m/pixel from a 400-km altitude). The methodology used herein employs a Gram-Schmidt spectral sharpening algorithm to combine the ∼18–36 m/pixel CRISM-derived CaSSIS colours with I/F images primarily derived from oversampled CTX images. One hundred and eighty-one simulated CaSSIS 4-colour image cubes (at 18–36 m/pixel) were generated (including one of Phobos) based on CRISM data. From these, thirty-three “fully”-simulated image cubes of thirty unique locations on Mars (i.e., with 4 colour bands at 4.6 m/pixel) were made. All simulated image cubes were used to test both the colour capabilities of CaSSIS by producing standard colour RGB images, colour band ratio composites (CBRCs) and spectral parameters. Simulated CaSSIS CBRCs demonstrated that CaSSIS will be able to readily isolate signatures related to ferrous (Fe2+) iron- and ferric (Fe3+) iron-bearing deposits on the surface of Mars, ices and atmospheric phenomena. Despite the lower spatial resolution of CaSSIS when compared to HiRISE, the results of this work demonstrate that CaSSIS will not only compliment HiRISE-scale studies of various geological and seasonal phenomena, it will also enhance them by providing additional colour and geologic context through its wider and longer full-colour coverage (\(\sim9.4 \times 50\) km), and its increased sensitivity to iron-bearing materials from its two IR bands (RED and NIR). In a few examples, subtle surface changes that were not easily detected by HiRISE were identified in the simulated CaSSIS images. This study also demonstrates the utility of the Gram-Schmidt spectral pan-sharpening technique to extend VNIR colour/spectral capabilities from a lower spatial resolution colour/spectral dataset to a single-band or panchromatic image greyscale image with higher resolution. These higher resolution colour products (simulated CaSSIS or otherwise) are useful as means to extend both geologic context and mapping of datasets with coarser spatial resolutions. The results of this study indicate that the TGO mission objectives, as well as the instrument-specific mission objectives, will be achievable with CaSSIS.


Mars Mars, geology Mars, surface processes Mars, climate Mars, change detection Mars, landing sites Multispectral imaging Image processing Band ratios Pan-sharpening 



The authors wish to thank the spacecraft and instrument engineering teams for the successful completion of the instrument. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA’s PRODEX programme. The instrument hardware development was also supported by the Italian Space Agency (ASI) (ASI-INAF agreement no. I/018/12/0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the University of Arizona (Lunar and Planetary Lab.) and NASA are also gratefully acknowledged.

The lead author wishes to personally acknowledge funding and support through the Planetary [ExoMars] Co-Investigator programme from the Canadian Space Agency (CSA) (14EXPUWO-002) and a Canadian NSERC Discovery Grant programme (RGPIN/04215-2014). A special thanks to the science and operations teams of the CRISM, CTX and HiRISE instruments, from which the spectacular coordinated datasets/images, which were required to simulate CaSSIS, would not be possible.

We would also like to acknowledge DTM technician Allison McGraw at University of Arizona for her contribution towards generating the HiRISE and CTX stereo-derived DTMs used in this study.

Supplementary material

11214_2017_436_MOESM1_ESM.docx (1.5 mb)
CRISM-CaSSIS Transform Heritage—CRISM-HiRISE Compatible Data Processing (DOCX 1.5 MB)
11214_2017_436_MOESM2_ESM.docx (94.6 mb)
(DOCX 94.6 MB)
11214_2017_436_MOESM3_ESM.gif (2.4 mb)
(GIF 2.4 MB)
11214_2017_436_MOESM4_ESM.gif (820 kb)
(GIF 820 kB)
11214_2017_436_MOESM5_ESM.gif (1 mb)
(GIF 1.0 MB)
11214_2017_436_MOESM6_ESM.gif (3.3 mb)
(GIF 3.3 MB)
11214_2017_436_MOESM7_ESM.gif (1.6 mb)
(GIF 1.6 MB)
11214_2017_436_MOESM8_ESM.gif (3 mb)
(GIF 3.0 MB) (74 kb)
(ZIP 74 kB)


  1. J.B. Adams, Lunar and martian surfaces: Petrologic significance of absorption bands in the near-infrared. Science 159, 1453–1455 (1968) ADSCrossRefGoogle Scholar
  2. J.B. Adams, Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. J. Geophys. Res. 79(32), 4829–4836 (1974) ADSCrossRefGoogle Scholar
  3. J.B. Adams, T.B. McCord, Mars: Interpretation of spectral reflectivity of light and dark regions. J. Geophys. Res. 74(20), 4851–4856 (1969) ADSCrossRefGoogle Scholar
  4. T. Appéré et al., Winter and spring evolution of northern seasonal deposits on Mars from OMEGA/Mars Express. J. Geophys. Res. 116, E05001 (2011). doi: 10.1029/2010JE003762 ADSCrossRefGoogle Scholar
  5. R.E. Arvidson, J.F. Bell, J.G. Catalano, B.C. Clark, V.K. Fox, R. Gellert, J.P. Grotzinger, E.A. Guinness, K.E. Herkenhoff, A.H. Knoll, M.G.A. Lapotre, Mars reconnaissance orbiter and opportunity observations of the Burns formation: Crater hopping at Meridiani Planum. J. Geophys. Res., Planets 120(3), 429–451 (2015) ADSCrossRefGoogle Scholar
  6. K.S. Auld, J.C. Dixon, A classification of martian gullies from HiRISE imagery. Planet. Space Sci. 131, 88–101 (2016) ADSCrossRefGoogle Scholar
  7. K.M. Aye, M.E. Schwamb, G. Portyankina, C.J. Hansen, Analysis pipeline and results from the PlanetFour citizen science project, in 47th Lunar and Planetary Science Conference (2016), abst. 3056 Google Scholar
  8. F. Ayoub, J.P. Avouac, C.E. Newman, M.I. Richardson, A. Lucas, S. Leprince, N.T. Bridges, Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux. Nat. Commun. 5, 5096 (2014) CrossRefGoogle Scholar
  9. M. Balme, N. Mangold, D. Baratoux, F. Costard, M. Gosselin, P. Masson, P. Pinet, G. Neukum, Orientation and distribution of recent gullies in the southern hemisphere of Mars: Observations from High Resolution Stereo Camera/Mars Express (HRSC/MEX) and Mars Orbiter Camera/Mars Global Surveyor (MOC/MGS) data. J. Geophys. Res., Planets 111, E0500 (2006). doi: 10.1029/2005JE002607 CrossRefGoogle Scholar
  10. J.L. Bandfield, V.E. Hamilton, P.R. Christensen, A global view of Martian surface compositions from MGS-TES. Science 287(5458), 1626–1630 (2000) ADSCrossRefGoogle Scholar
  11. P. Becerra, S. Byrne, A.J. Brown, Transient bright “halos” on the South polar residual cap of Mars: Implications for mass-balance. Icarus 251, 211–225 (2015) ADSCrossRefGoogle Scholar
  12. J.F. Bell, M.J. Wolff, P.B. James, R.T. Clancy, S.W. Lee, L.J. Martin, Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: Observations, calibration, and initial results. J. Geophys. Res., Planets 102(E4), 9109–9123 (1997) ADSCrossRefGoogle Scholar
  13. R.A. Beyer, R.L. Kirk, Meter-scale slopes of candidate MSL landing sites from point photoclinometry. Space Sci. Rev. 170(1–4), 775–791 (2012) ADSCrossRefGoogle Scholar
  14. J.L. Bishop, M. Parente, C.M. Weitz, E.Z. Noe Dobrea, L.H. Roach, S.L. Murchie, P.C. McGuire, N.K. McKeown, C.M. Rossi, A.J. Brown, W.M. Calvin, Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. J. Geophys. Res., Planets 114(E2), E00D09 (2009) ADSGoogle Scholar
  15. N.T. Bridges, F. Ayoub, J.P. Avouac, S. Leprince, A. Lucas, S. Mattson, Earth-like sand fluxes on Mars. Nature 485(7398), 339–342 (2012a) ADSCrossRefGoogle Scholar
  16. N.T. Bridges, M.C. Bourke, P.E. Geissler, M.E. Banks, C. Colon, S. Diniega, M.P. Golombek, C.J. Hansen, S. Mattson, A.S. McEwen, M.T. Mellon, Planet-wide sand motion on Mars. Geology 40(1), 31–34 (2012b) ADSCrossRefGoogle Scholar
  17. N.T. Bridges, P. Geissler, S. Silvestro, M. Banks, Bedform migration on Mars: Current results and future plans. Aeolian Res. 9, 133–151 (2013) ADSCrossRefGoogle Scholar
  18. J.C. Bridges, D. Loizeau, E. Sefton-Nash, J. Vago, R.M.E. Williams, M. Balme et al., Selection and characterisation of the ExoMars 2020 rover landing sites, in Lunar and Planetary Science 48, 1964 (2017), p. 2378 Google Scholar
  19. R.G. Burns, Mineralogical Applications of Crystal Field Theory (Cambridge University Press, New York, 1970) Google Scholar
  20. R.G. Burns, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, vol. 4, ed. by C.M. Pieters, P.A.J. Englert (Cambridge University Press, Cambridge, 1993), pp. 3–29 Google Scholar
  21. S. Byrne, C.M. Dundas, M.R. Kennedy, M.T. Mellon, A.S. McEwen, S.C. Cull, I.J. Daubar, D.E. Shean, K.D. Seelos, S.L. Murchie, B.A. Cantor, Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325(5948), 1674–1676 (2009) ADSCrossRefGoogle Scholar
  22. W.M. Calvin, L.H. Roach, F.P. Seelos, K.D. Seelos, R.O. Green, S.L. Murchie, J.F. Mustard, Compact reconnaissance imaging spectrometer for Mars observations of northern Martian latitudes in summer. J. Geophys. Res., Planets 114(E2), E00D11 (2009) Google Scholar
  23. M. Cardinale, S. Silvestro, D.A. Vaz, T. Michaels, M.C. Bourke, G. Komatsu, L. Marinangeli, Present-day aeolian activity in Herschel Crater, Mars. Icarus 265, 139–148 (2016) ADSCrossRefGoogle Scholar
  24. J. Carter, F. Poulet, J.P. Bibring, N. Mangold, S. Murchie, Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. J. Geophys. Res., Planets 118(4), 831–858 (2013) ADSCrossRefGoogle Scholar
  25. J. Carter, C. Quantin, P. Thollot, D. Loizeau, A. Ody, L. Lozach, Oxia planum: A clay-laden landing site proposed for the ExoMars rover mission: Aqueous mineralogy and alteration scenarios, in Lunar and Planetary Science Conference, vol. 47 (2016), p. 2064 Google Scholar
  26. C.M. Caudill, L.L. Tornabene, A.S. McEwen, S. Byrne, L. Ojha, S. Mattson, Layered MegaBlocks in the central uplifts of impact craters. Icarus 221(2), 710–720 (2012) ADSCrossRefGoogle Scholar
  27. M.A. Chamberlain, W.V. Boynton, Response of Martian ground ice to orbit-induced climate change. J. Geophys. Res., Planets 112(E6), E06009 (2007) ADSCrossRefGoogle Scholar
  28. M. Chojnacki, D.M. Burr, J.E. Moersch, Valles Marineris dune fields as compared with other martian populations: Diversity of dune compositions, morphologies, and thermophysical properties. Icarus 230, 96–142 (2014) ADSCrossRefGoogle Scholar
  29. M. Chojnacki, J.R. Johnson, J.E. Moersch, L.K. Fenton, T.I. Michaels, J.F. Bell, Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface. Icarus 251, 275–290 (2015) ADSCrossRefGoogle Scholar
  30. M. Chojnacki, A. McEwen, C. Dundas, L. Ojha, A. Urso, S. Sutton, Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars. J. Geophys. Res., Planets 121, 1204–1231 (2016). doi: 10.1002/2015JE004991 ADSCrossRefGoogle Scholar
  31. M. Chojnacki, A. Urso, L.K. Fenton, T.I. Michaels, Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars. Aeolian Res. 26, 73–88 (2017) ADSCrossRefGoogle Scholar
  32. P.R. Christensen, J.L. Bandfield, M.D. Smith, V.E. Hamilton, R.N. Clark, Identification of a basaltic component on the Martian surface from thermal emission spectrometer data. J. Geophys. Res. 105(E4), 9609–9621 (2000a) ADSCrossRefGoogle Scholar
  33. P.R. Christensen, J.L. Bandfield, R.N. Clark, K.S. Edgett, V.E. Hamilton, T. Hoefen, H.H. Kieffer, R.O. Kuzmin, M.D. Lane, M.C. Malin, R.V. Morris, Detection of crystalline hematite mineralization on Mars by the thermal emission spectrometer: Evidence for near-surface water. J. Geophys. Res., Planets 105(E4), 9623–9642 (2000b) ADSCrossRefGoogle Scholar
  34. P.R. Christensen, J.L. Bandfield, J.F. Bell III, N. Gorelick, V.E. Hamilton, A. Ivanov, B.M. Jakosky, H.H. Kieffer, M.D. Lane, M.C. Malin, T. McConnochie, Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300(5628), 2056–2061 (2003) ADSCrossRefGoogle Scholar
  35. R.N. Clark, G.A. Swayze, A.J. Gallagher, T.V. King, W.M. Calvin, The US Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0 um) (No. 93-592), Geological Survey (US) (1993) Google Scholar
  36. S.J. Conway, T.N. Harrison, R.J. Soare, A. Britton, L. Steele, Reanalysis of global data on orientation and slope of gullies on Mars. Geol. Soc. (Lond.) Spec. Publ. (2017), doi: 10.1144/SP467.3, in press
  37. F. Costard, F. Forget, N. Mangold, J.P. Peulvast, Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science 295, 110–113 (2002). doi: 10.1126/science.1066698 ADSCrossRefGoogle Scholar
  38. G. Cremonese, E. Simioni, C. Re, T. Mudric, A. Lucchetti, M. Massironi et al., First Mars surface stereo reconstruction with the CaSSIS stereo camera, in Lunar and Planetary Science Conference 48, 1964 (2017), p. 1464. Google Scholar
  39. B. D’Aoust, Morphological, Structural and Spectral Mapping of the Central Uplifts of the Alga and Verlaine Craters, Mars. Electronic Thesis and Dissertation Repository, 3441 (2015)
  40. I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current martian cratering rate. Icarus 225(1), 506–516 (2013) ADSCrossRefGoogle Scholar
  41. T. de Haas, S.J. Conway, M. Krautblatter, Recent (Late Amazonian) enhanced backweathering rates on Mars: Paracratering evidence from gully-alcoves? J. Geophys. Res., Planets 120, 2169–2189 (2015). doi: 10.1002/2015JE004915 ADSCrossRefGoogle Scholar
  42. W.A. Delamere, L.L. Tornabene, A.S. McEwen, K. Becker, J.W. Bergstrom, N.T. Bridges, E.M. Eliason, D. Gallagher, K.E. Herkenhoff, L. Keszthelyi, S. Mattson, Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE). Icarus 205(1), 38–52 (2010) ADSCrossRefGoogle Scholar
  43. D.J. Des Marais, J.A. Nuth III, L.J. Allamandola, A.P. Boss, J.D. Farmer, T.M. Hoehler et al., The NASA astrobiology roadmap. Astrobiology 8(4), 715–730 (2003) ADSCrossRefGoogle Scholar
  44. N. Ding, V.J. Bray, A.S. McEwen, S.S. Mattson, C.H. Okubo, M. Chojnacki, L.L. Tornabene, The central uplift of Ritchey crater, Mars. Icarus 252, 255–270 (2015) ADSCrossRefGoogle Scholar
  45. S. Diniega, S. Byrne, N.T. Bridges, C.M. Dundas, A.S. McEwen, Seasonality of present-day Martian dune-gully activity. Geology 38, 1047–1050 (2010). doi: 10.1130/G31287.1 ADSCrossRefGoogle Scholar
  46. S. Diniega, C.J. Hansen, J.N. McElwaine, C.H. Hugenholtz, C.M. Dundas, A.S. McEwen, M.C. Bourke, A new dry hypothesis for the formation of martian linear gullies. Icarus 225(1), 526–537 (2013) ADSCrossRefGoogle Scholar
  47. S. Diniega, C.J. Hansen, A. Allen, N. Grigsby, Z. Li, T. Perez, M. Chojnacki, Dune-slope activity due to frost and wind, throughout the north polar erg, Mars. Geol. Soc. (Lond.) Spec. Publ. (2017), doi: 10.1144/SP467.6, in press
  48. C.M. Dundas, S. Byrne, Modeling sublimation of ice exposed by new impacts in the martian midlatitudes. Icarus 206, 716 (2010) ADSCrossRefGoogle Scholar
  49. C.M. Dundas, A.S. McEwen, S. Diniega, S. Byrne, S. Martinez-Alonso, New and recent gully activity on Mars as seen by HiRISE. Geophys. Res. Lett. 37, L07202 (2010). doi: 10.1029/2009gl041351 ADSGoogle Scholar
  50. C.M. Dundas, S. Diniega, C.J. Hansen, S. Byrne, A.S. McEwen, Seasonal activity and morphological changes in martian gullies. Icarus 220, 124–143 (2012). doi: 10.1016/j.icarus.2012.04.005 ADSCrossRefGoogle Scholar
  51. C.M. Dundas, S. Byrne, A.S. McEwen, M.T. Mellon, M.R. Kennedy, I.J. Daubar, L. Saper, HiRISE observations of new impact craters exposing Martian ground ice. J. Geophys. Res., Planets 119(1), 109–127 (2014) ADSCrossRefGoogle Scholar
  52. C.M. Dundas, S. Diniega, A.S. McEwen, Long-term monitoring of Martian gully formation and evolution with MRO/HiRISE. Icarus 251, 244–263 (2015). doi: 10.1016/j.icarus.2014.05.013 ADSCrossRefGoogle Scholar
  53. C.M. Dundas, A.S. McEwen, M.P. Milazzo, How wet is recent Mars? Insights from Gullies and RSL, in Lunar and Planetary Science Conference, vol. 47 (2016), p. 2327 Google Scholar
  54. C.M. Dundas, A.S. McEwen, S. Diniega, C.J. Hansen, S. Byrne, J.N. McElwaine, The formation of gullies on Mars today. Geol. Soc. (Lond.) Spec. Publ. (2017), in press. doi: 10.1144/SP467.5 Google Scholar
  55. C.S. Edwards, B.L. Ehlmann, Carbon sequestration on Mars: Constraints from the Nili Fossae carbonate plains, in AGU Fall Meeting Abstracts (2015) Google Scholar
  56. B.L. Ehlmann, C.S. Edwards, Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014) ADSCrossRefGoogle Scholar
  57. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, F. Poulet, J.L. Bishop, A.J. Brown, W.M. Calvin, R.N. Clark, D.J. Des Marais, R.E. Milliken, L.H. Roach, Orbital identification of carbonate-bearing rocks on Mars. Science 322(5909), 1828–1832 (2008) ADSCrossRefGoogle Scholar
  58. B.L. Ehlmann, J.F. Mustard, G.A. Swayze, R.N. Clark, J.L. Bishop, F. Poulet, D.J. Des Marais, L.H. Roach, R.E. Milliken, J.J. Wray, O. Barnouin-Jha, Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res., Planets 114(E2), E00D08 (2009) ADSGoogle Scholar
  59. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37(6), L06201 (2010) ADSCrossRefGoogle Scholar
  60. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, J.P. Bibring, A. Meunier, A.A. Fraeman, Y. Langevin, Subsurface water and clay mineral formation during the early history of Mars. Nature 479(7371), 53–60 (2011) ADSCrossRefGoogle Scholar
  61. G. Erkeling, D. Reiss, H. Hiesinger, F. Poulet, J. Carter, M.A. Ivanova, E. Hauber, R. Jaumann, Two new candidate landing sites for the European 2018 ExoMars mission near Libya Montes alluvial fans, in Lunar and Planetary Science Conference, vol. 44 (2013), p. 2378 Google Scholar
  62. R.L. Fergason, R.L. Kirk, G. Cushing, D.M. Galuszka, M.P. Golombek, T.M. Hare, E. Howington-Kraus, D.M. Kipp, B.L. Redding, Analysis of local slopes at the InSight landing site on Mars. Space Sci. Rev. 211, 109–133 (2017) ADSCrossRefGoogle Scholar
  63. J. Fernando, F. Schmidt, S. Douté, Martian surface microtexture from orbital CRISM multi-angular observations: A new perspective for the characterization of the geological processes. Planet. Space Sci. 128, 30–51 (2016) ADSCrossRefGoogle Scholar
  64. J. Fernando, S. Douté, A. McEwen, S. Byrne, N. Thomas, Mars atmospheric dust contamination of surface albedo and color measurements, in Lunar and Planetary Science Conference 48, 2014, (2017), p. 1635 Google Scholar
  65. S. Fonti, G.A. Marzo, Mapping the methane on Mars. Astron. Astrophys. 512, A51 (2010) ADSCrossRefGoogle Scholar
  66. V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306(5702), 1758–1761 (2004) ADSCrossRefGoogle Scholar
  67. P.E. Geissler, R. Sullivan, M. Golombek, J.R. Johnson, K. Herkenhoff, N. Bridges, A. Vaughan, J. Maki, T. Parker, J. Bell, Gone with the wind: Eolian erasure of the Mars Rover tracks. J. Geophys. Res., Planets 115(E7), E00F11 (2010) ADSGoogle Scholar
  68. R. Gellert et al., Alpha particle X-ray spectrometer (APXS): Results from Gusev crater and calibration report. J. Geophys. Res. 111, E02S05 (2006). doi: 10.1029/2005JE002555 CrossRefGoogle Scholar
  69. A. Gendrin, N. Mangold, J.P. Bibring, Y. Langevin, B. Gondet, F. Poulet, G. Bonello, C. Quantin, J. Mustard, R. Arvidson, S. LeMouélic, Sulfates in Martian layered terrains: The OMEGA/Mars Express view. Science 307(5715), 1587–1591 (2005) ADSCrossRefGoogle Scholar
  70. T.D. Glotch, J.L. Bandfield, L.L. Tornabene, H.B. Jensen, F.P. Seelos, Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophys. Res. Lett. 37(16), L16202 (2010) ADSCrossRefGoogle Scholar
  71. M.P. Golombek, J.A. Grant, T.J. Parker, D.M. Kass, J.A. Crisp, S.W. Squyres, A.F.C. Haldemann, M. Adler, W.J. Lee, N.T. Bridges, R.E. Arvidson, Selection of the Mars exploration rover landing sites. J. Geophys. Res., Planets 108(E12), 8072 (2003) ADSGoogle Scholar
  72. M. Golombek, K. Robinson, A. McEwen, N. Bridges, B. Ivanov, L. Tornabene, R. Sullivan, Constraints on ripple migration at Meridiani planum from opportunity and HiRISE observations of fresh craters. J. Geophys. Res., Planets 115(E7), E00F08 (2010) Google Scholar
  73. M. Golombek, J. Grant, D. Kipp, A. Vasavada, R. Kirk, R. Fergason, P. Bellutta, F. Calef, K. Larsen, Y. Katayama, A. Huertas, Selection of the Mars Science Laboratory landing site. Space Sci. Rev. 170(1–4), 641–737 (2012) ADSCrossRefGoogle Scholar
  74. M.P. Golombek, J.A. Grant, K.A. Farley, K. Williford, A. Chen, R.E. Otero, J.W. Ashley, Downselection of landing sites proposed for the Mars 2020 rover mission, in Lunar and Planetary Science Conference, vol. 47 (2016), p. 2324 Google Scholar
  75. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R.L. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017) ADSCrossRefGoogle Scholar
  76. T.A. Goudge, J.F. Mustard, J.W. Head, C.I. Fassett, S.M. Wiseman, Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars. J. Geophys. Res., Planets 120, 775 (2015) ADSCrossRefGoogle Scholar
  77. R.V. Gough, V.F. Chevrier, M.A. Tolbert, Formation of liquid water at low temperatures via the deliquescence of calcium chloride: Implications for Antarctica and Mars. Planet. Space Sci. 131, 79–87 (2016) ADSCrossRefGoogle Scholar
  78. J.A. Grant, M.P. Golombek, J.P. Grotzinger, S.A. Wilson, M.M. Watkins, A.R. Vasavada, J.L. Griffes, T.J. Parker, The science process for selecting the landing site for the 2011 Mars Science Laboratory. Planet. Space Sci. 59(11), 1114–1127 (2011) ADSCrossRefGoogle Scholar
  79. R. Greeley, J.D. Iversen, Wind as a Geological Process on Earth, Mars, Venus and Titan. Cambridge Planetary Science Series, vol. 4 (Cambridge University Press, Cambridge, 1985), p. 333 CrossRefGoogle Scholar
  80. C. Gross, J. Carter, F. Poulet, D. Loizeau, J.L. Bishop, B. Horgan, J. Michalski, Mawrth Vallis—An Auspicious Destination for the ESA and NASA 2020 Landers, in 48th Lunar and Planetary Science Conference, vol. 48 (2017), p. 2194 Google Scholar
  81. V.E. Hamilton, P.R. Christensen, Evidence for extensive, olivine-rich bedrock on Mars. Geology 33(6), 433–436 (2005) ADSCrossRefGoogle Scholar
  82. C.J. Hansen, M. Bourke, N.T. Bridges, S. Byrne, C. Colon, S. Diniega, C. Dundas, K. Herkenhoff, A. McEwen, M. Mellon, G. Portyankina, Seasonal erosion and restoration of Mars’ northern polar dunes. Science 331(6017), 575–578 (2011) ADSCrossRefGoogle Scholar
  83. C.J. Hansen, S. Byrne, G. Portyankina, M. Bourke, C. Dundas, A. McEwen, M. Mellon, A. Pommerol, N. Thomas, Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes. Icarus 225(2), 881–897 (2013) ADSCrossRefGoogle Scholar
  84. C.J. Hansen, S. Diniega, N. Bridges, S. Byrne, C. Dundas, A. McEwen, G. Portyankina, Agents of change on Mars’ northern dunes: CO2 ice and wind. Icarus 251, 264–274 (2015) ADSCrossRefGoogle Scholar
  85. T.N. Harrison, M.C. Malin, K.S. Edgett, Present-day gully activity observed by the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX). Bull. Am. Astron. Soc. 41(3), 113, abstract 57.03 (2009) Google Scholar
  86. T.N. Harrison, G.R. Osinski, L.L. Tornabene, E. Jones, Global documentation of gullies with the Mars reconnaissance orbiter context camera and implications for their formation. Icarus 252, 236–254 (2015). doi: 10.1016/j.icarus.2015.01.022 ADSCrossRefGoogle Scholar
  87. P.O. Hayne, C.J. Hansen, S. Byrne, D.M. Kass, A. Kleinböhl, S. Piqueux, D.J. McCleese, S. Diniega, G. Portyankina, Snowfall variability and surface changes in the polar regions of Mars, LPI Contributions, 1926 (2016) Google Scholar
  88. J. Heinz, D. Schulze-Makuch, S.P. Kounaves, Deliquescence-induced wetting and RSL-like darkening of a Mars analogue soil containing various perchlorate and chloride salts. Geophys. Res. Lett. 43(10), 4880–4884 (2016) ADSCrossRefGoogle Scholar
  89. T.M. Hoefen, R.N. Clark, J.L. Bandfield, M.D. Smith, J.C. Pearl, P.R. Christensen, Discovery of olivine in the Nili Fossae region of Mars. Science 302(5645), 627–630 (2003) ADSCrossRefGoogle Scholar
  90. N.G. Holm, C. Oze, O. Mousis, J.H. Waite, A. Guilbert-Lepoutre, Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology 15(7), 587–600 (2015) ADSCrossRefGoogle Scholar
  91. R.T. Hopkins, L.L. Tornabene, G.R. Osinski, The central uplift of Elorza Crater: Insights into its geology and possible relationships to the Valles Marineris and Tharsis regions. Icarus 284, 284–304 (2017) ADSCrossRefGoogle Scholar
  92. B.H. Horgan, J.F. Bell, Seasonally active slipface avalanches in the north polar sand sea of Mars: Evidence for a wind-related origin. Geophys. Res. Lett. 39(9), L09201 (2012) ADSCrossRefGoogle Scholar
  93. G.R. Hunt, Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42(3), 501–513 (1977) ADSCrossRefGoogle Scholar
  94. G.R. Hunt, R.P. Ashley, Spectra of altered rocks in the visible and near infrared. Econ. Geol. 74(7), 1613–1629 (1979) CrossRefGoogle Scholar
  95. G.R. Hunt, J.W. Salisbury, Visible and near-infrared spectra of minerals and rocks—I. Silicate minerals. Mod. Geol. 1, 283–300 (1970) Google Scholar
  96. B.A. Ivanov, H.J. Melosh, A.S. McEwen (HiRISE Team), Small impact crater clusters in high resolution HiRISE images—II, in Lunar Planet. Sci. 40 (2009), Abstract 1410 Google Scholar
  97. P.B. James, R.T. Clancy, S.W. Lee, L.J. Martin, R.B. Singer, E. Smith et al., Monitoring Mars with the Hubble space telescope: 1990–1991 observations. Icarus 109(1), 79–101 (1994) ADSCrossRefGoogle Scholar
  98. A. Kereszturi, D. Möhlmann, S. Berczi, T. Ganti, A. Horvath, A. Kuti, A. Sik, E. Szathmary, Indications of brine related local seepage phenomena on the northern hemisphere of Mars. Icarus 207(1), 149–164 (2010) ADSCrossRefGoogle Scholar
  99. H.H. Kieffer, Annual punctuated CO2 slab-ice and jets on Mars, in Second International Conference on Mars Polar Science and Exploration, vol. 1 (2000), p. 93 Google Scholar
  100. H.H. Kieffer, Cold jets in the Martian polar caps. J. Geophys. Res., Planets 112(E8), E08005 (2007) ADSCrossRefGoogle Scholar
  101. H.H. Kieffer, P.R. Christensen, T.N. Titus, CO2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap. Nature 442(7104), 793–796 (2006) ADSCrossRefGoogle Scholar
  102. R.L. Kirk, E. Howington-Kraus, B. Redding, D. Galuszka, T.M. Hare, B.A. Archinal, L.A. Soderblom, J.M. Barrett, High-resolution topomapping of candidate MER landing sites with Mars orbiter camera narrow-angle images. J. Geophys. Res., Planets 108(E12), 8088 (2003) ADSCrossRefGoogle Scholar
  103. R.L. Kirk, E. Howington-Kraus, M.R. Rosiek, J.A. Anderson, B.A. Archinal, K.J. Becker et al., Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res., Planets 113(E3), E00A24 (2008) Google Scholar
  104. G. Klingelhöfer, R. Morris, B. Bernhardt, C. Schröder, D. Rodionov, P. De Souza et al., Jarosite and hematite at Meridiani planum from opportunity’s Mössbauer spectrometer. Science 306(5702), 1740–1745 (2004). Retrieved from ADSCrossRefGoogle Scholar
  105. W.C. Koeppen, V.E. Hamilton, Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J. Geophys. Res., Planets 113(E5), E05001 (2008) ADSCrossRefGoogle Scholar
  106. K.J. Kolb, A.S. McEwen, J.D. Pelletier, Investigating gully flow emplacement mechanisms using apex slopes. Icarus 208, 132–142 (2010) ADSCrossRefGoogle Scholar
  107. S.P. Kounaves, M.H. Hecht, J. Kapit, R.C. Quinn, D.C. Catling, B.C. Clark et al., Soluble sulfate in the martian soil at the Phoenix landing site. Geophys. Res. Lett. 37(9), L09201 (2010) ADSCrossRefGoogle Scholar
  108. C.A. Laben, B.V. Brower, Eastman Kodak Company, Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. U.S. Patent 6011875 (2000) Google Scholar
  109. Y. Langevin, F. Poulet, J.P. Bibring, B. Gondet, Sulfates in the north polar region of Mars detected by OMEGA/Mars express. Science 307(5715), 1584–1586 (2005) ADSCrossRefGoogle Scholar
  110. R.B. Leighton, B.C. Murray, Behavior of carbon dioxide and other volatiles on Mars. Science 153(3732), 136–144 (1966) ADSCrossRefGoogle Scholar
  111. M.C. Malin, K.S. Edgett, Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000). doi: 10.1126/science.288.5475.2330 ADSCrossRefGoogle Scholar
  112. M.C. Malin, K.S. Edgett, Mars global surveyor Mars orbiter camera: Interplanetary cruise through primary mission. J. Geophys. Res., Planets 106(E10), 23429–23570 (2001) ADSCrossRefGoogle Scholar
  113. M.C. Malin, K.S. Edgett, L.V. Posiolova, S.M. McColley, E.Z.N. Dobrea, Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573–1577 (2006) ADSCrossRefGoogle Scholar
  114. M.C. Malin, J.F. Bell III, B.A. Cantor, M.A. Caplinger, W.M. Calvin, R.T. Clancy, K.S. Edgett, L. Edwards, R.M. Haberle, P.B. James, S.W. Lee, M.A. Ravine, P.C. Thomas, M.J. Wolff, Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007) ADSCrossRefGoogle Scholar
  115. N. Mangold, F. Poulet, J.F. Mustard, J.P. Bibring, B. Gondet, Y. Langevin, V. Ansan, P. Masson, C. Fassett, J.W. Head, H. Hoffmann, Mineralogy of the Nili Fossae region with OMEGA/Mars express data: 2. Aqueous alteration of the crust. J. Geophys. Res., Planets 112(E8), E08S04 (2007) CrossRefGoogle Scholar
  116. P.D. Martin, P.C. Pinet, R. Bacon, A. Rousset, F. Bellagh, Martian surface mineralogy from 0.8 to 1.05 μm TIGER spectro-imagery measurements in Terra Sirenum and Tharsis Montes formation. Planet. Space Sci. 44(8), 859–888 (1996) ADSCrossRefGoogle Scholar
  117. G.A. Marzo, A.F. Davila, L.L. Tornabene, J.M. Dohm, A.G. Fairén, C. Gross, T. Kneissl, J.L. Bishop, T.L. Roush, C.P. McKay, Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 208, 667 (2010) ADSCrossRefGoogle Scholar
  118. T. Maurer, How to pan-sharpen images using the Gram-Schmidt pan-sharpen method-a recipe, in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1 (2013), p. W1 Google Scholar
  119. T.B. McCord, J.A. Westphal, Mars: Narrow-band photometry from 0.3 to 2.5 microns of surface regions during the 1969 apparition. Astrophys. J. 168, 141–153 (1971) ADSCrossRefGoogle Scholar
  120. T.B. McCord, R.L. Huguenin, D. Mink, C.M. Pieters, Spectral reflectance of martian areas during the 1973 opposition: Photoelectric filter photometry 0.33-I. IO pm. Icarus 31, 25–39 (1977) ADSCrossRefGoogle Scholar
  121. T.B. McCord, R.N. Clark, R.L. Huguenin, Mars: Near-infrared spectral reflectance and compositional implication. J. Geophys. Res. 83(Bll), 5433–5441 (1978) ADSCrossRefGoogle Scholar
  122. A.S. McEwen, L.A. Soderblom, High-resolution color images of Io, in Lunar and Planetary Science XV (1984), p. 529, Abstract Google Scholar
  123. A.S. McEwen, E.M. Eliason, J.W. Bergstrom, N.T. Bridges, C.J. Hansen, W.A. Delamere, J.A. Grant, V.C. Gulick, K.E. Herkenhoff, L. Keszthelyi, R.L. Kirk, Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J. Geophys. Res., Planets 112(E5), E05S02 (2007) CrossRefGoogle Scholar
  124. L. Murchie, J.F. Mustard, B.L. Ehlmann, R.E. Milliken, J.L. Bishop, N.K. McKeown, E.Z. Noe Dobrea, F.P. Seelos, D.L. Buczkowski, S.M. Wiseman, R.E. Arvidson, J.J. Wray, G. Swayze, R.N. Clark, D.J. Des Marais, A.S. McEwen, J.-P. Bibring, A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, E00D06 (2009) ADSGoogle Scholar
  125. A.S. McEwen, M.E. Banks, N. Baugh, K. Becker, A. Boyd, J.W. Bergstrom, R.A. Beyer, E. Bortolini, N.T. Bridges, S. Byrne, B. Castalia, The high resolution imaging science experiment (HiRISE) during MRO’s primary science phase (PSP). Icarus 205(1), 2–37 (2010) ADSCrossRefGoogle Scholar
  126. A.S. McEwen, L. Ojha, C.M. Dundas, S.S. Mattson, S. Byrne, J.J. Wray, S.C. Cull, S.L. Murchie, N. Thomas, V.C. Gulick, Seasonal flows on warm Martian slopes. Science 333(6043), 740–743 (2011) ADSCrossRefGoogle Scholar
  127. A.S. McEwen, C.M. Dundas, S.S. Mattson, A.D. Toigo, L. Ojha, J.J. Wray, M. Chojnacki, S. Byrne, S.L. Murchie, N. Thomas, Recurring slope lineae in equatorial regions of Mars. Nat. Geosci. 7(1), 53–58 (2014) ADSCrossRefGoogle Scholar
  128. S.M. McLennan, R.B. Anderson, J.F. Bell, J.C. Bridges, F. Calef, J.L. Campbell, B.C. Clark, S. Clegg, P. Conrad, A. Cousin, D.J. Des Marais, Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 343(6169), 1244734 (2014). doi: 10.1126/science.1244734 CrossRefGoogle Scholar
  129. H.Y. McSween, The rocks of Mars, from far and near. Meteorit. Planet. Sci. 37(1), 7–25 (2002) ADSCrossRefGoogle Scholar
  130. R.V. Morris et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. 111, E02S13 (2006a). doi: 10.1029/2005JE002584 CrossRefGoogle Scholar
  131. R.V. Morris et al., Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. 111, E12S15 (2006b). doi: 10.1029/2006JE002791 ADSCrossRefGoogle Scholar
  132. M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti et al., Strong release of methane on Mars in northern summer 2003. Science 323(5917), 1041–1045 (2009) ADSCrossRefGoogle Scholar
  133. S. Murchie, R. Arvidson, P. Bedini, K. Beisser, J.P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, R.T. Clancy, E.H. Darlington, Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO). J. Geophys. Res., Planets 112(E5), E05S03 (2007) CrossRefGoogle Scholar
  134. J.F. Mustard, F. Poulet, J.W. Head, N. Mangold, J.P. Bibring, S.M. Pelkey, C.I. Fassett, Y. Langevin, G. Neukum, Mineralogy of the Nili Fossae region with OMEGA/Mars express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. J. Geophys. Res., Planets 112(E8), E08S03 (2007) CrossRefGoogle Scholar
  135. J.F. Mustard, S.L. Murchie, S.M. Pelkey, B.L. Ehlmann, R.E. Milliken, J.A. Grant, J.P. Bibring, F. Poulet, J. Bishop, E.N. Dobrea, L. Roach, Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454(7202), 305–309 (2008) ADSCrossRefGoogle Scholar
  136. J.F. Mustard, B.L. Ehlmann, S.L. Murchie, F. Poulet, N. Mangold, J.W. Head, J.P. Bibring, L.H. Roach, Composition, morphology, and stratigraphy of Noachian crust around the Isidis basin. J. Geophys. Res., Planets 114(E2), E00D12 (2009) ADSGoogle Scholar
  137. J.F. Mustard, D. Beaty, D. Bass, Mars 2020 Science Rover: Science goals and mission concept, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 45 (2013) Google Scholar
  138. A.M. Nuhn, L.L. Tornabene, G.R. Osinski, A.S. McEwen, Morphologic and structural mapping of the central uplift of Betio crater, Thaumasia Planum, Mars, in Geological Society of America Special Papers, vol. 518 (2015), pp. 65–83 Google Scholar
  139. M.E. Ockert-Bell, J.F. Bell, J.B. Pollack, C.P. McKay, F. Forget, Absorption and scattering properties of the Martian dust in the solar wavelengths. J. Geophys. Res. 102, 9039–9050 (1997). doi: 10.1029/96JE03991 ADSCrossRefGoogle Scholar
  140. L. Ojha, M.B. Wilhelm, S.L. Murchie, A.S. McEwen, J.J. Wray, J. Hanley, M. Massé, M. Chojnacki, Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8(11), 829–832 (2015) ADSCrossRefGoogle Scholar
  141. C.H. Okubo, L.L. Tornabene, N.L. Lanza, Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes. Icarus 211, 207–221 (2011) ADSCrossRefGoogle Scholar
  142. G.R. Osinski, L.L. Tornabene, R.A. Grieve, Impact ejecta emplacement on terrestrial planets. Earth Planet. Sci. Lett. 310(3), 167–181 (2011) ADSCrossRefGoogle Scholar
  143. M.M. Osterloo, V.E. Hamilton, J.L. Bandfield, T.D. Glotch, A.M. Baldridge, P.R. Christensen, L.L. Tornabene, F.S. Anderson, Chloride-bearing materials in the southern highlands of Mars. Science 319(5870), 1651–1654 (2008) ADSCrossRefGoogle Scholar
  144. M.M. Osterloo, F.S. Anderson, V.E. Hamilton, B.M. Hynek, Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res., Planets 115(E10), E10012 (2010) ADSCrossRefGoogle Scholar
  145. C. Oze, M. Sharma, Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32(10), L10203 (2005) ADSCrossRefGoogle Scholar
  146. M. Pajola, S. Rossato, E. Baratti, C. Mangili, F. Mancarella, K. McBride, M. Coradini, The Simud–Tiu Valles hydrologic system: A multidisciplinary study of a possible site for future Mars on-site exploration. Icarus 268, 355–381 (2016a) ADSCrossRefGoogle Scholar
  147. M. Pajola, S. Rossato, J. Carter, E. Baratti, R. Pozzobon, M.S. Erculiani et al., Eridania Basin: An ancient paleolake floor as the next landing site for the Mars 2020 rover. Icarus 275, 163–182 (2016b) ADSCrossRefGoogle Scholar
  148. M. Pajola, S. Rossato, E. Baratti, R. Pozzobon, C. Quantin, J. Carter, P. Thollot, Boulder abundances and size-frequency distributions on Oxia Planum-Mars: Scientific implications for the 2020 ESA ExoMars rover. Icarus (2017a), doi: 10.1016/j.icarus.2017.05.011, in press
  149. M. Pajola, E. Simioni, A. Lucchetti, C. Re, G. Cremonese, N. Thomas, A. Pommerol, L. Tornabene (the CaSSIS Team), Refining the boundary between the Phobos blue/red spectral units with the ExoMars-CaSSIS imagery, in European Planetary Science Congress 2017, vol. 11 (2017b), EPSC2017-68-1 Google Scholar
  150. K. Pasquon, J. Gargani, M. Massé, S.J. Conway, Present-day formation and seasonal evolution of linear dune gullies on Mars. Icarus 274, 195–210 (2016). doi: 10.1016/j.icarus.2016.03.024 ADSCrossRefGoogle Scholar
  151. S.M. Pelkey, J.F. Mustard, S. Murchie, R.T. Clancy, M. Wolff, M. Smith, R. Milliken, J.P. Bibring, A. Gendrin, F. Poulet, Y. Langevin, CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance. J. Geophys. Res., Planets 112(E8), E08S14 (2007) CrossRefGoogle Scholar
  152. C. Pilorget, F. Forget, Formation of gullies on Mars by debris flows triggered by CO2 sublimation. Nat. Geosci. 9(1), 65–69 (2016) ADSCrossRefGoogle Scholar
  153. S. Piqueux, S. Byrne, M.I. Richardson, Sublimation of Mars’s southern seasonal CO2 ice cap and the formation of spiders. J. Geophys. Res., Planets 108(E8), 5084 (2003) ADSCrossRefGoogle Scholar
  154. Planetary Data System (PDS), Geosciences Node, Spectral Library:, accessed 2017
  155. A. Pommerol, N. Thomas, V. Roloff, L.L. Tornabene, C. Caudill, L. Gambicorti, V. Da Deppo, R. Ziethe, C.J. Hansen, A.S. McEwen, G. Cremonese, The Colour and Stereo Surface Imaging System (CaSSIS) on board ExoMars TGO: expected performance and new opportunities for the study of seasonal processes at high latitude, in The Sixth International Conference on Mars Polar Science and Exploration, vol. 1926 (2016), p. 6057 Google Scholar
  156. C. Quantin, J. Flahaut, H. Clenet, P. Allemand, P. Thomas, Composition and structures of the subsurface in the vicinity of Valles Marineris as revealed by central uplifts of impact craters. Icarus 221(1), 436–452 (2012) ADSCrossRefGoogle Scholar
  157. C. Quantin, J. Carter, P. Thollot, J. Broyer, J. Davis, P. Gringrod, M. Pajola, E. Barrati, S. Rossato, P. Allemand, B. Bultel, C. Leyrat, J. Fernando, A. Ody, Oxia Planum—The Landing Site for ExoMars 2018, in 47th Lunar and Planetary Science Conference, vol. 47 (2016), p. 2863 Google Scholar
  158. J. Raack, D. Reiss, T. Appéré, M. Vincendon, O. Ruesch, H. Hiesinger, Present-day seasonal gully activity in a south polar pit (Sisyphi Cavi) on Mars. Icarus 251, 226–243 (2015). doi: 10.1016/j.icarus.2014.03.040 ADSCrossRefGoogle Scholar
  159. D. Reiss, R. Jaumann, Recent debris flows on Mars: Seasonal observations of the Russell Crater dune field. Geophys. Res. Lett. 30(6), 1321 (2003) ADSCrossRefGoogle Scholar
  160. M.S. Rice, J.F.I. BellI, S. Gupta, N.H. Warner, K. Goddard, R.B. Anderson, A detailed geologic characterization of Eberswalde crater. Mars Int. J. Mars Sci. Explor. 8, 15 (2013) ADSGoogle Scholar
  161. R. Rieder, R. Gellert, R. Anderson, J. Brückner, B. Clark, G. Dreibus et al., Chemistry of rocks and soils at Meridiani planum from the alpha particle X-ray spectrometer. Science 306(5702), 1746–1749 (2004). Retrieved from ADSCrossRefGoogle Scholar
  162. L.H. Roach, J.F. Mustard, S.L. Murchie, J.P. Bibring, F. Forget, K.W. Lewis, O. Aharonson, M. Vincendon, J.L. Bishop, Testing evidence of recent hydration state change in sulfates on Mars. J. Geophys. Res., Planets 114(E2), E00D02 (2009) Google Scholar
  163. V. Roloff et al., On-ground performance and calibration of the ExoMars trace gas orbiter CaSSIS imager. Space Sci. Rev. 212, 1871–1896 (2017) ADSCrossRefGoogle Scholar
  164. S.C. Schon, J.W. Head, Gasa impact crater, Mars: Very young gullies formed from impact into latitude-dependent mantle and debris-covered glacier deposits? Icarus 218, 459–477 (2012). doi: 10.1016/j.icarus.2012.01.002 ADSCrossRefGoogle Scholar
  165. N. Schorghofer, K.S. Edgett, Seasonal surface frost at low latitudes on Mars. Icarus 180(2), 321–334 (2006) ADSCrossRefGoogle Scholar
  166. F.P. Seelos, S.L. Murchie, D.C. Humm, O.S. Barnouin, F. Morgan, H.W. Taylor, C. Hash (CRISM Team), CRISM data processing and analysis products update—Calibration, correction, and visualization, in Lunar and Planetary Institute Science Conference Abstracts, vol. 42 (2011a), p. 1438 Google Scholar
  167. F.P. Seelos, S.L. Murchie, A. McGovern, M.P. Milazzo, K.E. Herkenhoff, CRISM/HiRISE correlative spectroscopy, in AGU Fall Meeting Abstracts, vol. 23 (2011b), p. 1714 Google Scholar
  168. F.P. Seelos, M.F. Morgan, H.W. Taylor, S.L. Murchie, D.C. Humm, K.D. Seelos, O.S. Barnouin, C.E. Viviano (CRISM Team), CRISM Map Projected Targeted Reduced Data Records (MTRDRs)—High level analysis and visualization data products, in Planetary Data: A Workshop for Users and Software Developers, vol. Open-File Report 2014–1056 (USGS, Flagstaff, 2012), pp. 159–162 Google Scholar
  169. K.D. Seelos, F.P. Seelos, C.E. Viviano-Beck, S.L. Murchie, R.E. Arvidson, B.L. Ehlmann, A.A. Fraeman, Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM. Geophys. Res. Lett. 41, 4880–4887 (2014). doi: 10.1002/2014GL060310 ADSCrossRefGoogle Scholar
  170. F.P. Seelos, C.E. Viviano-Beck, M.F. Morgan, G. Romeo, J.J. Aiello, S.L. Murchie, CRISM Hyperspectral Targeted Observation PDS Product Sets—TERs and MTRDRs, vol. 47 (2016), p. 1783 Google Scholar
  171. S. Silvestro, D.A. Vaz, L.K. Fenton, P.E. Geissler, Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae. Geophys. Res. Lett. 38(20), L20201 (2011) ADSCrossRefGoogle Scholar
  172. R.B. Singer, R.N. Clark, T.B. McCord, J.B. Adams, R.L. Huguenin, Mars surface composition from reflectance spectroscopy—A summary. J. Geophys. Res. 84, 8415 (1979) ADSCrossRefGoogle Scholar
  173. S. Silvestro, D.A. Vaz, R.C. Ewing, A.P. Rossi, L.K. Fenton, T.I. Michaels, J. Flahaut, P.E. Geissler, Pervasive aeolian activity along rover Curiosity’s traverse in Gale Crater, Mars. Geology 41(4), 483–486 (2013) ADSCrossRefGoogle Scholar
  174. J.R. Skok, J.F. Mustard, L.L. Tornabene, C. Pan, D. Rogers, S.L. Murchie, A spectroscopic analysis of Martian crater central peaks: Formation of the ancient crust. J. Geophys. Res., Planets 117(E11), E00J18 (2012) ADSCrossRefGoogle Scholar
  175. D.E. Smith, M.T. Zuber, G.A. Neumann, Seasonal variations of snow depth on Mars. Science 294(5549), 2141–2146 (2001) ADSCrossRefGoogle Scholar
  176. V.Z. Sun, R.E. Milliken, The geology and mineralogy of Ritchey crater, Mars: Evidence for post-Noachian clay formation. J. Geophys. Res., Planets 119(4), 810–836 (2014) ADSCrossRefGoogle Scholar
  177. V.Z. Sun, R.E. Milliken, Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks. J. Geophys. Res., Planets 120(12), 2293–2332 (2015) ADSCrossRefGoogle Scholar
  178. N. Thomas et al., The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 212, 1897–1944 (2017) ADSCrossRefGoogle Scholar
  179. L.L. Tornabene, J.E. Moersch, H.Y. McSween, V.E. Hamilton, J.L. Piatek, P.R. Christensen, Surface and crater-exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products. J. Geophys. Res., Planets 113(E10), E10001 (2008) ADSCrossRefGoogle Scholar
  180. L.L. Tornabene, G.R. Osinski, N.G. Barlow, V.J. Bray, C.M. Caudill, B. D’Aoust, N. Ding, R. Hopkins, A.M. Nuhn, A. Mayne, A.S. McEwen, in Meter-to Decameter-Scale Characteristics of Central Uplifts Revealed by the Mars Reconnaissance Orbiter. LPI Contributions (2015), p. 1861, p. 1043 Google Scholar
  181. S. Tulyakov, A. Ivanov, N. Thomas, V. Roloff, A. Pommerol, G. Cremonese, T. Weigel, F. Fleuret, Geometric calibration of colour and stereo surface imaging system of ESA’s Trace Gas Orbiter. ArXiv e-prints (2017). 1707.00606
  182. C. Unsalan, K.L. Boyer, A system to detect houses and residential street networks in multispectral satellite images, in Proceedings of the 17th International Conference on Pattern Recognition (ICPR04), vol. 3 (2004) Google Scholar
  183. J. Vago, O. Witasse, H. Svedhem, P. Baglioni, A. Haldemann, G. Gianfiglio, T. Blancquaert, D. McCoy, R. de Groot, ESA ExoMars program: The next step in exploring Mars. Sol. Syst. Res. 49, 518–528 (2015) ADSCrossRefGoogle Scholar
  184. J.L. Vago, F. Westall, A.J. Coates, R. Jaumann, O. Korablev, V. Ciarletti, I. Mitrofanov, J.L. Josset, M.C. De Sanctis, J.P. Bibring, F. Rull, Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17(6–7), 471–510 (2017) ADSCrossRefGoogle Scholar
  185. G.L. Villanueva, M.J. Mumma, R.E. Novak, Y.L. Radeva, H.U. Käufl, A. Smette et al., A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus 223(1), 11–27 (2013) ADSCrossRefGoogle Scholar
  186. M. Vincendon, Identification of Mars gully activity types associated with ice composition. J. Geophys. Res., Planets 120, 1859–1879 (2015). doi: 10.1002/2015JE004909 ADSCrossRefGoogle Scholar
  187. C.E. Viviano, J.E. Moersch, H.Y. McSween, Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. J. Geophys. Res., Planets 118(9), 1858–1872 (2013) ADSCrossRefGoogle Scholar
  188. C.E. Viviano-Beck, F.P. Seelos, S.L. Murchie, E.G. Kahn, K.D. Seelos, H.W. Taylor, K. Taylor, B.L. Ehlmann, S.M. Wiseman, J.F. Mustard, M.F. Morgan, Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J. Geophys. Res., Planets 119(6), 1403–1431 (2014) ADSCrossRefGoogle Scholar
  189. C.E. Viviano-Beck, S.L. Murchie, A.W. Beck, J.M. Dohm, Compositional and structural constraints on the geologic history of eastern Tharsis Rise, Mars. Icarus 284, 43 (2017) ADSCrossRefGoogle Scholar
  190. C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, M.A. Mischna, P.Y. Meslin et al., Mars methane detection and variability at Gale crater. Science 347(6220), 415–417 (2015) ADSCrossRefGoogle Scholar
  191. R.S. Williams Jr., J.G. Ferrigno, Satellite image atlas of glaciers of the world (No. 1386). US Geological Survey (1988) Google Scholar
  192. M.J. Wolff, M.D. Smith, R.T. Clancy, R. Arvidson, M. Kahre, F. Seelos et al., Wavelength dependence of dust aerosol single scattering albedo as observed by the compact reconnaissance imaging spectrometer. J. Geophys. Res., Planets 114(E2), E00D04 (2009) Google Scholar
  193. J.J. Wray, B.L. Ehlmann, Geology of possible Martian methane source regions. Planet. Space Sci. 59(2), 196–202 (2011) ADSCrossRefGoogle Scholar
  194. J.J. Wray, B.L. Ehlmann, S.W. Squyres, J.F. Mustard, R.L. Kirk, Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys. Res. Lett. 35(12), L12202 (2008) ADSCrossRefGoogle Scholar
  195. J.J. Wray, S.L. Murchie, J.L. Bishop, B.L. Ehlmann, R.E. Milliken, M.B. Wilhelm, K.D. Seelos, M. Chojnacki, Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res., Planets 121(4), 652–677 (2016) ADSCrossRefGoogle Scholar
  196. G. Wulf, M.H. Poelchau, T. Kenkmann, Structural asymmetry in martian impact craters as an indicator for an impact trajectory. Icarus 220(1), 194–204 (2012) ADSCrossRefGoogle Scholar
  197. M.B. Wyatt, H.Y. McSween, Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 417(6886), 263–266 (2002) ADSCrossRefGoogle Scholar
  198. R.W. Zurek, S.E. Smrekar, An overview of the Mars Reconnaissance Orbiter (MRO) science mission. J. Geophys. Res., Planets 112(E5), E05S01 (2007) Google Scholar
  199. R.W. Zurek, A. Chicarro, M.A. Allen, J.L. Bertaux, R.T. Clancy, F. Daerden et al., Assessment of a 2016 mission concept: The search for trace gases in the atmosphere of Mars. Planet. Space Sci. 59(2), 284–291 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Livio L. Tornabene
    • 1
    Email author
  • Frank P. Seelos
    • 2
  • Antoine Pommerol
    • 3
  • Nicholas Thomas
    • 3
  • C. M. Caudill
    • 1
  • Patricio Becerra
    • 3
  • John C. Bridges
    • 4
  • Shane Byrne
    • 5
  • Marco Cardinale
    • 6
  • Matthew Chojnacki
    • 5
  • Susan J. Conway
    • 7
  • Gabriele Cremonese
    • 8
  • Colin M. Dundas
    • 9
  • M. R. El-Maarry
    • 10
  • Jennifer Fernando
    • 5
  • Candice J. Hansen
    • 11
  • Kayle Hansen
    • 1
  • Tanya N. Harrison
    • 12
  • Rachel Henson
    • 4
  • Lucia Marinangeli
    • 6
  • Alfred S. McEwen
    • 5
  • Maurizio Pajola
    • 13
  • Sarah S. Sutton
    • 5
  • James J. Wray
    • 14
  1. 1.Centre for Planetary Science and Exploration/Department of Earth SciencesUniversity of Western OntarioLondonCanada
  2. 2.Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  3. 3.Physikalisches InstitutUniversity of BernBernSwitzerland
  4. 4.Space Research Centre, Leicester Institute for Space and Earth ObservationUniversity of LeicesterLeicesterUK
  5. 5.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  6. 6.DiSPUTERUniversità G. d’AnnunzioChietiItaly
  7. 7.CNRS, Laboratoire de Planétologie et Géodynamique, CNRS/INSU UMR 6112Université de NantesNantes Cedex 3France
  8. 8.INAF—Osservatorio Astronomicodi PadovaPadovaItaly
  9. 9.U.S. Geological SurveyAstrogeology Science CenterFlagstaffUSA
  10. 10.Laboratory of Atmospheric and Space Physics (LASP)University of ColoradoBoulderUSA
  11. 11.Planetary Science InstituteTucsonUSA
  12. 12.NewSpace InitiativeArizona State UniversityTempeUSA
  13. 13.NASA Ames Research CenterMoffett FieldUSA
  14. 14.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations