Space Science Reviews

, 214:60 | Cite as

From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction

  • Helmut Lammer
  • Michel Blanc


This paper is an introduction to volume 56 of the Space Science Series of ISSI, “From disks to planets—the making of planets and their proto-atmospheres”, a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions.

We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their protoatmospheres not only grow, but they also migrate radially as a result of their interaction with the disk, thus moving progressively from their distance of formation to their final location. The formation of planetary fluid envelopes (proto-atmospheres and oceans), is an essential product of this planet formation scenario which strongly constrains their possible evolution towards habitability. We discuss the effects of the initial conditions in the disk, of the location, size and mass of the planetary core, of the disk lifetime and of the radiation output and activity of the central star, on the formation of these envelopes and on their relative extensions with respect to the planet core. Overall, a fraction of the planets retain the primary proto-atmosphere they initially accreted from the gas disk. For those which lose it in this early evolution, outgassing of volatiles from the planetary core and mantle, together with some contributions of volatiles from colliding bodies, give them a chance to form a “secondary” atmosphere, like that of our own Earth.

When the disk finally dissipates, usually before 10 Million years of age, it leaves us with the combination of a planetary system and a debris disk, each with a specific radial distribution with respect to their parent star(s). Whereas the dynamics of protoplanetary disks is dominated by gas-solid dynamical coupling, debris disks are dominated by gravitational dynamics acting on diverse families of planetesimals. Solid-body collisions between them and giant impacts on young planetary surfaces generate a new population of gas and dust in those disks. Synergies between solar system and exoplanet studies are particularly fruitful and need to be stimulated even more, because they give access to different and complementary components of debris disks: whereas the different families of planetesimals can be extensively studied in the solar system, they remain unobserved in exoplanet systems. But, in those systems, long-wavelength telescopic observations of dust provide a wealth of indirect information about the unobserved population of planetesimals. Promising progress is being currently made to observe the gas component as well, using millimetre and sub-millimetre giant radio interferometers.

Within planetary systems themselves, individual planets are the assembly of a solid body and a fluid envelope, including their planetary atmosphere when there is one. Their characteristics range from terrestrial planets through sub-Neptunes and Neptunes and to gas giants, each type covering most of the orbital distances probed by present-day techniques. With the continuous progress in detection and characterization techniques and the advent of major providers of new data like the Kepler mission, the architecture of these planetary systems can be studied more and more accurately in a statistically meaningful sense and compared to the one of our own solar system, which does not appear to be an exceptional case. Finally, our understanding of exoplanets atmospheres has made spectacular advances recently using the occultation spectroscopy techniques implemented on the currently operating space and ground-based observing facilities.

The powerful new observing facilities planned for the near and more distant future will make it possible to address many of the most challenging current questions of the science of exoplanets and their systems. There is little doubt that, using this new generation of facilities, we will be able to reconstruct more and more accurately the complex evolutionary paths which link stellar genesis to the possible emergence of habitable worlds.


Exoplanets Planetary sciences Origin and evolution Planetary systems: protoplanetary disks 



This brief introduction to the role of protoplanetary disks in planetary formation and evolution was conceived during the august 2014 joint ISSI-Beijing/ISSI workshop held in Beijing on “The Disk in Relation to the Formation of Planets and their Protoatmospheres”. HL and MB thank ISSI-Beijing for its much-appreciated hospitality during the workshop, and all the participants of the workshop and contributors to this special issue of Space Science Reviews and to the corresponding SSSI book for lively discussions and highly appreciated efforts. HL also thanks the Austrian Science Fund (FWF) NFN project S11601-N16 “Pathways to Habitability: From Disks to Stars, Planets and Life” and the related FWF NFN subprojects S11607-N16 “Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions”. We also thank three referees for their detailed suggestions and recommendations which helped us to improve considerably this introductory chapter, and Guest Editor Veerle Jasmin Serken for her patient and efficient handling of the review of this manuscript. Finally, HL thanks P. Cubillos and L. Fossati for discussions related to radius-mass relations of sub-Neptunes and observations.


  1. S.M. Andrews, K.A. Rosenfeld, A.L. Kraus, D.J. Wilner, The mass dependence between protoplanetary disks and their stellar hosts. Astrophys. J. 771, 129–200 (2013) ADSCrossRefGoogle Scholar
  2. R. Alexander, P.J. Armitage, Giant planet migration, disk evolution, and the origin of transitional disks. Astrophys. J. 704, 989–1001 (2009) ADSCrossRefGoogle Scholar
  3. R. Alexander, I. Pascucci, Deserts and pile-ups in the distribution of exoplanets due to photoevaporative disc clearing. Mon. Not. R. Astron. Soc. 422, 82–86 (2012) ADSCrossRefGoogle Scholar
  4. C.M.O’D. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, N.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012) ADSCrossRefGoogle Scholar
  5. J.M. Alcalá, E. Covino, G. Tottres, M.F. Sterzik, M.J. Pfeiffer, R. Neuhäuser, High-resolution spectroscopy of ROSAT low-mass pre-main sequence stars in Orion. Astron. Astrophys. 353, 186–201 (2000) ADSGoogle Scholar
  6. Y. Alibert, C. Mordasini, W. Benz, Migration and giant planet formation. Astron. Astrophys. 417, L25–L28 (2004) ADSCrossRefGoogle Scholar
  7. Y. Alibert, C. Mordasini, W. Benz, C. Winisdoerffer, Models of giant planet formation with migration and disc evolution. Astron. Astrophys. 434, 343–353 (2005a) ADSCrossRefGoogle Scholar
  8. Y. Alibert, O. Mousis, C. Mordasini, W. Benz, New Jupiter and Saturn models meet observations. Astrophys. J. 626, L57–L60 (2005b) ADSCrossRefGoogle Scholar
  9. Y. Alibert, I. Baraffe, W. Benz, G. Chabrier, C. Mordasini, C. Lovis, M. Mayor, F. Pepe, F. Bouchy, D. Queloz, S. Udry, Formation and structure of the three Neptune-mass planets system around HD 69830. Astron. Astrophys. 455, L25–L28 (2006) ADSCrossRefGoogle Scholar
  10. Y. Alibert, C. Broeg, W. Benz, G. Wuchterl, O. Grasset, C. Sotin, C. Eiroa, Th. Henning, T. Herbst, L. Kaltenegger, A. Léger, R. Liseau, H. Lammer, C. Beichman, W. Danchi, M. Fridlund, J. Lunine, F. Paresce, A. Penny, A. Quirrenbach, H. Röttgering, F. Selsis, J. Schneider, D. Stam, G. Tinetti, G.J. White, Origin and formation of planetary systems. Astrobiology 10, 19–32 (2010) ADSCrossRefGoogle Scholar
  11. S.M. Andrews, D.J. Wilner, A.M. Hughes, C. Qi, C.P. Dullemond, Protoplanetary disk structures in Ophiuchus. Astrophys. J. 700, 1502–1523 (2009) ADSCrossRefGoogle Scholar
  12. G. Aresu, I. Kamp, R. Meijerink, P. Woitke, W.F. Thi, M. Spaans, X-ray impact on the protoplanetary disks around T Tauri stars. Astron. Astrophys. 526, A163 (2011). 6 pp. ADSCrossRefGoogle Scholar
  13. S.A. Balbus, J.F. Hawley, A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. Astrophys. J. 376, 214–233 (1991) ADSCrossRefGoogle Scholar
  14. S. Ballard, J.A. Johnson, The Kepler dichotomy among the M dwarfs: Half of systems contain five or more coplanar planets. Astrophys. J. 816, 66 (2016) ADSCrossRefGoogle Scholar
  15. T.S. Barman, Q.M. Konopacky, B. Macintosh, C. Marois, Simultaneous detection of water, methane, and carbon monoxide in the atmosphere of exoplanet HR8799b. Astrophys. J. 804, 61 (2015). 10 pp. ADSCrossRefGoogle Scholar
  16. T. Barclay, J.F. Rowe, J.J. Lissauer (the Kepler Science Team), A sub-Mercury-sized exoplanet. Nature 496, 252 (2013) ADSCrossRefGoogle Scholar
  17. C. Baruteau, J.C.B. Papaloizou, Disk-planets interactions and the diversity of period ratios in Kepler’s multi-planetary systems. Astrophys. J. 778, A7 (2013). 15 pp. ADSCrossRefGoogle Scholar
  18. C. Baruteau, A. Crida, S.-J. Paardekooper, F. Masset, J. Guilet, B. Bitsch, R. Nelson, W. Kley, J. Papaloizou, Planet-disk interactions and early evolution of planetary systems, in Protostars and Planets VI, ed. by H. Beuther, R.S. Kessen, C.P. Dullemond, T. Henning (University of Arizona Press, Tucson, 2014), pp. 667–689 Google Scholar
  19. C. Baruteau, X. Bai, C. Mordasini, P. Molliere, Formation, orbital and internal evolutions of young planetary systems. Space Sci. Rev. 205, 77–124 (2016). ibid. (2017, this volume) ADSCrossRefGoogle Scholar
  20. J.L. Bean, E. Miller-Ricci Kempton, D. Homeier, A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b. Nature 468, 669–672 (2010) ADSCrossRefGoogle Scholar
  21. R.H. Becker, R.N. Clayton, E.M. Galimov, H. Lammer, B. Marty, R.O. Pepin, R.O. Wieler, Isotopic signatures of volatiles in terrestrial planets. Space Sci. Rev. 106, 377–410 (2003) ADSCrossRefGoogle Scholar
  22. T. Birnstiel, M. Fang, A. Johansen, Dust evolution and the formation of planetesimals. Space Sci. Rev. 205, 41–75 (2016). ibid. (2017, this volume) ADSCrossRefGoogle Scholar
  23. B. Bitsch, M. Lambrechts, A. Johansen, The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys. 582, A112 (2015a). 24 pp. ADSCrossRefGoogle Scholar
  24. B. Bitsch, A. Johansen, M. Lambrechts, A. Morbidelli, The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575, A28 (2015b). 17 pp. ADSCrossRefGoogle Scholar
  25. V. Bourrier, A. Lecavelier des Etangs, 3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: Radiative blow-out and stellar wind interactions. Astron. Astrophys. 557, A124 (2013). 18 pp. ADSCrossRefGoogle Scholar
  26. A.P. Boss, Rapid formation of outer giant planets by disk instability. Astrophys. J. 599, 577–581 (2003) ADSCrossRefGoogle Scholar
  27. C. Broeg, A. Fortier, D. Ehrenreich (CHEOPS the CHEOPS Team), A transit photometry mission for ESA’s small mission programme. EPJ Web Conf. 47, 03005 (2013) CrossRefGoogle Scholar
  28. M. Brogi, I.A.G. Snellen, R.J. de Kok, S. Albrecht, J.L. Birkby, E.J.W. de Mooij, Detection of molecular absorption in the dayside of exoplanet 51 Pegasi b? Astrophys. J. 767, 27 (2013). 10 pp. ADSCrossRefGoogle Scholar
  29. L.A. Buchhave, M. Bizzarro, D.W. Latham, D. Sasselov, W.D. Cochran, M. Endl, H. Isaacson, D. Juncher, G.W. Marcy, Three regimes of extrasolar planet radius inferred from host star metallicities. Nature 509, 593–595 (2014) ADSCrossRefGoogle Scholar
  30. P. Caselli, C. Ceccarelli, Our astrochemical heritage. Astron. Astrophys. Rev. 20, A56 (2012). ADSCrossRefGoogle Scholar
  31. P. Cubillos, E.V. Erkaev, I. Juvan, L. Fossati, C.P. Johnstone, H. Lammer, M. Lendl, P. Odert, K.G. Kislyakova, An overabundance of low-density Neptune-like planets. Mon. Not. R. Astron. Soc. 466, 1868–1879 (2017) ADSCrossRefGoogle Scholar
  32. K.-M. Dittkrist, C. Mordasini, H. Klahr, Y. Alibert, T. Henning, Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. Astron. Astrophys. 567, A121 (2014). 18 pp. CrossRefGoogle Scholar
  33. D. Deming, A. Wilkins, P.A. McCullough, J. Fortney, E. Agol, I. Dobbs-Dixon, N. Madhusudhan, N. Crouzet, J.-M. Desert, R.L. Gilliland, K. Haynes, H.A. Knutson, M. Line, Z. Magic, A.M. Mandell, S. Ranjan, D. Charbonneau, M. Clampin, S. Seager, A.P. Showman, Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013). 17 pp. ADSCrossRefGoogle Scholar
  34. D. Ehrenreich, A. Lecavelier Des Etangs, G. Hébrard, J.-M. Désert, A. Vidal-Madjar, J.C. McConnell, C.D. Parkinson, G.E. Ballester, R. Ferlet, New observations of the extended hydrogen exosphere of the extrasolar planet HD 209458b. Astron. Astrophys. 483, 933–937 (2008) ADSCrossRefGoogle Scholar
  35. D. Ehrenreich, X. Bonfils, C. Lovis, X. Delfosse, T. Forveille, M. Mayor, V. Neves, N.C. Santos, S. Udry, D. Ségransan, Near-infrared transmission spectrum of the warm-Uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope. Astron. Astrophys. 570, A89 (2014). 24 pp. ADSCrossRefGoogle Scholar
  36. D. Ehrenreich, V. Bourrier, P.J. Wheatley, A. Lecavelier Des Etangs, G. Hébrard, S. Udry, X. Bonfils, X. Delfosse, J.-M. Désert, D.K. Sing, A. Vidal-Madjar, A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015) ADSCrossRefGoogle Scholar
  37. L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008) ADSCrossRefGoogle Scholar
  38. L.T. Elkins-Tanton, Formation of water ocean on rocky planets. Astrophys. Space Sci. 332, 359–364 (2011) ADSCrossRefGoogle Scholar
  39. T. Encrenaz, Water in the solar system. Annu. Rev. Astron. Astrophys. 46, 57–87 (2008) ADSCrossRefGoogle Scholar
  40. M. Fang, J.S. Kim, R. van Boekel, A. Sicilia-Aguilar, T. Henning, K. Flaherty, Young stellar objects in Lynds 1641: disks, accretion, and star formation history. Astrophys. J. Suppl. 207, 5 (2013). 39 pp. ADSCrossRefGoogle Scholar
  41. D. Fedele, M.E. van den Ancker, T. Henning, R. Jayawardhana, J.M. Oliveira, Timescale of mass accretion in pre-main-sequence stars. Astron. Astrophys. 510, A72 (2010). 7 pp. CrossRefGoogle Scholar
  42. D.A. Fischer, J. Valenti, The planet-metallicity correlation. Astrophys. J. 622, 1102–1117 (2005) ADSCrossRefGoogle Scholar
  43. M. Fischer-Gödde, T. Kleine, Ruthenium isotopic evidence for an inner solar system origin of the late veneer. Nature 541, 525–527 (2017) ADSCrossRefGoogle Scholar
  44. J.J. Fortney, K. Lodders, M.S. Marley, R.S. Freedman, A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008) ADSCrossRefGoogle Scholar
  45. L. Fossati, S. Bagnulo, A. Elmasli, C.A. Haswell, S. Holmes, O. Kochukhov, E.L. Shkolnik, D.V. Shulyak, D. Bohlender, B. Albayrak, C. Froning, L. Hebb, A detailed spectropolarimetric analysis of the planet-hosting star WASP-12. Astrophys. J. 720, 872–886 (2010) ADSCrossRefGoogle Scholar
  46. L. Fossati, N.V. Erkaev, H. Lammer, P.E. Cubillos, P. Odert, I. Juvan, K.G. Kislyakova, M. Lendl, D. Kubyshkina, S.J. Bauer, Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron. Astrophys. 598, A90 (2017). 9 pp. ADSCrossRefGoogle Scholar
  47. F. Fressin, G. Torres, D. Charbonneau, S.T. Bryson, J. Christiansen, C.D. Dressing, J.M. Jenkins, L.M. Walkowicz, N.M. Batalha, The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013). 20 pp. ADSCrossRefGoogle Scholar
  48. M. Fridlund, A. Hatzes, R. Liseau, The way forward. Space Sci. Rev. 205, 349–372 (2016). ibid. (2017, this volume) ADSCrossRefGoogle Scholar
  49. C. Gammie, Layered accretion in T Tauri disks. Astrophys. J. 457, 355–362 (1996) ADSCrossRefGoogle Scholar
  50. U. Gorti, D. Hollenbach, C.P. Dullemond, The impact of dust evolution and photoevaporation on disk dispersal. Astrophys. J. 804, A29 (2015). 21 pp. ADSCrossRefGoogle Scholar
  51. U. Gorti, R. Liseau, Z. Sandor, C. Clarke, Disk dispersal: theoretical understanding and observational constraints. Space Sci. Rev. 205, 125–152 (2016). ibid. (2017, this volume) ADSCrossRefGoogle Scholar
  52. K.E. Haisch Jr., E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001) ADSCrossRefGoogle Scholar
  53. K. Hamano, Y. Abe, H. Genda, Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013) ADSCrossRefGoogle Scholar
  54. B.M.S. Hansen, N. Murray, Testing in-situ assembly with the Kepler planet candidate sample. Astrophys. J. 775, 53 (2013). 17 pp. ADSCrossRefGoogle Scholar
  55. L. Hartmann, Accretion Processes in Star Formation (Cambridge University Press, Cambridge, 2009) Google Scholar
  56. A.R. Howe, A.S. Burrows, Theoretical transit spectra for GJ 1214b and other “super-Earths”. Astrophys. J. 756, 176 (2012). 14 pp. ADSCrossRefGoogle Scholar
  57. C.A. Haswell, L. Fossati, T. Ayres, K. France, C.S. Froning, S. Holmes, U.C. Kolb, R. Busuttil, R.A. Street, L. Hebb, A. Collier Cameron, B. Enoch, V. Burwitz, J. Rodriguez, R.G. West, D. Pollacco, P.J. Wheatley, A. Carter, Near-ultraviolet absorption, chromospheric activity, and star-planet interactions in the WASP-12 system. Astrophys. J. 760, A9 (2012). 23 pp. CrossRefGoogle Scholar
  58. A. Hatzes, The architecture of exoplanet systems. Space Sci. Rev. 205, 267–283 (2016). ibid. (2017, this volume) ADSCrossRefGoogle Scholar
  59. C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981) ADSCrossRefGoogle Scholar
  60. T. Henning, D. Semenov, Chemistry in protoplanetary disks. Chem. Rev. 113, 9016–9042 (2013) CrossRefGoogle Scholar
  61. T. Henning, G. Meeus, in Physical Processes in Circumstellar Disks Around Young Stars, ed. by P.J.V. Grady (Chicago University Press, Chicago, 2011), p. 114 Google Scholar
  62. H.D. Holland, The Chemical Evolution of the Atmosphere and Oceans (Princeton University Press, Princeton, 1984). 598 pp. Google Scholar
  63. I. Hubeny, A. Burrows, D. Sudarsky, A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011–1018 (2003) ADSCrossRefGoogle Scholar
  64. S. Ida, D.N.C. Lin, Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around stars with a range of metallicities. Astrophys. J. 616, 567–572 (2004) ADSCrossRefGoogle Scholar
  65. M. Ikoma, K. Nakazawa, H. Emori, Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys. J. 537, 1013–1025 (2000) ADSCrossRefGoogle Scholar
  66. M. Ikoma, Y. Hori, In-situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. Astrophys. J. 753, A66 (2012). 6 pp. ADSCrossRefGoogle Scholar
  67. M. Ilgner, Th. Henning, A.J. Markwick, T.J. Millar, Transport processes and chemical evolution in steady accretion disk flows. Astron. Astrophys. 415, 643–659 (2004) ADSCrossRefGoogle Scholar
  68. E. Jarosewich, Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses. Meteoritics 25, 323–337 (1990) ADSCrossRefGoogle Scholar
  69. C.P. Johnstone, M. Güdel, A. Stökl, H. Lammer, L. Tu, K.G. Kislyakova, T. Lüftinger, P. Odert, N.V. Erkaev, E.A. Dorfi, The evolution of stellar rotation and the hydrogen atmospheres of habitable-zone terrestrial planets. Astrophys. J. Lett. 815, A12 (2015). 6 pp. ADSCrossRefGoogle Scholar
  70. I. Kant, Universal Natural Theory and Theory of Heaven (1755) Google Scholar
  71. J.F. Kasting, D.H. Eggler, S.P. Raeburn, Mantle redox evolution and the case for a reduced Archean atmosphere. J. Geol. 101, 245–257 (1993) ADSCrossRefGoogle Scholar
  72. K.G. Kislyakova, M. Holmström, H. Lammer, P. Odert Petra, M.L. Khodachenko, Magnetic moment and plasma environment of HD 209458b as determined from \(\mbox{Ly}\alpha\) observations. Science 346, 981–984 (2014) ADSCrossRefGoogle Scholar
  73. W. Kley, R.P. Nelson, Planet-disk interaction and orbital evolution. Annu. Rev. Astron. Astrophys. 50, 211–249 (2012) ADSCrossRefGoogle Scholar
  74. H.A. Knutson, D. Charbonneau, L.E. Allen, A. Burrows, S.T. Megeath, The 3.6–8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. Astrophys. J. 673, 526–531 (2008) ADSCrossRefGoogle Scholar
  75. H.A. Knutson, A.W. Howard, H. Isaacson, A correlation between stellar activity and hot Jupiter emission spectra. Astrophys. J. 720, 1569–1576 (2010) ADSCrossRefGoogle Scholar
  76. R.J. de Kok, M. Brogi, I.A.G. Snellen, J. Birkby, S. Albrecht, E.J.W. de Mooij, Detection of carbon monoxide in the high-resolution day-side spectrum of HD 189733b. Astron. Astrophys. 554, A82 (2013). 9 pp. CrossRefGoogle Scholar
  77. J.R. Kulow, K. France, J. Linsky, L.R.O. Parker, \(\mbox{Ly}\alpha\) transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Astrophys. J. 786, A132 (2014). 9 pp. ADSCrossRefGoogle Scholar
  78. M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012). 13 pp. ADSCrossRefGoogle Scholar
  79. M. Lambrechts, A. Johansen, A. Morbidelli, Separating gas-giant and ice-giant planets by halting pebble accretion. Astron. Astrophys. 572, A35 (2014). 12 pp. ADSCrossRefGoogle Scholar
  80. F. Lahuis, E.F. van Dishoeck, A.C.A. Boogert, K.M. Pontoppidan, G.A. Blake, C.P. Dullemond, N.J.I.I. Evans, M.R. Hogerheijde, J.K. Jørgensen, J.E. Kessler-Silacci, C. Knez, Hot organic molecules toward a young low-mass star: a look at inner disk chemistry. Astrophys. J. 636, L145–L148 (2006) ADSCrossRefGoogle Scholar
  81. H. Lammer, K.G. Kislyakova, P. Odert, M. Leitzinger, R. Schwarz, E. Pilat-Lohinger, Yu.N. Kulikov, M.L. Khodachenko, M. Güdel, A. Hanslmeier, Pathways to Earth-like atmospheres extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–522 (2011) ADSCrossRefGoogle Scholar
  82. H. Lammer, A. Stökl, N.V. Erkaev, E. Dorfi, P. Odert, M. Güdel, Yu.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439, 3225–3238 (2014) ADSCrossRefGoogle Scholar
  83. H. Lammer, N.V. Erkaev, L. Fossati, I. Juvan, P. Odert, P.E. Cubillos, E. Guenther, K.G. Kislyakova, C.P. Johnstone, T. Lüftinger, M. Güdel, Identifying the “true” radius of the sub-Neptunes CoRoT-24b by mass loss modelling. Mon. Not. R. Astron. Soc. 461, L62–L66 (2016) ADSCrossRefGoogle Scholar
  84. T. Lebrun, H. Massol, E. Chassefiére, A. Davaille, E. Marcq, P. Sarda, F. Leblanc, G. Brandeis, Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res., Planets 118, 1155–1176 (2013) ADSCrossRefGoogle Scholar
  85. P.-S. Laplace. Exposition du Système du Monde (1796) MATHGoogle Scholar
  86. G. Lee, I. Doobs-Dixon, Ch. Helling, K. Bognar, P. Woitke, Dynamic mineral clouds on HD 189733b—I. 3D RHD with kinetic, non-equilibrium cloud formation. Astron. Astrophys. 594, A48 (2016) ADSCrossRefGoogle Scholar
  87. D.N.C. Lin, J. Papaloizou, On the tidal interaction between protoplanets and the protoplanetary disk. III—Orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986) ADSCrossRefGoogle Scholar
  88. D.N.C. Lin, P. Bodenheimer, D.C. Richardson, Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996) ADSCrossRefGoogle Scholar
  89. J.J. Lissauer, D. Fabrycky, C. Daniel (the Kepler Science Team), A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470, 53–58 (2011) ADSCrossRefGoogle Scholar
  90. L.-G. Liu, The inception of the oceans and \(\mbox{CO}_{2}\)-atmosphere in the early history of the Earth. Earth Planet. Sci. Lett. 227, 179–184 (2004) ADSCrossRefGoogle Scholar
  91. R. Luger, R. Barnes, E. Lopez, J. Fortney, B. Jackson, V. Meadows, Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15, 57–88 (2015) ADSCrossRefGoogle Scholar
  92. N. Madhusudhan, S. Seager, High metallicity and non-equilibrium chemistry in the dayside atmosphere of hot-Neptune GJ 436b. Astrophys. J. 729, A41 (2011) ADSCrossRefGoogle Scholar
  93. N. Madhusudhan, M.A. Amin, G.M. Kennedy, Toward chemical constraints on hot Jupiter migration. Astrophys. J. Lett. 794, L12 (2014). 5 pp. ADSCrossRefGoogle Scholar
  94. N. Madhusudhan, M. Agundez Chico, J.I. Moses, Y. Hu, Exoplanetary atmospheres—chemistry, formation conditions, and habitability. Space Sci. Rev. 205, 285–348 (2016). ibid. (2017, this volume) ADSCrossRefGoogle Scholar
  95. G.W. Marcy, H. Isaacson, A.W. Howard (the Kepler Science Team), Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. Astrophys. J. Suppl. 210, 20 (2014). 70 pp. ADSCrossRefGoogle Scholar
  96. B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012) ADSCrossRefGoogle Scholar
  97. H. Massol, K. Hamano, F. Tian, M. Ikoma, Y. Abe, E. Chassefière, A. Davaille, H. Genda, M. Güdel, Y. Hori, F. Leblanc, E. Marcq, P. Sarda, V.I. Shematovich, A. Stökl, H. Lammer, Formation and evolution of protoatmospheres. Space Sci. Rev. 205, 153–211 (2016). ibid. (2017, this volume) ADSCrossRefGoogle Scholar
  98. B.C. Matthews, A.V. Krivov, M.C. Wyatt, G. Bryden, C. Eiroa, Observations, modeling, and theory of debris disks, in Protostars and Planets, vol. VI (2014), pp. 521–544. Google Scholar
  99. B.C. Matthews, J.J. Kavelaars, Insights into planet formation from debris disks. I. The solar system as an archetype for planetesimal evolution. Space Sci. Rev. 205, 213–230 (2016). ibid. (2017, this volume) ADSCrossRefGoogle Scholar
  100. M. Mayor, D. Queloz, A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995) ADSCrossRefGoogle Scholar
  101. H. Mizuno, Formation of the giant planets. Prog. Theor. Phys. 64, 544–557 (1980) ADSCrossRefGoogle Scholar
  102. S. Mohanty, J. Greaves, D. Mortlock, I. Pascucci, A. Scholz, M. Thompson, D. Apai, G. Lodato, D. Looper, Protoplanetary disk masses from stars to brown dwarfs. Astrophys. J. 773, 168 (2013). 33 pp. ADSCrossRefGoogle Scholar
  103. A. Morbidelli, J. Chambers, J.I. Lunine, J.M. Petit, F. Robert, G.B. Valsecchi, K.E. Cyr, Source regions and time scales for the delivery of water to Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000) ADSCrossRefGoogle Scholar
  104. A. Morbidelli, D. Nesvorný, Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. Astron. Astrophys. 546, A18 (2012). 7 pp. ADSCrossRefGoogle Scholar
  105. C. Mordasini, Y. Alibert, W. Benz, Extrasolar planet population synthesis I: method, formation tracks and mass-distance distribution. Astron. Astrophys. 501, 1139–1160 (2009a) ADSCrossRefGoogle Scholar
  106. C. Mordasini, Y. Alibert, W. Benz, D. Naef, Extrasolar planet population synthesis II: statistical comparison with observation. Astron. Astrophys. 501, 1161–1184 (2009b) ADSCrossRefGoogle Scholar
  107. C. Mordasini, Y. Alibert, C. Georgy, K.-M. Dittkrist, H. Klahr, T. Henning, Characterization of exoplanets from their formation. II. The planetary mass-radius relationship. Astron. Astrophys. 547, A112 (2012). 36 pp. ADSCrossRefGoogle Scholar
  108. G.D. Mulders, I. Pascucci, A. Dániel, An increase in the mass of planetary systems around lower-mass stars. Astrophys. J. 814, 130 (2015a). 10 pp. ADSCrossRefGoogle Scholar
  109. G.D. Mulders, I. Pascucci, A. Dániel, A stellar-mass-dependent drop in planet occurrence rates. Astrophys. J. 798, 112 (2015b). 18 pp. ADSCrossRefGoogle Scholar
  110. M.J. Mumma, S.B. Charnley, The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011) ADSCrossRefGoogle Scholar
  111. J.R. Najita, M. Ádámkovics, A.E. Glassgold, Formation of organic molecules and water in warm disk atmospheres. Astrophys. J. 743, A147 (2011). 18 pp. ADSCrossRefGoogle Scholar
  112. K.I. Öberg, R. Murray-Clay, E. Bergin, A. Edwin, The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. Lett. 743, L16 (2011). 5 pp. ADSCrossRefGoogle Scholar
  113. D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014) ADSCrossRefGoogle Scholar
  114. P. Odert, H. Lammer, N.V. Erkaev, A. Nikolaou, H.I.M. Lichtenegger, C.P. Johnstone, K.G. Kislyakova, M. Leitzinger, N. Tosi, Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus (2018). Google Scholar
  115. C.W. Ormel, H.H. Klahr, The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 530, A43 (2010). 15 pp. CrossRefGoogle Scholar
  116. J.E. Owen, S. Mohanty, Habitability of terrestrial-mass planets in the HZ of M Dwarfs. I. H/He-dominated atmospheres. Mon. Not. R. Astron. Soc. 459(4), 4088–4108 (2016) ADSCrossRefGoogle Scholar
  117. J.E. Owen, Y. Wu, Atmospheres of low-mass planets: the “Boil-off”. Astrophys. J. 817, 107 (2016). 14 pp. ADSCrossRefGoogle Scholar
  118. S.-J. Paardekooper, C. Baruteau, F. Meru, Numerical convergence in self-gravitating disc simulations: initial conditions and edge effects. Mon. Not. R. Astron. Soc. 416, L65–L69 (2011) ADSCrossRefGoogle Scholar
  119. O. Paníc, W.S. Holland, M.C. Wyatt, G.M. Kennedy, B.C. Matthews, J.F. Lestrade, B. Sibthorpe, J.S. Greaves, J.P. Marshall, N.M. Phillips, J. Tottle, First results of the SONS survey: submillimetre detections of debris discs. Mon. Not. R. Astron. Soc. 435, 1037–1046 (2013). ADSCrossRefGoogle Scholar
  120. H. Parviainen, D. Gandolfi, M. Deleuil (the CoRoT Team), Transiting exoplanets from the CoRoT space mission. XXV. CoRoT-27b: a massive and dense planet on a short-period orbit. Astron. Astrophys. 562, A140 (2014). 12 pp. CrossRefGoogle Scholar
  121. I. Pascucci, D. Apai, K. Luhman, Th. Henning, J. Bouwman, M.R. Meyer, F. Lahuis, A. Natta, The different evolutions of gas and dust in disks around Sun-like and cool stars. Astrophys. J. 696, 143–159 (2009) ADSCrossRefGoogle Scholar
  122. I. Pascucci, G. Herczeg, J.S. Carr, S. Bruderer, The atomic and molecular content of disks around very low-mass stars and brown dwarfs. Astrophys. J. 779, 178 (2013). 13 pp. ADSCrossRefGoogle Scholar
  123. C. Petrovich, R. Malhotra, T. Scott, Planets near mean-motion resonances. Astrophys. J. 770, 24 (2013). 16 pp. ADSCrossRefGoogle Scholar
  124. S. Pizzarello, Y. Huang, The deuterium enrichment of individual amino acids in carbonaceous meteorites: a case for the presolar distribution of biomolecule precursors. Geochim. Cosmochim. Acta 69, 599–605 (2005) ADSCrossRefGoogle Scholar
  125. J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996) ADSCrossRefGoogle Scholar
  126. D. Porcelli, R.O. Pepin, Rare gas constraints on early Earth history, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Richter (University of Arizona Press, Tucson, 2000), pp. 435–458 Google Scholar
  127. C. Rab, C. Baldovin-Saavedra, O. Dionatos, E. Vorobyov, M. Güdel, The gas disk: evolution and chemistry. Space Sci. Rev. 205, 3–40 (2016). ibid. (2017, this volume) ADSCrossRefGoogle Scholar
  128. R.R. Rafikov, Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 648, 666–682 (2006) ADSCrossRefGoogle Scholar
  129. H. Rauer, C. Catala, C. Aerts (the PLATO Team), The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014) ADSCrossRefGoogle Scholar
  130. G.R. Ricker, S.W. Latham, R.K. Vanderspek (the TESS Team), The Transiting Exoplanet Survey Satellite (TESS). Bull. Am. Astron. Soc. 41, 193 (2009) ADSGoogle Scholar
  131. L.A. Rogers, P. Bodenheimer, J.J. Lissauer, S. Seager, Formation and structure of low-density exo-Neptunes. Astrophys. J. 738, 59 (2011). 16 pp. ADSCrossRefGoogle Scholar
  132. L.A. Rogers, Most 1.6Earth-radius planets are not rocky. Astrophys. J. 801, 41 (2015). 13 pp. ADSCrossRefGoogle Scholar
  133. G.P. Rosotti, B. Ercolano, J.E. Owen, P.J. Armitage, The interplay between X-ray photoevaporation and planet formation. Mon. Not. R. Astron. Soc. 430, 1392–1401 (2013) ADSCrossRefGoogle Scholar
  134. J.F. Rowe, J.L. Coughlin, V. Antoci, T. Barclay, N.M. Batalha, W.J. Borucki, C.J. Burke, S.T. Bryson, D.A. Caldwell, J.R. Campbell, J.H. Catanzarite, J.L. Christiansen, W. Cochran, R.L. Gilliland, F.R. Girouard, M.R. Haas, K.G. Hełminiak, C.E. Henze, K.L. Hoffman, S.B. Howell, D. Huber, R.C. Hunter, H. Jang-Condell, J.M. Jenkins, T.C. Klaus, D.W. Latham, J. Li, J.J. Lissauer, S.D. McCauliff, R.L. Morris, F. Mullally, A. Ofir, B. Quarles, E. Quintana, A. Sabale, S. Seader, A. Shporer, J.C. Smith, J.H. Steffen, M. Still, P. Tenenbaum, S.E. Thompson, J.D. Twicken, C. Van Laerhoven, A. Wolfgang, K.A. Zamudio, Planetary candidates observed by Kepler V: planet sample from Q1–Q12 (36 Months). Astrophys. J. Suppl. 217, 16 (2015). 22 pp. ADSCrossRefGoogle Scholar
  135. V. Safronov, Evolution of the protoplanetary cloud and formation of the Earth and planets (English version 1972) Google Scholar
  136. N.C. Santos, G. Israelian, M. Mayor, New extra-solar planets: the metallicity distribution revised, in Planetary Systems in the Universe—Observation and Evolution, ed. by A. Penny, P. Artymovicz, A.-M. Lagrange, S. Russel. Proceedings IAU Symposium, vol. 202 (2004), pp. 118–120 Google Scholar
  137. B.M. Shustov, E. Mikhail, D. Bisikalo, V. de Castro, A.-I. Gómez, The World Space Observatory—UV project as a tool for exoplanet science, in Characterizing Stellar and Exoplanetary Environments. Astrophysics and Space Science Library, vol. 411 (Springer, Cham, 2015), pp. 275–287 Google Scholar
  138. A. Sicilia-Aguilar, L.W. Hartmann, G. Fürész, T. Henning, C. Dullemond, W. Brandner, High-resolution spectroscopy in Tr 37: gas accretion evolution in evolved dusty disks. Astron. J. 132, 2135–2155 (2006) ADSCrossRefGoogle Scholar
  139. I.A.G. Snellen, R.J. de Kok, E.J.W. de Mooij, A. Simon, The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010) ADSCrossRefGoogle Scholar
  140. D.S. Spiegel, K. Silverio, A. Burrows, Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009) ADSCrossRefGoogle Scholar
  141. S.W. Stahler, F. Palla, The Formation of Stars (Wiley, Weinheim, 2005) Google Scholar
  142. D.J. Stevenson, Formation of the giant planets. Planet. Space Sci. 30, 755–764 (1982) ADSCrossRefGoogle Scholar
  143. D.J. Stevenson, J.I. Lunine, Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75, 146–155 (1988) ADSCrossRefGoogle Scholar
  144. A. Stökl, E.A. Dorfi, H. Lammer, Hydrodynamic simulations of captured protoatmospheres around Earth-like planets. Astron. Astrophys. 576, A87 (2015). 11 pp. CrossRefGoogle Scholar
  145. E. Svedenborg, Opera philosophica et mineralia (1734) Google Scholar
  146. H. Tanaka, T. Takeuchi, W.R. Ward, Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002) ADSCrossRefGoogle Scholar
  147. L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015). 4 pp. ADSCrossRefGoogle Scholar
  148. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G.E. Ballester, R. Ferlet, G. Hébrard, M. Mayor, An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003) ADSCrossRefGoogle Scholar
  149. A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, G. Hébrard, G.E. Ballester, D. Ehrenreich, R. Ferlet, J.C. McConnell, M. Mayor, C.D. Parkinson, Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. Astrophys. J. Lett. 604, 69–72 (2004) ADSCrossRefGoogle Scholar
  150. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011) ADSCrossRefGoogle Scholar
  151. J. Wang, D.A. Fischer, Revealing a universal planet-metallicity correlation for planets of different sizes around solar-type stars. Astron. J. 149, 14 (2015). 7 pp. ADSCrossRefGoogle Scholar
  152. W.R. Ward, Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997a) ADSCrossRefGoogle Scholar
  153. W.R. Ward, Survival of planetary systems. Astrophys. J. 482, L211–L214 (1997b) ADSCrossRefGoogle Scholar
  154. J.P. Williams, L.A. Cieza, Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011) ADSCrossRefGoogle Scholar
  155. K. Willacy, H.H. Klahr, T.J. Millar, Th. Henning, Gas and grain chemistry in a protoplanetary disk. Astron. Astrophys. 338, 995–1005 (1998) ADSGoogle Scholar
  156. J.N. Winn, D.C. Fabrycky, The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015) ADSCrossRefGoogle Scholar
  157. J.A. Wood, The chondrite types and their origins, in Chondrites and the Protoplanetary Disk, ed. by A.N. Krot, E.R.D. Scott, B. Reipurth. ASP Conference Series, vol. 341 (2005), pp. 953–971 Google Scholar
  158. R.D. Wordsworth, Atmospheric nitrogen evolution on Earth and Venus. Earth Planet. Sci. Lett. 447, 103–111 (2016) ADSCrossRefGoogle Scholar
  159. G. Wuchterl, The critical mass for protoplanets revised—massive envelopes through convection. Icarus 106, 323–334 (1993) ADSCrossRefGoogle Scholar
  160. M. Wyatt, A.P. Jackson, Insights into planet formation from debris disks. II. Giant impacts in extrasolar planetary systems. Space Sci. Rev. 205, 231–265 (2016a). ibid. (2017, this volume) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Space Research InstituteAustrian Academy of SciencesGrazAustria
  2. 2.International Space Science Institute – BeijingBeijingChina
  3. 3.International Space Science InstituteBernSwitzerland
  4. 4.IRAPObservatoire Midi-Pyrénées, UPS-CNRSToulouseFrance

Personalised recommendations