Advertisement

Space Science Reviews

, Volume 213, Issue 1–4, pp 5–37 | Cite as

The Juno Mission

  • S. J. Bolton
  • J. Lunine
  • D. Stevenson
  • J. E. P. Connerney
  • S. Levin
  • T. C. Owen
  • F. Bagenal
  • D. Gautier
  • A. P. Ingersoll
  • G. S. Orton
  • T. Guillot
  • W. Hubbard
  • J. Bloxham
  • A. Coradini
  • S. K. Stephens
  • P. Mokashi
  • R. Thorne
  • R. Thorpe
Article

Abstract

Juno is a PI-led mission to Jupiter, the second mission in NASA’s New Frontiers Program. The 3625-kg spacecraft spins at 2 rpm and is powered by three 9-meter-long solar arrays that provide ∼500 watts in orbit about Jupiter. Juno carries eight science instruments that perform nine science investigations (radio science utilizes the communications antenna). Juno’s science objectives target Jupiter’s origin, interior, and atmosphere, and include an investigation of Jupiter’s polar magnetosphere and luminous aurora.

Keywords

Jupiter interior Atmosphere Magnetosphere Juno 

Acronym List (generally not including abbreviations or units)

APL

Applied Physics Laboratory

DSM

Deep Space Maneuver

DSN

Deep Space Network

EFB

Earth Flyby

EGA

Earth Gravity Assist

EOM

End of Mission

EOS

Equation of State

FDA

Fractional Data Allocation

GRAV

Gravity Science

GSFC

Goddard Space Flight Center

IOT

Instrument Operations Team

ITAR

International Traffic in Arms Regulation

JADE

Jovian Auroral Distributions Experiment

JEDI

Juno Energetic particle Detector Instrument

JIRAM

Jovian InfraRed Auroral Mapper

JOI

Jupiter Orbit Insertion

JPL

Jet Propulsion Laboratory

JSOC

Juno Science Operations Center

JunoCam

Juno Camera

KOZ

Keep Out Zone

MAG

Magnetometer

MHD

Magnetohydrodynamic

MOS

Mission Operations System

MPST

Mission Planning and Sequencing Team

MWR

MicroWave Radiometer

NAIF

Navigation and Information Facility

NASA

National Aeronautics and Space Administration

NAV

Navigation

PDS

Planetary Data System

PJ

Perijove

PRM

Period Reduction Maneuver

SAP

Science Activity Plan

SCT

Spacecraft Team

SPWG

Science Planning Working Group

SwRI

Southwest Research Institute

UCLA

University of California Los Angeles

UVS

UltraViolet Spectrograph

Notes

Acknowledgements

The Juno mission would not have been possible without the incredible dedication, commitment, and experience of the many hundreds of people who have worked on Juno. To call out a few by name would feel like a disservice to those not mentioned. They each have our incredible gratitude and appreciation for their efforts. In addition, we benefitted tremendously from the strong support from each of our partner organizations. Funding for the Juno mission was provided by NASA.

References

  1. A. Adriani, A. Coradini, G. Filacchione, J.I. Lunine, A. Bini, C. Pasqui, L. Calamai, F. Colosimo, B.M. Dinelli, D. Grassi, G. Magni, M.L. Moriconi, R. Orosei, JIRAM, the image spectrometer in the near-infrared on board the Juno mission to Jupiter. Astrobiology 8, 613–622 (2008) ADSCrossRefGoogle Scholar
  2. A. Adriani, G. Filacchione, T. Di Iorio et al., JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rev. (2017). doi: 10.1007/s11214-014-0094-y Google Scholar
  3. Y. Alibert, C. Mordasini, W. Benz, C. Winisdoerffer, Models of giant planet formation with migration and disc evolution. Astron. Astrophys. 434, 343–353 (2005) ADSCrossRefGoogle Scholar
  4. S.W. Asmar, S.J. Bolton, D.R. Buccino et al., The Juno gravity science instrument. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0428-7 Google Scholar
  5. S.K. Atreya, M.H. Wong, T.C. Owen, P.R. Mahaffy, H.B. Niemann, I. de Pater, P. Drossart, T. Encrenaz, A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet. Space Sci. 47, 1243–1262 (1999) ADSCrossRefGoogle Scholar
  6. F. Bagenal, A. Adriani, F. Allegrini et al., Magnetospheric science objectives of the Juno mission. Space Sci. Rev. (2017). doi: 10.1007/s11214-014-0036-8 Google Scholar
  7. I. Baraffe, G. Chabrier, T. Barman, Structure and evolution of super-Earth to super-Jupiter exoplanets. I. Heavy element enrichment in the interior. Astron. Astrophys. 482, 315–332 (2008) ADSCrossRefGoogle Scholar
  8. H.N. Becker, J.W. Alexander, A. Adriani et al., The Juno Radiation Monitoring (RM) investigation. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0345-9 Google Scholar
  9. D.E. Bernard, R.D. Abelson, J.R. Johannesen et al., Europa planetary protection for Juno Jupiter orbiter. Adv. Space Res. 52, 547–568 (2013). doi: 10.1016/j.asr.2013.03.015 ADSCrossRefGoogle Scholar
  10. B. Bonfond, D. Grodent, J.-C. Gérard, T. Stallard, J.T. Clarke, M. Yoneda, A. Radioti, J. Gustin, Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophys. Res. Lett. 39, 1105 (2012) ADSCrossRefGoogle Scholar
  11. A.P. Boss, Evolution of the solar nebula. IV. Giant gaseous protoplanet formation. Astrophys. J. 503, 923–937 (1998) ADSCrossRefGoogle Scholar
  12. A.P. Boss, Formation of gas and ice giant planets. Earth Planet. Sci. Lett. 202, 513–523 (2002). doi: 10.1016/S0012-821X(02)00808-7 ADSCrossRefGoogle Scholar
  13. F.H. Busse, A simple model of convection in the Jovian atmosphere. Icarus 29, 255–260 (1976) ADSCrossRefGoogle Scholar
  14. J.E. Chambers, G.W. Wetherill, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–312 (1998) ADSCrossRefGoogle Scholar
  15. J.E.P. Connerney, M.H. Acuna, N.F. Ness, Modeling the Jovian current sheet and inner magnetosphere. J. Geophys. Res. 86, 8370–8384 (1981) ADSCrossRefGoogle Scholar
  16. J.E.P. Connerney, M.H. Açuna, N.F. Ness, T. Satoh, New models of Jupiter’s magnetic field constrained by the Io Flux Tube footprint. J. Geophys. Res. 103, 11929–11939 (1998) ADSCrossRefGoogle Scholar
  17. J.E.P. Connerney, M. Benn, J.B. Bjarno et al., The Juno magnetic field investigation. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0334-z Google Scholar
  18. B.J. Conrath, D. Gautier, Saturn helium abundance: a reanalysis of Voyager measurements. Icarus 144, 124–134 (2000) ADSCrossRefGoogle Scholar
  19. R.W. Ebert, F. Bagenal, D. McComas, C. Fowler, A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter. Front. Astron. Space Sci. 1, 4 (2014) ADSCrossRefGoogle Scholar
  20. J.J. Fortney, W.B. Hubbard, Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus 164, 228–243 (2003) ADSCrossRefGoogle Scholar
  21. J.J. Fortney, W.B. Hubbard, Effect of helium phase separation on the evolution of extrasolar giant planets. Astrophys. J. 608, 1039–1049 (2004) ADSCrossRefGoogle Scholar
  22. J.J. Fortney, M. Ikoma, N. Nettleman, T. Guillot, M.S. Marley, Self-consistent model atmospheres and the cooling of the solar system’s giant planets. Astrophys. J. 729, 32 (2011), 14pp. ADSCrossRefGoogle Scholar
  23. M. French, A. Becker, W. Lorenzen, N. Nettelmann, M. Bethkenhagen, J. Wicht, R. Redmer, Ab initio simulations for material properties along the Juptier adiabat. Astrophys. J. Suppl. 202, 5 (2012). doi: 10.1088/0067-0049/202/1/5 ADSCrossRefGoogle Scholar
  24. D. Gautier, F. Hersant, O. Mousis, J.I. Lunine, Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. Astrophys. J. Lett. 550, L227–L230 (2001) (Erratum 559, L183) ADSCrossRefGoogle Scholar
  25. P.J. Gierasch, A.P. Ingersoll, D. Banfield, S.P. Ewald, P. Helfenstein, A. Simon-Miller, A. Vasavada, H.H. Breneman, D.A. Senske (Galileo Imaging Team), Observation of moist convection in Jupiter’s atmosphere. Nature 403, 628–630 (2000) ADSCrossRefGoogle Scholar
  26. G.R. Gladstone, S.C. Persyn, J.S. Eterno et al., The ultraviolet spectrograph on NASA’s Juno mission. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0040-z Google Scholar
  27. R.S. Grammier, A look inside the Juno mission to Jupiter. IEEE Aerospace Conference, paper #1582 (2009) Google Scholar
  28. D. Grodent, J.T. Clarke, J. Kim, J.H. Waite Jr., S.W.H. Cowley, Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. 108, 1389 (2003) CrossRefGoogle Scholar
  29. S.M. Guertin, G.R. Allen, D.J. Sheldon, Programmatic Impact of SDRAM SEFI, 16–20 July 2012, IEEE Radiation Effects Data Workshop (2012). doi: 10.1109/REDW.2012.6353722 CrossRefGoogle Scholar
  30. T. Guillot, A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci. 47, 1175–1182 (1999) ADSCrossRefGoogle Scholar
  31. T. Guillot, The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530 (2005) ADSCrossRefGoogle Scholar
  32. T. Guillot, D. Gautier, W.B. Hubbard, New constraints on the composition of Jupiter from Galileo measurements and interior models. Icarus 130, 534–539 (1997) ADSCrossRefGoogle Scholar
  33. T. Guillot, D.J. Stevenson, W.B. Hubbard, D. Saumon, The interior of Jupiter, in Jupiter, ed. by F. Bagenal et al. (Cambridge University Press, Cambridge, 2004), pp. 35–57, Chap. 3 Google Scholar
  34. C.J. Hansen, M.A. Caplinger, A. Ingersoll et al., JunoCam: Juno’s outreach camera. Space Sci. Rev. (2017). doi: 10.1007/s11214-014-0079-x Google Scholar
  35. P. Helled, M. Podolak, A. Kovetz, Planetesimal capture in the disk instability model. Icarus 185, 64–71 (2006) ADSCrossRefGoogle Scholar
  36. F. Hersant, D. Gautier, F. Huré, A two-dimensional model for the primordial nebula constrained by D/H measurements in the Solar System: implications for the formation of giant planets. Astrophys. J. 554, 391–407 (2001) ADSCrossRefGoogle Scholar
  37. F. Hersant, D. Gautier, J.I. Lunine, Enrichment in volatiles in the giant planets of the Solar System. Planet. Space Sci. 52, 623–641 (2004) ADSCrossRefGoogle Scholar
  38. W.B. Hubbard, Thermal structure of Jupiter. Astrophys. J. 152, 745–754 (1968) ADSCrossRefGoogle Scholar
  39. W.B. Hubbard, The Jovian surface condition and cooling rate. Icarus 30, 305–310 (1977) ADSCrossRefGoogle Scholar
  40. W.B. Hubbard, Gravitational signature of Jupiter’s deep zonal flows. Icarus 137, 357–359 (1999) ADSCrossRefGoogle Scholar
  41. A.P. Ingersoll, D. Pollard, Motion in the interiors and atmospheres of Jupiter and Saturn—scale analysis, anelastic equations, barotropic stability criterion. Icarus 52, 62–80 (1982) ADSCrossRefGoogle Scholar
  42. M.E. Janssen, J.E. Oswald, S.T. Brown, S. Gulkis, S.M. Levin, S.J. Bolton, M.D. Allison, S.K. Atreya, D. Gautier, A.P. Ingersoll, J.I. Lunine, G.S. Orton, T.C. Owen, P.G. Steffes, V. Adumitroaie, A. Belloti, L.A. Jewell, C. Li, L. Li, F.A. Oyafuso, D. Santos-Costa, E. Sarkissian, R. Williamson, J.K. Arballo, A. Kityakara, A. Ulloa-Severino, J.C. Chen, F.W. Maiwald, A.S. Sahakian, P.J. Pingree, K.A. Lee, A.S. Mazer, R. Redick, R.E. Hodges, R.C. Hughes, G. Bedrosian, D.E. Dawson, W.A. Hatch, D.S. Russell, N.F. Chamberlain, M.S. Zawadski, B. Khayatian, B.R. Franklin, H.A. Conley, J.G. Kempenaar, M.S. Loo, E.T. Sunada, V. Vorperion, C.C. Wang, MWR microwave radiometer for the Juno mission to Jupiter. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0349-5 Google Scholar
  43. S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107, A101309 (2002). doi: 10.1029/2001JA009146 ADSCrossRefGoogle Scholar
  44. S. Kayali, W. McAlpine, H. Becker, L. Scheick, in Juno Radiation Design and Implementation, IEEE Aerospace Conf., 3–10 March 2012 (2012), 3–10. doi: 10.1109/AERO.2012.6187013 Google Scholar
  45. W.S. Kurth, G.B. Hospodarsky, D.L. Kirchner et al., The Juno waves investigation, Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0396-y Google Scholar
  46. J. Leconte, G. Chabrier, A new vision of giant planet interiors: impact of double diffusive convection. Astron. Astrophys. 540, A20 (2012), 13 pp ADSCrossRefGoogle Scholar
  47. J. Lewis, Juno spacecraft operations lessons learned for early cruise mission phases. IEEE Aerospace Conference (2014) Google Scholar
  48. G.F. Lindal, G.E. Wood, G.S. Levy, J.D. Anderson, D.N. Sweetnam, H.B. Hotz, B.J. Buckles, D.P. Holmes, P.E. Doms, V.R. Eshleman, G.L. Tyler, T.A. Croft, The atmosphere of Jupiter—an analysis of the Voyager radio occultation measurements. J. Geophys. Res. 86, 8721–8727 (1981) ADSCrossRefGoogle Scholar
  49. J.J. Lissauer, Planet formation. Annu. Rev. Astron. Astrophys. 31, 129–174 (1993) ADSCrossRefGoogle Scholar
  50. K. Lodders, Jupiter formed with more tar than ice. Astrophys. J. 6111, 587–597 (2004) ADSCrossRefGoogle Scholar
  51. F. Low, Infrared observations of Venus, Jupiter and Saturn at \(\lambda 20\mu\). Astron. J. 71, 391 (1966) ADSCrossRefGoogle Scholar
  52. M. Lozovsky, R. Helled, E.D. Rosenberg, P. Bodenheimer, Jupiter’s formation and its primordial internal structure. Astrophys. J. 836, 1–31 (2017). doi: 10.3847/1538-4357/836/2/227 CrossRefGoogle Scholar
  53. J.I. Lunine, D.M. Hunten, Moist convection and the abundance of water in the troposphere of Jupiter. Icarus 69, 566–570 (1987) ADSCrossRefGoogle Scholar
  54. B.H. Mauk, D.K. Haggerty, S.E. Jaskulek et al., The Jupiter energetic particle detector instrument (JEDI) investigation for the Juno mission. Space Sci. Rev. (2013). doi: 10.1007/s11214-013-0025-3 Google Scholar
  55. L. Mayer, T. Quinn, J. Wadsley, J. Stadel, Formation of giant planets by fragmentation of protoplanetary disks. Science 298, 1756–1759 (2002) ADSCrossRefGoogle Scholar
  56. D.J. McComas, N. Alexander, F. Allegrini et al., The Jovian Auroral Distributions Experiment (JADE) on the Juno mission to Jupiter. Space Sci. Rev. (2013). doi: 10.1007/s11214-013-9990-9 Google Scholar
  57. B. Militzer, W.B. Hubbard, J. Vorberger, I. Tamblyn, S.A. Bonev, Astrophys. J. 688, L45 (2008) ADSCrossRefGoogle Scholar
  58. H. Mizuno, Formation of the giant planets. Prog. Theor. Phys. 64, 544–557 (1980) ADSCrossRefGoogle Scholar
  59. O. Mousis, J.I. Lunine, N. Madhusudhan, T.V. Johnson, Nebular water depletion as the cause of Jupiter’s low oxygen abundance. Astrophys. J. Lett. 751, L7 (2012). doi: 10.1088/2041-8205/751/1/L7 ADSCrossRefGoogle Scholar
  60. N. Nettelmann, B. Holst, A. Kietzmann, M. French, R. Redmer, Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. Astrophys. J. 683, 1217–1228 (2008) ADSCrossRefGoogle Scholar
  61. R. Nybakken, The Juno mission to Jupiter—a pre-launch update. IEEE Aerospace Conference paper #1179 (2011) Google Scholar
  62. R. Nybakken, The Juno mission to Jupiter—launch campaign and early cruise report. IEEE Aerospace Conference (2012) Google Scholar
  63. T. Owen, Th. Encrenaz, Element abundances and isotopic ratios in the giant planets and Titan. Space Sci. Rev. 106, 121–138 (2003) ADSCrossRefGoogle Scholar
  64. T. Owen, P. Mahaffy, H.B. Niemann, S.K. Atreya, T.M. Donahue, A. Bar-Nun, I. de Pater, A low temperature origin for the planetesimals that formed Jupiter. Nature 402, 269–270 (1999) ADSCrossRefGoogle Scholar
  65. J.B. Pollack, O. Hubickyi, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996a) ADSCrossRefGoogle Scholar
  66. J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope enrichment among gaseous molecules. Icarus 124, 62–85 (1996b) ADSCrossRefGoogle Scholar
  67. D. Saumon, T. Guillot, Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys. J. 609, 1170–1180 (2004) ADSCrossRefGoogle Scholar
  68. D. Saumon, W.B. Hubbard, A. Burrows, T. Guillot, J.I. Lunine, G. Chabrier, A theory of extrasolar giant planets. Astrophys. J. 460, 993–1018 (1996) ADSCrossRefGoogle Scholar
  69. A. Seiff, D.B. Kirk, T.C.D. Knight, R.E. Young, J.D. Mihalov, L.A. Young, F.S. Milos, G. Schubert, R.C. Blanchard, D. Atkinson, Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the North equatorial belt. J. Geophys. Res. 103, 22857–22890 (1998) ADSCrossRefGoogle Scholar
  70. A.P. Showman, T.E. Dowling, Nonlinear simulations of Jupiter’s 5-micron hot spots. Science 289, 1737–1740 (2000) ADSGoogle Scholar
  71. S.K. Stephens, The Juno mission to Jupiter: lessons from cruise and plans for orbital operations and science return. IEEE Aerospace Conference, paper # 2150 (2015) Google Scholar
  72. D.J. Stevenson, Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures. Phys. Rev. B 12, 3999–4007 (1975) ADSCrossRefGoogle Scholar
  73. D.J. Stevenson, Planetary magnetic fields: achievements and prospects. Space Sci. Rev. (2009). doi: 10.1007/sl11214-009-9572-z Google Scholar
  74. D.J. Stevenson, E.E. Salpeter, The dynamics and helium distribution in hydrogen-helium planets. Astrophys. J. Suppl. Ser. 35, 239–261 (1977) ADSCrossRefGoogle Scholar
  75. U. Von Zahn, D.M. Hunten, G. Lehmacher, Helium in Jupiter’s atmosphere: results from the Galileo probe helium interferometer experiment. J. Geophys. Res. 103, 22815–22829 (1998) ADSCrossRefGoogle Scholar
  76. H.F. Wilson, B. Militzer, Solubility of water ice in metallic hydrogen: consequences for core erosion in gas giant planets. Astrophys. J. 745, 54 (2011) ADSCrossRefGoogle Scholar
  77. H.F. Wilson, B. Militzer, Rocky core solubility in Jupiter and giant exoplanets. Phys. Rev. Lett. 108, 111101 (2012) ADSCrossRefGoogle Scholar
  78. M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.B. Niemann, T.C. Owen, Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171, 153–170 (2004) ADSCrossRefGoogle Scholar
  79. M.H. Wong, J.I. Lunine, S.K. Atreya, T. Johnson, P.R. Mahaffy, T.C. Owen, T. Encrenaz, Oxygen and other volatiles in the giant planets and their satellites. Rev. Mineral. Geochem. 68, 219–246 (2008) CrossRefGoogle Scholar
  80. G. Wuchterl, T. Guillot, J.J. Lissauer, Giant planet formation, in Protostars and Planets IV, ed. by V. Mannings, A.P. Boss, S.S. Russel (University of Arizona Press, Tucson, 2000), pp. 1081–1109 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • S. J. Bolton
    • 1
  • J. Lunine
    • 3
  • D. Stevenson
    • 4
  • J. E. P. Connerney
    • 5
  • S. Levin
    • 6
  • T. C. Owen
    • 7
  • F. Bagenal
    • 2
  • D. Gautier
    • 8
  • A. P. Ingersoll
    • 4
  • G. S. Orton
    • 6
  • T. Guillot
    • 9
  • W. Hubbard
    • 10
  • J. Bloxham
    • 11
  • A. Coradini
    • 12
  • S. K. Stephens
    • 6
  • P. Mokashi
    • 1
  • R. Thorne
    • 13
  • R. Thorpe
    • 1
  1. 1.Southwest Research InstituteSan AntonioUSA
  2. 2.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  3. 3.Cornell UniversityIthacaUSA
  4. 4.California Institute of TechnologyPasadenaUSA
  5. 5.NASA Goddard Space Flight CenterGreenbeltUSA
  6. 6.Jet Propulsion LaboratoryPasadenaUSA
  7. 7.Institute for AstronomyUniversity of HawaiiHonoluluUSA
  8. 8.Observatoire Paris-Site de MeudonParisFrance
  9. 9.CNRSUniversité Côte d’AzurNiceFrance
  10. 10.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  11. 11.Harvard UniversityCambridgeUSA
  12. 12.Institute for Space Astrophysics and PlanetologyRomeItaly
  13. 13.University of CaliforniaLos AngelesItaly

Personalised recommendations