Space Science Reviews

, Volume 213, Issue 1–4, pp 205–218 | Cite as

The Juno Gravity Science Instrument

  • Sami W. Asmar
  • Scott J. Bolton
  • Dustin R. Buccino
  • Timothy P. Cornish
  • William M. Folkner
  • Roberto Formaro
  • Luciano Iess
  • Andre P. Jongeling
  • Dorothy K. Lewis
  • Anthony P. Mittskus
  • Ryan Mukai
  • Lorenzo Simone
Article

Abstract

The Juno mission’s primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter’s gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA’s Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (\(\sim 8\) GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (\(\sim 32\) GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

Keywords

Gravity field Radio systems 

Notes

Acknowledgements

The authors thank the following colleagues for their notable contributions to the design, development, and testing of the various elements that constitute the Juno Gravity Science instrumentation. We especially appreciate the work at NASA’s Jet Propulsion Laboratory of Michael Agnew, Kris Angkasa, Scott Bryant, Fouad Chiha, Manuel Franco, Gary Glass, David Hansen, Steve Keihm, Juan Ocampo, Aluizio Prata, Joseph Vacchione, and Phil Yates. We thank the Italian Space Agency and Thales Alenia Space-Italy, especially Dario Andreozzi and the entire Ka-band Translator team. We appreciate the extraordinary support of the management and staff of the Deep Space Network. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology under contract the National Aeronautics and Space Administration (NASA).

References

  1. J.D. Anderson, G.W. Null, S.K. Wong, Gravity results from Pioneer 10 Doppler data. J. Geophys. Res. 79, 3661 (1974) ADSCrossRefGoogle Scholar
  2. S.W. Asmar, J.W. Armstrong, L. Iess, P. Tortora, Spacecraft Doppler tracking: noise budget and accuracy achievable in precision radio science observations. Radio Sci. 40, RS2001 (2005) ADSCrossRefGoogle Scholar
  3. J.A. Barnes, A.R. Chi, L.S. Cutler, D.J. Healey, D.B. Leeson, T.E. McGunigal, J.A. Mullen, W.L. Smith, R.L. Sydnor, R.F. Vessot, G.M. Winkler, Characterization of frequency stability. IEEE Trans. Instrum. Meas. 1001, 105 (1971) CrossRefGoogle Scholar
  4. S.J. Bolton et al., The Juno mission. Space Sci. Rev. (2017, this issue). doi: 10.1007/s11214-017-0429-6 Google Scholar
  5. J.K. Campbell, S.P. Synnott, Gravity field of the Jovian system from Pioneer and Voyager tracking data. Astron. J. 90, 364 (1985) ADSCrossRefGoogle Scholar
  6. S. Ciarcia, L. Simone, D. Gelfusa, P. Colucci, G. De Angelis, F. Argentieri, L. Iess, R. Formaro, MORE and Juno Ka-band transponder design, performance, qualification and in-flight validation, in 6th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications ESA-ESOC, 10–13 September 2013 Google Scholar
  7. V.R. Eshleman, G.L. Tyler, G.E. Wood, G.F. Lindal, J.D. Anderson, G.S. Levy, T.A. Croft, Radio science with Voyager at Jupiter: initial Voyager 2 results and a Voyager 1 measure of the Io torus. Science 206, 959 (1979) ADSCrossRefGoogle Scholar
  8. M.A. Gudim, W. Gawronski, W.J. Hurd, P.R. Brown, D.M. Strain, Design and performance of the monopulse pointing system of the DSN 34-meter beam-waveguide antennas, in Telecommunications and Mission Operations Progress Report, vol. 42-138 (1999). Google Scholar
  9. W.B. Hubbard, B.A. Militzer, Preliminary Jupiter model. Astrophys. J. 820(1), 80 (2016) ADSCrossRefGoogle Scholar
  10. R.A. Jacobson, Jupiter satellite ephemeris file Jup230, in NASA Navigation and Ancillary Information Facility (2003). https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/jup230l.cmt Google Scholar
  11. R.A. Jacobson, Jupiter satellite ephemeris file Jup310, in NASA Navigation and Ancillary Information Facility (2009). https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/jup310.cmt Google Scholar
  12. R.A. Jacobson, R. Haw, T. McElrath, P. Antreasian, A comprehensive orbit reconstruction for the Galileo prime mission in the J2000 system, in Advances in the Astronautical Sciences, vol. 103 (1999) Google Scholar
  13. M.A. Janssen, J.E. Oswald, S.T. Brown, S. Gulkis, S.M. Levin, S.J. Bolton, M.D. Allison, S.K. Atreya, D. Gautier, A.P. Ingersoll, J.I. Lunine, G.S. Orton, T.C. Owen, P.G. Steffes, V. Adumitroaie, A. Bellotti, L.A. Jewell, C. Li, L. Li, S. Misra, F.A. Oyafuso, D. Santos-Costaz, E. Sarkissian, R. Williamson, J.K. Arballo, A. Kitiyakaral, A. Ulloa-Severino, J.C. Chen, F.W. Maiwald, A.S. Sahakian, P.J. Pingree, K.A. Lee, A.S. Mazer, R. Redick, R.E. Hodges, R.C. Hughes, G. Bedrosian, D.E. Dawson, W.A. Hatch, D.S. Russell, N.F. Chamberlain, M.S. Zawadskil, B. Khayatianl, B.R. Franklin, H.A. Conley, J.G. Kempenaar, M.S. Lool, E.T. Sunada, V. Vorperion, C.C. Wang, MWR: microwave radiometer for the Juno mission to Jupiter. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0349-5 Google Scholar
  14. Y. Kaspi, Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophys. Res. Lett. 40, 676 (2013) ADSCrossRefGoogle Scholar
  15. S.J. Keihm, A. Tanner, H. Rosenberger, Measurements and calibration of tropospheric delay at Goldstone from the Cassini media calibration system, in Interplanetary Network Progress Report, vol. 42-158 (2004) Google Scholar
  16. A.J. Kliore, J.D. Anderson, J.W. Armstrong, S.W. Asmar, C.L. Hamilton, N.J. Rappaport, H.D. Wahlquist, R. Ambrosini, F.M. Flasar, R.G. French, L. Iess, Cassini radio science. Space Sci. Rev. 115, 1 (2004) ADSCrossRefGoogle Scholar
  17. J. Lauf, M. Calhoun, W. Diener, J. Gonzales, A. Kirk, P. Kuhnle, B. Tucker, C. Kirby, R. Tjoelker, Clocks and timing in the NASA deep space network, in Frequency Control Symposium and Exposition, Proceedings of the 2005 IEEE International (2005) Google Scholar
  18. R.P. Linfield, J.Z. Wilcox, Radio metric errors due to mismatch and offset between a DSN antenna beam and the beam of a troposphere calibration instrument, in Interplanetary Network Progress Report, vol. 42-114 (2001) Google Scholar
  19. G. Mariotti, P. Tortora, Experimental validation of a dual uplink multifrequency dispersive noise calibration scheme for Deep Space tracking. Radio Sci. 48, 111 (2013) ADSCrossRefGoogle Scholar
  20. Y. Miguel, T. Guillot, L. Fayon, Jupiter internal structure: the effect of different equations of state. Astron. Astrophys. 596, A114 (2016) ADSCrossRefGoogle Scholar
  21. T.D. Moyer, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. DESCANSO Monograph, vol. 2 (2000) Google Scholar
  22. R. Mukai, D. Hansen, A. Mittskus, J. Taylor, M. Danos, Juno Telecommunications. NASA DESCANSO Design and Performance Summary Series (2012) Google Scholar
  23. N. Nettelmann, A. Becker, B. Holst, R. Redmer, Jupiter models with improved hydrogen EOS (H-REOS.2). Astrophys. J. 750, A52 (2012) ADSCrossRefGoogle Scholar
  24. A.E. Niell, A.J. Coster, F.S. Solheim, V.B. Mendes, P.C. Toor, R.B. Langley, C.A. Upham, Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Ocean. Technol. 18, 830 (2001) ADSCrossRefGoogle Scholar
  25. G.W. Null, J.D. Anderson, S.K. Wong, Gravity field of Jupiter from Pioneer 11 tracking data. Science 188, 476 (1975) ADSCrossRefGoogle Scholar
  26. P.F. Thompson, M. Abrahamson, S. Ardalan, J. Bordi, Reconstruction of Earth flyby by the Juno spacecraft, in AAS-435 (2014) Google Scholar
  27. J.D. Vacchione, R.C. Kruid, A. Prata, L.R. Amaro, A.P. Mittskus, Telecommunications antennas for the Juno Mission to Jupiter, in IEEE Aerospace Conference (2012) Google Scholar
  28. S.M. Wahl, W.B. Hubbard, B. Militzer, Tidal response of preliminary Jupiter model. Astrophys. J. 831, 14 (2016) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Sami W. Asmar
    • 1
  • Scott J. Bolton
    • 2
  • Dustin R. Buccino
    • 1
  • Timothy P. Cornish
    • 1
  • William M. Folkner
    • 1
  • Roberto Formaro
    • 3
  • Luciano Iess
    • 4
  • Andre P. Jongeling
    • 1
  • Dorothy K. Lewis
    • 1
  • Anthony P. Mittskus
    • 1
  • Ryan Mukai
    • 1
  • Lorenzo Simone
    • 5
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Southwest Research Institute SpaceSan AntonioUSA
  3. 3.Italian Space AgencyRomeItaly
  4. 4.Dipartimento di Ingegneria Aerospaziale ed AstronauticaUniversità La SapienzaRomeItaly
  5. 5.Thales Alenia Space-ItalyRomeItaly

Personalised recommendations