Aeronomy of the Venus Upper Atmosphere

Abstract

We present aeronomical observations collected using remote sensing instruments on board Venus Express, complemented with ground-based observations and numerical modeling. They are mostly based on VIRTIS and SPICAV measurements of airglow obtained in the nadir mode and at the limb above 90 km. They complement our understanding of the behavior of Venus’ upper atmosphere that was largely based on Pioneer Venus observations mostly performed over thirty years earlier. Following a summary of recent spectral data from the EUV to the infrared, we examine how these observations have improved our knowledge of the composition, thermal structure, dynamics and transport of the Venus upper atmosphere. We then synthesize progress in three-dimensional modeling of the upper atmosphere which is largely based on global mapping and observations of time variations of the nitric oxide and O2 nightglow emissions. Processes controlling the escape flux of atoms to space are described. Results based on the VeRA radio propagation experiment are summarized and compared to ionospheric measurements collected during earlier space missions. Finally, we point out some unsolved and open questions generated by these recent datasets and model comparisons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Notes

  1. 1.

    Other researchers call the lower and the main layer E and F1 layer, respectively, in order to compare with similar formations in the Earth ionosphere (e.g. Bauer et al. 1977; Banks and Kockarts 2013; Fox 2007). We adopt the notation of Rishbeth and Mendillo (2004) for the Mars ionosphere and call the layers V1 and V2 where “V” stands for Venus. This avoids confusion when comparing planetary ionospheres.

  2. 2.

    The processing of radio occultation data yields the refractivity as a function of radius with respect to the center of planet. The altitude assignments are principally relative to the Venus geoid which is realized by the mean planetary radius of 6050.8 km because of the non-oblate, spherical shape of the planetary body.

References

  1. M.J. Alexander, A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207–2210 (1992)

    ADS  Article  Google Scholar 

  2. M.J. Alexander, A.I.F. Stewart, S.C. Solomon, S.W. Bougher, Local time asymmetries in the Venus thermosphere. J. Geophys. Res. 98, 10849–10871 (1993)

    ADS  Article  Google Scholar 

  3. F. Altieri, F. Migliorini, L. Zasova, A. Shakun, G. Piccioni, G. Bellucci, Modeling VIRTIS/VEX \(\mathrm{O}_{2}\) (\(\mathrm{a}^{1}\Delta _{\mathrm{g}}\)) nightglow profiles affected by the propagation of gravity waves in the Venus upper mesosphere. J. Geophys. Res., Planets 119, 2300–2316 (2014). doi:10.1002/2013JE004585

    ADS  Article  Google Scholar 

  4. D.E. Anderson, The Mariner 5 ultraviolet photometer experiment: analysis of hydrogen Lyman alpha data. J. Geophys. Res. 81, 1213 (1976)

    ADS  Article  Google Scholar 

  5. J. Bailey, S. Chamberlain, D. Crisp, V.S. Meadows, Near infrared imaging spectroscopy of Venus with the Anglo-Australian Telescope. Planet. Space Sci. 56, 1385–1390 (2008b)

    ADS  Article  Google Scholar 

  6. J. Bailey, V.S. Meadows, S. Chamberlain, D. Crisp, The temperature of the Venus mesosphere from O2 (\(\mathrm{a}^{1}\Delta\)) airglow observations. Icarus 197, 247–259 (2008a)

    ADS  Article  Google Scholar 

  7. P.M. Banks, G. Kockarts, Aeronomy (Elsevier, Amsterdam, 2013)

    Google Scholar 

  8. S.J. Bauer, L.H. Brace, D.M. Hunten, D.S. Intriligator, W.C. Knudsen, A.F. Nagy, C.T. Russell, F.L. Scarf, J.H. Wolfe, The Venus ionosphere and solar wind interaction. Space Sci. Rev. 20, 413–430 (1977)

    ADS  Article  Google Scholar 

  9. J.L. Bertaux, J.E. Blamont, V.M. Lepine, V.G. Kurt, N.N. Romanova, A.S. Smirnov, Venera 11 and Venera 12 observations of e.u.v. emissions from the upper atmosphere of Venus. Planet. Space Sci. 29, 149–166 (1981). doi:10.1016/0032-0633(81)90029-5

    ADS  Article  Google Scholar 

  10. J.-L. Bertaux, D. Nevejans, O. Korablev, E. Villard, E. Quémerais, E. Neefs, F. Montmessin, F. Leblanc, J.P. Dubois, E. Dimarellis, A. Hauchecorne, F. Lefèvre, P. Rannou, J.Y. Chaufray, M. Cabane, G. Cernogora, G. Souchon, F. Semelin, A. Reberac, E. Van Ransbeek, S. Berkenbosch, R. Clairquin, C. Muller, F. Forget, F. Hourdin, O. Talagrand, A. Rodin, A. Fedorova, A. Stepanov, I. Vinogradov, A. Kiselev, Y. Kalinnikov, G. Durry, B. Sandel, A. Stern, J.C. Gérard, SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 12 (2007)

    Article  Google Scholar 

  11. A. Bhardwaj, S.K. Jain, Calculations of N2 triplet states vibrational populations and band emissions in Venusian dayglow. Icarus 217, 2752–2758 (2012). doi:10.1016/j.icarus.2011.05.026

    Article  Google Scholar 

  12. A. Bhardwaj, S.K. Jain, CO Cameron band and \(\mathrm{CO}_{2} ^{+}\) UV doublet emissions in the dayglow of Venus: role of CO in the Cameron band production. J. Geophys. Res. 118, 3660–3671 (2013). doi:10.1002/jgra.50345

    Article  Google Scholar 

  13. S.W. Bougher, W.J. Borucki, Venus O2 visible and IR nightglow: implications for lower thermosphere dynamics and chemistry. J. Geophys. Res. 99, 3759–3776 (1994)

    ADS  Article  Google Scholar 

  14. S.W. Bougher, R.G. Roble, Comparative terrestrial planet thermospheres: 1. Solar cycle variation of global mean temperatures. J. Geophys. Res. 96, 11045–11055 (1991). doi:10.1029/91JA01162

    ADS  Article  Google Scholar 

  15. S.W. Bougher, R.E. Dickinson, E.C. Ridley, R.G. Roble, A.F. Nagy, T. Cravens, Venus mesosphere and thermosphere II. Global circulation, temperature, and density variations. Icarus 68, 284–312 (1986)

    ADS  Article  Google Scholar 

  16. S.W. Bougher, R.E. Dickinson, E.C. Ridley, R.G. Roble, Venus mesosphere and thermosphere III. Three-dimensional general circulation with coupled dynamics and composition. Icarus 73, 545–573 (1988)

    ADS  Article  Google Scholar 

  17. S.W. Bougher, D.M. Hunten, R.J. Phillips, Venus II (University of Arizona Press, Tucson, 1989). ISBN 978-0-8165-1830-2

    Google Scholar 

  18. S.W. Bougher, J.C. Gérard, A.I.F. Stewart, C.G. Fesen, The Venus nitric oxide night airglow: model calculations based on the Venus Thermospheric General Circulation Model. J. Geophys. Res. 95(A5), 6271–6284 (1990)

    ADS  Article  Google Scholar 

  19. S.W. Bougher, M.J. Alexander, H.G. Mayr, Upper Atmosphere Dynamics: Global Circulation and Gravity Waves, Venus II, Ch. 2.4 (U. of Arizona Press, Tucson, 1997), pp. 259–292

    Google Scholar 

  20. S.W. Bougher, S. Engel, R.G. Roble, B. Foster, Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox. J. Geophys. Res. 104, 16591–16611 (1999)

    ADS  Article  Google Scholar 

  21. S.W. Bougher, S. Rafkin, P. Drossart, Dynamics of the Venus upper atmosphere: outstanding problems and new constraints expected from Venus Express. Planet. Space Sci. 54, 13–14 (2006). doi:10.1016/j.pss.2006.04.023

    Article  Google Scholar 

  22. S.W. Bougher, C.D. Parkinson, A.S. Brecht, J.-L. Fischer, A.-C. Vandaele, V. Wilquet, A. Mahieux, in Temperatures in Venus’ Lower Thermosphere: Comparison of VTGCM and SOIR Profiles at the Terminator, SPICAM/SPICAV Team Meeting, Catania, Italy, 16–19 June (2013)

    Google Scholar 

  23. S.W. Bougher, A.S. Brecht, R. Schulte, J.-L. Fischer, C.D. Parkinson, A. Mahieux, V. Wilquet, A.-C. Vandaele, Upper atmosphere temperature structure at the Venusian terminators: a comparison of SOIR and VTGCM results. Planet. Space Sci. (2015). doi:10.1016/j.pss.2015.01.012

    Google Scholar 

  24. L.H. Brace, A.J. Kliore, The structure of the Venus ionosphere. Space Sci. Rev. 55, 81–163 (1991)

    ADS  Article  Google Scholar 

  25. L.H. Brace, J.P. Krehbiel, A.F. Nagy, T.M. Donahue, M.B. McElroy, A. Pedersen, R.F. Theis, Electron temperatures and densities in the Venus ionosphere—Pioneer Venus orbiter electron temperature probe results. Science 203, 763–765 (1979)

    ADS  Article  Google Scholar 

  26. L.H. Brace, H.A. Taylor Jr., T.I. Gombosi, A.J. Kliore, W.C. Knudsen, A.F. Nagy, The ionosphere of Venus – observations and their interpretation, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (1983), pp. 779–840

    Google Scholar 

  27. A.S. Brecht, S.W. Bougher, Dayside Thermal Structure of Venus’ Upper Atmosphere Characterized by a Global Model. J. Geophys. Res. 117 (2012). doi:10.1029/2012JE004079

  28. A.S. Brecht, S.W. Bougher, J.-C. Gérard, C.D. Parkinson, S. Rafkin, B. Foster, Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere. J. Geophys. Res. 116, E8004 (2011). doi:10.1029/2010je003770

    ADS  Article  Google Scholar 

  29. A.S. Brecht, S.W. Bougher, J.-C. Gérard, L. Soret, Atomic oxygen distributions in the Venus thermosphere: comparisons between Venus Express observations and global model simulations. Icarus 217, 759–766 (2012). doi:10.1016/j.icarus.2011.06.033

    ADS  Article  Google Scholar 

  30. T.K. Breus, K.I. Gringauz, M.I. Verigin, On the properties and origin of the Venus ionosphere. Adv. Space Res. 5, 145–156 (1985)

    Article  Google Scholar 

  31. H.C. Brinton, H.A. Taylor Jr., H.B. Niemann, H.G. Mayr, A.F. Nagy, T.E. Cravens, D.F. Strobel, Venus nighttime hydrogen bulge. Geophys. Res. Lett. 7, 865–868 (1980)

    ADS  Article  Google Scholar 

  32. E. Chassefiere, J.L. Bertaux, V.G. Kurt, A.S. Smirnov, Venus e.u.v. measurements of helium at 58.4 nm from Venera 11 and Venera 12 and implications for the outgassing history. Planet. Space Sci. 34, 585–602 (1986). doi:10.1016/0032-0633(86)90037-1

    ADS  Article  Google Scholar 

  33. J.Y. Chaufray, J.-L. Bertaux, F. Leblanc, First observation of the Venus UV dayglow at limb from SPICAV/VEX. Geophys. Res. Lett. 39, L20201. (2012a). doi:10.1029/2012GL053626

    ADS  Article  Google Scholar 

  34. J.Y. Chaufray, J.-L. Bertaux, E. Quémerais, E. Villard, F. Leblanc, Hydrogen density in the dayside Venusian exosphere derived from Lyman-\(\alpha\) observations by SPICAV on Venus Express. Icarus 217, 767–778 (2012b)

    ADS  Article  Google Scholar 

  35. R.T. Clancy, D.O. Muhleman, Diurnal CO variations in the Venus mesosphere from CO microwave spectra. Icarus 64(2), 157–182 (1985)

    ADS  Article  Google Scholar 

  36. R.T. Clancy, D.O. Muhleman, Long-term (1979–1990) changes in the thermal, dynamical, and compositional structure of the Venus mesosphere as inferred from microwave spectral line observations of C-12O, C-13O, and CO-18. Icarus 89, 129–146 (1991)

    ADS  Article  Google Scholar 

  37. R.T. Clancy, B.J. Sandor, G.H. Moriarty-Schieven, Observational definition of the Venus mesopause: vertical structure, diurnal variation, and temporal instability. Icarus 161, 1–16 (2003). doi:10.1016/S0019-1035(02)00022-2

    ADS  Article  Google Scholar 

  38. R.T. Clancy, B.J. Sandor, G.H. Moriarty-Schieven, Venus upper atmospheric CO, temperature, and winds across the afternoon/evening terminator from June 2007 JCMT sub-millimeter line observations. Planet. Space Sci. 56, 1344–1354 (2008). doi:10.1016/j.pss/2008.05.007

    ADS  Article  Google Scholar 

  39. R.T. Clancy, B.J. Sandor, A. García-Muñoz, F. Lefèvre, M.D. Smith, M.J. Wolff, F. Montmessin, S.L. Murchie, H. Nair, First detection of Mars atmospheric hydroxyl: CRISM near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus 226, 272–281 (2013)

    ADS  Article  Google Scholar 

  40. A. Collet, C. Cox, J.-C. Gérard, Two-dimensional time-dependent model of the transport of minor species in the Venus night side upper atmosphere. Planet. Space Sci. 58, 14–15 (2010). doi:10.1016/j.pss.2010.08.016

    Article  Google Scholar 

  41. P. Connes, J.F. Noxon, W.A. Traub, N.P. Carleton, O2 (\(^{1} \Delta\)) emission in the day and night airglow of Venus. Astrophys. J. 233, L29–L32 (1979)

    ADS  Article  Google Scholar 

  42. C. Cox, J.-C. Gérard, B. Hubert, J.L. Bertaux, S.W. Bougher, The Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model. J. Geophys. Res. 115, E04010 (2010). doi:10.1029/2009JE003504

    ADS  Google Scholar 

  43. T.E. Cravens, J.U. Kozyra, A.F. Nagy, A.J. Kliore, The ionospheric peak on the Venus dayside. J. Geophys. Res. 86, 11323–11329 (1981)

    ADS  Article  Google Scholar 

  44. D. Crisp, V.S. Meadows, B. Bézard, C. deBergh, J.-P. Maillard, F.P. Mills, Ground-based near-infrared observations of the Venus nightside: 1.27-μm O2 (\(\mathrm{a}^{1}\Delta _{\mathrm{g}}\)) airglow from the upper atmosphere. J. Geophys. Res. 101, 4577–4594 (1996). doi:10.1029/95JE03136

    ADS  Article  Google Scholar 

  45. J. Crovisier, E. Lellouch, C. deBergh, J.-P. Maillard, B.L. Lutz, B. Bézard, Carbon monoxide emissions at 4.7 μm from Venus atmosphere. Planet. Space Sci. 54, 1398–1414 (2006)

    ADS  Article  Google Scholar 

  46. A.D. Del Genio, W.B. Rossow, Temporal variability of UV cloud features in the Venus stratosphere. Icarus 51, 391–415 (1982)

    ADS  Article  Google Scholar 

  47. A.D. Del Genio, W.B. Rossow, Planetary-scale waves and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci. 47, 293–318 (1990)

    ADS  Article  Google Scholar 

  48. D. Deming et al., Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus. Icarus 55, 347–355 (1983)

    ADS  Article  Google Scholar 

  49. R.E. Dickinson, Infrared radiative HeatingCooling in the Venusian mesosphere. I: Global mean radiative equilibrium. J. Atmos. Sci. 29, 1531–1556 (1972). doi:10.1175/1520-0469

    ADS  Article  Google Scholar 

  50. T.M. Donahue, D.H. Grinspoon, R.E. Hartle, R.R. Hodgee, Ion/neutral escape of hydrogen deuterium: evolution of water, in Venus H – Geology, Geophysics, Atmosphere, Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (Univ. of Ariz. Press, Tuscon, 1997), pp. 385–414

    Google Scholar 

  51. P. Drossart et al., A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature 450, 7170 (2007). doi:10.1038/nature06140

    Article  Google Scholar 

  52. P.D. Feldman, E.B. Burgh, S.T. Durrance, A.F. Davidsen, Far-ultraviolet spectroscopy of Venus and Mars at 4 Å resolution with the Hopkins ultraviolet telescope on Astro-2. Astrophys. J. 538, 395 (2000). doi:10.1086/309125

    ADS  Article  Google Scholar 

  53. G. Fjeldbo, V.R. Eshleman, Atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment. Radio Sci. 4, 879–897 (1969)

    ADS  Article  Google Scholar 

  54. G. Fjeldbo, B. Seidel, D. Sweetnam, H.T. Howard, The Mariner 10 radio occultation measurements of the ionosphere of Venus. J. Atmos. Sci. 32, 1232–1236 (1975)

    ADS  Article  Google Scholar 

  55. J.M. Forbes, M.E. Hagan, Diurnal Kelvin wave in the atmosphere of mars: towards an understanding of ‘stationary’ density structures observed by the MGS accelerometer. Geophys. Res. Lett. 27, 3563–3566 (2000)

    ADS  Article  Google Scholar 

  56. J.M. Forbes, A. Konopliv, Oscillation of Venus’ upper atmosphere. Geophys. Res. Lett. 34, L08202 (2007). doi:10.1029/2007GL029252

    ADS  Article  Google Scholar 

  57. J.L. Fox, Airglow and Aurora in the atmospheres of Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, ed. by e.J.G. Luhmann, M. Tatrallyay, R.O. Pepin (American Geophysical Union, Washington, 1992). doi:10.1029/GM066p0191

    Google Scholar 

  58. J.L. Fox, Near-terminator Venus ionosphere: how Chapman-esque? J. Geophys. Res. 112, E04S02 (2007). doi:10.1029/2006JE002736

    ADS  Article  Google Scholar 

  59. J.L. Fox, The ionospheric source of the red and green lines of atomic oxygen in the Venus nightglow. Icarus 221, 787–799 (2012)

    ADS  Article  Google Scholar 

  60. J.L. Fox, S.W. Bougher, Structure, luminosity, and dynamics of the Venus thermosphere, in Venus Aeronomy (Springer, Netherlands, 1991), pp. 357–489

    Chapter  Google Scholar 

  61. J.L. Fox, A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res. 84(A12), 7315–7333 (1979). doi:10.1029/JA084iA12p07315

    ADS  Article  Google Scholar 

  62. J.L. Fox, A.B. Hać, Spectrum of hot O at the exobases of the terrestrial planets. J. Geophys. Res. 102(A11), 24005 (1997)

    ADS  Article  Google Scholar 

  63. J.L. Fox, N.E.F. Hać, Intensities of the Venusian N2 electron-impact excited dayglow emissions. J. Geophys. Res. 118, 7850–7863 (2013). doi:10.1002/2013JA019277

    Article  Google Scholar 

  64. J.L. Fox, L.J. Paxton, \(\mathrm{CC}^{+}\) in the Venusian thermosphere/ionosphere. J. Geophys. Res. 110, A01311 (2005). doi:10.1029/2004JA010813

    ADS  Article  Google Scholar 

  65. J.L. Fox, A.I.F. Stewart, The Venus ultraviolet aurora: a soft electron source. J. Geophys. Res. 96, 9829–9832 (1991)

    ADS  Article  Google Scholar 

  66. J.L. Fox, K.Y. Sung, Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. 106, 21305–21336 (2001)

    ADS  Article  Google Scholar 

  67. Y. Futaana, G.S. Wieser, S. Barabash, J.G. Luhmann, Solar wind interaction and impact on the Venus atmosphere. Space Sci. Rev. 1–57 (2017). doi:10.1007/s11214-017-0362-8

  68. Y. Futaana, J.Y. Chaufray, H.T. Smith, P. Garnier, H. Lichtenegger, M. Delva, H. Gröller, A. Mura, Exospheres and energetic neutral atoms of Mars, Venus and Titan. Space Sci. Rev. 162, 213–266 (2011). doi:10.1007/s11214-011-9834-4

    ADS  Article  Google Scholar 

  69. R.F. Garcia, P. Drossart, G. Piccioni, M. López-Valverde, G. Occhipinti, Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions. J. Geophys. Res. 114, E00B32 (2009). doi:10.1029/2008JE003073

    ADS  Article  Google Scholar 

  70. A. García-Muñoz, F.P. Mills, G. Piccioni, P. Drossart, The near-infrared nitric oxide nightglow in the upper atmosphere of Venus. Proc. Natl. Acad. Sci. USA 106, 985–988 (2009a)

    ADS  Article  Google Scholar 

  71. A. Garcıa-Muñoz, F.P. Mills, T.G. Slanger, G. Piccioni, P. Drossart, Visible and near-infrared nightglow of molecular oxygen in the atmosphere of Venus. J. Geophys. Res. 114, E12002 (2009b). doi:10.1029/2009JE003447

    ADS  Article  Google Scholar 

  72. A. García-Muñoz, R. Hueso, A. Sánchez-Lavega, W.J. Markiewicz, D.V. Titov, O. Witasse, A. Opitz, Limb imaging of the Venus O2 visible nightglow with the Venus Monitoring Camera. Geophys. Res. Lett. 40, 2539–2543 (2013). doi:10.1002/grl.50553

    ADS  Article  Google Scholar 

  73. J.-C. Gérard, I.A.F. Stewart, S. Bougher, The altitude distribution of the Venus ultraviolet nightglow and its implications on vertical transport properties. Geophys. Res. Lett. 8, 633–636 (1981)

    ADS  Article  Google Scholar 

  74. J.-C. Gérard, C. Cox, A. Saglam, J.L. Bertaux, E. Villard, C. Nehme, Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express. J. Geophys. Res. 113, E00b03 (2008b). doi:10.1029/2008je003078

    Article  Google Scholar 

  75. J.-C. Gérard, B. Hubert, V.I. Shematovich, D.V. Bisikalo, G.R. Gladstone, The Venus ultraviolet oxygen dayglow and aurora: model comparison with observations. Planet. Space Sci. 56, 542–552 (2008a). doi:10.1016/j.pss.2007.11.008

    ADS  Article  Google Scholar 

  76. J.-C. Gérard, A. Saglam, G. Piccioni, P. Drossart, C. Cox, S. Erard, R. Hueso, A. Sanchez-Lavega, Distribution of the O2 infrared nightglow observed with VIRTIS on board Venus Express. Geophys. Res. Lett. 35, L02207 (2008c). doi:10.1029/2007gl032021

    ADS  Article  Google Scholar 

  77. J.-C. Gérard, A. Saglam, G. Piccioni, P. Drossart, F. Montmessin, J.L. Bertaux, Atomic oxygen distribution in the Venus mesosphere from observations of O2 infrared airglow by VIRTIS-Venus Express. Icarus 199, 264–272 (2009a). doi:10.1016/j.icarus.2008.09.016

    ADS  Article  Google Scholar 

  78. J.-C. Gérard, C. Cox, L. Soret, A. Saglam, G. Piccioni, J.-L. Bertaux, P. Drossart, Concurrent observations of the ultraviolet nitric oxide and infrared O2 nightglow emissions with Venus Express. J. Geophys. Res. 114, E00B44 (2009b). doi:10.1029/2009JE003371

    Article  Google Scholar 

  79. J.-C. Gérard, L. Soret, A. Saglam, G. Piccioni, P. Drossart, The distributions of the OH Meinel and O2 (\(\mathrm{a}^{1}\Delta\)\(\mathrm{X}^{3} \varSigma\)) nightglow emissions in the Venus mesosphere based on VIRTIS observations. Adv. Space Res. 45, 1268–1275 (2010). doi:10.1016/j.asr.2010.01.022

    ADS  Article  Google Scholar 

  80. J.-C. Gérard, B. Hubert, J. Gustin, V.I. Shematovich, D. Bisikalo, G.R. Gladstone, L.W. Esposito, EUV spectroscopy of the Venus dayglow with UVIS on Cassini. Icarus 211, 70–80 (2011a). doi:10.1016/j.icarus.2010.09.020

    ADS  Article  Google Scholar 

  81. J.-C. Gérard, J. Gustin, B. Hubert, G.R. Gladstone, L.W. Esposito, Measurements of the helium 584 Å airglow during the Cassini flyby of Venus. Planet. Space Sci. 59, 1524–1528 (2011b)

    ADS  Article  Google Scholar 

  82. J.-C. Gérard, L. Soret, G. Piccioni, P. Drossart, Spatial correlation of OH Meinel and O2 infrared atmospheric nightglow emissions observed with VIRTIS-M on board Venus Express. Icarus 217, 813–817 (2012). doi:10.1016/j.icarus.2011.09.010

    ADS  Article  Google Scholar 

  83. J.-C. Gérard, L. Soret, A. Migliorini, G. Piccioni, Oxygen nightglow emissions of Venus: vertical distribution and collisional quenching. Icarus 223, 602–608 (2013). doi:10.1016/j.icarus.2012.11.019

    ADS  Article  Google Scholar 

  84. J.-C. Gérard, L. Soret, G. Piccioni, P. Drossart, Latitudinal structure of the Venus O2 infrared airglow: a signature of small-scale dynamical processes in the upper atmosphere. Icarus 236, 93–103 (2014). doi:10.1016/j.icarus.2014.03.028

    Article  Google Scholar 

  85. P.J. Gierasch, R.M. Goody, R.E. Young, D. Crisp, C. Edwards, R. Kahn, D. Rider, A. Del Genio, R. Greeley, A. Hou, C.B. Leovy, D. McCleese, M. Newman, The general circulation of the Venus atmosphere: an assessment, in Venus II—Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (Univ. of Ariz. Press, Tuscon, 1997), pp. 459–500

    Google Scholar 

  86. G. Gilli, Carbon monoxide and temperature in the upper atmosphere of Venus through the analysis of limb observations by VIRTIS/Venus Express. Ph.D thesis, Universidad de Granada, Spain (2012)

  87. G. Gilli, M.A. López-Valverde, P. Drossart, G. Piccioni, S. Erard, A. Cardesín, Moinelo Limb observations of CO2 and CO non-LTE emissions in the Venus atmosphere by VIRTIS/Venus Express. J. Geophys. Res. 114, E00B29 (2009). doi:10.1029/2008JE003112

    ADS  Article  Google Scholar 

  88. G. Gilli, M.A. López-Valverde, B. Funke, M. López-Puertas, P. Drossart, G. Piccioni, V. Formisano, Non-LTE CO limb emission at 4.7 μm in the upper atmosphere of Venus, Mars and Earth: observations and modeling. Planet. Space Sci. 59, 1010–1018 (2011). doi:10.1016/j.pss.2010.07.023

    ADS  Article  Google Scholar 

  89. G. Gilli, M.A. López-Valverde, J. Peralta, S. Bougher, A. Brecht, P. Drossart, G. Piccioni, Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements. Icarus 248, 478–498 (2015). doi:10.1016/j.icarus.2014.10.047

    ADS  Article  Google Scholar 

  90. G. Gilli, S. Lebonnois, F. González-Galindo, M.A. López-Valverde, A. Stolzenbach, F. Lefèvre, J.Y. Chaufray, F. Lott, Thermal structure of the upper atmosphere of Venus simulated by a ground-to-thermosphere GCM. Icarus 281, 55–72 (2017)

    ADS  Article  Google Scholar 

  91. Z. Girazian, P. Withers, B. Häusler, M. Pätzold, S. Tellmann, K. Peter, Characterization of the lower layer in the dayside Venus ionosphere and comparisons with Mars. Planet. Space Sci. 117, 146–158 (2015)

    ADS  Article  Google Scholar 

  92. J.J. Goldstein, M.J. Mumma, T. Kostiuk, D. Deming, F. Espenak, D. Zipoy, Absolute wind velocities in the lower thermosphere of Venus using infrared heterodyne spectroscopy. Icarus 94, 45–63 (1991)

    ADS  Article  Google Scholar 

  93. B.F. Gordiets, V.I. Panchenko, Nonequilibrium infrared emission and the natural laser effect in the Venus and Mars atmospheres. Cosm. Res. 34, 721–734 (1983)

    Google Scholar 

  94. C.L. Gray, N.J. Chanover, T.G. Slanger, K. Molaverdikhani, The effect of solar flares, coronal mass ejections, and solar wind streams on Venus’ 5577 Å oxygen green line. Icarus 233, 342–347 (2014). doi:10.1016/j.icarus.2014.01.029

    ADS  Article  Google Scholar 

  95. J.M. Grebowsky, J.I. Moses, W.D. Pesnell, Meteoric material, an important component of planetary atmospheres. Washington DC American Geophysical Union Geophysical Monograph Series 130, 235 (2002)

    ADS  Google Scholar 

  96. H. Gröller, V.I. Shematovich, H.I.M. Lichtenegger, H. Lammer, M. Pfleger, Y.N. Kulikov, W. Macher, U.V. Amerstorfer, H.K. Biernat, Venus’ atomic hot oxygen environment. J. Geophys. Res. 115, E12017 (2010). doi:10.1029/2010JE003697

    ADS  Article  Google Scholar 

  97. H. Gröller, H. Lammer, H.I.M. Lichtenegger, M. Pfleger, O. Dutuit, V.I. Shematovich, Y.N. Kulikov, H.K. Biernat, Hot oxygen atoms in the Venus nightside exosphere. Geophys. Res. Lett. 39, L03202 (2012). doi:10.1029/2011GL050421

    ADS  Article  Google Scholar 

  98. G. Gronoff, J. Lilensten, C. Simon, M. Barthélemy, F. Leblanc, O. Dutuit, Modeling the Venus airglow. Astron. Astrophys. 482, 1015–1029 (2008)

    ADS  Article  Google Scholar 

  99. S. Gulkis, R.K. Kakar, M.J. Klein, E.T. Olsen, W.J. Wilson, Venus: detection of variations in stratospheric carbon monoxide. in Planetary Atmospheres: Nineteenth Symposium of the Royal Society of Canada, ed. by A.V. Jones (Royal Society of Canada, Ottawa, 1977), p. 61

    Google Scholar 

  100. M.A. Gurwell, D.O. Muhleman, K.P. Shah, G.L. Berge, D.J. Rudy, A.W. Grossman, Observations of the CO bulge on Venus and implications for mesospheric winds. Icarus 115, 141–158 (1995)

    ADS  Article  Google Scholar 

  101. B. Häusler, M. Pätzold, G.L. Tyler, R.A. Simpson, M.K. Bird, V. Dehant, J.P. Barriot, W. Eidel, R. Mattei, S. Remus, J. Selle, S. Tellmann, T. Imamura, Radio science investigations by VeRa onboard the Venus Express spacecraft. Planet. Space Sci. 54, 1315–1335 (2006)

    ADS  Article  Google Scholar 

  102. A.E. Hedin, H.B. Niemann, W.T. Kasprzak, A. Seiff, Global empirical model of the Venus thermosphere. J. Geophys. Res. 88, A1 (1983)

    Google Scholar 

  103. R.R. Hodges, An exospheric perspective of isotopic fractionation of hydrogen on Venus. J. Geophys. Res. 104, 8463–8471 (1999)

    ADS  Article  Google Scholar 

  104. R.R. Hodges, Distributions of hot oxygen for Venus and Mars. J. Geophys. Res. 105, 6971–6981 (2000). doi:10.1029/1999JE001138

    ADS  Article  Google Scholar 

  105. C.W. Hord et al., Galileo ultraviolet spectrometer experiment: initial Venus and interplanetary cruise results. Science 253(5027), 1548–1550 (1991). doi:10.1126/science.253.5027.1548

    ADS  Article  Google Scholar 

  106. N. Hoshino, H. Fujiwara, M. Takagi, Y. Takahashi, Y. Kasaba, Characteristics of planetary-scale waves simulated by a new Venusian mesosphere and thermosphere general circulation model. Icarus 217, 818–830 (2012). doi:10.1016/j.icarus.2011.06.039

    ADS  Article  Google Scholar 

  107. H.T. Howard et al., Venus: Mass, gravity field, atmosphere, and ionosphere as measured by the Mariner 10 dual-frequency radio system. Science 183(4131), 1297–1301 (1974)

    ADS  Article  Google Scholar 

  108. B. Hubert, J.C. Gérard, J. Gustin, V.I. Shematovich, D.V. Bisikalo, A.I. Stewart, G.R. Gladstone, UVIS observations of the FUV OI and CO 4P Venus dayglow during the Cassini flyby. Icarus 207, 549–557 (2010). doi:10.1016/j.icarus.2009.12.029

    ADS  Article  Google Scholar 

  109. B. Hubert, J.-C. Gérard, J. Gustin, D.V. Bisikalo, V.I. Shematovich, G.R. Gladstone, Cassini-UVIS observation of dayglow FUV emissions of carbon in the thermosphere of Venus. Icarus 220, 635–646 (2012). doi:10.1016/j.icarus.2012.06.002

    ADS  Article  Google Scholar 

  110. R.A. Hueso, A. Sánchez-Lavega, G. Piccioni, P. Drossart, J.-C. Gérard, I. Khatuntsev, L. Zasova, A. Migliorini, Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations. J. Geophys. Res. 113, E00B02 (2008). doi:10.1029/2008JE003081

    ADS  Article  Google Scholar 

  111. D.L. Huestis, S.W. Bougher, J.L. Fox, M. Galand, R.E. Johnson, J.I. Moses, J.C. Pickering, Cross sections and reaction rates for comparative planetary aeronomy. Space Sci. Rev. 139, 63–105 (2008). doi:10.1007/s11214-008-9383-7

    ADS  Article  Google Scholar 

  112. J.M. Jenkins, P.G. Steffes, D.P. Hinson, J.D. Twicken, G.L. Tyler, Radio occultation studies of the Venus atmosphere with the Magellan spacecraft 2: results from the October 1991 experiments. Icarus 110, 79–94 (1994)

    ADS  Article  Google Scholar 

  113. M.A. Johnson, A.L. Betz, R.A. McLaren, C.H. Townes, E.C. Sutton, Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus. Astrophys. J. 208, L145–L148 (1976). doi:10.1086/182252

    ADS  Article  Google Scholar 

  114. H.U. Kaeufl, H. Rothermel, S. Drapatz, Investigation of the Martian atmosphere by 10 micron heterodyne spectroscopy. Astron. Astrophys. 136, 319–325 (1984)

    ADS  Google Scholar 

  115. E. Kallio, J.Y. Chaufray, R. Modolo, D. Snowden, R. Winglee, Modeling of Venus, Mars, and Titan. Space Sci. Rev. 162, 267–307 (2011). doi:10.1007/s11214-011-9814-8

    ADS  Article  Google Scholar 

  116. W.T. Kasprzak, H.B. Niemann, A.E. Hedin, S.W. Bougher, Wave-like perturbations observed at low altitudes by the Pioneer Venus Orbiter Neutral Mass Spectrometer during Orbiter entry. Geophys. Res. Lett. 20, 2755–2758 (1993)

    ADS  Article  Google Scholar 

  117. W.T. Kasprzak, G.M. Keating, N.C. Hsu, A.I.F. Stewart, W.B. Colwell, S.W. Bougher, Solar activity behavior of the thermosphere, in Venus II (U. of Arizona Press, Tucson, 1997), p. 225

    Google Scholar 

  118. G.M. Keating, J.Y. Nicholson III., L.R. Lake, Venus upper atmosphere structure. J. Geophys. Res. 85, 7941–7956 (1980)

    ADS  Article  Google Scholar 

  119. D. Kella, P.J. Johnson, H.B. Pedersen, L. Vejby-Christenson, L.H. Andersen, The source of green light emission determined from a heavy-ion storage ring experiment. Science 276, 1530–1533 (1997)

    Article  Google Scholar 

  120. A.J. Kliore, Recent results on the Venus atmosphere from Pioneer Venus radio-occultations. Adv. Space Res. 5, 41–49 (1985)

    ADS  Article  Google Scholar 

  121. A.J. Kliore, Radio occultation observations of the ionospheres of Mars and Venus, in Venus and Mars: Atmospheres, Ionospheres and Solar Wind Interaction. AGU Geophysical Monograph, vol. 66 (1992)

    Google Scholar 

  122. A.J. Kliore, J.G. Luhmann, Solar cycle effects on the structure of the electron density profiles in the dayside ionosphere of Venus. J. Geophys. Res. 96, 21281 (1991)

    ADS  Article  Google Scholar 

  123. A.J. Kliore, G.S. Levy, D.L. Cain, G. Fjeldbo, S.I. Rasool, Atmosphere and ionosphere of Venus from the Mariner V S-band radio occultation measurement. Science 158, 1683–1688 (1967)

    ADS  Article  Google Scholar 

  124. A.J. Kliore, I.R. Patel, A.F. Nagy, T.E. Cravens, T.I. Gombosi, Initial observations of the nightside ionosphere of Venus from Pioneer Venus Orbiter radio occultations. Science 205, 99–102 (1979a)

    ADS  Article  Google Scholar 

  125. A.J. Kliore, R. Woo, J.W. Armstrong, I.R. Patel, T.A. Croft, The polar ionosphere of Venus near the terminator from early Pioneer Venus orbiter radio occultations. Science 203, 765–768 (1979b)

    ADS  Article  Google Scholar 

  126. A.J. Kliore, V.I. Moroz, G.M. Keating, The Venus international reference atmosphere, in Adv. Space Res., vol. 5 (Pergamon Press, Elmsford, 1985), pp. 1–305

    Google Scholar 

  127. A.J. Kliore, J.G. Luhmann, M.H.G. Zhang, The effect of the solar cycle on the maintenance of the nightside ionosphere of Venus. J. Geophys. Res. 96, 11065 (1991)

    ADS  Article  Google Scholar 

  128. W.C. Knudsen, K.L. Miller, Pioneer Venus suprathermal electron flux measurements in the Venus umbra. J. Geophys. Res. 90, 2695–2702 (1985). doi:10.1029/JA090iA03p02695

    ADS  Article  Google Scholar 

  129. W.C. Knudsen, K. Spenner, R.C. Whitten, J.R. Spreiter, K.L. Miller, V. Novak, Thermal structure and major ion composition of the Venus ionosphere: First RPA results from Venus orbiter. Science 203, 757–763 (1979a)

    ADS  Article  Google Scholar 

  130. W.C. Knudsen, K. Spenner, R.C. Whitten, J.R. Spreiter, K.L. Miller, V. Novak, Thermal structure and energy influx to the day-and nightside Venus ionosphere. Science 205, 105–107 (1979b)

    ADS  Article  Google Scholar 

  131. V.A. Krasnopolsky, Venus spectroscopy in the 3000–8000 Å region by Veneras 9 and 10, in Venus, ed. by D.M. Hunten et al. (The University of Arizona Press, Tucson, 1983), pp. 459–483

    Google Scholar 

  132. V.A. Krasnopolsky, Oxygen emissions in the night airglow of the Earth, Venus and Mars. Planet. Space Sci. 34, 511–518 (1986)

    ADS  Article  Google Scholar 

  133. V.A. Krasnopolsky, Venus night airglow: ground-based detection of OH, observations of O2 emissions, and photochemical model. Icarus 207, 17–27 (2010). doi:10.1016/j.icarus.2009.10.019

    ADS  Article  Google Scholar 

  134. V.A. Krasnopolsky, Excitation of the oxygen nightglow on the terrestrial planets. Planet. Space Sci. 59, 754–766 (2011)

    ADS  Article  Google Scholar 

  135. V.A. Krasnopolsky, Nightside photochemical model and night airglow on Venus. Planet. Space Sci. 85, 78–88 (2013). doi:10.1016/j.pss.2013.05.022

    ADS  Article  Google Scholar 

  136. V.A. Krasnopolsky, Observations of CO dayglow at 4.7 μm, CO mixing ratios, and temperatures at 74 and 104–111 km on Venus. Icarus 237, 340–349 (2014a). doi:10.1016/j.icarus.2014.04.043

    ADS  Article  Google Scholar 

  137. V.A. Krasnopolsky, Observations of the CO dayglow at 4.7 μm on Mars: variations of temperature and CO mixing ratio at 50 km. Icarus 228, 189–196 (2014b)

    ADS  Article  Google Scholar 

  138. V.A. Krasnopolsky, G.R. Gladstone, Helium on Mars and Venus: EUVE observations and modeling. Icarus 176(2), 395–407 (2005)

    ADS  Article  Google Scholar 

  139. V.A. Krasnopolsky, V.A. Parshev, Photochemistry of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (The University of Arizona Press, Tucson, 1983), pp. 459–483

    Google Scholar 

  140. M.A. Krestyanikova, V.I. Shematovich, Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars. Sol. Syst. Res. 40, 384–392 (2006). doi:10.1134/S0038094606050030

    ADS  Article  Google Scholar 

  141. S. Kumar, A.L. Broadfoot, He 584 Å airglow emission from Venus: Mariner 10 observations. Geophys. Res. Lett. 2, 357–360 (1975). doi:10.1029/GL002i008p00357

    ADS  Article  Google Scholar 

  142. H. Lammer et al., Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006). doi:10.1016/j.pss.2006.04.022

    ADS  Article  Google Scholar 

  143. S. Lebonnois et al., Superrotation of Venus’ atmosphere analysed with a full general circulation model. J. Geophys. Res. 115, E06006 (2010). doi:10.1029/2009JE003458

    ADS  Article  Google Scholar 

  144. F. Leblanc, J.Y. Chaufray, J.L. Bertaux, On Martian nitrogen dayglow emission observed by SPICAM UV spectrograph/Mars Express. Geophys. Res. Lett. 34, L02206 (2007). doi:10.1029/2006GL028437

    ADS  Article  Google Scholar 

  145. E. Lellouch, J.J. Goldstein, J. Rosenqvist, S.W. Bougher, G. Paubert, Global circulation, thermal structure, and carbon monoxide distribution in Venus’ mesosphere in 1991. Icarus 110, 315–339 (1994)

    ADS  Article  Google Scholar 

  146. E. Lellouch, R.T. Clancy, D. Crisp, A. Kliore, D. Titov, S.W. Bougher, Monitoring of mesospheric structure and dynamics, in Venus II (U. of Arizona Press, Tucson, 1997), pp. 295–324

    Google Scholar 

  147. E. Lellouch, G. Paubert, R. Moreno, A. Moullet, Monitoring Venus’ mesospheric winds in support of Venus Express: IRAM 30-m and APEX observations. Planet. Space Sci. 56, 1355–1367 (2008). doi:10.1016/j.pss.2008.06.010

    ADS  Article  Google Scholar 

  148. H.I.M. Lichtenegger, H. Gröller, H. Lammer, Yu.N. Kulikov, V.I. Shematovich, On the elusive hot oxygen corona of Venus. Geophys. Res. Lett. 36, L10204 (2009). doi:10.1029/2009GL037575

    ADS  Article  Google Scholar 

  149. S. Limaye et al., The thermal structure of the Venus atmosphere: intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus 294, 124–155 (2017)

    ADS  Article  Google Scholar 

  150. V.M. Linkin et al., VEGA balloon dynamics and vertical winds in the Venus middle cloud region. Science 231, 1417–1419 (1986)

    ADS  Article  Google Scholar 

  151. M.A. López-Puertas, F.W. Taylor, Non-LTE Radiative Transfer in the Atmosphere (World Scientific Publishing Co., Singapore, 2001)

    Book  Google Scholar 

  152. M.A. López-Valverde, M. López-Puertas, J.J. López-Moreno, V. Formisano, D. Grassi, A. Maturilli, E. Lellouch, P. Drossart, Analysis of CO2 non-LTE emissions at 4.3 μm in the Martian atmosphere as observed by PFS/Mars Express and SWS/ISO. Planet. Space Sci. 53, 1079–1087 (2005). doi:10.1016/j.pss.2005.03.007

    ADS  Article  Google Scholar 

  153. M.A. López-Valverde, P. Drossart, R. Carlson, R. Mehlman, M. Roos-Serote, Non-LTE infrared observations at Venus: From NIMS/GALILEO to VIRTIS/Venus Express. Planet. Space Sci. 55, 1757–1771 (2007). doi:10.1016/j.pss.2007.01.008

    ADS  Article  Google Scholar 

  154. M.A. López-Valverde, M. López-Puertas, B. Funke, G. Gilli, M. García-Comas, P. Drossart, G. Piccioni, V. Formisano, Modelling the atmospheric limb emission of CO2 at 4.3 μm in the terrestrial planets. Planet. Space Sci. 59, 988–998 (2011a). doi:10.1016/j.pss.2010.02.001

    ADS  Article  Google Scholar 

  155. M.A. López-Valverde, G. Sonnabend, M. Sornig, P. Kroetz, Modelling the atmospheric CO2 10-μm non-thermal emission in Mars and Venus at high spectral resolution. Planet. Space Sci. 59, 999–1009 (2011b). doi:10.1016/j.pss.2010.11.011

    ADS  Article  Google Scholar 

  156. R. Lundin, S. Barabash, Y. Futaana, M. Holmström, H. Perez-de-Tejada, J.-A. Sauvaud, A large-scale flow vortex in the Venus plasma tail and its fluid dynamic interpretation. Geophys. Res. Lett. 40, 1273–1278 (2013). doi:10.1002/grl.50309

    ADS  Article  Google Scholar 

  157. Mariner Stanford Group, Venus: IonosphereAtmosphere as measured by dual-frequency radio occultation of Mariner V. Science 158, 1678–1683 (1967)

    ADS  Article  Google Scholar 

  158. S.T. Massie, D.M. Hunten, D.R. Sowell, Day and night models of the Venus thermosphere. J. Geophys. Res. 88, 3955–3969 (1983). doi:10.1029/JA088iA05p03955

    ADS  Article  Google Scholar 

  159. K. Masunaga, K. Seki, N. Terada, F. Tsuchiya, T. Kimura, K. Yoshioka, G. Murakami, A. Yamazaki, M. Kagitani, C. Tao, A. Fedorov, Y. Futaana, T.L. Zhang, D. Shiota, F. Leblanc, J.-Y. Chaufray, I. Yoshikawa, Periodic variations of oxygen EUV dayglow in the upper atmosphere of Venus: Hisaki/EXCEED observations. J. Geophys. Res. 120, 2037 (2015). doi:10.1002/2015JE004849

    Article  Google Scholar 

  160. K. Masunaga, K. Seki, N. Terada, F. Tsuchiya, T. Kimura, K. Yoshioka, G. Murakami, A. Yamazaki, C. Tao, F. Leblanc, I. Yoshikawa, Dawn-dusk difference of periodic oxygen EUV dayglow variations at Venus observed by Hisaki. Icarus 292, 102–110 (2017). doi:10.1016/j.icarus.2016.12.027

    ADS  Article  Google Scholar 

  161. H.G. Mayr, I. Harris, H.B. Niemann, H.C. Brinton, N.W. Spencer, H.A. Taylor, R.E. Hartle, W.R. Hoegy, D.M. Hunten, Dynamic properties of the thermosphere inferred from Pioneer Venus mass spectrometer measurements. J. Geophys. Res. 85, 7841–7847 (1980). doi:10.1029/JA085i.A13p07841

    ADS  Article  Google Scholar 

  162. M.B. McElroy, M.J. Prather, J.M. Rodriguez, Escape of hydrogen from Venus. Science 215, 1614–1615 (1982). doi:10.1126/science.215.4540.1614

    ADS  Article  Google Scholar 

  163. J.G. Mengel, H.G. Mayr, I. Harris, D.R. Stevens-Rayburn, Non-linear three-dimensional spectral model of the Venusian thermosphere with superrotation: II. Temperature, composition, and winds. Planet. Space Sci. 37, 707–722 (1989)

    ADS  Article  Google Scholar 

  164. A. Migliorini, G. Piccioni, A. Cardesín-Moinelo, P. Drossart, Hydroxyl airglow on Venus in comparison with Earth. Planet. Space Sci. 59, 974–980 (2011). doi:10.1016/j.pss.2010.05.004

    ADS  Article  Google Scholar 

  165. A. Migliorini, G. Piccioni, J.C. Gérard, L. Soret, T.G. Slanger, R. Politi, M. Snels, P. Drossart, F. Nuccilli, The characteristics of the O2 Herzberg II and Chamberlain bands observed with VIRTIS/Venus Express. Icarus 223, 609–614 (2013a). doi:10.1016/j.icarus.2012.11.017

    ADS  Article  Google Scholar 

  166. A. Migliorini, G. Piccioni, F. Capaccioni, G. Filacchione, F. Tosi, J.C. Gérard, Comparative analysis of airglow emissions in terrestrial planets, observed with VIRTIS-M instruments on board Rosetta and Venus Express. Icarus 226, 1115–1127 (2013b). doi:10.1016/j.icarus.2013.07.027

    ADS  Article  Google Scholar 

  167. A. Migliorini, M. Snels, J.C. Gérard, L. Soret, G. Piccioni, P. Drossart, Temperature estimation from hydroxyl airglow emission in the Venus night side mesosphere. Icarus 300, 386–391 (2018). doi:10.1016/j.icarus.2017.09.026

    ADS  Article  Google Scholar 

  168. J.G. Molina-Cuberos, J.J. López-Moreno, F. Arnold, Meteoric layers in planetary atmospheres, in Planetary Atmospheric Electricity (Springer, New York, 2008), pp. 175–191

    Chapter  Google Scholar 

  169. F. Montmessin, J.L. Bertaux, F. Lefèvre, E. Marcq, D. Belyaev, J.C. Gérard, O. Korablev, A. Fedorova, V. Sarago, A.C. Vandaele, A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216, 1 (2011). doi:10.1016/j.icarus.2011.08.010

    Article  Google Scholar 

  170. M.J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, D. Zipoy, Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser. Science 212, 45–49 (1981). doi:10.1126/science.212.4490.45

    ADS  Article  Google Scholar 

  171. A.F. Nagy, T.E. Cravens, Hot oxygen atoms in the upper atmospheres of Venus and Mars. Geophys. Res. Lett. 15, 433–435 (1988)

    ADS  Article  Google Scholar 

  172. A.F. Nagy, T.E. Cravens, J.H. Yee, A.I.F. Stewart, Hot oxygen atoms in the upper atmosphere of Venus. Geophys. Res. Lett. 8, 629–632 (1981)

    ADS  Article  Google Scholar 

  173. A.F. Nagy, J. Kim, T.E. Cravens, Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars. Ann. Geophys. 8, 251–256 (1990)

    ADS  Google Scholar 

  174. H. Nakagawa, N. Hoshino, M. Sornig, Y. Kasaba, G. Sonnabend, D. Stupar, S. Aoki, I. Murata, Comparison of general circulation model atmospheric wave simulations with wind observations of Venusian mesosphere. Icarus 225, 840–849 (2013)

    ADS  Article  Google Scholar 

  175. M. Nakamura et al., Overview of Venus orbiter Akatsuki. Earth Planets Space 63(5), 443–457 (2011). doi:10.5047/eps.2011.02.009

    ADS  Article  Google Scholar 

  176. H.B. Niemann, R.E. Hartle, A.E. Hedin, W.T. Kasprzak, N.W. Spencer, D.M. Hunten, G.R. Carignan, Venus upper atmosphere neutral gas composition: first observations of the diurnal variations. Science 205, 54–56 (1979)

    ADS  Article  Google Scholar 

  177. H.B. Niemann, W.T. Kasprzak, A.E. Hedin, D.M. Hunten, N.W. Spencer, Mass spectrometer measurements of the neutral gas composition of the thermosphere and exosphere of Venus. J. Geophys. Res. 85, 7817–7827 (1980). doi:10.1029/JA085iA13p07817

    ADS  Article  Google Scholar 

  178. S. Ohtsuki, N. Iwagami, H. Sagawa, Y. Kasaba, M. Ueno, T. Imamura, Ground-based observation of the Venus 1.27-μm O2 airglow. Adv. Space Res. 36, 2038–2042 (2005). doi:10.1016/j.asr.2005.05.078

    ADS  Article  Google Scholar 

  179. S. Ohtsuki, N. Iwagami, H. Sagawa, M. Ueno, Y. Kasaba, T. Imamura, K. Yanagisawa, E. Nishihara, Distributions of the Venus 1.27-μm O2 airglow and rotational temperature. Planet. Space Sci. 56, 1391–1398 (2008). doi:10.1016/j.pss.2008.05.013

    ADS  Article  Google Scholar 

  180. M. Pätzold, S. Tellmann, B. Häusler, D. Hinson, R. Schaa, G.L. Tyler, A sporadic third layer in the ionosphere of Mars. Science 310, 837–839 (2005)

    ADS  Article  Google Scholar 

  181. M. Pätzold, B. Häusler, M.K. Bird, S. Tellmann, R. Mattei, S.W. Asmar, V. Dehant, W. Eidel, T. Imamura, R.A. Simpson, G.L. Tyler, The structure of Venus’ middle atmosphere and ionosphere. Nature 450, 657–660 (2007). doi:10.1038/nature06239

    ADS  Article  Google Scholar 

  182. M. Pätzold, S. Tellmann, B. Häusler, M.K. Bird, G.L. Tyler, A.A. Christou, P. Withers, A sporadic layer in the Venus lower ionosphere of meteoric origin. Geophys. Res. Lett. 36, 5203–5206 (2009)

    ADS  Article  Google Scholar 

  183. L.J. Paxton, Pioneer Venus Orbiter Ultraviolet Spectrometer limb observations: Analysis and interpretation of the 166- and 156-nm data. J. Geophys. Res. 90, 5089–5096 (1985)

    ADS  Article  Google Scholar 

  184. L.J. Paxton, D.E. Anderson, Far ultraviolet remote sensing of Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, ed. by J.G. Luhmann, M. Tatrallyay, R.O. Pepin. Geophys. Monogr., vol. 66 (AGU, Washington, 1992). doi:10.1029/GM066p0113

    Google Scholar 

  185. L.J. Paxton, D.E. Anderson, A.I.F. Stewart, Analysis of the Pioneer Venus Ultraviolet Spectrometer Lyman-alpha data from near the subsolar region. J. Geophys. Res. 93, 1766–1772 (1988a)

    ADS  Article  Google Scholar 

  186. L.J. Paxton, D.E. Anderson, A.I.F. Stewart, Correction to: analysis of the Pioneer Venus Ultraviolet Spectrometer Lyman-alpha data from near the subsolar region. J. Geophys. Res. 93, 11551 (1988b)

    ADS  Article  Google Scholar 

  187. J.B. Pechmann, A.P. Ingersoll, Thermal tides in the atmosphere of Venus – comparison of model results with observations. J. Atmos. Sci. 41, 3290–3313 (1984)

    ADS  Article  Google Scholar 

  188. J. Peralta, R. Hueson, A. Sánchez-Lavega, G. Piccioni, O. Lanciano, P. Drossart, Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX-VIRTIS images. J. Geophys. Res. 113, E12 (2008). doi:10.1029/2008JE003185

    Article  Google Scholar 

  189. J. Peralta, M.A. López-Valverde, G. Gilli, A. Piccialli, Dayside temperatures in the Venus upper atmosphere from Venus Express/VIRTIS nadir measurements at 4.3 μm. Astron. Astrophys. 585, A53 (2016). doi:10.1051/0004-6361/201527191

    ADS  Article  Google Scholar 

  190. W.D. Pesnell, J. Grebowsky, Meteoric magnesium ions in the Martian atmosphere. J. Geophys. Res. 105, 1695–1708 (2000)

    ADS  Article  Google Scholar 

  191. W.D. Pesnell, J. Grebowsky, P.A. Webb, Meteoric Ions in Venus’ Atmosphere, AGU Fall Meeting Abstracts, A238 (2004)

    Google Scholar 

  192. K. Peter, M. Pätzold, G. Molina-Cuberos, O. Witasse, F. Gonzalez-Galindo, P. Withers, M.K. Bird, B. Häusler, D.P. Hinson, S. Tellmann, G.L. Tyler, The dayside ionospheres of Mars and Venus: comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus 233, 66–82 (2014)

    ADS  Article  Google Scholar 

  193. J.L. Phillips, A.I.F. Stewart, J.G. Luhmann, The Venus ultraviolet aurora: observations at 130.4 nm. Geophys. Res. Lett. 13, 1047–1050 (1986). doi:10.1029/GL013i010p01047

    ADS  Article  Google Scholar 

  194. A. Piccialli et al., Cyclostrophic winds from the Visible and Infrared Thermal Imaging Spectrometer temperature sounding: A preliminary analysis. J. Geophys. Res. 113 (2008)

  195. A. Piccialli, S. Tellmann, D.V. Titov, S.S. Limaye, I.V. Khatuntsev, M. Pätzold, B. Häusler, Dynamical properties of the Venus mesosphere from the radio-occultation experiment VeRa onboard Venus Express. Icarus 217, 669–681 (2012)

    ADS  Article  Google Scholar 

  196. A. Piccialli, F. Montmessin, D. Belyaev, A. Mahieux, A. Fedorova, E. Marcq, J.L. Bertaux, A.C. Vandaele, O. Korablev, Thermal structure of Venus upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planet. Space Sci. 113(144), 321–335 (2015). doi:10.1016/j.pss.2014.12.009

    ADS  Article  Google Scholar 

  197. A. Piccialli et al., CO2 non-LTE limb emissions in Mars’ atmosphere as observed by OMEGA/Mars Express. J. Geophys. Res. 121(6), 1066–1086 (2016). 2016. doi:10.1002/2015JE004981

    Article  Google Scholar 

  198. G. Piccioni et al., First detection of hydroxyl in the atmosphere of Venus. Astron. Astrophys. 483, 3 (2008). doi:10.1051/0004-6361:200809761

    Article  Google Scholar 

  199. G. Piccioni et al., Near-IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere. J. Geophys. Res. 114, E00b38 (2009). doi:10.1029/2008je003133

    Article  Google Scholar 

  200. M. Rengel, P. Hartogh, D. Jarchow, Mesospheric vertical thermal structure and winds on Venus from HHSMT CO spectral-line observations. Planet. Space Sci. 56, 1368–1384 (2008). doi:10.1016/j.pss.2008.07.004

    ADS  Article  Google Scholar 

  201. P.G. Richards, J.A. Fennelly, D.G. Torr, EUVAC: a solar EUV Flux Model for aeronomic calculations. J. Geophys. Res. 99(A5), 8981–8992 (1994). doi:10.1029/94JA00518

    ADS  Article  Google Scholar 

  202. H. Rishbeth, M. Mendillo, Ionospheric layers of Mars and Earth. Planet. Space Sci. 52, 849–852 (2004)

    ADS  Article  Google Scholar 

  203. A. Roldan, M.A. López-Valverde, M. Lopez-Puertas, D.P. Edwards, Non-LTE infrared emissions of CO2 in the atmosphere of Venus. Icarus 147, 11–25 (2000). doi:10.1006/icar.2000.6432

    ADS  Article  Google Scholar 

  204. M. Roos-Serote, P. Drossart, Th. Encrenaz, E. Lellouch, R.W. Carlson, K.H. Baines, F.W. Taylor, The thermal structure of the middle Venusian atmosphere from the Galileo/NIMS spectra. Icarus 114, 300–309 (1995)

    ADS  Article  Google Scholar 

  205. J. Rosenqvist, E. Lellouch, Th. Encrenaz, G. Pauber, Global circulation in Venus’ mesosphere from IRAM CO observations (1991–1994): a tribute to Jan Rosenqvist. Bull. Am. Astron. Soc. 27, 1080 (1995)

    ADS  Google Scholar 

  206. W.B. Rossow, A.D. Del Genio, T. Eichler, Cloud-tracked winds from Pioneer Venus OCPP images. J. Atmos. Sci. 47, 2053–2084 (1990)

    ADS  Article  Google Scholar 

  207. A. Sánchez-Lavega, S. Lebonnois, T. Imamura, P. Read, D. Luz, The atmospheric dynamics of Venus. Space Sci. Rev. 1–76 (2017). doi:10.1007/s11214-017-0389-x

  208. K. Schafer et al., Infrared Fourier-Spectrometer experiment from Venera-15. Adv. Space Res. 10, 57–66 (1990)

    ADS  Article  Google Scholar 

  209. F.P. Schloerb, S.E. Robinson, W.M. Irvine, Observations of CO in the stratosphere of Venus via its J = 0-1 rotational transition. Icarus 43, 121–127 (1980)

    ADS  Article  Google Scholar 

  210. F. Schmülling, J. Goldstein, T. Kostiuk, T. Hewagama, D. Zipoy, High precision Wind measurements in the upper Venus atmosphere. Bull. Am. Astron. Soc. 32, 1121 (2000)

    ADS  Google Scholar 

  211. G. Schubert, General circulation and the dynamical state of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (U. Arizona Press, Tucson, 1983), pp. 681–765

    Google Scholar 

  212. G. Schubert, S.W. Bougher, C.C. Covey, A.D. Del Genio, A.S. Grossman, J.L. Hollingsworth, S.S. Limaye, R.E. Young, Venus atmosphere dynamics: a continuing enigma in Exploring Venus as a Terrestrial Planet. AGU Geophysical Monograph, vol. 176, 2007, pp. 101–120

    Chapter  Google Scholar 

  213. R.W. Schunk, A.F. Nagy, Ionospheres of the terrestrial planets. Rev. Geophys. Space Phys. 18, 813–852 (1980)

    ADS  Article  Google Scholar 

  214. K.P. Shah, D.O. Muhleman, G.L. Berge, Measurement of winds in Venus’ upper mesosphere based on Doppler shifts of the 2.6-mm 12CO line. Icarus 93, 96–121 (1991)

    ADS  Article  Google Scholar 

  215. A.V. Shakun, L.V. Zasova, G. Piccioni, P. Drossart, A. Migliorini, Investigation of oxygen O2 (\(\mathrm{a}^{1} \Delta _{\mathrm{g}}\)) emission on the nightside of Venus: nadir data of the VIRTIS-M experiment of the Venus Express mission. Cosm. Res. 48, 232–239 (2010). doi:10.1134/S0010952510030044

    ADS  Article  Google Scholar 

  216. B.D. Shizgal, G.G. Arkos, Nonthermal escape of the atmospheres of Venus, Earth, and Mars. Rev. Geophys. 34, 483–505 (1996). doi:10.1029/96RG02213

    ADS  Article  Google Scholar 

  217. T.G. Slanger, P.C. Cosby, D.L. Huestis, T.A. Bida, Discovery of the atomic oxygen green line in the Venus night airglow. Science 291, 463–465 (2001)

    ADS  Article  Google Scholar 

  218. T.G. Slanger, D.L. Huestis, P.C. Cosby, N.J. Chanover, T.A. Bida, The Venus nightglow: ground-based observations and chemical mechanisms. Icarus 182, 1 (2006). doi:10.1016/j.icarus.2005.12.007

    ADS  Article  Google Scholar 

  219. T.G. Slanger, N.J. Chanover, B.D. Sharpee, T.A. Bida, O/O2 emissions in the Venus nightglow. Icarus 217, 845–848 (2012)

    ADS  Article  Google Scholar 

  220. G. Sonnabend, M. Sornig, R. Schieder, T. Kostiuk, J. Delgado, Temperatures in Venus upper atmosphere from mid-infrared heterodyne spectroscopy of CO2 around 10 μm wavelength. Planet. Space Sci. 56, 1407–1413 (2008). doi:10.1016/j.pss.2008.05.008

    ADS  Article  Google Scholar 

  221. G. Sonnabend, P. Kroetz, M. Sornig, D. Stupar, Direct observations of Venus upper mesospheric temperatures from ground based spectroscopy of CO2. Geophys. Res. Lett. 37 (2010). doi:10.1029/2010GL043335

  222. L. Soret, J.-C. Gérard, Is the O2 (\(\mathrm{a}^{1} \Delta _{\mathrm{g}}\)) Venus nightglow emission controlled by solar activity? Icarus 262, 170–172 (2015). doi:10.1016/j.icarus.2015.08.030

    ADS  Article  Google Scholar 

  223. L. Soret, J.-C. Gérard, G. Piccioni, P. Drossart, Venus OH nightglow distribution based on VIRTIS limb observations from Venus Express. Geophys. Res. Lett. 37, L06805 (2010). doi:10.1029/2010GL042377

    ADS  Article  Google Scholar 

  224. L. Soret, J.-C. Gérard, F. Montmessin, G. Piccioni, P. Drossart, J.L. Bertaux, Atomic oxygen on the Venus nightside: global distribution deduced from airglow mapping. Icarus 217, 849–855 (2012a). doi:10.1016/j.icarus.2011.03.034

    ADS  Article  Google Scholar 

  225. L. Soret, J.-C. Gérard, G. Piccioni, P. Drossart, The OH Venus nightglow spectrum: intensity and vibrational composition from VIRTIS—Venus Express observations. Planet. Space Sci. 73, 1 (2012b). doi:10.1016/j.pss.2012.07.027

    Article  Google Scholar 

  226. L. Soret, J.-C. Gérard, G. Piccioni, P. Drossart, Time variations of O2 (\(\mathrm{a}^{1} \Delta\)) nightglow spots on the Venus nightside and dynamics of the upper mesosphere. Icarus 237, 306–314 (2014). doi:10.1016/j.icarus.2014.03.034

    ADS  Article  Google Scholar 

  227. M. Sornig, T. Livengood, G. Sonnabend, P. Kroetz, D. Stupar, T. Kostiuk, R. Schieder, Venus upper atmosphere winds from ground-based heterodyne spectroscopy of CO2 at 10 μm wavelength. Planet. Space Sci. 56, 1399–1406 (2008). doi:10.1016/j.pss.2008.05.006

    ADS  Article  Google Scholar 

  228. K. Spenner, W.C. Knudsen, W. Lotze, Suprathermal electron fluxes in the Venus nightside ionosphere at moderate and high solar activity. J. Geophys. Res. 101, 4557–4563 (1996). doi:10.1029/95JE03495

    ADS  Article  Google Scholar 

  229. P.G. Steffes, J.M. Jenkins, R.S. Austin, S.W. Asmar, D.T. Lyons, E.H. Seale, G.L. Tyler, Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 1: Experimental description and performance. Icarus 110, 71–78 (1994)

    ADS  Article  Google Scholar 

  230. G.I. Stepanova, G.M. Shved, Radiative transfer in the 4.3-micron CO2 and 4.7-micron CO bands in the non-LTE Venus and Mars atmospheres, Transformation of absorbed solar energy. Sov. Astron. 29, 528–531 (1985)

    ADS  Google Scholar 

  231. S.A. Stern, D.C. Slater, G.R. Gladstone, E. Wilkenson, W.C. Cash, J.C. Green, D.M. Hunten, T.C. Owen, L. Paxton, The 825–1110 Å EUV spectrum of Venus. Icarus 122, 200–204 (1996). doi:10.1006/icar.1996.0119

    ADS  Article  Google Scholar 

  232. M.H. Stevens et al., New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophys. Res. Lett. 42, 9050–9056 (2015). doi:10.1002/2015GL065319

    ADS  Article  Google Scholar 

  233. A.I.F. Stewart, J.-C. Gérard, D.W. Rusch, S.W. Bougher, Morphology of the Venus ultraviolet night airglow. J. Geophys. Res. 85, 7861–7870 (1980). doi:10.1029/JA085iA13p07861

    ADS  Article  Google Scholar 

  234. A. Stiepen, L. Soret, J.-C. Gérard, C. Cox, J.L. Bertaux, The vertical distribution of the Venus NO nightglow: limb profiles inversion and one-dimensional modeling. Icarus 220, 981–989 (2012). doi:10.1016/j.icarus.2012.06.029

    ADS  Article  Google Scholar 

  235. A. Stiepen, J.-C. Gérard, M. Dumont, C. Cox, J.L. Bertaux, Venus nitric oxide nightglow mapping from SPICAV nadir observations. Icarus 226, 428–436 (2013). doi:10.1016/j.icarus.2013.05.031

    ADS  Article  Google Scholar 

  236. H.A. Taylor, H.C. Brinton, S.J. Bauer, R.E. Hartle, P.A. Cloutier, R.E. Daniell, T.M. Donahue, Ionosphere of Venus – first observations of day-night variations of the ion composition. Science 205, 96–99 (1979a)

    ADS  Article  Google Scholar 

  237. F.W. Taylor, D.J. Diner, L.S. Elson, D.J. McCleese, J.V. Martonchik, J. Delderfield, S.P. Bradley, J.T. Schofield, J.C. Gille, M.T. Coffey, Temperature, cloud structure, and dynamics of Venus middle atmosphere by infrared remote sensing from Pioneer Orbiter. Science 205, 65–67 (1979b)

    ADS  Article  Google Scholar 

  238. F.W. Taylor, R. Beer, M.T. Chahine, D.J. Diner, L.S. Elson, R.D. Haskins, D.J. McCleese, J.V. Martonchik, P.E. Reichley, S.P. Bradley, J. Delderfield, J.T. Schofield, C.B. Farmer, L. Froidevaux, J. Leung, M.T. Coffey, J.C. Gille, Structure and meteorology of the middle atmosphere of Venus: infrared remote sensing from the Pioneer Orbiter. J. Geophys. Res. 85, 7963–8006 (1980)

    ADS  Article  Google Scholar 

  239. S. Tellmann, M. Pätzold, B. Häusler, M.K. Bird, G.L. Tyler, Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express. J. Geophys. Res. 114, E00B36 (2009). doi:10.1029/2008JE003204

    ADS  Article  Google Scholar 

  240. S. Tellmann, B. Häusler, D.P. Hinson, G.L. Tyler, T.P. Andert, M.K. Bird, T. Imamura, M. Pätzold, S. Remus, Small-scale temperature fluctuations seen by the VeRa Radio Science Experiment on Venus Express. Icarus 221, 471–480 (2012)

    ADS  Article  Google Scholar 

  241. S. Tingle S, The Dynamics of the Venusian Mesosphere and Thermosphere. Ph.D. Thesis, Imperial College London (2011)

  242. D.V. Titov et al., Morphology of the cloud tops as observed by the Venus Express Monitoring Camera. Icarus 217, 682–701 (2012)

    ADS  Article  Google Scholar 

  243. W.K. Tobiska, T. Woods, F. Eparvier, R. Viereck, L. Floyd, D. Bouwer, G. Rottman, O.R. White, The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Sol.-Terr. Phys. 62(14), 1233–1250 (2000)

    ADS  Article  Google Scholar 

  244. M.B. Vasilev, A.S. Vyshlov, M.A. Kolosov, A.P. Mesterton, N.A. Savich, V.A. Samovol, L.N. Samoznaev, A.I. Sidorenko, Two-frequency radio occultation measurements with Venera-9 and Venera-10 orbiters. Acta Astronaut. 7, 335–340 (1980)

    ADS  Article  Google Scholar 

  245. U. von Zahn, K.H. Fricke, H. Hoffmann, K. Pelka, Venus-Eddy coefficients in the thermosphere and the inferred helium content of the lower atmosphere. Geophys. Res. Lett. 6, 337–340 (1979)

    ADS  Article  Google Scholar 

  246. U. von Zahn, S. Kumar, H. Niemann, R. Prinn, Composition of the Venus atmosphere. in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (The University of Arizona Press, Tucson, 1983)

    Google Scholar 

  247. T. Widemann, E. Lellouch, A. Campargue, New wind measurements in Venus’s lower mesosphere from visible spectroscopy. Planet. Space Sci. 55, 1741–1756 (2007). doi:10.1016/j.pss.2007.01.005

    ADS  Article  Google Scholar 

  248. O. Witasse, A.F. Nagy, Outstanding aeronomy problems at Venus. Planet. Space Sci. 54, 13–14 (2006). doi:10.1016/j.pss.2006.04.028

    Article  Google Scholar 

  249. P. Withers, A.A. Christou, J. Vaubaillon, Meteoric ion layers in the ionospheres of Venus and Mars: early observations and consideration of the role of meteor showers. Adv. Space Res. 52, 1207–1216 (2013)

    ADS  Article  Google Scholar 

  250. R. Woo, A.J. Kliore, Magnetization of the ionospheres of Venus and Mars—results from radio occultation measurements. J. Geophys. Res. 96, 11073 (1991)

    ADS  Article  Google Scholar 

  251. T.N. Woods, G. Rottman, Solar ultraviolet variability over time periods of aeronomic interest, in Atmospheres in the Solar System. Geophysical Monograph, vol. 130 (American Geophysical Union, Washington, 2002), pp. 221–233

    Google Scholar 

  252. A.M. Zalucha, A.S. Brecht, S. Rafkin, S.W. Bougher, M.J. Alexander, Incorporation of a gravity wave momentum deposition parameterization into the VTGCM. J. Geophys. Res. 118 (2013). doi:10.1029/2012JE004168

  253. S. Zhang, S.W. Bougher, M.J. Alexander, The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195–23205 (1996)

    ADS  Article  Google Scholar 

  254. T.L. Zhang et al., Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum. Planet. Space Sci. 56, 790–795 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

JCG thanks L. Soret for her help during the preparation of the manuscript. MALV was funded by the Spanish Ministry of Economy and Innovation and by the FEDER funds under grant ESP2015-65064-C2-1-P (MINECO/FEDER) as well as by CSIC “intramural” project 01450E022. The research effort of S. Bougher was funded in part by the NASA Venus Express Participating Scientist program through a subcontract from Southwest Research Institute (SwRI) to the University of Michigan. In addition, S. Bougher was also supported by the NASA Solar System Working Program through a subcontract from Bay Area Environmental Research Institute (BAERI) to the University of Michigan. This work was partly supported by the SCOOP/BRAIN research contract from the Belgian Federal Science Policy Office (BELSPO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J.-C. Gérard.

Additional information

Venus III

Edited by Bruno Bézard, Christopher T. Russell, Takehiko Satoh, Suzanne E. Smrekar and Colin F. Wilson

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gérard, JC., Bougher, S.W., López-Valverde, M.A. et al. Aeronomy of the Venus Upper Atmosphere. Space Sci Rev 212, 1617–1683 (2017). https://doi.org/10.1007/s11214-017-0422-0

Download citation

Keywords

  • Venus
  • Aeronomy
  • Upper atmosphere
  • Airglow
  • Nightglow
  • Composition
  • Dynamics
  • Chemistry
  • Transport
  • Ultraviolet
  • Infrared
  • Visible