Skip to main content
Log in

SAMI3_ICON: Model of the Ionosphere/Plasmasphere System

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The NRL ionosphere/plasmasphere model SAMI3 has been modified to support the NASA ICON mission. Specifically, SAMI3_ICON has been modified to import the thermospheric composition, temperature, and winds from TIEGCM-ICON and the high-latitude potential from AMIE data. The codes will be run on a daily basis during the ICON mission to provide ionosphere and thermosphere properties to the science community. SAMI3_ICON will provide ionospheric and plasmaspheric parameters such as the electron and ion densities, temperatures, and velocities, as well as the total electron content (TEC), peak ionospheric electron density (NmF2) and height of the \(F\) layer at NmF2 (hmF2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • G. Crowley, C.L. Hackert, Quantification of high latitude electric field variability. Geophys. Res. Lett. 28, 2783 (2001)

    Article  ADS  Google Scholar 

  • G. Crowley, A. Reynolds, J.P. Thayer, J. Lei, L.J. Paxton, A.B. Christensen, Y. Zhang, R.R. Meier, D.J. Strickland, Periodic modulations in thermospheric composition by solar wind high speed streams. Geophys. Res. Lett. 35, L21106 (2008). doi:10.1029/2008GL035745

    Article  ADS  Google Scholar 

  • G. Crowley, D.J. Knipp, K.A. Drake, J. Lei, E. Sutton, H. Lühr, Thermospheric density enhancements in the dayside cusp region during strong BY conditions. Geophys. Res. Lett. 37, L07110 (2010). doi:10.1029/2009GL042143

    Article  ADS  Google Scholar 

  • D.P. Drob, J.T. Emmert, J.W. Meriwether, J.J. Makela, E. Doornbos, M. Conde, G. Hernandez, J. Noto, K.A. Zawdie, S.E. McDonald, J.D. Huba, J.H. Klenzing, An update to the horizontal wind Model (HWM): the quiet time thermosphere. Earth Space Sci. (2015). doi:10.1002/2014EA000089

    Google Scholar 

  • J. Goldstein, B.R. Sandel, W.T. Forrester, M.F. Thomsen, M.R. Hairston, Global plasmasphere evolution 22–23 April 2001. J. Geophys. Res. 110, A12218 (2005). doi:10.1029/2005JA011282

    Article  ADS  Google Scholar 

  • A.E. Hedin et al., Revised global model of thermosphere winds using satellite and ground-based observations. J. Geophys. Res. 96, 7657 (1991)

    Article  ADS  Google Scholar 

  • J.D. Huba, G. Joyce, Global modeling of equatorial plasma bubbles. Geophys. Res. Lett. 37, L17104 (2010). doi:10.1029/2010GL044281

    ADS  Google Scholar 

  • J.D. Huba, S. Sazykin, Storm-time ionosphere and plasmasphere structuring: SAMI3-RCM simulation of the March 31, 2001 geomagnetic storm. Geophys. Res. Lett. 41, 8208 (2014). doi:10.1002/2014GL062100

    Article  ADS  Google Scholar 

  • J.D. Huba, G. Joyce, J.A. Fedder, Sami2 is another model of the ionosphere (SAMI2): a new low-latitude ionosphere model. J. Geophys. Res. 105, 23,035 (2000)

    Article  ADS  Google Scholar 

  • J. Krall, J.D. Huba, R.E. Denton, G. Crowley, T.-W. Wu, The effect of the thermosphere on quiet time plasmasphere morphology. J. Geophys. Res. 119, 5032 (2014). doi:10.1002/2014JA019850

    Article  Google Scholar 

  • J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107, SIA15 (2002). doi:10.1029/2002JA009430

    Article  Google Scholar 

  • L. Qian, A.G. Burns, B.A. Emery, B. Foster, G. Lu, A. Maute, A.D. Richmond, R.G. Roble, S.C. Solomon, W. Wang, The NCAR TIEGCM, in Modeling the Ionosphere-Thermosphere System, ed. by e.J. Huba, R. Schunk, G. Khazanov (Wiley, Chichester, 2014). doi:10.1002/9781118704417.ch7

    Google Scholar 

  • A.D. Richmond, Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 47, 191 (1995)

    Article  ADS  Google Scholar 

  • A.D. Richmond, A. Maute, Ionospheric electrodynamics modeling, in Modeling the Ionosphere-Thermosphere System, ed. by e.J. Huba, R. Schunk, G. Khazanov (Wiley, Chichester, 2014). doi:10.1002/9781118704417.ch6

    Google Scholar 

  • A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19, 601 (1992)

    Article  ADS  Google Scholar 

  • R.G. Roble, E.C. Ridley, A thermosphere ionosphere mesosphere electrodynamics general circulation model (TIMEGCM): equinox solar cycle minimum simulations (30-500 km). Geophys. Res. Lett. 21, 417 (1994)

    Article  ADS  Google Scholar 

  • R.G. Roble, E.C. Ridley, A.D. Richmond, R.E. Dickinson, A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 15, 1325 (1988)

    Article  ADS  Google Scholar 

  • A. Rodger, The mid-latitude trough—revisited, in Midlatitude Ionospheric Dynamics and Disturbances, ed. by e.P.M. Kintner, A.J. Coster, T. Fuller-Rowell, A.J. Mannucci, M. Mendillo, R. Heelis (Am. Geophys. Union, Washington, 2008). doi:10.1029/181GM04

    Google Scholar 

  • F.D. Wilder, G. Crowley, B.J. Anderson, A.D. Richmond, Intense dayside Joule heating during the April 5, 2010 geomagnetic storm recovery phase observed by AMIE and AMPERE. J. Geophys. Res. 117, A05207 (2012). doi:10.1029/2011JA017262

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the NASA ICON mission and NRL Base Funds (JDH). A.M. is supported by ICON NASA grant NNX14AP03G. The GPS TEC data was obtained from Madrigal Database at Haystack Observatory (http://madrigal.haystack.mit.edu/madrigal/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Huba.

Additional information

The Ionospheric Connection Explorer (ICON) mission

Edited by Doug Rowland and Thomas J. Immel

Appendix

Appendix

The definitions of the terms in Eq. (6) are as follows in dipole coordinates where \(R_{E}\) is the radius of the earth.

$$\begin{gathered} q = \frac{r_{E}^{2}{\mathrm{cos}}\theta }{r^{2}} \qquad p = \frac{r}{r_{E} {\mathrm{sin}}^{2}\theta } \qquad \phi = \phi \\ \varSigma_{pp} = \int (\sigma_{P}/b_{s})\Delta \, ds \qquad \varSigma_{p \phi }= \int (\sigma_{P}/b_{s}\Delta )\, ds \qquad \varSigma_{H} = \int ( \sigma_{H}/b_{s})\, ds \\ F_{pV} = \int \frac{B_{0}}{c} r\sin \theta (\sigma_{P}V_{n\phi }+ \sigma_{H}V_{np})ds \\ F_{pg} = \int r\sin \theta \frac{B_{0}}{c}\frac{1}{\varOmega_{i}}\sigma _{Pi}g_{p} ds \\ F_{\phi V} = \int \frac{B_{0}}{c} \frac{r_{E}\sin^{3}\theta }{\Delta } (-\sigma_{P}V_{np} + \sigma_{H}V_{n\phi }) ds \\ F_{\phi g} = \int \frac{r_{E}\sin^{3}\theta }{\Delta }\frac{B_{0}}{c} \frac{1}{ \varOmega_{i}} \sigma_{Hi}g_{p} ds \\ \sigma_{P} = \sum_{i} \frac{n_{i}ec}{B}\frac{\nu_{in}/\varOmega_{i}}{1 + \nu_{in}^{2}/\varOmega_{i}^{2}} + \frac{n_{e}ec}{B}\frac{\nu_{en}/\varOmega _{e}}{1 + \nu_{en}^{2}/\varOmega_{e}^{2}} \\ \sigma_{H} = -\sum_{i} \frac{n_{i}ec}{B}\frac{1}{1 + \nu_{in}^{2}/ \varOmega_{i}^{2}} + \frac{n_{e}ec}{B}\frac{1}{1 + \nu_{en}^{2}/\varOmega _{e}^{2}} \\ \sigma_{Hi} = -\sum_{i} \frac{n_{i}ec}{B}\frac{1}{1 + \nu_{in}^{2}/ \varOmega_{i}^{2}} \\ \varDelta = \bigl( 1+3\cos^{2}\theta \bigr) ^{1/2} \qquad b_{s}=\bigl(r_{E}^{3}/r^{3}\bigr) \varDelta \qquad s=qr_{E} \end{gathered}$$

Here, \(g_{p}\) is the gravity in the \(p\) direction, \(\varOmega_{\alpha }= eB/m_{\alpha }c\) is the cyclotron frequency of species \(\alpha \), and \(\nu_{\alpha n}\) is the neutral collision frequency with the \(\alpha \) species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huba, J.D., Maute, A. & Crowley, G. SAMI3_ICON: Model of the Ionosphere/Plasmasphere System. Space Sci Rev 212, 731–742 (2017). https://doi.org/10.1007/s11214-017-0415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0415-z

Keywords

Navigation