Space Science Reviews

, Volume 212, Issue 1–2, pp 731–742 | Cite as

SAMI3_ICON: Model of the Ionosphere/Plasmasphere System

Article
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission

Abstract

The NRL ionosphere/plasmasphere model SAMI3 has been modified to support the NASA ICON mission. Specifically, SAMI3_ICON has been modified to import the thermospheric composition, temperature, and winds from TIEGCM-ICON and the high-latitude potential from AMIE data. The codes will be run on a daily basis during the ICON mission to provide ionosphere and thermosphere properties to the science community. SAMI3_ICON will provide ionospheric and plasmaspheric parameters such as the electron and ion densities, temperatures, and velocities, as well as the total electron content (TEC), peak ionospheric electron density (NmF2) and height of the \(F\) layer at NmF2 (hmF2).

Keywords

Ionospheric modeling NASA ICON mission 

Notes

Acknowledgements

This research was supported by the NASA ICON mission and NRL Base Funds (JDH). A.M. is supported by ICON NASA grant NNX14AP03G. The GPS TEC data was obtained from Madrigal Database at Haystack Observatory (http://madrigal.haystack.mit.edu/madrigal/).

References

  1. G. Crowley, C.L. Hackert, Quantification of high latitude electric field variability. Geophys. Res. Lett. 28, 2783 (2001) ADSCrossRefGoogle Scholar
  2. G. Crowley, A. Reynolds, J.P. Thayer, J. Lei, L.J. Paxton, A.B. Christensen, Y. Zhang, R.R. Meier, D.J. Strickland, Periodic modulations in thermospheric composition by solar wind high speed streams. Geophys. Res. Lett. 35, L21106 (2008). doi: 10.1029/2008GL035745 ADSCrossRefGoogle Scholar
  3. G. Crowley, D.J. Knipp, K.A. Drake, J. Lei, E. Sutton, H. Lühr, Thermospheric density enhancements in the dayside cusp region during strong BY conditions. Geophys. Res. Lett. 37, L07110 (2010). doi: 10.1029/2009GL042143 ADSCrossRefGoogle Scholar
  4. D.P. Drob, J.T. Emmert, J.W. Meriwether, J.J. Makela, E. Doornbos, M. Conde, G. Hernandez, J. Noto, K.A. Zawdie, S.E. McDonald, J.D. Huba, J.H. Klenzing, An update to the horizontal wind Model (HWM): the quiet time thermosphere. Earth Space Sci. (2015). doi: 10.1002/2014EA000089 Google Scholar
  5. J. Goldstein, B.R. Sandel, W.T. Forrester, M.F. Thomsen, M.R. Hairston, Global plasmasphere evolution 22–23 April 2001. J. Geophys. Res. 110, A12218 (2005). doi: 10.1029/2005JA011282 ADSCrossRefGoogle Scholar
  6. A.E. Hedin et al., Revised global model of thermosphere winds using satellite and ground-based observations. J. Geophys. Res. 96, 7657 (1991) ADSCrossRefGoogle Scholar
  7. J.D. Huba, G. Joyce, Global modeling of equatorial plasma bubbles. Geophys. Res. Lett. 37, L17104 (2010). doi: 10.1029/2010GL044281 ADSGoogle Scholar
  8. J.D. Huba, S. Sazykin, Storm-time ionosphere and plasmasphere structuring: SAMI3-RCM simulation of the March 31, 2001 geomagnetic storm. Geophys. Res. Lett. 41, 8208 (2014). doi: 10.1002/2014GL062100 ADSCrossRefGoogle Scholar
  9. J.D. Huba, G. Joyce, J.A. Fedder, Sami2 is another model of the ionosphere (SAMI2): a new low-latitude ionosphere model. J. Geophys. Res. 105, 23,035 (2000) ADSCrossRefGoogle Scholar
  10. J. Krall, J.D. Huba, R.E. Denton, G. Crowley, T.-W. Wu, The effect of the thermosphere on quiet time plasmasphere morphology. J. Geophys. Res. 119, 5032 (2014). doi: 10.1002/2014JA019850 CrossRefGoogle Scholar
  11. J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107, SIA15 (2002). doi: 10.1029/2002JA009430 CrossRefGoogle Scholar
  12. L. Qian, A.G. Burns, B.A. Emery, B. Foster, G. Lu, A. Maute, A.D. Richmond, R.G. Roble, S.C. Solomon, W. Wang, The NCAR TIEGCM, in Modeling the Ionosphere-Thermosphere System, ed. by e.J. Huba, R. Schunk, G. Khazanov (Wiley, Chichester, 2014). doi: 10.1002/9781118704417.ch7 Google Scholar
  13. A.D. Richmond, Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 47, 191 (1995) ADSCrossRefGoogle Scholar
  14. A.D. Richmond, A. Maute, Ionospheric electrodynamics modeling, in Modeling the Ionosphere-Thermosphere System, ed. by e.J. Huba, R. Schunk, G. Khazanov (Wiley, Chichester, 2014). doi: 10.1002/9781118704417.ch6 Google Scholar
  15. A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19, 601 (1992) ADSCrossRefGoogle Scholar
  16. R.G. Roble, E.C. Ridley, A thermosphere ionosphere mesosphere electrodynamics general circulation model (TIMEGCM): equinox solar cycle minimum simulations (30-500 km). Geophys. Res. Lett. 21, 417 (1994) ADSCrossRefGoogle Scholar
  17. R.G. Roble, E.C. Ridley, A.D. Richmond, R.E. Dickinson, A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 15, 1325 (1988) ADSCrossRefGoogle Scholar
  18. A. Rodger, The mid-latitude trough—revisited, in Midlatitude Ionospheric Dynamics and Disturbances, ed. by e.P.M. Kintner, A.J. Coster, T. Fuller-Rowell, A.J. Mannucci, M. Mendillo, R. Heelis (Am. Geophys. Union, Washington, 2008). doi: 10.1029/181GM04 Google Scholar
  19. F.D. Wilder, G. Crowley, B.J. Anderson, A.D. Richmond, Intense dayside Joule heating during the April 5, 2010 geomagnetic storm recovery phase observed by AMIE and AMPERE. J. Geophys. Res. 117, A05207 (2012). doi: 10.1029/2011JA017262 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2017

Authors and Affiliations

  1. 1.Naval Research LaboratoryWashingtonUSA
  2. 2.High Altitude ObservatoryBoulderUSA
  3. 3.ASTRA, Inc.BoulderUSA

Personalised recommendations